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The full-potential linear-muffin-tin-orbital method in combination with the local-density-
functional theory is used to calculate the equilibrium lattice constant, the cohesive energy, the
bulk modulus and its pressure derivative, the elastic constants, the Kleinman internal displacement
parameter {, the zone-center transverse-optical-phonon frequency, its Griineisen parameter and the
corresponding energy-band strain, and optical-mode deformation potentials of cubic SiC. The results
for equilibrium properties and the transverse-optical phonon at the center of the Brillouin zone are
shown to be in good agreement with the available experimental data and previous first-principles cal-
culations. The elastic constants of 3C-SiC are transformed to a trigonal symmetry tensor along the
(111) direction, which allows a comparison to experimental data on hexagonal SiC. The agreement
is found to be good. The elastic constants are also shown to be in good agreement with experimental
data on the Young’s and shear moduli and the Poisson ratio for polycrystalline SiC and with the
Young’s modulus of 3C-SiC whiskers along the (111) direction, which is related to the theoretical
cleavage strength. Predictions are also made for the deformation potentials, which have not yet been
measured. The discrepancies with previous atomic-sphere-approximation calculations for the trig-
onal strain and optical-mode deformation potentials indicate the importance of nonspherical terms
in the potential for these deformations. The absolute deformation potential of the valence-band
maximum is computed by means of a heterojunction calculation between strained and unstrained
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materials. This procedure is shown to give good agreement with previous calculations for Si.

I. INTRODUCTION

In view of the recent increased interest in SiC both for
electronic and structural applications,! accurate values
of its elastic constants and band-structure deformation
potentials have become matters of considerable impor-
tance. From a thorough investigation of the literature it
appears that this information is not available. Here we
present the results of first-principles calculations of the
elastic properties and the strain deformation potentials
of cubic (or 3C-) SiC.

We use the recently developed full-potential version
of the linear-muffin-tin-orbital method3 in conjunction
with the density-functional method in the local-density
approximation? (LDA) using the von Barth-Hedin
parametrization of the exchange-correlation energy.®
This approach was recently shown to provide an accurate
description of the elastic properties of Si and C in the dia-
mond structure.? Because of the similarity in structure of
3C-SiC (zinc blende) to diamond, similar accuracy is ex-
pected for SiC. We note that there are no shape approx-
imations to the all-electron potential or charge density.
Furthermore, since a variational approach is used, the de-
sired accuracy of the total energy results can be obtained
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by increasing the size of the multiple-x muffin-tin-orbital
basis set (to be defined below). There are thus basically
no approximations except for the use of the LDA.

We will show that the results of our calculations are in
excellent agreement with experimental and previous first-
principles theoretical data that are available for 3C-SiC.
These include the equilibrium lattice constant, the bulk
modulus and its pressure derivative, the cohesive energy,
the TO phonon frequency at I', and its mode Griineisen
parameter. Unfortunately, the elastic constants of 3C-
SiC single crystals have not been measured. However,
we will show that our results are in good agreement with
the experimental data on the Young’s modulus for single
crystal whiskers of 3C-SiC and the Young’s and shear
moduli of polycrystalline SiC. Furthermore, we will show
that good agreement is obtained with values of the elas-
tic constants that we derive from experimental data on
the longitudinal and transverse sound velocities and the
bulk modulus. Finally, our results for the cubic SiC elas-
tic constants are found to be in fair agreement with the
measured elastic constants of hexagonal SiC. This com-
parison is achieved by transforming the results in the
cubic system to a trigonal system with the threefold ro-
tation axis along the cubic (111) direction.®
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The other quantities we are concerned with are the
band-structure deformation potentials. Since the elastic
constants are obtained by studying the total energy as a
function of hydrostatic and traceless strains, the result-
ing self-consistent band structures as a function of strain
contain the desired information about the relative strain
deformation potentials. We also obtain the optical-mode
deformation potentials from the I'ro frozen phonon cal-
culation. We have calculated all the relevant deformation
potentials for the I and X states in the upper valence and
lower conduction bands. The absolute deformation po-
tential of the valence-band maximum, which then fixes all
other deformation potentials on an absolute scale, cannot
be obtained directly from self-consistent band-structure
calculations for the bulk crystal as a function of hydro-
static strain since the latter cannot provide a unique ref-
erence potential. The absolute deformation potential was
obtained by the calculation of the valence-band offset for
a heterojunction consisting of strained and unstrained
material.

The paper is organized as follows. The existing experi-
mental and theoretical information about the elastic con-
stants is briefly reviewed in Sec. II. Section III gives the
necessary details about the computational method. The
results for elastic constants are presented and discussed
in Sec. IV. Section V is devoted to the deformation po-
tentials and Sec. VI summarizes our conclusions.

