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We present a statistical model of step meandering on small-miscut vicinal Si(100) surfaces,
generalized to treat arbitrary azimuth. The model is solved using a transfer-matrix technique and the
free energy of the vicinal Si(100) surface is calculated. From the free energy the equilibrium crystal
shape is derived at various temperatures. The results are compared with existing experimental data.

I. INTRODUCTION

Step morphology of vicinal Si(100) surfaces containing
single-atomic-height (SH) steps has been a subject of in-
tensive recent study.!™® This surface exhibits a variety
of structures as a function of the miscut angle. Vicinal
Si(100) surfaces with a miscut angle smaller than ~ 1°
are found to contain only SH steps,®® which alternate
between two different kinds, S4 and Sg,® depending on
whether the dimerization direction in the upper terrace is
perpendicular or parallel to the step edge. As the miscut
angle further decreases, the terrace widths get larger and
the surface can lower its energy by introducing excess
steps.” This may occur in two different ways, as recent
measurements with the low-energy-electron microscope
(LEEM) suggest. At very small miscut angles the system
decreases the step separation by forming wavy steps.’
On nominally flat Si(100) surfaces a hill and valley type
reconstruction was observed,? which we interpret as an-
other mode of introducing steps.® The local slope was
found to be close to 0.3°.

The occurrence of excess steps on Si(100) with low step
density was predicted by Alerhand et al.” who showed
that a sufficiently flat surface could lower its energy by
spontaneously forming additional steps to decrease the
step separation to a characteristic length /5. They showed
that for straight steps the energy per unit length E, de-
pends logarithmically on the step separation [,

E, = Ao — AsIn(l/ma). (1)

Here g represents the local energy of the step, A, is the
strength of the interaction, and a is the lattice constant.
At the characteristic step separation lo, the energy per
unit area E,/l has a minimum, giving

lo = wa exp(1 + Ao/As)- (2)
It was shown?® that steps with long-wavelength undu-
lation can also lower the energy by reducing the effective

step separation towards the optimum value given by Eq.
(2), analogous to the spontaneous step formation pro-
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posed by Alerhand et al.” However, the kinetic barrier for
the formation of such structure is expected to be much
smaller in the case of the wavy steps, thereby explaining
the observation of wavy steps instead of up-down steps
(which are energetically preferred) in the experiment.

Another fascinating aspect of the observed surface
morphology on Si(100) is a hill and valley structure,?
which appears when the miscut angle is nominally zero.
We believe the hill and valley structure reflects faceting of
Si(100). At T = 0 one expects a flat Si(100) to facet, with
the crystal forming a square pyramid with its apex along
(100) and its faces oriented along [011], [011], [011], and
[011] directions.® (This assumes that the spontaneous for-
mation of extra up-and-down steps” is kinetically forbid-
den.) At finite temperature the edges between the facets
are expected to roughen so that the crystal surface ap-
pears to contain conelike hills and holes. Tromp and
Reuter? have observed precisely such a morphology with
LEEM.

Although several cal-ulations of the step structure of
SH steps on Si(100) have been reported,*>° these models
are all specialized to [011]-oriented steps, so they cannot
be applied to calculate the crystal shape over a range
of azimuthal angles, or the related hill-and-valley struc-
tures. In this paper we introduce a simple model which
can be solved exactly, and with it we calculate the sur-
face free energy of Si(100) at various temperatures as
a function of miscut angle § and azimuth angle ¢. Our
model includes the usual kink and corner energies, and an
elastic potential in which the S4 and Sp steps meander.
The elastic potential is calculated using continuum elas-
ticity theory with the experimental (anisotropic) elastic
constants.!® The model is solved using a transfer-matrix
method, giving the surface free energy.

Inclusion of the azimuth angle allows us to look in de-
tail at the equilibrium crystal shape (ECS), which is ob-
tained from the calculated surface free energy using a
Wulff construction. The equilibrium crystal shape is a
problem of great interest, yet this is apparently, to our
knowledge, the first calculation of ECS for a realistic mi-
croscopic model of the surface. Recently the equilibrium
shape of small voids in Si has been measured using trans-
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mission electron microscopy.!! This measurement yields
a nice picture of the whole ECS of Si, however the de-
tailed structure of the ECS near (100) is difficult to ex-
tract. In contrast, the surface structure seen in LEEM,
discussed above, may correspond to the ECS near (100),
as we assume here.

