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The Harris energy functional and overlapped free-atom charge densities are used to perform
total-energy calculations for Si and C. Accurate results are obtained for elastic constants and pho-
ton frequencies. The energy-volume curves for different phases of Si are reproduced well if a slight-

ly contracted free-atom charge density is used.

I. INTRODUCTION

Self-consistent total-energy calculations based on the
Hohenberg-Kohn-Sham local-density approximation'
have become an extremely useful tool, making possible
parameter-free predictions for phonon frequencies, phase
stabilities, equilibrium geometries, and many other quan-
tities of interest. A key factor hereby is that the local-
density model for the electron-electron interaction leads
to total energies which are, in most cases, surprisingly ac-
curate. In principle, it is thus possible to calculate the to-
tal energy for any given arrangement of atoms, to a good
degree of precision, given only the atomic numbers and
positions. However, in practice the technical difficulties
are considerable so that systems containing more than
about 50 atoms cannot normally be treated with state-of-
the-art accuracy. In the local-density approach, it is
necessary to solve coupled equations involving single-
particle wave functions and an effective, density-
dependent potential. These equations must be iterated to
self-consistency by repeatedly solving the Schrodinger
and Poisson equations. This procedure converges well
for systems of only a few atoms, but unfortunately be-
comes increasingly unstable for complex systems. Conse-
quently it is of interest to devise alternative schemes,
based on the local-density approximation and of similar
accuracy, which eliminate the time-consuming self-
consistency cycle. These techniques would make possible
efficient total-energy calculations for systems of consider-
ably increased size and complexity. One such approach,
using the Harris functional for the total energy, has been
tested previously for dimers*? and for cohesive properties
of solids.* In this paper, we demonstrate that very accu-
rate results can also be obtained for phonons and elastic
constants of diamond-structure Si and C. In addition, we
discuss the phase stabilities and energy-volume curves ob-
tained using the functional. A comparison is made to a
similar approach used previously,” which evaluates the
local-density energy functional for the output density
after the first iteration. A summary of parts of this work
was presented in Ref. 6. Recently, a comparison of non-
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self-consistent schemes was also presented in Ref. 7.

The starting point for simplified total-energy schemes
is the variational principle of density-functional theory.
The central quantity is the ground-state density n (r) for
the full many-particle wave function. It has been shown
that (for a given external potential V,,, and without spin
polarization) there exists a functional of #» which has the
form

E[n]= [ drV (tin(r)+F[n], )

where F[n] is universal, i.e., does not depend on V.
The energy functional is minimal at the true ground-state
density; its value there is the ground-state total energy in-
cluding electron exchange and correlation. Since the
functional F[n] is not known explicitly, it is usually ap-
proximated using the ‘“local-density” form for the
exchange-correlation part:

F[n]=T[n]+%fdrfdr’*—**‘nrrrkzr(,rx)

+ [drn(neg(n) . 2)

Here, T'[n] is the kinetic energy for a system of nonin-
teracting electrons with the same density and e, (n) is
chosen so that the correct many-body result is obtained
for the interacting-free-electron gas. The standard self-
consistent procedure is equivalent to a direct minimiza-
tion of a functional E [n] under the constraint of the elec-
tron number. Alternatively, due to the variational princi-
ple, a good estimate of the ground-state energy could be
obtained if the functional were to be evaluated at a suit-
able trial density, which could be constructed by some
simple prescription. The difficulty with this approach is
that T'[n] cannot be evaluated unless n is assembled from
wave functions which are solutions of the single-particle
Schrodinger equation for some potential. While it is of
importance for density-functional theory that such a po-
tential must exist for reasonable choices of n, no prescrip-
tion is known for finding it efficiently in practice. The
problem can be avoided by instead using as the energy es-
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timate E [n,, ], where n_,, is the output density, obtained
by solving the Schrodinger equation for the effective po-
tential made from n. In fact, this is nothing more than
the total energy after the first self-consistency iteration
and this “one-shot” procedure for total energies has al-
ready been considered, e.g., in Ref. 5. We shall denote
this energy by Egg;. In this paper, we concentrate on an
alternative energy functional suggested by Harris® and
discussed by Foulkes.> Harris introduced the following
functional of the trial density:

EHM}=§aﬁf—fder)%fdﬂﬁ%%%+ydn)
+E[n], 3)
where n is the trial density, the g; are the eigenvalues in
the effective potential ¥z made using the trial density,
the a; are occupation numbers, Exc[n]=f drn(r)e.(n),
and p.(n) is the exchange-correlation potential. This
functional can be shown to be stationary at the self-
consistent density and to take the same energy value
there. Therefore, it also has the property that an accu-
rate estimate of the ground-state energy results for a trial
density which is reasonably close to the self-consistent
one. However, it has the advantage that the functional
can be evaluated directly for any given trial density n
without a search for the effective potential which yields #n.
The necessary steps are the following: an effective poten-

tial is constructed from the density, as is done in each
iteration of the self-consisting procedure

— , n(r')
nﬂﬂ—nMﬂ+fdrh_

rr' +.u'xc(n) (4)

and the sum of the occupied eigenvalues in this potential
is calculated; then the electrostatic and exchange-
correlation energies and f drnu,(n) for the input densi-
ty are evaluated and added with the proper signs. The
output density is not required. (Note that the internu-
clear repulsion energy must be added to both function-
als.) As was suggested by Harris, it is natural to con-
struct the trial density by overlapping spherical free-atom
densities. In that case, the double-counting terms can be
expressed to a good approximation as a sum of pairwise
contributions.> Thus, in addition to the self-consistency
problem, the Harris functional avoids a number of steps
which are time consuming in some methods; for example,
the calculation of the eigenvectors and the task of ex-
pressing the output density in a form which permits the
solution of the Poisson equation and evaluation of the
exchange-correlation energy. Also, it seems to be a very
good starting point for understanding empirical models.
The relevant question for the utility of the Harris func-
tional is whether the output energies are accurate
enough. The first tests were done by Harris for a number
of homonuclear dimers. A comparison of the energy as a
function of interatomic distance showed that the
simplified energy functional obtains the equilibrium bond
length and vibrational frequency almost as well as the
self-consistent calculation. The binding energies were
found to be in reasonable agreement but larger (note that
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the Harris functional can give a total energy which is
lower than the self-consistent value, as opposed to any
scheme based on the standard energy functional). In a
previous paper* we have presented first applications of
the Harris functional to solids. Using the LMTO-ASA
method (linear muffin-tin orbitals method in the atomic-
sphere approximation) of Andersen,® energy-volume
curves were calculated for Be, Al, V, Fe, Si, and NaCl.
The results showed that, similar to the case of the dimers,
the equilibrium lattice constant and bulk modulus were
reproduced well, while the cohesive energy often exhibit-
ed overbinding. In the following, we show that the
Harris functional can also describe the small energy
changes associated with phonons and elastic distortions.
As test cases, we have chosen C and Si in the diamond
structure. For these, it is well known that phonons and
elastic constants calculated within the local-density ap-
proximation agree very well with the experimental
values.”!® Finally, we consider the energy-volume curves
for various crystalline phases of Si.

II. METHOD

A calculation of small distortion energies makes it
necessary to evaluate all energy terms to a high degree of
precision. We have used a recently developed full-
potential (FP) LMTO technique!® for this purpose. The
method expresses potential and charge density as spheric
harmonic expansions inside nonoverlapping muffin-tin
spheres. In the interstitial region, a convenient form is
obtained by fitting an expansion in atom-centered Hankel
functions to interpolate smoothly between the values and
slopes on the sphere surfaces [we will use the term
“Hankel function” to denote functions H(r)
=h,;(kr)Y,(T) as well as the radial part alone]. For sys-
tems which are reasonably close packed, this leads to an
accurate description of the interstitial quantities. The ac-
curacy can be monitored by observing the dependence of
the total energy on the kinetic energy (i.e., the localiza-
tion) of the Hankel functions which are used in the fit.
As is usual in the LMTO method, the sphere packing can
be improved by including “empty spheres”!! if needed.
The fitting techniques makes possible an efficient evalua-
tion of the complicated three-center terms in the Hamil-
tonian matrix, the output charge density, the various
total-energy terms, and the effective potential. The Pois-
son equation can be solved analytically in the Hankel
function representation. The results of self-consistent
calculations for phonons, elastic constants, shear split-
tings, and energy-volume curves agree very well with the
experiment, as was shown in Ref. 10 for Si and is shown
below for C.