II. LITERATURE OVERVIEW

The literature on elastic constants of SiC is extremely
inaccurate and confusing as was noted earlier by Feng,
Choyke, and Powell.” To the best of our knowledge there
has been no direct determination of the full set of elastic
constants of 3C-SiC. This is primarily due to the unavail-
ability of single crystals of 3C material of the required
size. Larger crystals of hexagonal polytypes (mainly 6 H)
obtained by a modified Lely process® have, however, been
available for some time. Since the pioneering work of
Tairov and Tsvetkov,® a modifed sublimation process has
recently led to significant improvements in the quality
and size of single-polytype single crystals of hexagonal
SiC. Because of the similarity in the local tetrahedral
bonding in the cubic and hexagonal polytypes, one may
expect their elastic properties to be very closely related.
A comparison of the properties of the two is made pos-
sible by transforming the elastic stiffness tensor of cubic
SiC to a set of Cartesian coordinates with the z axis along
the (111) direction. In other words, we view the tensor as
one with trigonal symmetry along (111) rather than as a
tensor with cubic symmetry.® The cubic {111} planes are
physically equivalent to the basal planes {0001} of the
hexagonal system. As is well known, the various poly-
types of SiC differ only in the stacking of these planes.
Recent progress has also been made in epitaxial growth
of 3C-SiC films on Si {001} (Ref. 10) and 6 H-SiC {0001}
substrates.!!

Hasselman and Batha!? measured the Young’s modu-
lus of mostly 6 H single crystal platelets in the basal plane
to be ~ 450 GPa using a bending test. This Young’s
modulus should correspond to 1/S},, where the super-
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script h stands for hexagonal. Slack'® used Hasselman
and Batha’s value along with an estimated value of the
Poisson ratio of ¥ = 0.25 and the anisotropy ratio of
A = 2C44/(C11 — C12) = 1.4 to obtain the full set of
elastic constants. The resultant values are

Cll = 540, Clg = 180, C44 = 250 GPa,

from which one obtains a bulk modulus B = 300 GPa.
This result, however, is based on a misinterpretation of
Hasselman and Batha’s Young’s modulus as being £ =
1/S§,, with the superscript ¢ standing for cubic, rather
than the Young’s modulus for a direction in the {111}
plane which is given by!4

En1y = 4/(257; + 257, + S44)- (1)

Using the correct equation with Slack’s estimates of v
and A one obtains

Cll = 444, Clg = 148, 044 = 207 GPa,

giving a bulk modulus B = 247 GPa. We will show
in Sec. IV, however, that the value of A is close to 2
and that Hasselman and Batha’s value for the Young’s
modulus is somewhat low.

Values of the Young’s modulus E and shear modulus
G of polycrystalline SiC measured by acoustical methods
were reported by several authors.!372% These measure-
ments were made on ceramic samples, which were poly-
typic, polycrystalline, and had a certain degree of poros-
ity. Carnahan’ study!® contained the samples of the low-
est porosity and used the most convincing extrapolation
to zero porosity. His values, which are £ = 448, G = 192
GPa are thus probably the most accurate. They yield a
bulk modulus B = 225 GPa and an average Poisson ratio
v = 0.168. We note that this value of B is considerably
lower than the one obtained from Slack’s estimate, even
after the correction mentioned above. Yean and Riter,?!
whose paper is often cited for the experimental value of
the bulk modulus, in fact, made a semiempirical estimate
of the bulk modulus on the basis of molecular force con-
stants. They find B = 224 GPa, which we will show to
be very close to our calculated value.

Arlt and Schodder?? measured the complete set of elas-
tic constants except for Cj3 of Lely grown single crystal
6H-SiC by two different electroacoustical methods. We
will make a detailed comparison to their values which
are given in Table IT in Sec. IV. More recently Helbig,
Karmann, and Stein?® measured a few of the elastic and
piezoelectric constants of both the 6 H and 4H polytypes.
The results for the two structures were found to be very
close to each other. They also measured the temperature
dependence down to 5 K. The temperature dependence
up to 1000°C has been discussed by Li and Bradt.?* Es-
sentially they use data on the temperature dependence
of the polycrystalline Young’s and shear moduli to de-
duce the temperature dependence of the cubic elastic con-
stants. Finally, Petrovic et al?® measured the Young’s
modulus of 3C-SiC whiskers along the (111) direction
and found an average value of 581 GPa with a spread of
+60 GPa.

The values of the transverse and longitudinal sound
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velocities were reported by Schreiber and Sogal” to be
ve = 7.69 km/s, vy = 12.21 km/s for a sample with a
porosity of 1%. Feldman et al.?® obtained v, = 7.24
km/s and v; = 13.27 km/s by fitting the phonon fre-
quencies at finite wave vectors along the (111) direction
to a sine curve. The phonon frequencies at I' of a series
of polytypes were determined by means of Raman spec-
troscopy and related to the phonon frequencies of cubic
SiC at finite wave vectors along the (111) axis assuming
the appropriate folding relations between their Brillouin
zones. From these sound velocities and the known den-
sity of SiC p = 3.2145 g cm~3, one can obtain some of
the elastic constants?” using

pvi =Ciy = (Cf; — C5y + C4y)/3,
pvi = Cg5 = (Cf + 2C, + 4C5,) /3, 2)

where the assumption is made that the sound velocities in
hexagonal and cubic SiC along the above-mentioned axes
are the same. This gives C}, = 168 GPa and C2;=566
GPa. Combining Eq. (2) with the equation for the bulk
modulus

B = (Ch1 + 2C12)/3, (3)

one can obtain an estimate of the complete set of cubic
elastic constants. Using the above value B = 225 GPa,
one obtains

Cu - 390, ClZ = 142, C44 = 256 GPa.