II. THEORETICAL MODEL
AND METHOD OF CALCULATION

A. Model for the step meandering
with azimuthal miscut at finite temperature

In this section we outline the model we use to describe
the meandering of steps on silicon surfaces oriented ar-
bitrarily, but sufficiently close to (100). The maximum
inclination that can be treated by our theory is limited by
the appearance of double atomic height steps in the [011]
direction. Only single atomic height steps are included in
our model, and therefore we consider only small-miscut
angles where single atomic height steps dominate.*

Previous work dealt with Si surfaces miscut towards
[011]. We now generalize to surfaces which are miscut
towards an arbitrary direction away from (100). The
angle ¢ denotes the azimuthal misorientation, i.e., ¢ = 0°
corresponds (at zero temperature) to straight S4 and Sp
steps running along [011], while ¢ = 45° denotes a surface
oriented towards [010]. Due to symmetry we can restrict
ourselves to 0° < ¢ < 45°. As in the ¢ = 0° case, the
direction of dimerization rotates by 90° between adjacent
terraces. Therefore, except for the very special situation
¢ = 45°, there are still two alternating types of steps,
in which S4 and Sp segments predominate, respectively.
The slope of the surface (i.e., the polar miscut) can be
calculated from the periodicity D in the direction normal
to the average step edges:

tand = 1/(v2D/a). (3)

There are two steps within an interval of length D.

Following the ideas of Alerhand et al.* and Poon et
al.,’ a general two-dimensional model Hamiltonian for
M pairs of S4 and Sp steps, each containing N elements
of length 2a (2a = 7.6 A is the width of one dimer row),
is given by

M N
o
H =YY 2at|pf? — ni

j=1li=1
+2€C(1 — (sh:{f{),h?(,‘)) + 2AOA

+2,\f|hfi({) — h2Y9)| 4 2e.(1 - 5h?+({),h§(5)) +2X7]
B
+Eq(h2M | hAMD, pBO) | p By 4)

The position of the ith element in the jth S4- or Sp-like
step is given in units of 2a by the integer hf(j ) or hiB G ),
respectively. The Hamiltonian contains the usual kink
energies /\‘f_(B) for S4(B) steps, the corner energy €., the
local step energies /\(',‘(B), and the elastic relaxation en-
ergy E.;. The local S, and Sp step energies A$ and AP

have been chosen identical to the kink energies A? and
A%, for reasons of consistency (A§ = AP and A = A4,
because locally a kink in an S4 step consists of a por-
tion of an Sp step, and vice versa). Finally, E.; denotes
the elastic relaxation energy, which is described in more
detail in the next subsection.

By enumerating step positions in this way, configura-
tions corresponding to second order ledges (protrusions in
a kink, i.e., orthogonal to [011]) have been omitted from
the model. However, we know from scanning tunneling
microscopy (STM) images that these configurations are
in fact extremely rare at ¢ = 0°. Also for ¢ = 45° this
approach has been justified a posteriori by the observa-
tion that most of the kinks in an S, or Sp step are in
fact oriented in the direction of the miscut (see Figs. 1
and 2). Furthermore, we have calculated the difference in
free energy between the S4- and Sp-like step at ¢ = 45°
(vielding 10~ meV/a? at T=600 K), and indeed found
it to be negligible compared to typical changes of free
energy when the miscut changes. Therefore, at ¢ = 45°
both S4 and Sp steps are equivalent, as for symmetry
reasons they indeed should be. This justifies the validity
of our model.

