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The structureless self-consistent jellium model for simple metal clusters is corrected by reintroducing
the ionic structure via second-order pseudopotential perturbation theory. It is found that this formula-
tion is enough to bring this approximate treatment into a quantitative agreement with fully fledged
ab initio Car-Parrinello structure optimization. Furthermore, the ionic perturbation leads to a substan-
tial improvement in the description of the optical response.

I. INTRODUCTION

It is well known for bulk forms of simple metals that
the self-consistent jellium model is able to describe, at
least qualitatively, the excitation of plasmons,1 constitut-
ing a first step towards a realistic description of the
dynamical behavior of electrons. In this spirit, the self-
consistent jellium model for metal clusters has been pro-
posed by one of us.2 It became, since then, the most used
model for all kinds of metallic atomic clusters, and has
boosted many extensions, modifications, and approxima-
tions. To this popularity the success of the jellium model
in describing many properties of clusters is not alien, in-
cluding some fine features of their optical response, with
respect to which this model remains to be superseeded
(for a review cf., e.g., Ref. 3).

On the other hand, it is also well established* for bulk
metals that, whenever one wants to have a quantitative
prediction of cohesive energies, work function, or
plasmon dispersion curves, the pure jellium calculations
have to be complemented by a reintroduction of the ionic
structure. For the simple alkaline metals, the associated
pseudopotentials are very weak, and one may reintroduce
the ionic structure using perturbation theory. Pseudopo-
tential perturbation theory has proved very successful in
connection with lattice relaxation at metal surfaces.!! It
is, therefore, natural to study the effects of the ionic
structure in metal clusters along similar lines. This pro-
ject is started in the present work, in which a detailed
study of ionic structure effects on the electronic proper-
ties of metal clusters is carried out, via the reintroduction
of the ionic structure in the jellium model by means of
second-order pseudopotential perturbation theory. In
this work, we shall investigate structural ground-state
properties, as well as the optical response of neutral sodi-
um microclusters. In a first step, we shall concentrate on
closed-shell sodium clusters, computing their optical
response in a spherical approximation. In a second step,
we shall investigate open-shell clusters, and compute
their optical response making use of pseudopotential per-
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turbed response. Finally, we apply the perturbed
response formulation to the closed-shell systems, demon-
strating the validity of the spherical approximation for
these type of clusters.

It will be found that the main role (for magic clusters)
played by the ionic structure is to fix the volume of delo-
calization for the valence electrons. In fact, from the re-
sults of the present paper, one can infer that the correct
volume of delocalization, together with the global shape
of the cluster are the basic ingredients characterizing its
optical response. For the small clusters treated here, sur-
face quantization determines the main features of the op-
tical spectra, whereas genuine band-structure effects such
as bulk quantization are less pronounced. In a sense, this
was to be expected, due to the excellent performance of
both the spherical>® and spheroidal® jellium models
which, even at the level of one-electron orbital energies,
lead to very good results as compared to ab initio calcula-
tions, as well as to level splittings in excellent agreement
with experimental findings.” Finally, the results of the
present paper corroborate the picture of the jellium mod-
el as an excellent starting point for metal cluster calcula-
tions.

Among the simple metals, sodium is perhaps the one
which is best described by local pseudopotentials. Many
local pseudopotentials for sodium exist in the literature,
and among these we shall adopt two, the parameters of
which have been obtained using radically different phe-
nomenological methods. This will put in evidence the
dependence of the results of the specific parametrizations
used, as well as on the methods employed in such param-
etrizations. Ab initio pseudopotentials, on the other
hand, are typically nonlocal. While these nonlocal effects
are small for sodium, the method developed here is in-
dependent of the particular form or local character of the
pseudopotential. In particular (see below), the present
formulation provides a physical and simple way to intro-
duce the ionic structure into the structureless jellium
model, and it constitutes a natural way to introduce non-
local or semilocal pseudopotential effects. This is to be
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contrasted with a recent study of the static and dynamic
properties of lithium clusters,® in which the contribution
of the jellium background was replaced by a spherically
symmetric, nonlocal external field. Since no geometrical
effects due to the ionic structure are incorporated, result-
ing in a structureless external potential, the model consti-
tutes a nonlocal version of the well-known pseudojellium
model of Utreraz-Diaz and Shore,’ or of the stabilized jel-
lium model of Perdew, Tran, and Smith.°