On the theory side, Tolpygo?® calculated the elas-
tic constants for the 3C phase on the basis of a semi-
empirical force model with parameters obtained by in-
terpolation between those of Si and C. These elastic con-
stants were subsequently used by Kunc, Balkanski, and
Nusimovici?® in a study of the phonon spectra. Lee and
Joannopoulos®® presented a tight-binding model for a
study of the phonon spectrum with parameters fitted to
“experimental data” of the elastic constants, for which,
however, they did not give a reference. It is rather un-
fortunate that these values whose origin we were unable
to trace back were later cited as experimental values in
the reference work of Landolt and Bornstein.3! A very ex-
tensive set of first-principles pseudopotential calculations
of the polytypes in SiC was conducted by Heine and co-
workers.32:33 To the best of our knowledge, however, they
did not report calculated values for the elastic constants,
except for the bulk modulus. They did, however, report
several frozen phonon calculations. The calculation of
the transverse-optical-phonon frequency at I' is directly
related to the internal displacement that occurs in the
trigonal distortion giving the Cjy4 elastic constant. We
can thus compare our phonon results to theirs and to the
experimental values determined by Raman spectroscopy
by Olego and Cardona.34

III. COMPUTATIONAL METHOD

We first briefly describe our procedure for calculating
the elastic constants. Basically we obtain the elastic con-
stants by calculating the ground-state energy of SiC un-
der applied hydrostatic, tetragonal, and trigonal strains.
First, we calculate the total energy as a function of vol-
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ume. The equilibrium lattice constant a, the equilibrium
bulk modulus B, and its pressure derivative B’ are ob-
tained by fitting the energy-volume curve to the Rose-
Ferrante-Smith equation of state.3® By subtracting the
atomic energies calculated within the same LDA approxi-
mation but including spin polarization, we also obtain the
cohesive energy. For completeness, we add a zero-point
correction 9kOp /4 with ©p the Debye frequency and k
Boltzmann’s constant to the solid’s total energy. Next,
from the total energy as a function of a traceless tetrag-
onal strain, we obtain the value of Cy; — Ci2. Similarly,
the imposition of a trigonal strain yields C44. However, in
calculating the total energy under the trigonal strain, the
position of the two atoms in the cell is allowed to “relax”
relative to each other along the (111) direction, thereby
yielding the so-called “internal displacement.” This dis-
placement pattern is equivalent to that for the center of
the Brillouin zone transverse optical phonon. A separate
calculation of the energy as a function of the above frozen
phonon displacement for zero strain gives us the phonon
frequency wi® = 27v£°. The volume dependence of this
frequency gives us the corresponding mode Griineisen pa-
rameter y£° = —(dwf®/wl®)/(dQ/S), where Q is the
unit cell volume. The unrelaxed (C2,) and relaxed (Caq)
are related by

- a\?
Cas = Cha— 7' (wFO¢2), (4)

where p is the reduced mass and ¢ is the Kleinman in-
ternal displacement parameter.3¢ See, e.g., Nielsen and
Martin37 for a clear exposition of these relations.

In contrast to the work of Nielsen and Martin,3® we
do not use the Hellman-Feynman theorem to calculate
the stress tensor, but rather obtain the elastic constants
directly from numerical second derivatives of the total
energy. These calculations are quite demanding for the
required precision. In order to stay within the harmonic
range, one is limited to very small strains of the order
of 2%. The total energy differences from the unstrained
state are then of the order of a few mRy and a precision
of a few percent in the elastic constants thus requires
one to calculate the total energy difference with a preci-
sion of 0.01 mRy. In practice, we compute the energies
for compressive and tensile strains of equal magnitude
and take their average so as to eliminate the third-order
terms. The energy differences from the unstrained state
are then fitted to a parabolic expression in the strain.
The phonon frequency is obtained in a similar manner by
numerical differentiation as a function of the atomic dis-
placement parameter. The full-potential linear-muffin-
tin-orbital method has previously been shown to achieve
the required accuracy for Si and diamond.? The method
has been described elsewhere.?

A key feature of the method is the use of a multiple-x
basis set, where k2 is the kinetic energy of the muffin-
tin-orbital envelope function, the part relevant to the in-
terstitial region. The latter is a Hankel function and
determines its decay length. A multiple-x basis set is
found to be necessary because of the requirement that
the muffin-tin spheres be nonoverlapping. We empha-
size that the muffin-tin potential is only used in the con-
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struction of the basis set. The potential and charge den-
sities of the Hamiltonian are completely general—they
are nonspherical inside the spheres and nonconstant in
the interstitial region. The charge density and poten-
tial in the interstitial region are represented by a sepa-
rate set of Hankel functions. This representation reduces
the three-center integrals of the Hamiltonian matrix ele-
ments to two-center integrals. The required expansion
coefficients are obtained by interpolation between the
spheres. For details, see Methfessel.? We used a set of
Hankel functions with two decay lengths (k2 = —1 and
—3 Ry), and 0 < ! < 4 as in the previous work for Si
and diamond. The muffin-tin sphere radii were chosen to
be nearly touching, that is as large as possible without
overlaps and kept fixed during volume-conserving defor-
mations and scaled according to the lattice constant for
the hydrostatic deformation. They varied between 1.72
and 1.75 a.u. and we checked explicitly that the results
are independent of this choice to within the limits of the
accuracy we need.