To make the model more tractable, we apply a mean-
field-like approximation by taking a certain step and
freezing its neighboring step positions, i.e., we calculate
the free energy of the whole surface as a sum over free
energies of steps which are meandering in a fixed poten-
tial. For the results presented below, we have chosen the
neighboring steps in such a way that they best approx-
imate straight steps. An example is shown in Fig. 1.
At ¢ = 45° the step consists of one element of length 2a
in the [011] direction, one element of the same length in
the orthogonal direction, and so on. To check the valid-
ity of this ansatz we have calculated the free energy also
with other configurations of the neighboring steps, which
were much rougher (with kinks of length 4a or even longer

[071]

[011]

FIG. 1. Schematic drawing of a meandering “Sp-like”
step with azimuthal orientation ¢ = 45°. The neighboring
“S a-like” steps are assumed to be consisting of very fine steps.
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kinks). Within reasonable limits for the coarseness of the
step, we found no relevant dependency of the result on
the form of the neighboring steps.

Using the mean-field-like approach, the Hamiltonian of
Eq. (4) can be reduced to two one-dimensional Hamilto-
nians, one for each type of step,

Z[z,\ |hit1 — il + 2€c(1 = nyyy,ni) + 208

+€el(hi — h*f) + (i — RIEH)), (5)

and
Z[2A Ihl+1 hzl + 26c(1 - 5hi+1yhi) + 2’\03

+€e1(hi — ) + e§(hiv1 — RIH)]- (6)

In the elastic potential the position of the meandering
step is measured with respect to the neighboring step on
the left with a reference position hfef. €c1 denotes the elas-
tic relaxation energy per step length a. As in all previous
work, the elastic step-step interaction potential derived
for straight steps is inserted here (see next subsection).

Note, that by introducing a one-dimensional model we
a priori exclude the possibility of a roughening transi-
tion. While such a transition has been proposed for vic-
inal Si(100) surfaces recently,!? the experimental results
for the deviation-deviation correlation function were not
conclusive. We will show below that, up to distances
measured in the experiment, the experimental correla-
tion function for S4 steps is in agreement with a correla-
tion function calculated from our one-dimensional model
and that they are both consistent with a random-walk
picture. Though we cannot answer the question whether
there is a roughening transition or not, we can conclude
that measurements over longer distances are necessary
if one wants to detect a deviation from our simple one-
dimensional model. However, what we expect from our
model is to give an adequate overall description of the
ECS of Si near (100).

B. Elastic relaxation energy

In this section we derive the step-step interaction en-
ergy for single-atomic-height steps on Si(100) with an
arbitrary azimuthal orientation. The elastic relaxation
energy per surface area A can be obtained in a similar
way as in the case of straight steps,”’

Eua/A=-1 / &rdr’ 3 fi(r) Gislr -

%,7=1,2

r') £i(=),

(7)

where G is the elastic Green’s function of the surface
and f; are the two components of the force density par-
allel to the surface. The force density is obtained from
the divergence of the surface stress tensor. To guarantee
convergence, the force density (which is given by a sum
of § functions centered at the step edges) is folded with a

Lorentzian of width a. This can be imagined as introduc-
ing a real-space cutoff close to the step edge within about
a lattice constant, where relaxation cannot be described
by continuum elasticity theory anyway. Equation (7) can
be transformed to reciprocal space, which yields

Eafa==3 ¥ T fu S0

a#0 i,j=1,2

Gii0a) ¢ exp(~2alq)).

(8)

The sum is over all two-dimensional reciprocal lattice vec-
tors q. G(¢@4) denotes the angular part of the surface
Green function in reciprocal space, and fq is the Fourier
transform of the force density.

We have calculated the surface Green function for
Si(100) numerically, taking full account of the anisotropy
of the elastic constants. This finally yields

(o —01)?

Eq/A = {cos® ¢ G.2(¢) +sin’ ¢ Gyy(d)
—sing COS¢ [ zy(¢) + Gy=(¢)]}
x% In [% cos(pvr/Z)]. (9)

Here p is defined such that (1+p)D/2 and (1 —p)D/2 are
widths of the (1 x 2) and (2 x 1) terraces, respectively.

To get a deeper understanding of the physical reason
behind the ¢ dependence of the elastic relaxation energy,
we now calculate this quantity for the special case of an
isotropic substrate. In particular, we want to point out
that the ¢ dependence does not vanish when the sub-
strate is taken to be isotropic, but that it is in fact due
to different modes of relaxation at ¢ = 0° and ¢ = 45°.

