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Pseudopotential study of binding properties of solids within generalized gradient approximations:
The role of core-valence exchange correlation

M. Fuchs, M. Bockstedte,* E. Pehlke,† and M. Scheffler
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany

~Received 11 July 1997!

In ab initio pseudopotential calculations within density-functional theory, the nonlinear exchange-correlation
interaction between valence and core electrons is often treated linearly through the pseudopotential. We discuss
the accuracy and limitations of this approximation regarding a comparison of the local-density approximation
~LDA ! and generalized gradient approximations~GGA’s!, which we find to describe core-valence exchange-
correlation markedly different.~1! Evaluating the binding properties of a number of typical solids, we dem-
onstrate that the pseudopotential approach and the linearization of core-valence exchange correlation are both
accurate and limited in the same way in the GGA as in the LDA.~2! Examining the practice to carry out GGA
calculations using pseudopotentials derived within the LDA, we show that the ensuing results differ signifi-
cantly from those obtained using pseudopotentials derived within the GGA. As principal source of these
differences we identify the distinct behavior of core-valence exchange correlation in the LDA and GGA which,
accordingly, contributes substantially to the GGA-induced changes of calculated binding properties.
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I. INTRODUCTION

Generalized gradient approximations~GGA’s! to the
exchange-correlation~XC! energy1–5 in density-functional
theory6,7 are currently receiving growing interest as a simp
alternative to improve over the local-density approximat
~LDA ! ~Refs. 8 and 9! in ab initio total-energy calculations
In various respects, the GGA proved to be more appropr
than the LDA: ~1! Binding energies of molecules10,11 and
solids12–14turn out more accurate, correcting the tendency
the LDA to overbinding.~2! Activation energy barriers, e.g
for the dissociative adsorption of H2 on metal and semicon
ductor surfaces,15–17 are in distinctly better accordance wit
experiment. Reaction and activation energies for a variet
chemical reactions show a similar improvement.18–20~3! The
relative stability of structural phases seems to be predic
more realistically for magnetic21 as well as for non-
magnetic22–24 materials. Bulk structural properties are ofte
not improved within the GGA. While the lattice paramete
consistently increase compared to the LDA, a closer ag
ment with experimental data is reported for alkali metals,d
metals, and some 4d metals.5,25–27However, an overestima
tion of up to several percent is found for 5d metals and
common semiconductors, their bulk moduli according
turning out to be too small~typically by &25%).28–30

Regarding the understanding of the GGA and further
vances beyond it, it is important to gain insight into XC
related ‘‘mechanisms’’ underlying an eventually improv
performance, e.g., along the lines pursued in Refs. 5,12
and 32. Complementary, careful estimates are needed
what degree computational approximations evaluating the
tal energy interfere with a comparison of different XC fun
tionals. With this in mind we examine two interrelated issu
that have been of persistent concern in comparisons of
LDA and GGA based on pseudopotential calculations.33

First, how far can the nonlinearities associated with
570163-1829/98/57~4!/2134~12!/$15.00
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XC interaction of core and valence electrons in these
density-functionals be accounted for by the pseudopotent
Computationally it is expedient to treat core-valence XC a
part of the pseudopotential, and thus as if it acted linearly
the ~pseudo! valence-electron density. Within the LDA th
transferability of the pseudopotentials remains, in m
cases, intact under this approximation, i.e., a good agreem
of the results of pseudopotential and all-electron calculati
may be expected without handling these nonlinearities
plicitly. The extent to which this carries over to GGA’s, an
thus enables a menaningful comparison with the LDA,
unclear at present. Experience with GGA’s still needs to
built up, and previous studies have advanced conflict
views on this subject: Examining structural parameters
crystalline solids, Juan and co-workers34,35 concluded that
nonlinear core corrections for XC were required in pseu
potential calculations within the GGA by Perdew and Wan5

~PW! even in cases where they are negligible in the LD
like bulk Si. On the other hand, Mollet al.23 and Dal Corso
et al.28 found that LDA and PW GGA’s behaved alike in th
respect.