For the muffin-tin-orbital basis set we used s, p, and
d orbitals for two x values and centered both on the
atomic and empty sphere sites at the tetrahedral inter-
stices. This amounts to a very complete basis set of 72 or-
bitals per cell. The second « p and d orbitals were found
to contribute less than 1 mRy. The addition of a third
k s orbital to this basis set led to a linearly dependent
basis set. The effect of a third k¥ s orbital was studied
separately for basis sets not including empty sphere or-
bitals. It was found to be similar to the effect of adding
a single k s and p orbital on the empty spheres. A 38-
orbital dds basis set (i.e., the set with up to d, d, and s
orbitals, respectively, for the three «’s and with no use
of empty sphere orbitals in the basis set) gave only a
6-mRy higher total energy. For diamond Si and C Meth-
fessel and co-workers? found the 44-orbital per cell basis
set ddp to be converged to 1 mRy. Here, we conclude
that an even smaller dps basis set (of only 28 orbitals),
which gives a 15-mRy higher energy (than the 72-orbital
basis set), is probably adequate for most purposes since
one can expect a good deal of cancellation of errors for
the energy differences that one is usually concerned with.
It is thus possible to eliminate the empty sphere orbitals
completely and still achieve ~1 mRy precision. For the
present application, the calculation of elastic constants,
where, as noted above, extreme accuracy below 1 mRy
is desirable, we decided to use the large basis set (atom
dd, empty sphere dd). Since the unit cell is small, this is
not prohibitive. Of the various basis sets we studied, this
one yields the lowest total energy, and, from the above
is judged to be absolutely converged to 1 mRy or better.
Care was taken that the Brillouin zone summations and
self-consistency iterations were converged to a numerical
precision of 0.01 mRy.

IV. EQUILIBRIUM PROPERTIES
AND ELASTIC CONSTANTS

Our results for the equilibrium properties, the elastic
constants, and the above-discussed phonon properties for
3C-SiC are given in Table I. The equilibrium lattice con-
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stant is 1% smaller than the experimental value as is usu-
ally the case in the LDA and is in excellent agreement
with the previous LDA calculations of Churcher, Kunc,
and Heine.3? The calculated cohesive energy is about
17% larger than the experimental value,3® a typical error
for this quantity in the LDA. It is mainly due to the diffi-
culty of the LDA in describing the open-shell atomic sys-
tems. The bulk modulus is in excellent agreement with
the experimental and previous theoretical values. The
pressure derivative of the bulk modulus is not known ex-
perimentally, but is in fair agreement with the previous
calculations. These results are also in excellent agree-
ment with previous atomic-sphere-approximation (ASA)
calculations of Lambrecht and Segall® that give a = 4.32
A, B =233 GPa, B’ = 3.8, Econ = 14.06 eV /pair. The
bulk modulus is only 4% larger and the cohesive energy
5% smaller in the ASA | which shows that the latter yields
quite good results for symmetric structures. The phonon
frequency and its mode Griineisen parameter are also in
excellent agreement with both previous theory and ex-
periment. We note that Olego and Cardona actually
reported a value of 1.56 for 1f©, but as discussed in
Churcher, Kunc, and Heine,3? their analysis made use of
an earlier incorrect value for the bulk modulus and its
pressure derivative. The value quoted in the table is ob-
tained from a new analysis of the experimental data of
Olego and Cardona by Churcher, Kunc, and Heine.3?

We now turn to the elastic constants and properties di-
rectly related to them. We first compare our results with
the results of the semiempirical calculations of Tolpygo?®
and Lee and Joannopoulos.3® Our value of C;; is some-
what larger and our C}2 smaller than their values. The
differences are such that the resulting values of B are
fairly close. We note that the Cy4 values of Lee and
Joannopoulos3® are significantly smaller than ours and
Tolpygo’s. This is also reflected in their much smaller
value of the anisotropy A. We note that for an isotropic
crystal A = 1. Tolpygo’s and our calculation yield a
rather high anisotropy for 3C-SiC, for example, com-
pared to Si and diamond C, for which Polatoglou and
Methfessel’s? results give A = 1.57 and 1.21, respectively.
These values are in fair agreement with those of Nielsen
and Martin3? for Si (A = 1.73) and Nielsen*! for dia-
mond C (4 = 1.19). The value we obtain for the Pois-
son ratio ¥ = —S15/S1; is 0.23, which is close to Slack’s
estimate!® of 0.25. We note that the Kleinman internal
displacement parameter ¢ has not been reported before
and is important for the optical-mode deformation po-
tential, discussed in Sec. V.

We now turn to the elastic constants derived from ex-
perimental data. The agreement between our calculated
elastic constants and the experimental values derived
from the two sound velocities determined by Feldman
et al?% and the bulk modulus in Sec. II, using Egs. (2)
and (8), is quite good (the deviation is ~ 10%). The lat-
ter also support a high value of the anisotropy close to
A=2.

