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The electronic and optical properties of strained superlattices are considered. A similarity transfor-
mation of the strained-superlattice Hamiltonian is presented and the average crystal for this case is
defined. A simple perturbative approach to compute the eigenvalues and eigenstates is introduced. The
dielectric functions for strained and unstrained superlattices are compared with the two limiting cases,
i.e., the corresponding average crystal and the mean value of the bulk constituents’ dielectric function.
Application is made for the Si/Geand GaAs/AlAs superlattices.

I. INTRODUCTION

In the last few years, lattice-matched superlattices
(SL’s) have been extensively studied, because of their
physical and technological importance.! One great suc-
cess of growth techniques is that lattice-mismatched SL’s
can now be grown without defects, with the provision
that their layers are thinner than the corresponding criti-
cal thickness.? In these thin lattice-mismatched SL’s, the
lattice constant parallel to the atomic planes (perpendicu-
lar to the SL growth axis), a, is constant throughout the
crystal. The lattice constant perpendicular to the atomic
planes (parallel to the superlattice growth axis), a|,
changes according to the elastic theory.> The SL com-
ponents are strained, and this type of growth is called
pseudomorphic.

The presence of strain causes modification of the elec-
tronic structure of the constituent materials from that of
the unstrained bulk state. Therefore, these SL’s are very
interesting because they provide a large range of available
band gaps and different types of fundamental gaps (direct
or indirect). Moreover, the strain can modify band
offsets, effective masses, and carrier confinements in the
strained layers. The investigation of these effects, which
are important in device modeling, requires the study of
the electronic and structural properties. In addition, the
optical properties of SL’s are of special interest with re-
gard to optoelectronic applications, but only a few works
have been reported in this field.*®

The aim of this paper is to present a method for the
calculation of the energy-band structure and dielectric
function of the lattice-mismatched SL’s. According to
this method, the original problem is transformed to an
equivalent one, which can be more easily studied. In par-
ticular, the Hamiltonian of the SL is transformed

45

through a similarity transformation, and the resulting
Hamiltonian consists of two parts. One part describes
the average crystal and, as will be shown, it constitutes a
good zeroth-order approximation of the problem, and the
other part describes the interaction of the average crystal
states. The use of this method gives must the opportuni-
ty to utilize perturbation theory in order to calculate the
band structure of the strained SL’s, avoiding the exact di-
agonalization of the Hamiltonian. The average crystal
states can be used as a basis in order to project on them
the SL states and so to interpret in a more efficient way
the origin of SL effects. In addition, we investigate how
well the dielectric function of the unstrained and strained
SL’s can be approximated by the dielectric function of
the average crystal. This paper is organized as follows:
The technical details of the method are presented in Sec.
II. Section III describes the band structure and
confinement in the Si/Ge system, where the method is
applied. The dielectric function (imaginary part) of the
average crystal for an unstrained superlattice
(GaAs/AlAs) and a strained one (Si/Ge) is presented in
Sec. IV. In Sec. V the conclusions of the paper are given.

II. DESCRIPTION OF THE METHOD

A. Lattice-matched superlattices

Before going on to the description of the method for
the strained SL’s, we will refer to some concepts that
have been defined for the unstrained SL’s (Ref. 7) and will
be needed later. Let us consider a superlattice that con-
sists of two materials with identical structures and the
same lattice constant (therefore the same primitive cell
can be defined). This common primitive cell produces a
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lattice, which is called the underlying lattice (UL). The
first Brillouin zone associates with the UL is called the
first original Brillouin zone (OBZ). The SL is described
in terms of a larger primitive cell, with a volume that is a
multiple of the volume of the original primitive cell. The
latter will be called the supercell, and the first Brillouin
zone associated with it the first SL Brillouin zone (SBZ).

We suppose that the supercell contains N, primitive
cells of the UL. The supercell primitive vectors {a;} can
be related to the primitive vectors of the UL {t;} through
the relation

a, =S N;t; (i,j=1,23), (1)
J

or in matrix notation
A=N'T.

The different primitive cells of the UL are labeled by the
triple index I=(l,,l,,13), so that the origin of the /th
primitive cell is given by the vector

rl=lltl+12+t2+l3t3 . (2)

The position vector of the Kth atom in the /th primitive
cell of the UL lattice is

rx=1+Tg, 3)

where Ty, (K=1,2,...,p) are the position vectors of
the atoms contained in the UL primitive cell. The
different supercells of the SL are labeled by the triple in-
dex L=(L,,L,,L;), so that the origin of the Lth super-
cell is given by the vector

R;=L,a,+L,a,+L;a,. (4)

We assume that the origin of the /=0 UL primitive cell
coincides with that of the L=0 supercell. Primitive cells
contained in a supercell are labeled by the triple index

n=10 5 (5)

where [, is the index of the UL primitive cell contained
in the supercell at the origin (L=0).