For calculating the elastic interaction energy, the
atomic roughness of the steps is neglected, and they are
described as being straight. In a coordinate system with
the z axis oriented perpendicular to the steps the surface
stress tensor is given by

o= {0’(1)(2) 1f0<l’<D/2

o@ex1) fD/2<z <D’ (10)

with components

- _ (o) cos 2¢+0,sin’¢ (O'J_—G'H)SIH¢COS¢
(1x2) = (0L —o)singcos¢ o sin’¢ + o, cos? ¢

(11)

A similar expression holds also for O(2x1), With only the
components of the surface stress oy and o, parallel and
perpendicular to the dimer bond being interchanged. For
simplicity, steps have been chosen to be equidistant with
separation D/2. From the divergence of the stress tensor
we get the force density

£= (01~ 0)(Gning) ) 8@) ~ 8@ - D/2).  (12)

In reciprocal space for ¢ # 0 the elastic Green’s function
of an isotropic substrate is
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v and u denote Poisson ratio and shear modulus, respec-
tively. (Note that the component of q parallel to the step
edge is zero, so that we are left with an effectively one-
dimensional problem.) Carrying out the sum in Eq. (8)
we get the result (for a << D),

(o —01)’1-v v,
- " <1+1_Vsm (2¢>))

1 D

Equation (14) is equivalent to Eq. (9), derived for a
special case of equal terrace widths (p = 0) and for an
isotropic medium. For ¢ = 0° the above result further
reduces to the expression obtained by Alerhand et al.”
The only difference to their result is the additional factor
[1+ 1% sin’(2¢)] which leads to a larger energy gain due
to relaxation for steps oriented along ¢ = 45°, compared
to those along ¢ = 0°.

We found the same preference for ¢ = 45° also in
our complete numerical calculations of E [Eq. (9)],
in which the full anisotropy of the elastic constants is
taken into account. However, as demonstrated above, the
anisotropy of elastic constants is not a clue to this effect.
The ¢ dependence of the elastic relaxation energy can
be understood as originating from different step-induced
forces at different orientations. At ¢ = 0° the forces point
in a direction perpendicular to the step edges, resulting
in a periodic compression and elongation in the direc-
tion perpendicular to the steps. However, at ¢ = 45°
the situation is rather different. In this case, the forces
are parallel to the average step edges, and the relaxation
therefore leads to a shear parallel to the steps. The latter
relaxation mode results in a more effective stress relax-
ation at the surface.

Eel/A = -

C. Free energy and equilibrium crystal shape

The free energy for the one-dimensional Hamiltonian
[Egs. (5) and (6)] describing one step meandering in a
given potential can be calculated using standard transfer-
matrix techniques. In the following, the indices A and B
denoting the type of step are dropped, as the method can
be applied in the same way to both steps.

The distance between the meandering step and its
neighbor (which is acting as a reference system) is

h; = h; — hiet. (15)

This is a rather natural choice of coordinates, because it
is the distance h; which enters into the step interaction
potential. According to the construction of the frozen
neighboring step there can either be no kink in the ref-
erence system at position ¢ (which means h§f1 = h;ef),
or there can be a kink (to the left) of length 2a (i.e.,
hisf = hi*f —1). Therefore we have to introduce two dif-
ferent transfer matrices. For the first case, h;’fl = hif,
we have

A= exp{[Z/\J_lili.,_l — il.[ + 2¢e.(1 — 6;““,,-“)
+2X0 + €e1(hit1) + €ar(hi)]/kBT}. (16)

hit1
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In the second case, h;’fl = h;’e‘ — 1, the shift in the ref-
erence system has to be taken into account, by defining
another matrix,

Shisihi = exp{[2)\L|I—1,~+1 —h; -1+ 2¢.(1 — 5;“_“»1’;“)
+2X0 + €ai(his1) + €a(hi)l/kpT}. (17)

Here, kg and T denote the Boltzmann constant and tem-
perature, respectively. The full transfer matrix for the
meandering step is a product of such transfer matrices
T and S. We have checked that this product contains
the essential properties of a transfer matrix; it can be
diagonalized, and the eigenvalue with the largest abso-
lute value is positive and unique. The free energy of a
single step is then calculated from the largest eigenvalue
Amax in the standard way. If the full transfer matrix is
formed by m matrices T and n matrices S, which gives
azimuthal miscut angle ¢ = arctan[n/(n + m)], the free
energy per projected surface unit cell (with area a?) is,

kT

f(T,a, ¢) = “m In Amax- (18)

L is the separation of steps in the [011] direction. Finally
the total surface energy is calculated from the contribu-
tions of both the S4 and the Sp type step.