Next, we compare with the data on the Young’s and
shear moduli and the average Poisson ratio for polycrys-
talline material. We note that for isotropic materials
there are only two independent elastic constants and thus
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the value of v actually follows from that of £ and G. The
Young’s modulus F, shear modulus G, and Poisson ratio

v for an arbitrary set of mutually perpendicular direc-
tions (1/,2’) are defined by®

1/E =S}, (5)
1/G = 2(5'{1 - Siz)» (6)
v =—S51,/511, (7
where$14
St =511 = 2(Su — S12 — 3S4a) (115 + 313 + 313),
(8)

S1a = S12 4+ (811 — S12 — §Sas)(Bim? + IZm} + Zm3),

with (I3,12,13) and (my, ma, m3) the direction cosines of
the two perpendicular directions with respect to the cubic
axes. Expressions for the compliances S;; in terms of the
stiffnesses Cj; and vice versa can be found in Nye.® The
average over all orientations of the angular factors
(BRI + 1313+ B31) = &,
9)

(imi + I3m3 + Bm3) = ¢,

gives the so-called Reuss averages??:43

TABLEI.
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1/Er = (3S11 + 2512 + S44)/5, (10)
I/GR = (4511 —4512+3S44)/5, (11)

of the Young’s and shear moduli relevant to polycrys-
talline material if there are no preferred orientations.
The Reuss averages clearly correspond to orientational
averages of the compliances. Different averages, the so-
called Voigt averages*®*3 result if one averages elastic
stiffnesses over orientation. Using

G = (C11 — C12)/2,
Ciy = Ci1 — 2(C11 — Cr2 — 2C44) (1313 + 1313 + 1313),
(12)
Ciz = Ciz + (C11 — Ciz — 2Caa)(l3m] + 3m3 + 13m3),
averaging over the angular factors as in Eq. (9) and using

Eq. (3) which is invariant under the averaging procedure
and

E =9GB/(G + 3B), (13)
one obtains the Voigt averages
By = (C11 — C1i2 + 3C44)(C11 + 2Ch2)
v 2C11 +3C12 + Caq ’ (14)

Gv = (C11 — C12 + 3C44)/5.

Equilibrium, phonon, and elastic properties of 3C-SiC. FP-LMTO, present full-potential linear-muffin-tin-orbital

calculation; CKH, Churcher, Kunc, and Heine (Ref. 32); T, Tolpygo (Ref. 28); LJ, Lee and Joannopoulos (Ref. 30) theory and
(experiment); Expt., experimental values as indicated by footnotes.

Property FP-LMTO CKH T L) Expt.
a (A) 4.315 4.31 4.3596*
Econ (eV/pair) 14.83 12.68°
B (GPa) 223 224 211 225-236¢ 225°
B’ 3.8 3.2

vE© (THz) 23.88 22.75 23 23.87°
20 0.99 1.13 1.0°
¢ 0.49

C11 (GPa) 420 352.3 371 (363) 390°
C12 (GPa) 126 140.4 169 (154) 1421
Cis (GPa) 287 232.9 176 (149) 256!
A =2Cu/(Ci1 — Ci2) 1.95 2.20 1.74 (1.43) 2.00°
v =-S512/51 0.231 0.284 0.313 (0.299) 0.267"
Eq11y (GPa) 603 511 423 (366) 581(£10%)8
E(100y (GPa) 362 272 265 (271)

Er (GPa) 476 378 342 (320)

Ev (GPa) 516 424 363 (329)

E (GPa) 496 401 352 (325) 448°
Gr (GPa) 208 157 136 (127)

Gv (GPa) 231 182 146 (131)

G (GPa) 219 169 141 (129) 192°
v 0.146 0.201 0.259 (0.261) 0.168°

®Landolt and Bornstein (Ref. 31).
"Wagman et al. (Ref. 39).
“Carnahan (Ref. 18).

9Lee and Joannopoulos (Ref. 30) fit to B = 225 but their resulting (C11 + 2C12)/3 = 236 GPa.
¢Olego and Cardona (Ref. 34) see discussion in the text for v£°.
fObtained from sound velocities of Feldman et al. (Ref. 26), and bulk modulus, see text.

8Petrovic et al. (Ref. 25).
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We define an average Poisson ratio by
v = -5/, (15)

where the averages denoted by overbars are taken over
the angular factors as in Eq. (9). This value is close to
(Er/2GRr) — 1 but somewhat larger than (Ey /2Gy) — 1.
From the fact that

Gv/Gr = [13 + 6(A + 1/A)]/25, (16)

it can be seen that the minimum value of Gy /Gg occurs
for A = 1, in which case Gy = Gg. It then also follows
from Eq. (13) that Eyv > Eg with the equality holding for
A = 1. Using an energy density argument Hill*> showed
that one expects the physical averages, here denoted by
overbars, to be intermediate between the Reuss and Voigt
averages.

Er <E<Ey,
(17)
Gr<G<Gy.

