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A systematic technique for deriving force theorems within density-functional theory is presented.
It is based on an arbitrary guess at the response of the electrons to a shift of a nucleus, yielding a
valid force theorem for each choice. Application to the full-potential linear-muffin-tin-orbital method
gives a workable force expression which is unusually insensitive to deviations from self-consistency.

The local-density approximation (LDA) within densi-
ty-functional theory (DFT),! as a reasonably accu-
rate description of the electron-electron interaction, has
proved to be extremely useful in the calculation of the
electronic properties of such varied systems as molecules,
solids, and surfaces. DFT reduces the intractable prob-
lem of the coupled motion of many interacting electrons
to the much simpler question of independent electrons in
an effective, density-dependent, single-particle potential;
the LDA then gives an explicit prescription for construct-
ing the potential in an approximate way. This gives a
practical scheme for calculating the total energy of any
system consisting of electrons and nuclei as function of
the nuclear positions. The forces on the nuclei, as the
derivatives of this total energy function, are then well
defined. It is of advantage to have these forces available
during the course of the calculation, as has been am-
ply demonstrated by applications of the Car-Parrinello
method? in recent years. First, by moving the atoms
along the forces as the calculation proceeds, the equilib-
rium geometry can be found, opening the door to a mean-
ingful treatment of many-atom systems. Second, true ab
initio molecular-dynamics calculations can be done. This
permits a microscopic simulation of phenomena such as
diffusion or melting with the full reliability and accuracy
of the LDA.

Up to now, most such calculations have been done us-
ing the plane-wave pseudopotential (PW-PP) method,?
because in this approach the forces are trivial to obtain.
While many new and important results have been ob-
tained, a problem is that the straightforward PW-PP
approach is only suited to systems with weakly scatter-
ing sp electrons. It is therefore desirable to obtain force
theorems for more sophisticated approaches which can be
applied more generally, such as the full-potential linear
augmented plane-wave (FLAPW) (Refs. 4 and 5) and
the full-potential linear muffin-tin orbital (FP-LMTO)
(Ref. 6) methods. Recently, two different force theo-
rems have been presented for the FLAPW method.*° In
this paper, we present a systematic technique for deriv-
ing force theorems in arbitrary basis sets. We show that
a force theorem is associated with any arbitrary ansatz
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for the response of the charge density when the nuclei
are moved. The freedom in defining the density change
can be used to tailor the force theorem to the basis set
in question. The technique is then used to obtain a force
expression for the FP-LMTO method.

Different force theorems must of course yield the
same numerical forces when evaluated for the fully
self-consistent system. Formally, the equivalence can
be demonstrated by transformations using the self-
consistency equations (i.e., the Schrédinger equation and
the definitions of the effective potential and the total
energy) but this can be extremely tedious in practice.
We introduce the freedom to transform between equiv-
alent force expressions at an earlier level by associating
different force theorems with different “guesses” as to
how the electron density changes when the nuclei are
moved. Consider the motion of the nuclei along some
paths R, (z), parametrized by a variable . For each
value of © we denote the self-consistent charge density by
psc(z) and the LDA (or Kohn-Sham, KS) total energy
by Exs[psc(z)]. The aim is to determine the first-order
change in the total energy as x varies around a chosen
value zo. This is some linear combination of the forces
for the geometry corresponding to * = xo. By choosing
the path so that only one atom is moved, separate force
components are isolated. An attempt to differentiate the
KS energy directly can lead to extremely complicated
expressions. To avoid this, we choose any arbitrary trial
density p(z) which depends smoothly on z, conserves the
electronic charge, and satisfies p(zo) = psc(Zo). It is then
useful to consider the following energy expression:

E(z) = Enlp(2)], (1)

where Ey is the Harris energy functional, defined for any
trial density p by

Bulpl =Y~ [ Vealohd®r + Ulpl + Buclel: (2

occ

The eigenvalues ¢; are calculated in the effective poten-
tial made from the density p (whereas in the KS energy
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the eigenvalues correspond to the potential which gener-
ates p). The electrostatic and LDA exchange-correlation
energies and the effective potential are given by, respec-
tively,

Ulpl = 3 /P(r)¢(r)d3r +3) Z.¢., (3)

Eyelp) = / p(r)exelo(r)]dr, (4)