Second, we discuss the role of differences seen in
pseudopotentials constructed within the LDA and within t
GGA. Here we address, on the one hand, how far such
ferences are small enough to warrant the circumventing
full self-consistent GGA calculation~using GGA pseudopo-
tentials! by a computationally simplerpost-LDA treatment
where the electronic total energy is first minimized with
the LDA ~using LDA pseudopotentials!, and then corrected
perturbatively for the GGA XC energy. On the other han
the behavior of the pseudopotentials eventually reflects a
ferent description of the core-valence interactions in
LDA and GGA. This allows us to conceive GGA-relate
effects separately in terms of XC among the valence e
trons themselves, and XC of the valence with the core e
trons. Results in several works indeed hint that the LDA a
GGA might differ in this respect: Garciaet al.14 evaluated
2134 © 1998 The American Physical Society
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57 2135PSEUDOPOTENTIAL STUDY OF BINDING PROPERTIES . . .
cohesive properties of some metals and semiconductor
the basis of the Becke/Perdew~BP! GGA ~Refs. 3 and 4! and
a precursor to the PW GGA. Dependent on whether
pseudopotentials screened within the GGA were deri
from a LDA or GGA calculation of the free atom, they ob
tained, in some instances, differing values of the lattice
rametersand cohesive energies. Examining the dissociat
of silanes using LDA-based pseudopotentials Nachtig
et al.36 observed noticeably overestimated activation and
action energies compared to the respective all-electron
proach for various GGA’s, but close agreement for the LD
Despite the apparent incongruencies, GGA calculations
still being based on LDA pseudopotentials.37,38

To address these issues, we investigate the differe
between the LDA and GGA systematically at each step
the pseudopotential approach, the construction of
pseudopotentials from atomic calculations, and their use
polyatomic systems. In turn we evaluate the cohesive pr
erties of a set of typical metallic, semiconducting, and in
lating crystals~Na, Mg, Al, Cu, W, diamond, Si, Ge, GaAs
and NaCl!, where we apply pseudopotentials with and wit
out nonlinear core corrections. With respect to the role
core-valence XC, we establish how far its handling affe
the accuracy of pseudopotential calculations by compa
our results with available all-electron data. We then disc
the related need for the consistent use of the same
scheme at all points of a pseudopotential calculation,
comment on the contribution to the GGA induced change
LDA results for cohesive properties driven by differenc
between LDA and GGA core-valence XC.

Concerning proposals for GGA’s we present results
the PW and the earlier BP schemes. Both are variants o
generic type

EXC
GGA@n#5E n~r !eXC

GGA$n~r !,¹n~r !%d3r , ~1!

depending locally on the electronic densityn(r ) and its gra-
dient, and yielding a local XC potentialVXC(r )
5dEXC@n#/dn(r ) as in case of the LDA. These schemes a
widely used in present day applications, and remain of in
est as a starting point in recent nonlocal hybrid XC schem
expected to improve over GGA-type functionals.39 Accurate
all-electron results are available for those GGA schemes,
serve as a rigorous reference for the pseudopotential ca
lations in this study. The PW GGA is derived basically fro
first principles, combining the gradient expansions of the
change and correlation holes of a perturbed uniform elec
gas with real-space truncations to enforce constraints
posed by properties of the physical XC hole. While t
BP GGA may be deemed to be somewhat more heuristi
it also relies on fitted parameters, it has been yielding res
close to those of the PW GGA, at least in all-electron cal
lations. In addition, we have considered the recently p
posed GGA by Perdew, Burke, and Ernzerhof~PBE!, which
is regarded as conceptually more concise than the PW G
but is expected to perform essentially similarly.40 In the
pseudopotential calculations for the properties addres
here we have found the PBE and the PW GGA’s to yi
nearly equivalent results,41 hence our conclusions for th
PW GGA hold for the PBE GGA as well.
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The remainder of this paper is organized as follows:
Sec. II we briefly review and discuss the relevant form
aspects of pseudopotential calculations. Technical chara
istics of our calculations are outlined in Sec. III. In Sec.
we report our results, and put them in perspective with
considerations from Sec. II. Section V summarizes our c
clusions. Atomic units are used throughout unless indica
otherwise.