In this paper, we make use of the following pseudopo-
tentials:

(1) The Heine-Abarenkov pseudopotential (HA-PSP),
with parameters chosen to fit relevant bulk properties,'!
such as bulk compressibility and lattice parameter and
used to determine vacancy formation energies;

(2) The empty-core Ashcroft pseudopotential (A-PSP),
with its single parameter fixed in order to fit the single-
particle energy of the valence electron in the alkaline
atom and used in the study of clusters within the so-
called spherical average pseudopotential (SAPS) model.'?
These pseudopotentials will mimick the constituent ions
of the cluster and their interaction with the valence elec-
trons.

The reintroduction of the ionic structure on the jellium
model brings along several effects, which can be viewed
as acting to change different quantities entering the well-
known surface-plasmon formula for a spherical particle:

dmnge?r

0, =———/V3. (1)

s mO

Specifically, one may expect (1) changes in the effective
density n, of the delocalized electrons, (by replacing the
jellium background radius R with a better definition); (2)
changes in the coupling constant e? for collective motion,
for instance, because of screening as a result of core-
polarizability €.(e’—e?/€.); and (3) changes in the
effective mass m, (due to many-body-renormalization
effects and because of nonlocal pseudopotentials®).

Of all these effects, only item 1 will be covered in this
paper, whereas items 2 and 3 are deferred to a future
study.

This paper is organized as follows: In Sec. II the
theoretical model we use is presented. Section III is de-
voted to the presentation and discussion of the results ob-
tained, both for the ground state (Sec. III A) and optical
absorption (Sec. III B). Finally, the main conclusions are
included in Sec. IV.

II. THEORY

A. Ground state

The underlying assumption for the feasibility of the
concept of a sharp-edge jellium model plus pseudopoten-
tial perturbation theory is that it makes sense to treat the
loosely bound valence electrons and the tightly bound
core electrons in a completely different way: At any size,
the latter are considered to be frozen in their core orbitals
whereas the former are responsible for binding the atoms
into a cluster. The nature of this binding is metallic for
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all sizes, so that correlation energy is gained by the delo-
calized electrons. In this way, the valence electrons in-
teract with the ions via weak pseudopotentials. The re-
sulting electron-ion interaction can then be written in the
form,

N
«(LR)=3 v (r—R;), R=(R]. 2)

i=1

In this equation, R is to be determined by minimizing the
total energy of the system. This has already been done by
Réthlisberger and Andreoni,!® within the Car-Parinello
method. Because our main intention is the study of the
effects of the ionic structure on the optical properties of
metallic clusters, we do not repeat this geometry optimi-
zation, but instead rely on the results of Ref. 13, which
we shall adopt as a starting point of our own calculations.
With respect to any chosen center of the cluster, the
sum of the pseudopotentials can be expanded as follows:

Vex (L, R)=0v(r,R)+v; (1,R)

=vo(r,R)Y0,0(?)

«© ]
+3 3 vanRY,,?). 3)

=lm=-1

The first term is just the monopole, spherical part of the
total ionic contribution, which is taken into account ex-
actly by solving the set of Kohn-Sham equations for the
N valence electrons moving self-consistently in this exter-
nal potential. When only this monopole part of the ionic
contribution is used in geometry optimization and optical
response calculations, one obtains the SAPS model
developed by Ifiiguez, Lopez, and Alonso.'? This, as will
be shown below, does not contain enough information of
the cluster-ionic structure, which makes ground-state
geometry optimization converge to shapes corresponding
to excited configurations of the clusters and also to
volumes of delocalization for the valence electrons which
are markedly different from the ones obtained with the
present formulation.