Vert(r) = b(r) + pixe[p(r)]- (5)

Here ¢(r) denotes the electrostatic potential of the total
(electron plus nuclear) charge density, ¢, is the electro-
static potential felt by the vth nucleus with atomic num-
ber Z,,, and ex. and pyc are the LDA exchange-correlation
energy density and potential, respectively. The Harris
and KS energies are equal to first order respective to
variations around the self-consistent density.” Therefore
the derivatives dE/dz and dExs[psc(z)]/dz are equal at
zo. This is because j(z) — psc(x) goes to zero smoothly
as z approaches z¢ and consequently the leading term of
Eg[p(z)] — Exs[psc(z)] is proportional to (z — xo)2. The
desired force can therefore be obtained by differentiating
E(z) for any arbitrary definition of j satisfying the three
requirements.

There are two major advantages when the force expres-
sion is derived by the “detour” over g and E. First, in the
Harris functional the double-counting terms — f pVest, U,
and E,. are evaluated for the input trial density and not
for the output density constructed from the wave func-
tions, making the differentiation of these terms much eas-
ier. Similarily, the change in the eigenvalues is needed for
the explicit potential change éV.g(5) and not for §Vi..
Second, the freedom in choosing g can be exploited to
obtain a force expression which is tailored to a specific
basis set. For example, in augmentation methods it is
natural to treat the density inside the atomic spheres
separately from the interstitial density. Note that the ar-
bitrary choice of p is equivalent to a guess at the way in
which ps. changes as the nuclei move. In fact, the well-
known Hellman-Feynman (HF) force expression® corre-
sponds to the assumption that the electronic density is
frozen. Choosing p(z) = psc(zo) for all values of z,
only the contributions due to the shift of the nuclear
electrostatic potentials survive in the variations of Vg
and in the double-counting terms. If furthermore the
Schrédinger equation is solved by means of a geometry-
independent or complete basis set, by first-order pertur-
bation theory the variations of the eigenvalue sum and
J pVesr cancel in Eq. (2). This leaves only 6U as the
total energy change, recovering the result that the varia-
tion of the total energy can be calculated using only the
classical electrostatic forces on the nucleii. The HF force
expression is thus associated with the counterintuitive as-
sumption that the electron density does not respond to
the nuclear motion.

We next show how the technique can be used to de-
rive a force theorem for the FP-LMTO method. This
illustrates how the freedom in defining p is used to tailor

the force theorem to a specific basis set. The LMTO ba-
sis results from a rather involved construction in which
atom-centered Hankel-function envelopes are augmented
smoothly by numerical solutions of the radial Schrédinger
equation within muffin-tin spheres.® A major advantage
is that convergence can be attained with a small basis.
The disadvantage is that the change in the total energy
for a shift of a nucleus is not given simply by the electro-
static force on the nucleus. If one defines 5(z) = psc(zo)
as above, then § " ¢;— 90 f pVeg is not automatically zero.
The term which is left arises because the basis functions
change when an atom is moved; expressing this using
the derivatives of the basis functions respective to the
atomic positions gives the so-called Pulay force.'® The
LMTO Pulay force arises because the envelopes centered
on the moving atom are shifted and, additionally, be-
cause the augmentation sphere for all basis functions is
moved. Considering the complexity of the problem, it is
not surprising that an explicit expression for the Pulay
correction in the LMTO basis has not been obtained to
date.

Instead of attempting to evaluate the Pulay force, we
choose a definition of j(z) which is better suited to the
LMTO basis. Intuitively, a natural choice would be to
move the density within each atomic sphere rigidly along
with its atom. As a refinement in the same spirit, we
decompose the self-consistent density at the reference ge-
ometry £ = zo into a sum of nonspherical atom-centered
contributions as

Psc(r) = ZPV(I' -R,). (6)

This decomposition is easy to obtain when the interstitial
density is given using an atom-centered basis set. Each
py is given as a numerical spheric-harmonic expansion
inside the corresponding atomic sphere and as a linear
combination of Hankel functions outside it. We define
p at another geometry by reoverlapping the p, at the
shifted positions. In other words, the ansatz is that each
atom drags its partial density along with it. Clearly this
is a more realistic assumption than the one underlying
the HF theorem, and we argue below that the associated
force theorem is therefore less sensitive to errors in the
density. In the present context, the important feature is
that this definition leads to tractable terms when E is
differentiated.