The modifications of the FP-LMTO method which are
required for the evaluation of the Harris energy function-
al are straightforward. As was done in the previous
work,* we begin by fitting a series of spherical Hankel
functions of angular momentum zero to the free-atom
charge density outside radius, which is taken as the
muffin-tin radius in the crystal. The fit is essentially exact
since as many functions as are needed are included; we
have used 4 functions with kinetic energies —1, —2, —6,
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and —10 Ry. Using standard structure-constant expan-
sions for the Hankel functions® and Ewald summation, it
is then easy to calculate the overlapped (nonspherical)
charge density inside the muffin-tin spheres. It is ex-
pressed as a sum of numerical radial functions times
spheric harmonics in each sphere. At this point, the
values and slopes of the density and of the exchange-
correlation potential and the energy density on the sphere
surfaces are known. The interstitial fit yields these quan-
tities as linear combinations of Hankel functions in the
interstitial. As in the self-consistent FP-LMTO method,
it is then possible to calculate the electrostatic potential,
the double-counting energy terms, and the Hamiltonian
and overlap matrices for the LMTO basis functions.

The free-atom configuration in our calculations were
s2p%. As in Ref. 10, we have used a basis of 22 LMTO’s
centered on the Si and C atoms, consisting of tripled s
and p orbitals and doubled d orbitals. This basis gives ab-
solute convergence to about 1 mRy. The kinetic energies
of the LMTO envelopes are not critical and were taken as
0, —1, and —2.3 Ry. For the diamond, simple-cubic,
and S-tin structures, one (respectively two for 3-tin) emp-
ty sphere per Si atom was included to improve the fitting.
Muffin-tin radii were chosen to be almost touching; for
diamond-structure Si they were 2.13 a.u. and for
diamond-structure C they were 1.40 a.u. at the experi-
mental lattice constant, and scaled when the lattice con-
stant was changed. The energies of the Hankel functions
used in the fit were taken at —1 and —3 Ry. Varying
these from —0.5,—1 to —3,—10 leads to changes in the
total energy of less than 2 mRy for SB-tin and less than 1
mRy in all other cases. The fit functions included the
functions with / up to 4. Inside the spheres, terms up to
I =4 in the charge density and the potential were includ-
ed by explicit expansion in spherical harmonics, and
higher angular momenta were included implicitly as tails
of the fit functions. For the k-space integration, a shifted
mesh of 19 “special points”!? was used for the undistort-
ed diamond structure, and correspondingly more points
for reduced symmetries. For the metallic Si phases, a
regular mesh of 59, 256, 256, and 286 points was used for
B-tin, fcc, bee, and sc, respectively, and a Gaussian
broadening of 20 mRy. The self-consistent calculations
for C were done in the same way as those for Si described
in Ref. 10.

III. RESULTS

In Table I we compare experimental and calculated
values for various quantities for Si and C in the diamond
structure. As expected, the self-consistent values for lat-
tice constant and bulk modulus reproduce the experiment
closely, while the cohesive energy is too large. The new
feature is that the Harris energy functional yields results
for elastic constants and phonons which are almost as
precise as those of the self-consistent calculation. This is
surprising, since the overlapped free-atom trial density
deviates strongly from the self-consistent density in the
bond, as is shown in Fig. 1. Specifically, any density ob-
tained by superimposing spherical atom-centered densi-
ties must give zero for the “forbidden” (222) Fourier
coefficient which is associated with the buildup of bond

H. M. POLATOGLOU AND M. METHFESSEL 41

charge. Additional defects of the trial density are that it
is too high by a factor of 1.8 in the interstitial, and it does
not rise as steeply as one approaches the atoms. Never-
theless, the bond-stretching and bond-bending forces
which determine the phonon frequencies are clearly well
described. This includes the subtle effects which lead to
the soft TA(X) mode. We conclude that the Harris ener-
gy functional is suitable for the calculation of distortion
energies in solids in addition to the lattice constant and
bulk modulus considered previously.