II. GENERAL CONSIDERATIONS

In pseudopotential calculations the total energy is f
mally treated as a functional of the valence charge den
alone, with the pseudopotentials accounting for the inter
tion of the valence electrons with the nuclei and with t
core electrons—namely, for Pauli repulsion, electrostatic
XC interactions—to within the frozen core approx
mation.42,43 Substituting the GGA for the LDA modifies th
treatment not only of the XC interactions of the valence el
trons among themselves but also that of the core-vale
~CV! interactions. In order to treat all interactions within on
and the same XC scheme, the pseudopotentials to be
ployed in a GGA calculation in principle ought to be gene
atedconsistentlywithin the same GGA as well, rather tha
within, say, the LDA. In the following we discuss the re
evance of this ‘‘pseudopotential consistency’’ to total-ener
calculations in the LDA and GGA. Within the pseudopote
tial framework the GGA total-energy functional reads

Etot
GGA@n#5T0@n#1EH@n#1EXC

GGA@n#1(
i

occ

^c i uV̂GGAuc i&,

~2!

where the various terms denote the noninteracting kin
energy, the Hartree energy, the XC energy and the pote
energy of the valence electrons, represented by the pse
wave-functionsc i(r ) and the corresponding charge dens
n(r )5( i

occuc i(r )u2 in the presence of the ion cores, repr

sented by GGA pseudopotentials,V̂GGA. The LDA counter-
part to Eq.~2! is obtained by substituting the XC energ
EXC

LDA and the LDA pseudopotentialsV̂LDA for the respective
GGA entities.

Now the ground-state energies in the GGA and LDA c
be readily compared with the help of a perturbative analy
of the total-energy functionalsEtot

GGA@n# andEtot
LDA@n#, at any

given set of ionic positions. Around the respective station
ground states, characterized by the densitiesnGGA andnLDA,
the variational principle implies that

Etot
GGA@n#.Etot

GGA@nGGA#1O@~n2nGGA!2#, ~3!

and likewise in LDA. Supposing that the GGA and LD
yield similar densities, the difference of their ground-sta
energies, dEtot5Etot

GGA@nGGA#2Etot
LDA@nLDA#, can be ex-

pressed by virtue of Eq.~3! as

dEtot.EXC
GGA@nLDA#2EXC

LDA@nLDA#

1(
i

occ

^c i
LDAuV̂GGA2V̂LDAuc i

LDA&, ~4!

i.e., simply in terms of the density and wave functions o
tained within the LDA, using the LDA pseudopotenti
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2136 57M. FUCHS, M. BOCKSTEDTE, E. PEHLKE, AND M. SCHEFFLER
V̂LDA. Accordingly, the GGA modifies the~pseudo! total en-
ergy in two ways:~i! By the direct difference of the XC
energiesdEXC5EXC

GGA@nLDA#2EXC
LDA@nLDA#. This term cor-

responds to the often applieda posteriorigradient-correction
scheme where, at given ionic coordinates, the density
evaluated self-consistently from the LDA XC potential a
then used to compute the total energy with the GGA X
energy functional. For the GGA’s considered,dEXC is nega-
tive, and vanishes in the limiting case of the homogene
electron gas. Typically its magnitude increases with the
gree of inhomogeneity of the system at hand,23 the GGA
correction to the LDA XC energy being larger for a fre
atom or molecule than in a solid.~ii ! By the potential-energy
correction dEV5( i

occ^c i
LDAuV̂GGA2V̂LDAuc i

LDA&, which
arises as a consequence of the pseudopotential approx
tion and eventually reflects the differences in the behavio
the CV interactions in LDA and GGA. Note that in an a
electron formulation this term would be absent altogeth
Clearly the potential energy correction is missed when LD
pseudopotentials are carried over to GGA calculations, g
ing rise to a ‘‘portability’’ error compared to the consiste
GGA calculation using GGA pseudopotentials. We sh
demonstrate in Sec. IV thatdEV does not cancel out whe
total-energy differences are considered, but is in genera
similar importance todEXC for quantitative tests of the GGA
within the pseudopotential framework.

For an understanding of the differences between the G
and LDA, it is worthwhile to examine more closely the va
ous contributions to the CV interactions mediated by
pseudopotentials. In the following we identify and discu
these for norm-conserving pseudopotentials,44 constructed by
standard schemes45,46 from atomic all-electron calculations
As a canonical first step these algorithms generate ang
momentum-dependent screened pseudopotentialsVl

eff@n0#
from a particular reference configuration, e.g., the grou
state of the neutral atom, assuming a spherical screen
These act as effective potentials on the atomic pseudo
lence states via the radial Schro¨dinger equations

S 2
1

2

d2

dr2
1

l ~ l 11!

2r 2
1Vl

eff@n0 ;r #2« l D rRl~r !50. ~5!