To derive the force theorem, we write down the first-
order change 0 F as the variation of Eq. (2) and use per-
turbation theory to cancel various contributions of § Y ¢;
against terms from the double-counting integrals. For
brevity, we defer the details to a future publication! and
sketch the main points. In the interstitial region (IR), the
variation of the trial density is nonzero. It has the special
form of a rigid shift for each partial density p,. There-
fore the coefficients R,, are fixed in the expansion of the
interstitial density as psc = Y,,, RmXm- Hereby the set
{Xm} denotes the atom-centered Hankel functions used
to expand the p, outside the atomic spheres. All relevant
information about the interstitial potential is contained
in the integrals V,, = [ XmVes. By first-order pertu-
bation theory, the changes in the V,,, lead to a contribu-
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tion of 3 R.,6V,, to §) €. Because of our choice of
a rigid shift (i.e., dR,, = 0), this term cancels the vari-
ation 6fIR pVet = 6. Ry Vi = Y. R,6V,,. The first
simplification therefore is to simultaneously leave away
the changes in the interstitial potential and fm pVegr. An
analogous situation arises for the density inside an atomic
sphere. This density changes by the decompose-and-
reoverlap process, since the “tails” of the densities cen-
tered on other sites shift relative to the selected sphere.
Consequently the “potential parameters” which describe
the sphere potential are also modified. However, this
change of the parameters does not have to be calculated.
First-order pertubation theory and the self-consistency of
the reference density can be invoked to show that the cor-
responding contribution to the eigenvalue change cancels
against the sphere contribution to § f pVesr. The final ex-
pression thus involves the eigenvalue changes for a rigid
shift of the sphere potentials. For the sphere densities,
cancellation is not complete: terms are left which involve
the multipole moments of the sphere charge density and
the electrostatic potential on the sphere surface. For an-
gular momentum zero, these are simply the changes in
the total sphere charge and Madelung potential, respec-
tively. The final force expression is

SE = §(8) Zei + %5””/ PP+ 5(3)/ PExc
IR IR

occ

1
+% Z :STl—(d)VL(s(R)QVL - QVL(;(R)(ﬁVL)’ (7)
vL v

where 6(F) denotes the variation associated with the
rigid-shift-and-reoverlap procedure. For the eigenvalue
sum, we define this as the change when the sphere po-
tentials are shifted rigidly and the interstitial potential
integrals are kept frozen. For the interstitial integrals,
§(B) includes the change in the integrand as well as of
the integration domain. The vth atomic sphere has the
radius S,, density multipole moments Q,r, and the sur-
face electrostatic potential Y ; ¢,.Yz. Most terms can
be calculated using gradients of the structure constants
(used to expand the charge-density basis functions x.,
around the different sites). The change in the eigenvalue
sum is evaluated using matrix pertubation theory for the
Hamiltonian and overlap matrices.

The force theorem of Eq. (7) is not in the form of the
Hellman-Feynman force plus a Pulay correction, and it
is far from obvious how to bring it into such a form by
direct manipulations. The HF force essentially consists
of the change in the eigenvalue sum when only the ex-
ternal potential is varied while the interaction parts of
the potential are kept frozen. Our FP-LMTO force theo-
rem involves the change in the eigenvalue sum when the
sphere potentials are shifted rigidly and the interstitial
potential integrals are frozen. This is in some sense anal-
ogous to, but in practice distinct from the situation for
the HF force expression.

We note some further features of the LMTO force ex-
pression. First, core states do not contribute, as a con-
sequence of the ansatz that each nucleus drags its par-
tial density (including its core) along with it. Second,
the expression shows some similarity to the local force
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FIG. 1. The Harris total energy and the force for the N
dimer as function of the bond length at self-consistency (a),
and the convergence of both quantities with iteration num-
ber (b),(c). The total energy of the dimer at equilibrium is
—217.399 Ry.
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theorem derived by Andersen within the atomic-sphere
approximation.® Third, a different LMTO force theorem
could be derived by choosing the interstitial density as
fixed and shifting the sphere densities rigidly. We have
not pursued this, but in that case there would be no inter-
stitial contributions but additional surface integral terms
would arise.