In our formulation, we include the second part of the
pseudopotential sum in Eq. (3) perturbatively up to
second order, which leads to the following contribution
to the total energy:

— AR 2)

AE, =AE\)+AEY ()
with

AE;‘S’=fdrnSAps(r,R)vz,ex(r,R), (5

and

1
AEQ =5f dr8n,(r,R)v, o (1,R)

1 ’
zzf drdr'v, . (r,R)

X Xsaps(T, T, R)v, o (r,R) . (6)

nsaps(T, R) is the self-consistent ground-state density and
6n,(r,R) the induced screened density change caused by
the external potential v, .,(r,R). Clearly, the first-order
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part vanishes identically, due to the orthogonality of the
spherical harmonics.

In order to calculate the second-order correction, we
have to calculate the static electronic susceptibility at the
SAPS level,'? that is, using the one-electron states of the
spherical potential v(r,R), which can be readily carried
out in a numerically exact way via Green’s functions
methods™!*. Once the ionic structure which minimizes
the total energy (including the perturbation correction)
has been determined, we can compute the frequency-
dependent susceptibility at the SAPS level, in order to
study the optical response of the metal clusters. Due to
this spherical symmetry of the SAPS model, we concen-
trate on spherical-like closed-shell systems such as Nag
and Na,,.

All calculations have been carried out using the same
methods employed in the standard jellium model for met-
al clusters,>!* namely, density-functional theory (DFT) in
the local-density approximation. The response calcula-
tions (also the computation of the static susceptibilities)
have been carried out at the level of time-dependent
local-density approximation (TDLDA). Details of these
methods as applied to spherical many-electron systems
can be found, for instance, in Ref. 14.

B. Optical response

At the TDLDA level, any calculation starts with the
calculation of the independent-particle susceptibility

Xo(l',l'l;(l))=2 2 lﬁ:i,li,mi(r)lpni,li,mi(rl)

occ
XGR(r,rl;eni,Ii,mi +fiw)
+2 z d}ni,li,mi(r)wzi,li,mi(rl)

occ

XGR*(r,r5€, | m —H0) . (T)

If the SAPS is used as the cluster model [first part of the
potential Eq. (3)], the wave functions of the occupied
states and the retarded Green’s functions of this Kohn-
Sham operator are inserted; because the problem is still
spherically symmetric, all the calculations are nearly
identical with the spherical jellium model calculations de-
scribed in detail in Ref. 14. The only effect of the ions
consists in a change of volume of delocalization of the
valence electrons. That means the radius of the standard
jellium model is replaced with a “better” definition of the
volume. As we shall see later the difference is not very
pronounced, in this way justifying the original assump-
tion about the radius of the standard jellium model.

The SAPS model is approximately sufficient for magic
clusters, because they are nearly spherical. In contrast it
is clearly insufficient for the open-shell clusters, because
they are definitely nonspherical. In these cases, we need
to include the effects of the second part of the external
potential in Eq. (3), both in the ground state and on the
excitation process. This is done in the following way.

First, we perform a perturbation-theoretical calcula-
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tion for degenerate states of the SAPS eigenspaces in ex-
actly the same way as it is described in the textbook by
Bransden and Joachain.!> As a result, the irreducible
representations of the rotation group are replaced with
those of the pertaining point group. Because all the cal-
culations are described very detailed in Ref. 15, we do not
reproduce any further formulas.

Next, we determine the perturbed Green’s operator G,
which is quite generally a solution of

l€nm THO+V —0(D)1G (1,1 3¢, , +Hi0)

=8(r—r,). (8)
In the spirit of perturbation theory we write
€nm HHO=€, +Hio+Ael), + - )
V(E)=veg(r) +Avy g(r)+ - - - (10

GR(E,16,,m +H0) =GR (1,156, , +H0)
+AGRUn, 16, H )+ -

(11)

nlm

Vs and v, ¢ are the screened potentials corresponding to
the densities ng,ps(r,R) and 6n,(r,R) of the last para-
graph. With all these equations it is an easy task to show
that

GR(l)(r,r];en,I,m +ﬁﬂ))= fdr'GR(O)(r’rl;en.I-'_ﬁw)

X [Uz,etr(f')_f(n{;,m

XGRY(r €, Hiw) . (12)