The one quantity for which the Harris-energy function-
al gives a somewhat larger error is the cohesive energy.
The total energy is lower than the self-consistent energy
by 6.6 mRy/atom for Si and 26.0 mRy/atom for C. This
is consistent with previous calculations for dimers and
solids and reflects that the Harris energy functional is
variational but not minimal at the self-consistent density.
To investigate the question of the “vertical” position of
the energies more closely, we have calculated the well-
known’ energy-volume curves for a number of existing
and hypothetical structures of Si. The results of the
Harris energy-functional scheme are compared to the
self-consistent FP-LMTO calculations in Fig. 2(a). The
deviation is at most 2 mRy/atom for the metallic phases
and about 7 mRy/atom in the diamond phase. Also, the
minimum of the curves are shifted to smaller volumes by
the Harris energy functional. However, overall the
energy-volume curves are quite acceptable.

The problem of the agreement between the Harris and
self-consistent energies can best be discussed by compar-
ing the trial density with the true self-consistent density.
Two questions are relevant here. First, one would like to
know in what sense the trial density must be correct to
obtain an accurate energy value; it is conceivable that the
energy functional responds much more sensitively to
some types of density deviations than others. Secondly, it
is of interest whether some simple prescription for modi-
fying the trial density can be found which further im-
proves the calculated energies.

For the case of Si in the diamond structure it was not-
ed before that the overlapped free-atom charge density
compared to the self-consistent charge density (a) is too
low in the bond, (b) is too high in the interstitial, and (c)
rises less steeply close to the atoms. Some or all of these
points could be influenced by changing the localization of
the free-atom density. It is clear that a transferable
atom-centered density must be spherical. A practical
way to modify the free-atom density was recently sug-
gested by Finnis'® in the context of pseudopotential cal-
culations. He multiplied the free-atom pseudodensity by
a Fermi-factor cutoff of the radius,

1
exp[B(r —r.)]+1°

(5)

and then renormalized it. The position of the step (r,)
and the width of the step (3) were changed to vary the
trial density. Finnis found that the accuracy of the calcu-
lated Al(111) surface energy could be improved dramati-
cally by a certain amount of contraction in this way.
More specifically he found that this energy has a max-
imum in the space of the ., and 3, and that the value at
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TABLE 1. Static and dynamical properties of silicon and carbon in the diamond structure. The
second, third, and fourth columns are the results of self-consistent calculations and non-self-consistent
Harris calculations using free-atom density with and without contraction, respectively.

Expt. FP-LMTO Harris Contracted
Si:

Lattice constant (a) 10.26* 10.23 10.14 10.21
Cohesive energy (eV/atom) 4.63* 5.17 5.25 5.17
Bulk modulus (Mbar) 0.98° 0.99 0.99 0.91
C,,-C,, (Mbar) 1.02° 1.02 1.15 1.08
C44 (Mbar) 0.80° 0.83 0.63 0.66
k. (€V/aj) —35.1° —39.1 —42.2 —40.2

0.54¢ 0.51 0.55 0.54
vito(T') (THz) 15.532 15.47 15.70 15.38
vrolX) (THz) 13.90° 13.75 13.34 13.42
viaolX) (THz) 12.32° 11.82 12.16 11.94
vra(X) (THz) 4.49* 4.50 4.40 4.23

C:

Lattice constant (a) 6.75% 6.70 6.54
Cohesive energy (eV/atom) 7.37* 8.77 9.13
Bulk modulus (Mbar) 4.42° 4.70 5.04
C,,-C,, (Mbar) 9.51* 9.56 11.66
C4, (Mbar) 5.77° 5.34 6.06
vito(I') (THz) 39.9° 39.20 41.40
vro(X) (THz) 32.0° 31.77 31.47
viao(X) (THz) 35.5% 35.04 39.90
vra(X) (THz) 24.2° 23.74 26.03

% Landolt-Bornstein: Numerical Data and Functional Relationships: Science, edited by O. Madelung,

New Series, Vol. 22a (Springer, New York, 1987).