The ECS of Si(100) for all azimuth angles can be con-
structed from the free energy per surface unit cell by
a Wulff construction.!® The geometry described by the
Waulff construction can be mathematically expressed as4

r(h) = min o (i)
() = min ( 22)], (19)

where r(fl) is the distance from the center of the crystal
to the surface in the direction h. o(rh) is the free energy
per unit area of the surface with orientation . We use
spherical coordinates to describe the ECS, in which the
previous equation can be expressed as

7(8, ) = min = 2(6,9) = |
6,¢ | cosfcosO[1 + tan @ tan 6 cos(¢ — ¢)]

(20)

Here the coordinates 6, ¢ refer to the surface orientation
m, and 0, ¢ to the direction h.

III. RESULTS AND DISCUSSION

In this section we present the results obtained from
our model for vicinal Si(100) surfaces. For calculating
the elastic potential, we have taken the stress anisotropy
parameter Ao = 2 eV /a2, which is in accordance with
results from ab initio density-functional theory (DFT)
calculations for a (1 x 2) reconstructed surface.'®!® The
measured!” value of the surface stress anisotropy, how-
ever, is smaller. Very recent DFT results'®? suggest
this to be due to a stress relaxation in the c(4 x 2) or
p(2 x 2) structure. We will discuss the effect of choos-
ing a smaller stress anisotropy in subsection C below.
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The local energies are taken to be A§l =22 meV/a and
AP =66 meV/a. This choice of parameters ensures the
minimum in the step energy per unit area of Eq. (1) at
6 = 0.3°, which is the local miscut angle of the observed
surface morphologies at Si(100).1? Furthermore, these
local step energies are in reasonable agreement with the
values AP =28 meV/a and A4 =90 meV/a inferred from
experiment by Swartzentruber et al.2® The corner energy
€. =40 meV has been directly taken from experiment.?®
The experimental parameters were extracted from STM
measurements of the kink length distribution by assum-
ing that the sample is in thermal equilibrium at about
870 K. If the sample actually equilibrates at a lower tem-
perature than was assumed, then the true values of these
parameters would be smaller than those inferred.®

A. Kink probability

First, we discuss the probability P(n) of having a kink
of length n in units of 2a. P(n) has been measured so
far for steps oriented towards [011] (¢ = 0°),%2! where
P(n) is symmetric around n = 0. However, the situation
is different when the steps have an azimuthal orientation.
For steps oriented towards [010] (¢ = 45°) P(n) becomes
highly asymmetric (Fig. 2). Our transfer-matrix results
show that the probability of having kinks in a direction
opposite to the miscut direction [011] is almost zero for
S 4 steps and it is very small for Sp steps.

For the ¢ = 0° case, Swartzentruber et al.’® have
demonstrated that they can fit their measured data for
the kink probability distribution with a simple Boltz-
mann factor exp[—(2¢. +2nA ) )/kpT]. Similarly, we for-
mulate a simple model of freely meandering steps, drop-
ping the elastic interaction terms in the Hamiltonian. In
this case the Hamiltonian for a freely meandering step
with N positions can be written in terms of kink and
corner energies as

N
Hy = 2A1|ni| + 26c(1 = b5, 0). (21)

=1

The solution of this problem is straightforward even for
steps with azimuthal orientation ¢. We obtain for freely
meandering steps the kink probability

|

1 1
(1 -8¢)?

tan¢ = (

The results of P(n) for freely meandering steps (straight
lines in Fig. 2) can be compared to the results from the
transfer-matrix diagonalization, including elastic inter-
action between the steps. Similar to Swartzentruber et
al.,’ we find very good agreement for kink lengths up to
n ~ 10, i.e., for all kinks that occur with a relevant prob-

100

Sa step
0=0.3° ,@=45°

101 ¢
102

10k

104

= E
:'é

(4] Lo N

-8 105 L L s il

~ t Ssstep

-_5 0=0.3° ,0=45°

101 E
10-2¢
103t

104

105

Kink length/2a

FIG. 2. Kink probability as a function of kink length cal-
culated using the transfer-matrix method for S4- and Sp-like
steps at 400 K (squares) and 600 K (circles). The solid and
dashed lines correspond to results obtained using a model of
freely meandering steps at the same temperatures. The steps
are oriented towards [010] azimuth (¢ = 45°) and have a slope
0.3°. The kink length is negative when the kink meanders in
the direction of the miscut, and positive when it meanders in
the opposite direction.