Vl
eff@n0# contain a common spherical screening poten

which is self-consistent with thetotal atomic charge density
n0(r ), comprised of the~pseudo! valence densityn0

v and the
core charge densityn0

c obtained from the all-electron cor
states. The effective potentials can be decomposed ri
ously into the Hartree potentialsVH and the XC potential due
to the valence and core electrons and an angular-momen
dependent bare potentialVl

bare which conveys the nuclea
attraction and the Pauli repulsion due to the core states
an arbitrary valence configuration one has

Vl
eff@n;r #5Vl

bare~r !1VH@n0
c ;r #1VH@nv;r #

1VXC@nv1n0
c ;r #, ~6!

which, in the reference configuration (n5n0
v1n0

c), reduces
of course to the screened pseudopotentials. Through the
linearity of the XC potential in the density the effective p
tential retains a dependence on the total density rather
is
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on the valence density alone, as it is ultimately a prerequi
for an efficient plane-wave representation. Customarily a f
ther separation in terms of frozen core and variable vale
contributions is accomplished by ‘‘linearizing’’ the XC in
teraction taking

VXC@nv1n0
c ;r #.VXC@nv1 ñ0

c ;r #1~VXC@n0
v1n0

c ;r #

2VXC@n0
v1 ñ0

c ;r # !, ~7!

where the partial core densityñ0
c(r ) serves as a control pa

rameter. Choosingnv5n0
v the screened pseudopotentia

and thus the atomic properties in the reference configurat
are correctly recovered. Now those terms on the right-h
side of Eq.~6! which are independent of the valence dens
define the usual pseudopotentials that are to be transferre
and screened according to the environment of one’s ta
system. Applying Eq.~7!, they read

Vl~r !5Vl
bare~r !1VH@n0

c ;r #1~VXC@n0
v1n0

c ;r #

2VXC@n0
v1 ñ0

c ;r # !. ~8!

The last term here comprises the core-valence XC interac

DVXC~r !5~VXC@n0
v1n0

c ;r #2VXC@n0
v1 ñ0

c ;r # !, ~9!

as represented by the ionic pseudopotential. Below we d
onstrate that it is the key quantity to understand the diff
ences between the ionic pseudopotentials in LDA and G
which, in practice, are defined simply by ‘‘unscreening’’ th
screened potentials according to

Vl~r !5Veff@n0 ;r #2VH@n0
v ;r #2VXC@n0

v1 ñ0
c ;r #, ~10!

with all quantities evaluated within the respective X
scheme. Note that the transformation Eq.~7! turns the core-
valence XC energy into a linear functional of the valen
density that is absorbed in the pseudopotential contribu
to the total energy instead of being treated as a part of
XC energy itself. By experience the complete core-valen
linearizationñ0

c(r )50 has proven to be accurate for the m
jority of applications within the LDA. It is expected to b
justified for local functionals like the LDA and also the GG
if the overlap of the core and valence charge densities d
not substantially change whenever chemical bonds
formed or altered. Formally the nonlinear core-valence X
could be regarded exactly, takingñ0

c(r )5n0
c(r ), and, corre-

spondingly, EXC5:EXC@n1 ñ0
c# in the total energy func-

tional ~2!, whereñ0
c denotes the core charge density as co

pounded from the frozen atomic core charge densit
However, since the core states are strongly localized
sharply peaked, such a choice is beyond the realm of a pl
wave representation. If a complete linearization of CV X
proves insufficient, e.g., in calculations of alkali metals47 or
involving spin polarization,25 the nonlinearities can still be
captured adequately in the chemically most important in
atomic regions with the help of a partial core density, as w
first realized by in Ref. 48. It is tailored to coincide with th
full core charge density beyond a suitable cutoff radiusr c
but avoids the sharply peaked structure close to the nuc
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by a smooth cutoff functionb(r ) chosen largely at compu
tational expediency, cf. Ref. 48 and Sec. IV,

ñ0
c~r !5H n0

c~r ! for r>r c

b~r !n0
c~r ! for r ,r c with b~r !<1.

~11!

Note that the CV XC component of the ionic pseudopot
tials vanishes beyondr c .