In reciprocal space, there are N, SBZ’s contained in
the first OBZ. For each wave vector k lying in the first
SBZ, there exist Ny equivalent wave vectors of the super-
lattice lying in the first OBZ, and these are given by

k,=k+g; . (6)

where {g;] are the N, reciprocal-lattice vectors of the
SL, lying in the first OBZ.

B. Strained superlattices

We consider now a strained superlattice that is consti-
tuted of two materials. We consider that these materials
have a common primitive cell and a different lattice con-
stant. In order to determine the relevant parameters for
the strained SL, we first take under consideration a hy-
pothetical unstrained SL consisting of the two materials
with the same lattice constant, a primitive cell similar to
the original materials, the same number of layers of each
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constituent, and the same growth axis. For this construc-
tion we can use the results of Sec. IT A, i.e., from Egs. (1)
and (5) we determine the matrix N and the triple index n.
Using now the primitive vectors a; of the strained super-
lattice, and the previously calculated matrix N, we define
a lattice whose primitive cell is defined by

t=3N;'a) (4,j=1,23), )
J

or in matrix notation
Tx=N -1, A s

This lattice will hereafter be called the commensurate un-
derlying lattice (CUL), and it will be used in the process
of transforming the strained SL Hamiltonian. The first
Brillouin zone associated with the CUL is called the first
commensurate Brillouin zone (CBZ). In reciprocal space,
there are Ny SBZ’s contained in the first CBZ. For a
wave vector k lying in the first SBZ there exist N,
equivalent wave vectors of the superlattice lying in the
first CBZ, and these are given by

ki=k+g;, (8)

where {g}} are the N, reciprocal-lattice vectors of the SL
lying in the first CBZ.

C. Hamiltonian matrix elements

The wave functions of the SL satisfies the Bloch
theorem with respect the translations corresponding to
Bravais-lattice vectors of the SL. Supposing that the
original basis functions are orbitals localized around
atoms, such as muffin-tin orbitals, atomic orbitals, Gauss-
ian orbitals, etc., then it is common to use the following
Bloch sums as the basis set for the superlattice:

Y(k,n,j,a)=(1/N,)""* 3 exp[ik-(R,, +15+T¢)]

X¢, (t—=R,, —1,—T))

=(1/N,)"%exp[ik-(r¢ +T5)]
X ¥ exp(ik-R, )¢, ;(r—R, —1,—T;),

9)

where N; is the number of supercells in the crystal, k is a
wave vector in the first SBZ, and ¢; ;(r—R,, —1,—T))
is the a localized orbital centered at R, +1,+7T;. R,
denotes the position of the mth supercell, r, the position
of the nth primitive cell in the supercell, and 7 ; the posi-
tion of the j atom relative to the nth cell. The vectors rj,
and 75 are the corresponding vectors that refer to the
previously defined CUL. The choice of the phase factor
exp[ik-(r; + T5)] appearing in Eq. (9) is arbitrary, and it
was done for later convenience.

By transforming the basis functions defined in Eq. (10)
by the transformation matrix,
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Ula,j,g5B,j'n)=(1/Ny)'explig]-(rs + T5)18,45,; »
(10)

we get the new basis:

Yk, g}, j,a)=(1/No)'/* 3 explig}-(r; +T;)]Y (k,n,j,a) .

(11)

The two representations of the Hamiltonian are related
by the similarity transformation:

H'=U"“H°U.

(12)

The new basis set makes the calculations easier and leads
to a clearer interpretation of the results. Indeed, in the
new representation, the Hamiltonian consists of diagonal
blocks labeled (g},g}) and off-diagonal blocks (gi,gi).
The elements of a diagonal block are given by

|
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(k,g},j,al HIk,g,j',B) =840, (e% ),
+ 3 exp[—i(k+g})ri]

X{Ve ), ,

nj,s

(13)

where the angular brackets { ), denote averaged values
with respect to n over the supercell. The symbol ej;
denotes the on-site matrix element corresponding to an a
orbital at position (n,j), and the symbol V,‘,’Jﬂ denotes the
Hamiltonian matrix element between an a, orbital at site
(n,j) and a B orbital at the sth nearest-neighbor position.
From Eq. (13) it is clear that the diagonal blocks of the
transformed Hamiltonian contain the average interac-
tions and therefore describe the so-called average crystal.
In addition, the diagonal blocks have, in the reciprocal
space, the periodicity of the reciprocal space of the CUL.
This last property is a consequence of the particular
choice of the phase factor in Eq. (9).
The elements of the off-diagonal blocks are

(k)gfvj)aIH,kagf'yjlyﬂ> =8a38jj'( 1 /No ) 2 CXP[l(gf_gf')'(rf, +rj)]8€zj

+(1/Ny) 3 > exp[ —i(gi —g})(rf +r§)]exp[—i(k+g?)-r§]8V"B

where
a — a —_—ea
8£':nj_(enj)n Enj
and

SV =(VeL ), —Veh .

nj,s nj,s nj,s

The last relation shows that the off-diagonal blocks de-
pend only on the difference between the SL interactions
and the average crystal values, and describe interactions
between the states of the average crystal.