From our calculations and the above considerations we
conclude that

E ~ 500 GPa +4%, G = 220 GPa +5%,

where E and G denote the mean value of the Reuss and
Voigt averages. Our values are slightly larger than the ex-
perimental values, the discrepancy being about 10-15 %.
We note that values of £ up to 464 GPa (Shaffer and
Jun'®) and G up to 203 GPa (McHenry and Tressler?°)
have been reported. In Table I, it can be seen that
both the Reuss and Voigt averages deduced from our
elastic constants are higher than the experimental val-
ues while the ones derived from Tolpygo’s?® or Lee and
Joannopoulos’s®® elastic constants are lower. While the

latter are definitely too low, Tolpygo’s and our results
seem to be in about equally good agreement with the
experimental values. The fair agreement with our calcu-
lation indicates that the random orientation hypothesis
applies reasonably well to the ceramic samples. If there
were a strong preferred orientation along the (111) direc-
tion, for example, one would expect a significantly larger
value (~600 GPa), while a significantly lower value (~360
GPa) is expected along the (100) direction. These direc-
tions correspond to the maximum and minimum values.
Plots of the directional dependence of the Young’s and
shear moduli and Poisson ratio calculated on the basis of
Tolpygo’s values can be found in Li and Bradt.?¢

Of particular significance is the comparison to the
Young’s modulus along the (111) direction measured by
Petrovic et al.,?® since, to our knowledge, this is the only
measurement that refers to single crystals of 3C-SiC. It
was measured by a tensile test experiment on whiskers
with their long axis in the (111) direction. Our value,
which differs from the average of his data by only 4%, is
in much better agreement with experiment than are the
other calculated values. We note, however, that Petrovic
et al’s experiments?® give a fairly wide range of values
(£60 GPa or +10%), which is presumably related to ex-
perimental difficulties in measuring elastic constants from
tensile tests.

According to the Orowan expression,*” the theoretical
cleavage strength o,ax is given by

Omax — % VEv/a, (18)

where E is the Young’s modulus (here along the (111) di-
rection), v is the surface tension, and a is the lattice con-
stant. The surface energy is not very well known for SiC
{111} but can be estimated from the cohesive energy?°
to be ~3 Jm~2. This leads to an estimated theoretical

TABLE II. Elastic constants of 3C-SiC transformed to trigonal symmetry along the (111) di-
rection compared to measured values of hexagonal SiC.
Property Present Tolpygo? Expt.®
Ci1 (GPa) 560 479 502(+4%)
Ci2 (GPa) 79 98 95(£30%)
Ci3 (GPa) 33 56
Cha (GPa) 66 60 =0
Css (GPa) 607 521 565(£2%)
Cus (GPa) 194 148 169(£2%)
Cse = (C]l — 012)/2 (GP&) 240 191 203(i3%)
S11 (1072 m?/N) 1.933 2.389 2.03(£2%), 2.05°
S12 (1072 m?/N) —0.356 —0.619 —0.421(£5%), —0.43°
S13 (1072 m?/N) —0.086 —0.189
S14 (1072 m?/N) —0.780 -1.21
Sas (10712 m?/N) 1.657 1.958
Sis (10712 m?/N) 5.685 7.720 5.92
Ses = 2(S11 — S12) (1072 m?/N) 4.378 6.016 4.915

2Tolpygo (Ref. 28) semiempirical theory.
PArlt and Schodder (Ref. 22) average of two measurements.
“Helbig, Karmann, and Stein (Ref. 23).
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strength of ~ 30 GPa. The theoretical strength is thus
about 5% of the Young’s modulus. The highest whisker
strength measured in Petrovic et al.’s investigation?® was
23.74 GPa.

In order to compare with the experimental values of
elastic constants of hexagonal SiC, we transformed our
results to elastic constants corresponding to trigonal sym-
metry, as discussed in Sec. II. In Table II we give both
the stiffnesses and compliances for which the transfor-
mation formula can be found in Nye.® We quoted the
average value of the two measurements, reported by Arlt
and Schodder,?? along with the maximum of the quoted
uncertainties, which reflect differences between different
samples. Also included are the values one obtains by
transforming Tolpygo’s?® elastic constants and the mea-
sured values of the compliances by Helbig, Karmann,
and Stein,?3 which are in good agreement with Arlt and
Schodder’s.?? It can be seen that our transformed C;; and
Sij compare well with the data for 6H, given the intrinsic
uncertainties in this comparison. Nevertheless, the agree-
ment is not always within the quoted error bars. Arlt and
Schodder?? mention that some fragments of other poly-
types and a significant concentration of impurities were
present in their samples. In addition, there were voids in
their material which lead to a density 1.5% lower than
the ideal value. From Carnahan’ study!® of the elas-
tic constants as a function of porosity of the sample, one
may expect a 6% decrease in the stiffnesses from the ideal
value for a porosity of 1.5%. Correcting for the poros-
ity of Arlt and Schodder’s samples?? accounts for about
half of the discrepancy with our calculated values. The
remaining discrepancies are ~ 20 GPa.

Finally, we note that the Young’s modulus in the basal
plane given by 1/S}, from our calculated values is 517
GPa and from Arlt and Schodder’s?? measured S, is 488
GPa. This value should be compared to Hasselman and
Batha’s!? value of 450 GPa. The values for Ck; = 566
GPa and C}, = 168 GPa, deduced from the sound veloc-
ities by means of Eq. (2), are in excellent agreement with
Arlt and Schodder’s?? and thus also in fair agreement
with our calculated values.