If we now insert all these expansions in the general Eq.
(7) for the susceptibility, the corresponding expression for
this quantity becomes

Xo(r,1;0) =Y, 1;0) + xS (r,r;0)+ -+ . (13)

Because of the nonspherical nature of the problem the
TDLDA integral equation can no longer be transformed
to a one-dimensional one. For this reason, it is not
recommendable to solve for the dressed susceptibility, but
instead to determine the induced charge density directly
[by iteration, where the iteration is started with Eq. (15)]

8n1(r;co)=fdrl)(o(r,rl;w)v,,eff(rl;w), (14)

with the independent particle induced density given by
(sometimes called free response)

8n0;l(r,w)=f drXo(r,11;0)0 0 (1;0) (15)

(for details see Ref. 14). Of course the total perturbing
potential v, (r;w) in Eq. (14) consists of the external
photon field v, ., (r;®) and the total induced one as dis-
cussed in length in (Ref. 14). Once the self-consistent
solution of Eq. (14) is obtained the cross section is given
by the standard formulas

a(w)=ﬂ’c£1m(a<w)) : (16)

where a(w) is
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a(a))z—ezf drdn (1,0 ¢(r,0) . a7

Of course, because of the low symmetry of the open-shell
cluster the result of this procedure depends on the direc-
tion of the external field. Assuming statistical orientation
of the clusters in the beam, the actual cross section is ob-
tained by the statistical average of three different direc-
tions, say x, y, and z. The results are presented for Nag
and Na,; in the next section.

III. RESULTS AND DISCUSSION
A. Ground state

1. Closed-shell systems

Our calculations take, as a starting point, the global
minimum-energy structure and low-lying isomers found
in Ref. 13, in which geometry optimization was carried
out in a fully relaxed way, using the Car-Parrinello
method. Our method can, at best, reproduce the struc-
tures obtained in Ref. 13 (being, however, several orders
of magnitude faster).

We put emphasis on two basis features of the ionic
structure: its symmetry and, for each symmetry, the
bond lengths, which define the cluster volume. We do
not expect the underlying symmetry of the ionic structure
to depend sensitively on the specific parametrization of
the pseudopotential.!® On the other hand, we expect the
pseudopotential parameters to play a decisive role in
determining the volume of delocalization for the valence
electrons. In keeping with this discussion, we calculate
the total energy for some selected geometries found in
Ref. 13, scaling the coordinates R so as to keep the sym-
metry of the ionic arrangement, but change the magni-
tude of the bond lengths, in order to see for which value
of this scaling parameter the minimum is obtained. As
will be shown below, this restricted parameter space is
enough for our purposes. Specifically, we considered
three structures for Nag, displayed in Fig. 1, with sym-

D34 Dya Ta

FIG. 1. The three different geometries obtained in Ref. 13 for
Nayg, corresponding to the ground state and two lowest isomers
(energy is increasing from left to right), and used as our starting
geometries which we minimize as a function of a dimensionless
scaling parameter 0.90=<7 =1.10 which simply uniformly and
simultaneously changes the radial distances of all the atoms
with respect to the center of mass of the cluster. The structure
on the left displays D,,; symmetry, the one in the middle D,
symmetry, and the one on the right T; symmetry (see main text
for details).
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metries (in ascending order of total energy) D, , D44, and
T,. Within DFT there is a consensus that indeed the D,
structure corresponds to the ground state, although
different pseudopotentials lead to different bond lengths
(compare Refs. 13 and 17). On the other hand, the T,
symmetry considered here, and taken from Ref. 13, cor-
responds to the ground-state ionic configuration resulting
from a self-consistent all-electron Hartree-Fock total-
energy minimization.'® It is noteworthy that within
Hartree-Fock, not only the geometry found is different,
but also the bond lengths are larger. In fact, the average
bond length obtained in the framework of Ref. 18 for Nag
is larger than what is known from the bulk (cf., e.g., Fig.
15 of Ref. 13), in contradiction with the well-established
observation of a (small) lattice contraction as the particle
size is reduced.!” As for Na,y, two close lying isomers
were found in Ref. 13. They are displayed in Fig. 2, and
will be taken as our starting geometries.