-1 b ™™C¢" ifn<0
P(n)=(1+Li+Lb) ,e 1 ifn=0 .
1-b50 ¢~ (" ifn>0

(22)

Here, b = exp(—2aA18), ¢ = exp(—2¢.0), and ¢ =
exp(pB), with 8 = (kgT)~! and u is the “chemical po-
tential” which fixes the azimuthal orientation ¢, given
by

~(C_b)z)/<%+1—15€+C(C1—b)>' (23)

[
ability. At large n, due to step repulsion, the true P(n)
gets smaller than the P(n) obtained from the model of
freely meandering steps.

Finally, we observe that for n > 0 the distribution P(n)
depends on both €./kpT and A, /kgT, as the kinks have
to be thermally excited. However, for n < 0, the exis-



1924 S. MUKHERIJEE, E. PEHLKE, AND J. TERSOFF 49

tence of kinks is partially due to azimuthal miscut: they
are forced kinks. It is easy to see that if kinks would all
be oriented in the direction of the azimuthal miscut, the
AL term would lead to only a constant additive term to
the energy, and would therefore not influence the statis-
tics of meandering. Accordingly, our P(n) for n < 0
becomes almost independent of A, . This may allow an
experimental determination of €. independent of A, at
b = 45°.

Note, that due to geometry of the step structure of
Si(100) at ¢ = 45°, both the kink length distribution of
the S4(Sp) step and the kink separation distribution of
the Sp(Sa) step are equivalent and as shown in Fig. 2
they can be well described within the independent kink
model Eq. (21).

B. Step correlation function and roughening

Recently a STM measurement on the roughening of
Si(100) steps has been reported.'? The authors have mea-
sured the deviation-deviation correlation function G(r) =
{(ho — h,)?) for S4- and Sp-type steps on vicinal Si(100)
with miscut angle 6=0.5° towards [011]. The correla-
tion function G(r) for both steps was found to be nearly
proportional to r for values up to 20 dimer rows, there-
fore no indication was found for a roughening transition,
which predicts a logarithmic divergence of G(r) above
the roughening temperature T,..2? This result has been
interpreted as essentially a one-dimensional random-walk
problem where step interaction is very small. For com-
parison with experiment, we have calculated G(r) of S4
steps for vicinal Si(100) with § = 0.5° and ¢ = 0° at
700 K, 800 K, and 900 K (Fig. 3). We find best agree-
ment with the experiment at T ~ 800 K. In order to

3 T
900K

Sa step

ol 800K |
Q) _.-'
g" 700K
1k ]
0 1 L
0 10 20 30

r

FIG. 3. Deviation-deviation correlation function G(r) of an
S step edge with § = 0.5° and ¢ = 0° at different tempera-
tures calculated from transfer-matrix method (open circles).
The lines joining the data are for a guide to the eye. Exper-
imental data (filled squares) are taken from Ref. 12. 7 is in
units of 2a.

check the influence of parameters we have repeated the
calculations for a smaller corner energy ¢, = 30 meV,’
and the experimental stress anisotropy.!” This choice of
parameters yields best agreement of G(r) at a smaller
temperature of about 700 K. It was reported recently by
Kitamura et al.2® that steps are dynamic even at ~ 600
K; however, Zandvliet et al.}? cooled down their sample
rapidly and concluded their freeze-in temperature to be
above 600-700 K. A freeze-in temperature down to 700
K is consistent with our calculations.