To test the force theorem of Eq. (7), we have im-
plemented it in a full-potential LMTO method de-
signed for molecules and clusters, to be presented in
detail elsewhere.!! In brief, as discussed for an earlier
FP-LMTO method,® the main problem is to obtain an
accurate representation, valid in the interstitial region,
of the product of two Hankel functions centered at the
same or at different sites. That is, we require an expan-
sion of the form

! 1
¢VLQ¢V'L’Q' = E C:,/:]F;g,';/a[fl « Xv!'"L'"a!y (8)

v LMt

where ¢, 1, is a Hankel function centered at site v with
angular momentum L and the X, o are functions of
the charge-density Hankel-function set. The index a runs
over different localizations (i.e., kinetic energies). Us-
ing Eq. (8), the three-center integrals for the interstitial
potential matrix elements can be reduced to two-center
integrals and the wave function can be squared to cal-
culate the output density. In the previous method, the
expansion was obtained by adjusting the coefficients un-
til the two sides of Eq. (8) match smoothly on all spheres
simultaneously, a procedure which is adequate for close-
packed spheres but not suited to molecules. In the new
cluster method, the expansion is first calculated for two
atoms arranged along the z axis and the coefficients are
tabulated as function of the interatomic distance. For
a general position of the atoms, the expansion is ob-
tained by rotating the tabulated fit using the rotation
matrices for the spherical harmonics. The tabulated fit
is made by direct numerical integration and can be made
as accurate as desired. For the exchange-correlation in-
tegrals over the interstitial region, direct numerical in-
tegration on a mesh was used. In other respects the
method resembles the previous FP-LMTO approach, in-
cluding the correct treatment of higher angular momenta
inside the atomic spheres. In sum, one obtains a cluster
full-potential LMTO method which has an accuracy that
can be systematically improved, has no need for “empty
spheres,” and supplies the forces on the nuclei.

Table I presents calculated binding energies, bond
lengths, and vibrational frequencies for some typical

TABLE I. Calculated bond lengths (bohr), binding en-
ergies (eV), and vibrational frequencies (cm™!) for typical
dimers as compared to experimental data; results obtained
using energies and forces are given separately.

| ds dr dexp EB

EB,exp VE VF Vexp

BF | 2.411 2.412 2.385 9.00 7.85 1410 1389 1401
Nz | 2.079 2.076 2.067 11.29 9.76 2461 2454 2358
Cz | 2.363 2.356 2.348 7.11 6.24 1895 1905 1855
CO| 2.142 2.139 2.132 12.87 11.09 2176 2181 2169

dimers, showing good agreement to experiment!? except
for the well-known effect of overbinding which is due to
the LDA.'® Our main interest here is to test the force
theorem. The upper curve of Fig. 1 shows the converged
binding energy for the N dimer as function of the bond
length and the calculated forces as lines of the corre-
sponding slope, demonstrating that the force expression
accurately reproduces the derivative of the total energy.
This is confirmed by the agreement between the bond
lengths and frequencies calculated using the total energy
and the forces in Table I. Figure 1 also shows the con-
vergence of the total energy and forces for the first few
iterations. As expected, the force does not agree with the
derivative of the energy before self-consistency is reached.
A surprising feature is that, at least for the cases con-
sidered here, the force is less sensitive to errors in the
density than the total energy. (Energies converge from
below because we have evaluated and plotted the Harris
functional energy.) The forces for the first iteration al-
ready give a reasonable bond length and vibrational fre-
quency whereas the total energy gives an unacceptable
result. To our knowledge, this behavior is different from
that seen in calculations based on the straightforward
Hellman-Feynman theorem in the PW-PP method, but
is similar to that seen for a FP-LAPW force theorem.*
We attribute the insensitivity of the force to deviations
from self-consistency to the fact that a more realistic as-
sumption for the electron response to the nuclear motion
was “built in” by our definition of p.

In conclusion, we have shown that different force the-
orems can be associated with different “guesses” at the
electronic response to the nuclear motion. By defining
the density response in a suitable way, the force theo-
rem can be tailored to a specific method, as was demon-
strated by deriving a force theorem for the FP-LMTO
method. The chosen ansatz for this case, namely, that
each atom drags its partial density along with it, leads to
a force expression which seems to be less sensitive to devi-
ations from self-consistency than the standard Hellman-
Feynman force.
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