For both clusters, we varied the scaling parameter
from 0.90 to 1.10, corresponding to volume changes up to
30%. We computed the total energy for each scaling pa-
rameter both at the SAPS level (E? in tables) and includ-
ing second-order corrections (E'? in tables). We carried
out the minimizations making use of the two pseudopo-
tentials already mentioned, namely, the HA-PSP (Ref. 11)
(subscript HA in tables) and the A-PSP (Ref. 12) (sub-
script A4 in tables). The results are displayed in Tables I
and II, for Nag and Na,,, respectively, where we show the
scaling parameter corresponding, in each case, to the
minimum energy, as well as the energy difference (in eV),
taking as a reference the minimum value obtained among
all energies. This, of course, was carried out separately
for each pseudopotential, which means that there are two
reference states for each cluster.

Several important features emerge from Tables I and
II. First of all, one can see that when the energy which is
minimized includes the second-order correction (E?) we
obtain, for the lowest configuration, the same symmetry
as obtained in the fully relaxed minimization.!> This re-
sult is independent of the pseudopotential, the main effect
of which is to fix the equilibrium bond lengths, reflected
in the tabulated values for the scaling parameter at
minimum. On the other hand, from Table I it becomes

FIG. 2. The two lowest structures, 4 and B, obtained in Ref.
13 for Na,,, corresponding to the ground state (4) and to the
first isomer (B), and used as our starting geometries which we
minimize as a function of a dimensionless scaling parameter 7
(see caption to Fig. 1).
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TABLE 1. Results for the static properties of Nag, making
use of two different pseudopotentials: The HA-PSP, denoted
with subscript HA, and the A-PSP, denoted with subscript A4.
For each of the three geometries selected (cf. Fig. 1), two sets of
values are given, associated to the result of a total-energy
minimization as a function of the scaling parameter. The value
of the scaling parameter at minimum is given in parentheses (for
the meaning of this number see the main text), whereas the
value of the total-energy constitutes the other result tabulated.
E'® corresponds to minimization using the SAPS expression for
the total energy, whereas in E® the contribution from second-
order pseudopotential perturbation theory is included. The
values quoted for the energies are referred to the state which,
for a given pseudopotential, corresponds to the absolute
minimum, namely, E? for the D,; symmetry. All energies are
given in electron volts.

Na, D,,; Dy T,

EQ) 1.552(1.06) 1.342(1.06) 2.093(1.04)
EZ) 0.000(1.02) 0.108(1.02) 0.160(1.00)
EY 2.568(1.02) 2.322(1.00) 3.118(1.00)
EP 0.000(0.96) 0.181(0.94) 0.186(0.94)

1

0 5

0
r (Bohr)

0 5
r (Bohr

FIG. 3. Self-consistent densities (upper part), potentials and

clear the SAPS model is too crude to be able to provide
the correct ground state, irrespective of the pseudopoten-
tial parametrization, since, at this level of approximation,
the minimum-energy configuration corresponds to
isomeric states in the fully relaxed minimization of Ref.
13. Furthermore, the results of Tables I and II seem to
indicate that the HA-PSP parametrization'! is superior
for the study of sodium clusters. Indeed, it is worth men-
tioning that with this pseudopotential, our results lead to
bond lengths for both Nag and Na,, which are systemati-
cally 2% larger than the ones of Ref. 13. Since the re-
sults of Ref. 13 lead to bond lengths for the dimer and
bulk limits which are 2% smaller, this may indicate that
we are getting the right bond lengths. Note, in passing,
that the pseudopotential used in Ref. 13 leads, e.g., to a
bond length in both the dimer and the bulk which is 2%
below the experimental value, a result which superseeds
most of the available quantum chemical calculations.?

In Fig. 3 is shown, with a full line, the self-consistent
densities, potentials, and eigenvalues, solutions of the
Kohn-Sham equations using as an external field, the
monopole part of the ionic pseudopotential, v(r,R) [cf.
Eq. (3)]. With dashed lines, we show the corresponding
quantities calculated in the jellium model, taken from
Ref. 14, and which are, on the whole, very similar to the
pseudopotential results. In turn, this similarity corro-

TABLE II. Results for the static properties of Na,,, using
the same notation as in Table I. The A4 and B structures for
Na,, correspond to the ones shown in Fig. 2.