Our results indicate a nearly linear behavior of G(r)
up to 20 dimer rows. Of course at any temperature our
G(r) has to converge for large r, as the steps are con-
fined to the space between their straight left- or right-
hand side neighbor. We are aware of the fact that by
using a one-dimensional model the steps are not allowed
to roughen [i.e., G(r) cannot diverge|, however we can
conclude that both our and the experimental results can
be consistently interpreted as a one-dimensional random
walk, in which the step-step interaction is relatively small
as compared to the kink formation energies. Measure-
ments over larger step separations r would be necessary
to detect a deviation from the simple one-dimensional
model, and thereby to decide about the roughening tran-
sition on vicinal Si(100) surfaces.

C. Free energy and equilibrium crystal shape (ECS)

We now turn to the free energy and ECS results. In
Fig. 4 contour plots of free energy per surface unit cell
are shown for temperatures T' = 400 K, 500 K, and 600
K. At low T the global minimum of the free energy lies
along the ¢ = 0° axis, while at 500 K another shallow
local minimum appears around ¢ = 45°. Finally, at 600
K and above the situation reverses, when the global min-
imum shifts towards ¢ =~ 45°, with only a local mini-
mum remaining at ¢ = 0°. However, the temperature at
which this happens depends on our choice of parameters.
In particular, a smaller stress anisotropy would imply
a smaller energy preference for ¢ = 45°, compared to
¢ = 0°, and hence the shift in the free-energy minimum
from ¢ = 0° to 45° would occur at a higher temperature.

The contour plots of the free energy support the expla-
nation for the occurrence of wavy steps given previously.
The optimum slope (i.e., the optimum polar angle ) for
steps with a given azimuthal orientation is only slightly
¢ dependent. For T=400 K it is ~ 0.3° at ¢ = 0° and
decreases to ~ 0.2° at ¢ = 45°. Given a surface with a
miscut much smaller than 0.3°, the surface energy [which
can be thought of as representing an average of f(f,¢)
along the step as long as two-dimensional relaxation is
neglected], can be lowered by introducing wavy steps,
because locally the slope is increased towards its opti-
mum value. From our free-energy results we can con-
clude that the local slope should come close to 0.2°-0.3°
almost independent of ¢ (insofar as this is not excluded
by geometric boundary conditions, such as the average
miscut in the [011] direction).

From Fig. 5 we note that at 400 K the ECS appears
to be a slightly convex pyramid with faces oriented along
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[011] and the directions equivalent by symmetry, i.e.,
[011], [011], and [011]. At 500 K new facets near [010],
[001], [010], and [001] appear, whereas the top of the ECS
pyramid remains oriented as in the 400 K case. With our
choice of parameters, at 600 K the facets along the di-
agonal directions dominate, making the top of the ECS
pyramid rotate by 45°. The position of the absolute min-
imum in the free-energy curves remains approximately at

T e e e Y WU W

(b)

azimuthal-miscut angle (degrees)

(c)

O\
02 03 04 05
slope (degrees)

FIG. 4. Free energy per surface unit cell (meV/a?) of
vicinal Si(100) surfaces as a function of slope and az-
imuthal-miscut angle at (a) 400 K, (b) 500 K, and (c) 600
K. The full elastic potential €.1(8, ¢) was used.

a slope angle of 0.3° at all three temperatures (Fig. 4).
Therefore, the local slope of the ECS is ~ 0.3° near its
top, and the slope increases continuously away from the
apex. We show the ECS only up to the point where the
slope is 0.6°. At larger angles, double steps begin to play
a role,® and our model is no longer applicable.
Although Fig. 5 might suggest that the ECS simply
consists of a few single facets, this is indeed not the case.
The faces of the ECS are in general rounded with respect
to both the polar and the azimuthal direction of miscut.
We have examined the dependence of the azimuthal ori-
entation ¢ of the faces on the ECS with the direction of

(b

FIG. 5. Equilibrium crystal shape of Si looking down [100],
calculated from the free energy data of Fig. 4 using full elastic
potential at (a) 400 K, (b) 500 K, and (c) 600 K. Horizontal
and vertical directions correspond to [011] and [011]. The
contours are equidistant in all figures.
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view ¢ [defined in Eq. (20)], which reveals that the facets
are slightly round (i.e., orientation ¢ is varying contin-
uously). In Figs. 5(b) and 5(c) two rounded regions of
the ECS with ¢ close to 0° and ¢ large (> 35°) intersect,
forming an edge.