III. BAND STRUCTURE OF THE STRAINED
Si/Ge SUPERLATTICES

In order to test the method, we have applied it on the
strained system of Si/Ge, which is presently of great in-
terest. We used an empirical tight-binding (ETB) Hamil-
tonian with an {sp3s*} orbital basis,® including the spin-
orbit interaction. This parametrization describes well the
valence as well as the lowest conduction bands for the
bulk materials. The presence of strain modifies the in-
teratomic distances and bond angles. In an ETB model,
this results in modifications of the nondiagonal Hamil-
tonian matrix elements. The influence of strain in our
calculations has been taken into account as in Ref. 8.
The valence band offset has been taken equal to 0.84 eV.°

The band structure of the 4:4, 3:5, and 5:3 SL’s [by
n:m we mean (Si),/(Ge),,] grown on a Si(001) substrate
has been calculated with the above-mentioned model. In
Fig. 1(a)-1(c) the energy bands along the I'Z symmetry
line in the SL Brillouin zone of these SL’s are shown in
comparison with the folded bands of the corresponding
average crystal. We observe that the upper valence bands
of the SL’s are very close to those of the corresponding

(14)

nj,s ?

[
average crystal. Also, the lower conduction bands com-
pare fairly well with those of the average crystal in all
cases. Consequently, we can state that the average crys-
tal for a strained SL constitutes a good zeroth-order ap-
proximation, and it can be considered as a good starting
point for the description of its properties.

In addition, a great advantage of the method is the
easy and efficient use of perturbation theory in order to
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FIG. 1. Energy-band structure of the 3:5, 4:4, and 5:3 Si/Ge
SL’s (solid lines) compared with the corresponding average crys-
tal bands [(a), (b), and (c), dashed lines], and with the bands that
result from the perturbative Hamiltonian [(d), (e), and (f),
dashed lines].
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improve the band structure of the average crystal. The
perturbation is applied in the following way. At first, we
diagonalize the diagonal blocks of the transformed Ham-
iltonian. Thus, we get the band structure and the wave
functions of the average crystal in the folded-zone
scheme. Next, to correct the energy of an average-crystal
state, we select all the states that interact appreciably
with this one. The so-selected interacting average-crystal
states define a truncated basis set. This set is, then, used
to set up a new Hamiltonian matrix with smaller dimen-
sion than the original one. In fact, more than one state is
corrected simultaneously by diagonalizing the same
Hamiltonian matrix. At this point we have to notice
that, because the upper valence bands of the average
crystal already approach the SL bands, the inclusion of a
few average-crystal states in the perturbation has the ca-
pability of improving very much the energy bands.
Figures 1(d)—1(f) show the corrected bands of the aver-
age crystal in comparison with the superlattice bands for
the three SL’s. It is worth noticing that the description
becomes very good with the application of the perturba-
tion, even for the bands that originally presented large
deviations. The truncated basis that has been used is
about 2.5 times smaller than the original one, and this
fact shows the importance of the perturbation in prob-
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FIG. 2. Relative probabilities of finding an electron on a
given site n of the (Si);/(Ge)s SL as a function of n (left side),
and the probability for the average-crystal state g; to appear in
the SL wave function (right side).
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lems where many diagonalizations of large Hamiltonians
are required.

In order to examine the nature of the SL states, we
have calculated the square of the wave functions (the rel-
ative probability) of the states at the I" point of the previ-
ous SL’s as a function of atomic sites inside the supercell.
We have also calculated the probability for different
average-crystal eigenstates characterized by g; to appear
in the SL eigenfunctions. The results for the 3:5 superlat-
tice are shown in Fig. 2. The states are ordered in in-
creasing energy. The upper valence states (V,V,,V;) as
can be seen from the figure, are extended states, while the
conduction states are partially confined. The most
confined state is Cs, which, as can be seen from the
figure, originates from a nonfolded average-crystal state,
and is localized in the Ge layers.