Nay, A B

EQ) 5.223(1.06) 5.191(1.08)
E{Z) 0.000(1.02) 0.197(1.02)
EYQ 7.700(1.02) 7.646(1.02)
EY 0.000(0.94) 0.269(0.94)

eigenvalues (lower part), solutions of the Kohn-Sham equations
with two different ionic backgrounds: The spherical component
of the HA-PSP (full lines), and the spherical jellium background
model (dashed lines).

borates the picture of the jellium model as constituting an
excellent starting point. The spikes present in the self-
consistent potential associated with the pseudopotential
results are well known, and characteristic of this type of
calculations.'? The self-consistent potential is, however,
everywhere finite and continuous, posing no problems in
the determination of the eigenvalues and the single-
particle Green’s functions.

Finally, there is another effect in second-order pseudo-
potential perturbation theory which does not emerge
directly from Tables I and II. Indeed, we show in Fig. 4
the total energy of Nay, for the D,,; structure, as a func-
tion of scaling parameter, making use of the HA-PSP.

Totdl energy (V)
5
(8]
T
Il

—475 P T B 1 L | s | L
08509 095 100 105 1110 115

scdling parameter

FIG. 4. Total energy of Nag as a function of the scaling pa-
rameter 7 (see main text for details), calculated as the SAPS lev-
el (dashed line) and including second-order pseudopotential per-
turbation corrections (full line). Not only the minimum is
reached at different values of 7, but also the absolute value as
well as the curvature at the minimum are different.
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TABLE III. Results for the optical response of Nag. The energy position of the surface-plasmon
peak in electron volts is given for the different geometries and different minima displayed in Table I, ob-
tained making use of the HA-PSP. For comparison, the jellium results both at the LDA level and the
FULL-SIC level, taken from Ref. 14 are shown. Under the column Expt., the experimental value taken

from Ref. 21 is tabulated.

Nay Jellium D,, D,, T, Expt.
LDA FULL-SIC EQA E¢\ EQL E$\ EQ\ E$A
Epear 2.73 2.50 2.49 2.56 2.51 2.58 2.40 2.48 2.52
(0)

The dashed curve corresponds to Ey, whereas the full
curve corresponds to E{). In addition to the different
bond lengths, a remarkable lowering of the total energy
takes place as a consequence of second-order pseudopo-
tential perturbation theory. Furthermore, we expect to
find important modifications in, e.g., abundance spectra,
due to changes in the highest occupied molecular
orbital-lowest unoccupied molecular orbital (HOMO-
LUMO) gaps, which will make some ‘“magic” numbers
less “magic.” Changes in the HOMO-LUMO gap will
also imply important modifications in dynamical proper-
ties of these systems as well as in their relative stability as
a function of internal temperature.

B. Optical absorption

1. Closed-shell systems

In the next step we calculate, with the monopole part
of the external potential, the optical response of Na; and
Na,,. We restricted ourselves to the HA-PSP due to its
better performance than the A-PSP. All response calcu-
lations were carried out for values of the scaling parame-
ters which minimize both total-energy expressions dis-
cussed before, for each geometry and pseudopotential.
The dynamical response of Nag is very similar for all the
line shapes computed. The main feature of all these
response calculations is a single prominent peak which
exhausts most of the Thomas-Reiche-Kuhn sum rule, and
which is associated with the excitation of the surface
plasmon in this small cluster. For Na,, all the line
shapes computed are dominated by two main peaks,
which also exhaust most of the sum rule. However, and
for both clusters, small fractions of this sum rule are
redistributed in a different way for each calculation, a
feature related to the resulting one-electron level distribu-
tion in the monopole external potential. Furthermore,
the energy location of the one (two) peak(s) in Nag (Na,)
changes significantly as a function of pseudopotential and
total-energy minimization criteria. This points to the
main effect of the pseudopotentials, which is to fix the
volume of delocalization of the valence electrons. This
feature is illustrated in Tables III (for Nag) and IV (for
Na,), where we show the energy associated with the one
(two) peak(s) for Nag (Na,,) for the different geometries
and, for each geometry, at the two configurations result-
ing from total-energy minimization using (E©) and
(E'?). Also given in Tables IV and V are the experimen-
tal results from Ref. 21, together with the results from

the standard jellium model in LDA, as well as the results
using the jellium model in self-interaction corrections
(FULL-SIC).™