°H. J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 2161 (1964); 35, 3312 (1965).
°C. S. G. Cousins, L. Gerward, J. Staun Olsen, B. Selsmark, and B. J. Sheldon, J. Phys. C 20, 29 (1987).

the maximum was almost equal to the self-consistent one.
We have used a similar procedure to adjust the trial den-
sity for diamond-structure Si. The free-atom density was
separated into a core and a valence part and the valence
density was modified as described. By varying the posi-
tion and broadening of the cutoff over a wide range, we
found that the Harris total energy was always below the
self-consistent value and that it was maximal for S=2
au.”! and r,=4.5 a.u. The Harris and self-consistent
energies then agree very well to within 0.4 mRy/atom.

(a) (b) (c)

FIG. 1. Comparison of (a) self-consistent, (b) overlapped
free-atom, and (c) overlapped contracted free-atom charge den-
sities for diamond-structure Si in the (110) plane. The contour
unit is 0.001 electrons/(a.u.)’, the spacing is 0.01
electron/(a.u.)’.

In Fig. 2(b) we show the energy-volume curves obtained
using this contracted density in the Harris energy func-
tional. Just as in the free-atom case, the spherical density
which was overlapped was the same for all structure and
volumes. Figure 2 shows that the contraction has im-

-6.77 - -
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Total energy+570 (Ry/atom)

-6.83 . N L . L N 1

0.6 0.8 1.0 0.6 0.8 1.0
v/V, V/V,
(a) (b)

FIG. 2. Comparison of Harris-functional energy-volume
curves (solid lines) with the self-consistent result for various
phases of Si. (a) Total energies obtained from the free-atom s2p?
density; (b) from the contracted density, as described in the text.
The crystal structures in sequence of increasing energy are dia-
mond, B-tin, simple-cubic, bce, and fcc.
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proved not only the diamond-structure curve, but also
the B-tin and the SC energies. In addition, the minimum
of the diamond-structure energy has been moved much
closer to the self-consistent result. This shows that the
optimization for one case gives a prescription for modify-
ing the trial density which is transferrable to other struc-
tures and volumes. From the density plots one can
deduce that the true self-consistent density contracts
when the free atoms form the crystal. This can be under-
stood as the occupation of bonding states, which lie lower
in energy and are more localized than the free-atom or-
bitals. It is interesting that Weinert and Watson'* also
found it necessary to contract the free-atom densities in
order to obtain accurate values for the work function of
metals from a similar potential construction as we have
used. We have also recalculated the elastic constants and
phonon frequencies using the contracted density (column
four of Table I). For these quantities there is very little
change when the optimized trial density is used. Since
the distortions were calculated at the theoretical equilib-
rium lattice constant, the main effect is some softening of
the force constants due to the slightly larger lattice con-
stant.

The modification of the trial density which leads to
elimination of 92% of the total-energy error should be
visible in the trial density itself. Figure 1(c) shows the
diamond-structure Si charge density which results if the
contracted density is overlapped at the experimental lat-
tice constant. Comparison of the three densities shows
that the trial density in the bond region is still very
different from the self-consistent density. On the other
hand, the densities in the interstitial now agree almost ex-
actly. The optimization of the trial density has mini-
mized the error for those features to which the Harris en-
ergy functional reacts most sensitively. In a Fourier rep-
resentation, it is the lowest nonconstant component [that
is, the (111) component] which moves charge from the Si
atoms to the interstitial sites. The details of the charge
distribution in the bond are governed by Fourier com-
ponents which are associated with longer reciprocal vec-
tors. Thus, it seems that for a “good” trial density it is
most important that the long-wavelength (i.e.,
short—-reciprocal-vector) components are correct. It has
been shown’® that to second order the error in the Harris
total energy is given by

8’E

gl—z n ZnscAnin An

out

Eyln 1—Eln =4[ [

(6)

where An;, and An_, are the errors in the input (trial)
and output densities, respectively. To obtain n,, from
n,,, the Poisson equation and the Schrodinger equation
are both solved once. Since these are smoothing opera-
tions, An,, is small if An;, contains only short-
wavelength components. Long-wavelength errors in the
trial density lead to a large An,, and consequently to a
larger total-energy error. These points should be useful
when constructing Harris trial densities in other applica-
tions.