The geometry of the ECS is due to the interplay be-
tween the ¢ dependence of the geometry factor [denomi-
nator of Eq. (20)] and of the free energy. Close to (100),
i.e., for small polar angles 6, the geometry factor varies
only very slightly, and the orientation of the facets is gov-
erned by the global minimum of the free energy. Round-
ing and facets that correspond to a local but not the
global minimum of free energy become visible only for
larger 6.

Our ECS results at 600 K are somewhat similar to
the rounded shape of the hill-and-valley morphologies
observed experimentally on flat Si(100) by Tromp and
Reuter.2 The four edges of the square pyramid are cut
by additional facets, making the ECS look round in a
global sense. Although the observed morphologies are ir-
regular, their shape is well rounded except at the top or
bottom. The shape observed experimentally at the very
top (bottom) step of the hill (valley) is essentially due
to finite size effects, with the different local energies of
S, and Sp steps leading to an elliptic shape. However,
these details have been eliminated from the theory by
calculating the thermodynamic limit of infinite system
size, and hence the ECS displays the fourfold symmetry
of the bulk structure.

Occurrence of new facets along [010], [001], [010], and
[001] at higher temperatures is essentially due to the
azimuth dependence of the elastic interaction potential
€e1(0,¢) which has a minimum at ¢ = 45°. When we
drop the azimuth dependence of the elastic potential, us-
ing €e1(6, ¢ = 0) for all ¢ instead, the free energy increases
with azimuth rapidly. In Fig. 6, results for the free en-
ergy and the corresponding ECS are shown at 900 K for
this hypothetical case. We note that even at this high
temperature the free energy increases rapidly with az-
imuthal angle. The ECS appears to be oriented towards
[011] azimuth. However, curvature of the facets is vis-
ible near the corners. It should be noted that at high
temperature the location of the minimum in the free en-
ergy moves towards higher polar miscut angle (~ 0.5°),
so that the ECS is very flat, consisting of surfaces whose
slope changes only slightly. This means that, were it not
for the ¢ dependence of the elastic potential, the ECS
would be strongly faceted along the [011] azimuth even
at quite high temperatures.

As mentioned above, the experimental value of the
stress anisotropy is smaller than values from DFT cal-
culations for the Si(100)(1x2) surface. Therefore, we
discuss in which way a smaller stress anisotropy would
influence the ECS, if the other parameters (local step
energies, etc.) are kept constant. For smaller values
of stress anisotropy, the optimum polar miscut angle
would be much smaller than that which has been ob-
served experimentally.! This means that close to (100)
the ECS would have a much smaller slope. Moreover,
the elastic relaxation energy per step length would get
smaller [Eqs. (1) and (2)], while the local step energies
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FIG. 6. (a) Free energy per surface unit cell (meV/a?) of
vicinal Si(100) as a function of slope 8 and azimuthal-miscut
angle ¢ at 900 K. The ¢-independent elastic potential
€e1(6,¢ = 0) was used. (b) Equilibrium crystal shape cal-
culated from the free-energy data of (a). The contours are
equidistant and the same as in Fig. 5.

stay the same. Therefore, the facets oriented towards
¢ = 45° would become less dominant, as they are stabi-
lized by the elastic interaction. Finally, as we start with
a small miscut at the top of the ECS, we can proceed
to larger directions of view 6 before double height steps
appear. In the outer part of the ECS the geometry factor
gets more important and leads to a distinct rounding.

IV. SUMMARY

We have presented a one-dimensional model for the
meandering of steps on vicinal Si(100) surfaces with ar-
bitrary azimuthal miscut, and derived the ECS from the
surface free energy. The azimuth dependence of the elas-
tic step-step interaction potential was found to be crucial
for the proper description of the ECS. In fact, whether
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facets with orientation ¢ = 45° appear in the ECS de-
pends on the local step energies (disfavoring ¢ = 45° due
to the kink energies) counteracting the step interaction
potential (which favors ¢ = 45° due to the relaxation
being more effective for ¢ = 45° than at ¢ = 0°).
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