V. DEFORMATION POTENTIALS

Along with the strain calculations discussed above, we
obtain the corresponding deformation potentials of the
energy bands. We restrict our discussion to the eigen-
values at the I' and X points in the upper valence and
lower conduction bands. We follow the group-theoretical
notation of Kane.*® For the valence-band maximum I'Y;,
the splittings under (001) and (111) strains are given in
Kane?® Eqs. (3.39)-(3.42) after substituting the single
band deformation potentials d; for the exciton deforma-
tion potentials D; discussed by Kane. The I'; states are
only affected by hydrostatic strain. The corresponding
equations for the X;, X3, and X5 levels are given in
Kane*® Tables II and III. For the trigonal strain defor-
mation potentials, the internal displacement of the two
sublattices with respect to each other must be taken into
account. The latter is related to the optical-mode defor-
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mation potential, which has the same symmetry as the
(111) strain. Following P&tz and Vogl,*® we use the nota-
tion ds, for the optical-mode deformation potential of the
I'15 level. The corresponding trigonal strain deformation
potential ds in the absence of the internal displacement
is denoted by df and the two are related by

ds = dy — (ds,. (19)
For the splitting of the X5 level under trigonal strain
and the optical-phonon deformation, a similar decompo-
sition is used for the deformation potential dy. We note
that a different notation due to Pikus and Bir®° is of-
ten used for the deformation potentials of the I'y5 level.
The correspondence is as follows: d; = \/§a, dz = \/gb,
and ds = v/2d. To our knowledge, the only deformation
potentials which have previously been calculated for SiC
are df and ds,.51%°

The results are given in Table III. The comparison
to Brey, Christensen, and Cardona’s®! calculation indi-
cates that the “warped” ASA calculation, including non-
spherical terms inside the atomic spheres but using a
constant average potential in the interstitial region in-
cluded through the combined correction term,3 overesti-
mates the nonspherical effects. The present values are
close to the average of Brey, Christensen, and Cardona’s
pure ASA and warped ASA results. Potz and Vogl ob-
tained ds, = 98.0 eV, which is about a factor of 3 larger
than our present value.

Finally, we note that for the absolute hydrostatic de-
formation potential, there is a “reference-level” problem.
The fact is that one cannot uniquely define an electro-
static reference level in a periodic crystal.®2 Thus to ob-
tain a meaningful shift of a single eigenvalue under hy-
drostatic strain, we need the eigenvalue in the unstrained
and in the strained part of the same crystal with respect
to a common reference level. We must thus consider the
interface between the strained and the unstrained parts
of the crystal. In general, there will be some charge trans-
fer across this interface, and as a result the creation of
an interface dipole potential. In principle, the latter can
depend on the interface orientation. This results in a
different long-wavelength limit for the coupling to acous-
tical phonons for different directions, in other words a
nonanalyticity as discussed by Lawaetz.’® For a recent
discussion of this problem and explicit calculations, see
Cardona and Christensen,>* Van de Walle and Martin,%°
and Resta, Colombo, and Baroni.®¢

Basically, the problem is equivalent to a heterojunction
band offset problem. Lambrecht, Segall, and Andersen®’
have recently developed a so-called self-consistent dipole
theory of band offsets. Here, we use essentially the same
approach for the absolute deformation potential of the
valence-band maximum. This part of our study is per-
formed within the ASA. We used a supercell of five layers
of strained and five layers of unstrained SiC along the
(110) direction. The two regions are matched parallel
to the interface. The spacing between the layers in the
strained region was expanded by 3%. We used an inter-
mediate interplanar spacing at the interface. The volume
filling atomic sphere radii were appropriately scaled in
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TABLE III. Deformation potentials of 3C-SiC (in eV).
Eigenvalue Energy® (eV) Deformation FP® ASAC “Warped” ASAC
1s d1 7.45
ds —3.81
di —4.61 —7.83 —3.38
dso 34.62 26.45 43.56
ds —8.85
s 6.79 dy —12.99
s 7.43 dy —4.56
da 1.61
d —26.18
dso —14.50
ds —24.40
X5 1.30 dy! 8.87
d,® 7.72
X5 4.34 dy’ 1.33
d® 14.61
X? -3.24 dyt 10.72
d® 9.16
ds 1.19
d4 16.19
dio 6.11
ds 15.41

2LDA eigenvalues with respect to I'75.

PFP, present full-potential calculation. Values of d; and d;* are absolute, see text.
“ASA and “warped” ASA, Brey, Christensen, and Cardona (Ref. 51).

the two regions and near the interface. The overlap of
the spheres does not significantly change from that in the
bulk calculations.

As a test of this calculation procedure, we first ap-
plied it to Si. We obtained a, = dE,/dInQ = 2.3 eV
for the (110) direction, in excellent agreement with the
value 2.2 eV obtained by Resta, Colombo, and Baroni.?¢
On the other hand, Van de Walle and Martin®® reported
0.4+ ~ 1 eV for the (110) direction. Resta, Colombo,
and Baroni®® derived an analytic expression for the ori-
entation dependence,

a, = ag +al f(n), (20)
with

f(a)=3 (1 - Zn;?) /2, (21)

where n; are the direction cosines. The function f(#)
varies between 0 and 1, its values for the (001) and (111
directions respectively, and has the intermediate value ¥
for the (110) direction. This is not the case in Van de
Walle and Martin’s calculation,?® whose values for (001)
and (111) are in good agreement with those of Resta,
Colombo, and Baroni.’® There thus seems to be a prob-

lem with Van de Walle and Martin’s value for the (110)
direction. We note that in order to obtain an accuracy of
1 eV in the deformation potentials, one needs the band
offset with an accuracy of 0.01 eV for a 1% strain. This
is fairly demanding.