For the internal temperatures at which the experiments
have been carried out, it is unlikely that Nag (and also
N,o) will be trapped in an isomeric state. Therefore, the
closest static configuration we can use is the one corre-
sponding to the ground state.?? In this spirit, the most
likely result among the tabulated values gives 2.56 eV for
Nag and 2.51 and 2.77 eV for the two peaks of Na,,. This
represents a big improvement with respect to the stan-
dard jellium model, while the peak position remains blue-
shifted with respect to the experimental data. This is gra-
tifying, since from previous studies,'* we know that SIC
lead to sizeable effects in the optical response, especially
for small clusters (cf., e.g., Tables IV and V). These SIC,
among other features, systematically induce a redshift of
the peak position, which nicely correlates with the
present results.?*

As already pointed out, important shifts take place due
to the inclusion of the ionic structure. However, all these
shifts can be understood as a volume effect. Indeed, the
global energy minimization with inclusion of the ionic
structure leads to another volume of delocalization for
the loosely bound electrons, that is, the ions act to change
the value of n, in Eq. (1). In spite of this change, the
effect of the ions is rather primitive, at least for the small
clusters studied in this work: band-structure effects,
which would manifest themselves in ‘“bulk quantization”
instead of surface quantization (that is, quantum-size
effects), or in additional gaps instead of those introduced
by the surface, though present, are small. In Fig. 5 we
show the line shapes associated with the photoabsorption

TABLE IV. Results for the optical response of Na,,. The en-
ergy position (electron volts) of the two dominating peaks asso-
ciated with the excitation of the surface-plasmon resonance are
given for the different geometries and different minima
displayed in Table I, obtained making use of the HA-PSP. For
comparison, the jellium results both at the LDA level and the
FULL-SIC level, taken from Ref. 14 are shown. Under the
column Expt, the experimental results of Ref. 21 are tabulated.

Na,, Jellium A B Expt.
LDA FULL-SSIC EY\ EQ, E\{\ EHi )

Epe1 2.67 2.48 242 251 243 256 246
Epaa 296 2.78 268 277 269 282 274




50 REINTRODUCTION OF IONIC STRUCTURE IN THE SELF-. ..

20

a/N(Z‘Z)

o /N (&)

FIG. 5. Line shapes of the photoabsorption cross section per
valence electron for Nag and Na,q, calculated with TDLDA.
Two curves are shown for each cluster: The solid line corre-
sponds to the result of the present formulation (see main text for
details), the dashed line corresponds to the result of the stan-
dard jellium model. The experimental features are illustrated
with arrows, which show the position of the main peaks which
have been resolved experimentally.

cross section of Nag and Na,,. The dotted lines show the
results obtained with the structureless jellium model,'*
whereas the full lines show the results of the present cal-
culations, carried out for the D,; structure of Nag and
the A structure of Na,, at the minima obtained using the
Ha-PSP pseudopotential perturbation corrections. The
vertical arrows show the energy position of the main
peak(s) identified experimentally (cf. Tables III and IV).
While the main effect for Nag is an overall shift of the
plasmon peak, for Na,, one can observe some additional
effects. Besides the redistribution of strength, additional
structure develops in the UV part of the spectrum which
was previously absent in the jellium results. Experiments
up to date have not explored this part of the spectrum.
Furthermore, it remains an open question whether this
UV structure, which was also found in jellium-FULL-SIC
calculations'® will be enhanced or reduced when both
ionic structure effects and SIC are included simultaneous-

ly.