IV. DIELECTRIC FUNCTION

In order to calculate the dielectric function, the ener-
gies, as well as the wave functions, for a set of k vectors
in the IBZ are needed. The momentum matrix elements
are calculated using the relation

_ m dH(k)
# dk

which, although approximate, gives surprisingly good re-
sults and has been used in many calculations®!®!! previ-
ously. The necessary integration in the IBZ has been per-
formed within the linear analytic tetrahedron method
(LATM). For computational convenience, the momen-
tum matrix elements inside each tetrahedron are taken to
be equal to the mean of the values of the tetrahedron ap-
ices. This approximation has been checked by comparing
the above calculation with the one in which the momen-
tum matrix elements are assumed to vary linearly inside
each tetrahedron. No significant differences have been
noted. In order to obtain smooth €,, we have convoluted
it with a Lorentzian of I'=50 meV, full width at half
maximum (FWHM). Results for the dielectric function
will be presented only in the energy region between 0 and
3.7 eV, where the present tight-binding model gives
reasonable results for the respective bulk materials.

Recently, it was shown that as the SL period increases,
its dielectric function approaches the appropriate mean
value of the constitutents’s dielectric function.!? More-
over, it is known that the ultrathin SL energy bands can
be well approximated to the corresponding average-
crystal bands.” It is reasonable to expect that the same
will hold for the case of dielectric function. This argu-
ment will be tested by studying an unstrained SL
(GaAs/AlAs) and a strained one (Si/Ge).

In Fig. 3 the imaginary part of the dielectric function
(€,) for the 1:1, 2:2, 3:3, and 6:6 GaAs/AlAs SL’s, as well
as the €, of the corresponding average crystal (€3') and
the mean value of the constituent dielectric functions
(€7'), are presented. The energies and the momentum
matrix elements have been calculated using the same
model that we have used for the Si/Ge case. The tight-
binding parameters have been taken from Ref. 13. One
can observe that the €, of the 1:1 and 2:2 SL’s are very
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FIG. 3. Dielectric function €,(w) for (GaAs),/(AlAs), SL’s,
with n =1,2,3,6, compared with the average-crystal dielectric
function and the mean value of the bulk dielectric functions.

close to the €5'. The 3:3 case constitutes a middle case, as
it lies between the €3 and €7, while €, of 6:6 is clearly
close to €7'. The absorption edge of all presented cases is
nearer to the absorption edge of the average crystal. One
should also notice that as the SL period increases, there is
a continuous transfer of oscillator strength from the ener-
gy region 3.2-3.7 eV to the region 2-3.2 eV.

The cases of 2:2, 3:3, 4:4, and 6:6 strained Si/Ge SL’s
are presented in Fig. 4, along with the corresponding €5
and €7 dielectric functions. Contrary to the previous
case, the behavior of €, of the Si/Ge SL is rather
different. Specifically, we notice that all the €,, although
different from each other, are close to the €' in the ener-
gy region 0-2.8 eV. On the other hand, for higher ener-
gies, all €, are surprisingly close to each other and are be-
tween €3 and €5'. The absorption edge is closer to the ab-
sorption edge of the €5'. Comparing the GaAs/AlAs and
Si/Ge cases, one can find that, while in the GaAs/AlAs
case, in the presented energy range, there is a uniform
transition from €3 to €7, in the Si/Ge case a different be-
havior is observed for each of the above-mentioned ener-
gy regions. This is an interesting finding, which should
be further investigated.

4331
30 ' ' . h
s (S1),/(Ge)a
— (si)s/(Ge)s |
-——= (S)u/(Ge)s
Azo— —— (Si)s/(Ge)s |
3
3 1
10t |
Mean value —>
<—Avel’09e crystal
o .

2 3
energy (eV)

FIG. 4. Dielectric function €,(w) for (Si),/(Ge), SL’s, with
n =2,3,4,6 compared with the average-crystal dielectric func-
tion and the mean value of the bulk dielectric functions.

V. CONCLUSIONS

In this paper, the concept of CUL for the strained su-
perlattices has been introduced. This lattice is useful in
setting up a transformation of the SL Hamiltonian, which
separates the problem into two parts. The first part de-
scribes the so-called average crystal, and it is a good
starting approximation for the SL band structure. It has
been shown that it is possible to calculate the SL states in
an efficient way using degenerate perturbation theory.
Also, the states of the average crystal can be used to pro-
ject the SL states and to analyze their behavior. The
average-crystal dielectric function, in conjunction with
the mean value of the bulk constituents dielectric func-
tion, are two limiting cases, and can be used to analyze
the SL dielectric function. We found that while the tran-
sition of the €, for GaAs/AlAs from the €} to €} is uni-
form, the Si/Ge case is quite different.
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