The results have shown that whereas it seems unprob-
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FIG. 3. Comparison of Egs,, energy-volume curves (solid
lines) with the self-consistent result for various phases of Si. (a)
Total energies obtained from the free-atom s’p? density; (b)
from the contracted density, as described in the text. The crys-
tal structures in sequence of increasing energy are diamond, 3-
tin, simple-cubic, bee and fec.

lematic to calculate the elastic constants and phonon fre-
quencies with ‘“‘one-shot” total-energy techniques, it is
more difficult to obtain the energy-volume curves correct-
ly. Therefore we have also calculated these using the
functional Egg,, that is, the total energy after the first
iteration of the self-consistency cycle. Figure 3(a) shows
the curves obtained from the free-atom Si density in this
way. While the size of the deviations from the self-
consistent result are similar to those of the Harris-energy
functional, the relative positions are more accurate. All
approximate energies from Egg, lie above the self-
consistent energies and the net effect is similar to a rigid

30 T .
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o
T
s,
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AE (mRy/atom)
| |
S S

1 1

4 5
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FIG. 4. Deviation of the Harris total energy (solid line) and
the Egs, energy (dashed line) from the self-consistent energy
(horizontal line) for diamond-structure Si at the experimental
volume and 8=2.0 a.u. ! as a function of r,.
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vertical shift by 2 to 3 mRy. Using the same prescription
for contracting the atomic density as before, we have
minimized Egg, in the two-parameter space. It turned
out that the optimal density is almost the same as that
which was determined for the Harris energy functional
Ey. In Fig. 4, the variation of the energy with r, at fixed
B=2.0 a.u.”! is displayed. The optimization is much
more successful for E; than Eyg,. A possible explana-
tion is that the deviation of the density in the bond
(which cannot be eliminated as long as spherical densities
are overlapped) is more significant for Eyg, than Ey.
The energy-volume curves using the contracted density in
Eys, are shown in Fig. 3(b). While the diamond-
structure Si curve is improved somewhat, the errors in
the metallic phases become larger. Overall, the best
description is obtained by using the contracted density in
the Harris energy functional. From the present calcula-
tions, the main conclusion is that the two functionals
react differently to errors in the trial density. Further
calculations are needed to determine which prescription
is more suitable for more complicated systems and larger
unit cells.

IV. SUMMARY AND CONCLUSIONS

The total energy of the Harris functional is obtained by
overlapping free-atom charge densities to make a crystal
trial density, calculating the effective potential, and solv-
ing the Schrodinger equation once. We have calculated
cohesive properties, phonon frequencies at points I' and
X, and elastic constants for Si and C in the diamond
structure in this way and have compared them to the ful-
ly self-consistent results. The quantities calculated with
this approximate (and much more efficient) scheme agree
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with the experimental values almost as well, but can be
obtained without the effort of self-consistency iterations.
Additional calculations for Si in various metallic phases
showed that the energy-volume curves for Si are also
reproduced with reasonable accuracy. However, over-
binding by 6.6 mRy/atom in the diamond-structure
phase was found. It was possible to improve the agree-
ment to the self-consistent energy-volume curves consid-
erable by using a contracted free-atom density to con-
struct the trial charge density. The optimal contracted
density was determined by maximizing the Harris total
energy for the diamond structure at the experimental lat-
tice constant as a function of two parameters. Inspection
of the improved diamond-structure Si trial density
showed that the density in the interstitial region is
corrected, while the bond region is not well described by
either trial density. The contraction has only an
insignificant effect on the phonon frequencies. The global
improvement of the energy-volume curves by the con-
traction indicates that the modified construction of the
trial density can be transferred between structures. Com-
parison to an alternative scheme (evaluation of the energy
after the first iteration) showed that both schemes give er-
rors of similar magnitude. In conclusion, our results in-
dicate that non-self-consistent techniques could be useful
in the future to obtain accurate total energies for large
and complicated systems which are difficult to treat with
the conventional self-consistent approach.
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