2. Effects of the non-SAPS part
of the external pseudopotential

First, we study the effect of v, ., Eq. (3), on the opti-
cal absorption of a magic cluster, namely, Nag in its
ground-state configuration D,;. Figure 6 shows as the
dashed line the result, which peaks at the value of 2.6 eV,
the continuous line gives as comparison the SAPS-
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FIG. 6. Photoabsorption cross section o(w) per delocalized
electron for Nag in its ground-state geometry, D,,, at two levels
of calculation: dashed line, SAPS model; continuous line, effects
of full symmetry [v,.,, Eq. (3)]. For further explanations see
main text.

TDLDA results, which is nearby.?> By the close proximi-
ty of the two curves, we obtain at least a posteriori a
justification of the SAPS model for magic number clus-
ters. This is the first and important result of the present
study (which was to be expected, of course).

In the next step, we study the effect of v, ,,, on the op-
tical absorption of open shell clusters, with Nag and Na,,
as examples. The geometries, shown in Fig. 7, are again
taken from Ref. 13, and here we adopt the ground-state
configurations, which are Cs, and the a structure of (Ref.
13) for Nag and Na,(, respectively.

Figure 8 shows the cross section per delocalized elec-
tron of Nag at two different levels. The dashed line gives
the SAPS result, which is too crude to reproduce the ex-
perimental result. On contrast the full calculation (con-

Nag (Csy) Najy (a)

FIG. 7. Geometries used for the two open-shell clusters Nag
and Na,;. Both symmetry and bond length are taken from Ref.
13.
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FIG. 8. Photoabsorption cross section o(w) per delocalized
electron for Nag in its ground-state configuration (see Fig. 7).
Dashed line, SAPS model used for the effects of the ionic struc-
ture, which is clearly insufficient; continuous line, full symmetry
taken into account. The continuous curve agrees quantitatively
with the experimental data of (Ref. 26).

tinuous line) is in qualitative agreement not only with the
experimental results by Wang et al.?® but also with the
results of Bonaci¢ Koutecky et al.'® The small splitting
around 2 eV is not resolved experimentally, but the
remaining features agree qualitatively with Ref. 26.
Surprisingly enough, the spectrum of Na,, (see Fig. 9)
does not resemble that of the spheroidal jellium model by
Ekardt and Penzar,® which seems to indicate a pro-
nounced effect beyond the jellium approximation,
whereas the results for the magic clusters fully corro-
borate the jellium approximation.

IV. CONCLUSIONS

Second-order pseudopotential perturbation theory
seems to provide a simple and efficient method to study
ionic effects in jellium alkali clusters. The good agree-
ment we obtained with fully-relaxed total-energy minimi-
zations corroborates this picture.

Finally, we would like to add some general remarks re-
lated to the TDLDA. While there is no theorem which
states the existence of a time-dependent density-
functional like the Hohenberg-Kohn theorem for the
ground state, there is a perturbational consideration by
Gross and Kohn?’ which shows to which extent the
TDLDA can be justified. But above all doubts of princi-
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FIG. 9. Photoabsorption cross section o(w) per delocalized
electron for Nay, in its ground-state configuration (see Fig. 7).
Dashed line, SAPS model; continuous line, full symmetry taken
into account. Surprisingly enough, the full spectrum does not
resemble that of the spheroidal jellium model.®

ple, it has been shown by Zangwill and Soven,?® by
Levine and Soven,” and by Quong and Equiluz that
TDLDA “works” marvelously well in the case of atoms,
molecules, and solids, respectively. Therefore we con-
clude that, if the best wave functions are used, one should
be able to achieve a quantitative description in the case of
clusters as well (indeed, the results on Nag are competi-
tive with Ref. 18).

At present it remains to be demonstrated, whether or
not this type of study can really be extended to very large
clusters in order to approach the semi-infinite half space;
in principle, it should be possible because we know from
Landman’s work!! that surface layer relaxation can be
predicted successfully within second-order pseudopoten-
tial perturbation theory. Furthermore, we know from
the work of Quong and Eguiluz®® that the wave functions
obtained with our procedure can be used as input in a
forthcoming TDLDA calculation of plasmons in quanti-
tative agreement with experiment.
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