For SiC, we obtain a, = 4.3 eV. In Resta, Colombo,
and Baroni’s analysis of the problem, the functional form
of the orientation dependence can be worked out analyt-
ically for the case of nonpolar materials. The maximum
magnitude of the angular variation is found numerically
to be al = 1.5 eV for Si. For a polar material like SiC,
this analysis does not apply. However, orientation ef-
fects on similar isovalent heterojunction band offsets have
been found to be quite small (of the order of 0.02 eV at
most).58 This indicates that the orientation effect on the
absolute deformation potential is probably of the order
of magnitude of a few eV.

We have also tested the dielectric midgap approach of
Cardona and Christensen®? for the calculation of a,. For
Si, they obtain a value of —1.6 eV and for SiC we obtain
—1.0 eV. The error in this approach which is of the order
of several eV may seem to be very large. However, it is
consistent with an uncertainty of the order of a few 0.1
eV in the band offsets, which is a reasonable estimate of
the accuracy of this type of model.
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For consistency of notation, we have written the hy-
drostatic deformation potential of the I'{; valence-band
maximum as d; = v/3a, in Table III. The absolute val-
ues of d; and d;! in Table III for the other states are
obtained from a full-potential calculation for the relative
shifts with respect to the valence-band maximum and
the absolute shift of the valence-band maximum discussed
here.

VI. CONCLUSIONS

In conclusion, we have calculated the elastic constants
and the deformation potentials of important critical point
eigenvalues of 3C-SiC. The agreement between the re-
sults found by experiment and by previous high-quality
first-principles calculations and our calculated results
for properties such as the transverse-optic-phonon fre-
quency and its mode Griineisen parameter, the lattice
constant, the bulk modulus and its pressure derivative
demonstrates the high accuracy of the present calcula-
tions. We have shown that our calculated elastic con-
stants are consistent with known experimental values for
hexagonal and polycrystalline SiC and 3C-SiC whiskers.
The discrepancies are typically ~ 10%. In view of the
experimental difficulties (somewhat impure and slightly
porous samples) and the intrinsic uncertainties associ-
ated with a comparison between 6 H- or polycrystalline
and 3C-SiC, this degree of agreement should be consid-
ered very good. Of course, a more direct comparison
between a calculation for 6H and the measurements for
6H would, in principle, be preferable to the comparison
between calculated 3C' and measured 6 H. This is in prin-
ciple possible although the calculations would be signif-
icantly more time-consuming since the 6 H cell contains
12 atoms. From Heine and co-workers’ work,32:33 it is
known that the energy differences between the polytypes
are extremely small, of the order of meV/atom. To in-
vestigate the intrinsic differences between the elastic con-
stants of the polytypes, that is, of the second derivatives
with respect to strain of these already very small energy
differences, is a formidably challenging problem. Helbig,
Karmann, and Stein’s experimental study?3 did not re-
veal any significant difference between the 4H and 6H
polytypes. Conceivably some changes could occur due to
the varying nonideality of the ¢/a ratio in the polytypes.
Cheng, Heine, and Needs33(?) investigated the effects of
atomic relaxation and deviations from the ideal ¢/a ratio
on the energies of the polytypes and found the relaxation
energies to be of order 1 meV/pair of atoms. A measure
of the expected deviations between, on the one hand, the
cubic and rhombohedral (trigonal) polytypes and, on the
other hand, the hexagonal polytypes of SiC, is the mag-
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nitude of Cy4 which is zero by symmetry in the latter
but not in the former. Its value is here found to be 66
GPa for the transformed 3C which is fairly small, but
not negligible. The comparison between our present esti-
mates of the transformed cubic elastic constants and the
hexagonal measurements corrected for porosity indicate
that the expected changes on the other elastic constants
are smaller than this (of order 30 GPa). The hexagonal
polytype with the smallest unit cell where this symme-
try effect could be investigated is the 2H polytype which
has the wurtzite structure with four atoms per cell. A
calculation of the elastic constants of 2H-SiC would be
feasible and interesting from this point of view.

Using an estimate of the surface energy based on our
calculated cohesive energy, we have also calculated the
theoretical cleavage strength according to Orowan’s ex-
pression and obtained a value 256% larger than the experi-
mental strength, which is to be considered fair agreement
for this quantity. Further experimental work on the elas-
tic constants of high-quality crystals of 6 H and 3C SiC
is clearly desirable. This is especially so in view of the
recent improvements in the crystal growth of 6 H SiC.

The complete set of deformation potentials of the up-
per valence and lower conduction bands at I' and X
was here calculated for the first time. The rather poor
agreement with previous more approximate calculations
of dj and ds, of the valence-band maximum illustrates
the difficulty of calculating these deformation potentials.
Our value for the absolute deformation potential of Si
along the (110) direction was shown to be in excellent
agreement with previous first-principles calculations and
should thus give some credibility to our values obtained
for SiC. To our knowledge, there are no experimental val-
ues available for the deformation potentials in 3C-SiC. In
view of their importance for transport and optical prop-
erties, we hope that the present theoretical results will
stimulate further experimental work in this area.

Note added in proof. Recently, Tersoff [J. Tersoff, Phys.
Rev. B 39, 5566 (1989)] computed the elastic constants
of SiC using a semiempirical interatomic potential and
obtained the values: C;; = 420, C15 = 120, and Cyy =
260 GPa, in close agreement with our calculations.
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