It is well understood that the GGA does not substantia
alter the wave-functions and the spectrum of atomic vale
states compared to the LDA; these are bound too weakl
both schemes,31 mainly because the XC potentials of the
schemes insufficiently cancel the repulsive contribution fr
the electrons’ self-interaction to the Hartree potential. C
sequently the effective potentials~6! for the pseudovalence
states ought to be close for both XC schemes. Indeed
screened LDA and GGA pseudopotentials are barely dis
guishable by a simple visual inspection as can be seen,
for germanium and copper in Fig. 1.

Turning to the unscreened ionic pseudopotentials actu
used for calculations, more pronounced deviations betw
LDA and GGA pseudopotentials emerge. These may by e
ily analyzed in terms of the various pseudopotential com
nents given by Eqs.~8! and ~7! which contribute to the dif-
ferencedVl(r )5Vl

GGA(r )2Vl
LDA(r ), where the superscript

indicate the type of XC employed in constructing t
pseudopotentials. This decomposition is illustrated in Fig
weighting all differences with ther -dependent volume ele
ment. To highlight the role of the individual contributions w
distinguish three cases:~i! a completely linearized CV XC
ñ0

c(r )50; ~ii ! an approximate account of nonlinear CV XC
employing a partial core charge density identical with t
full one outsider c51.3 bohr; and~iii ! a full account of non-
linear CV XC, taking ñ0

c(r )5n0
c(r ). Case ~iii ! serves to

identify the genuinedifference potential, due to the unlik
bare and core-valence Hartree potentials. These originate
from the small differences of the self-consistent atomic
bitals in LDA and GGA and thus remain the same in~i! and

FIG. 1. Screened pseudopotentials within BP GGA and LDA
germanium and copper. On the scale of these plots the GGA
LDA pseudopotentials lie one on top of each other. Shown
Troullier-Martins pseudopotentials with cutoff radiir s,p51.9 bohr
and r d52.3 bohr~Ge!, andr s,d52.0 bohr andr p52.3 bohr~Cu!.
-

y
e

in

-

he
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ly
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~ii !, where CV XC is approximated. The core-valence H
tree potentials are seen to make a small positive contribut

dVH~r !5VH@n0
c~ GGA!;r #2VH@n0

c~ LDA !;r #.

This reflects the fact that the core states are more tig
bound in the GGA than in the LDA, somewhat enhancing
electrostatic screening of the nuclei.49,31 Still, dVH is found
to be weaker and faster decaying than the~oscillatory! dif-
ferences in the bare potentials. In case~i! thegenuinediffer-
ence potential is superimposed with a long ranged, repul
hump. This feature clearly signifies the distinct analytic
behavior of the CV XC potentials, Eq.~9!, in the LDA and
GGA, rather than differences in the self-consistent cha
densities. Notably for germanium it attains its maximu
around and stretches well beyond the maximum of the
lence charge density up to radii that correspond to midb
positions. Including a partial core charge density, case~ii !
eliminates by construction the core-valence XC potent
outside the respective cutoff radius in both LDA and GG
In this region one therefore recovers the more short-ran
and, in case of germanium, weaker genuine difference po
tial. Inside there remains some interference of genuine
core-valence XC-related differences as partial and full c
charge density deviate from each other.

The above discussion suggests that the distinct c
valence XC interaction in the LDA and GGA is a prim
source of the differences between the pseudopotentials
the LDA pseudopotentials and their GGA counterparts dif
even in interatomic regions, they are to be expected to p
form unlike in a pseudopotential calculation which emplo
the GGA for the XC energy, germanium with linearized C
XC being a generic example. By explicitly considering no
linear CV XC, or, as exemplified by copper, by includin
more semicore states as valence states, the difference in
XC is removed from the pseudopotentials and instead ta
into account through the XC energy functionals themselv
In this case LDA and GGA pseudopotentials should th
behave more alike, provided of course the cooperative ge

r
nd
e

FIG. 2. Difference of the ionic pseudopotentials in BP GGA a
LDA for germanium and copper, corresponding to the scree
potentials given in Fig. 1. Shown are the XC, Hartree, and b
potential contributions, cf. Eq.~ 8!, as discussed in the text. Bot
panels use the same scale for the ordinate. The cutoff radius o
partial core charge densities was chosen as 1.3 bohr.
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ine differences are negligibly small themselves. In Sec.
we substantiate these aspects quantitatively.

III. COMPUTATIONAL METHOD

From a practitioner’s point of view, GGA’s are readi
incorporated in plane-wave-based schemes: the deriva
of the density needed to compute XC energy and potentia
position space are evaluated from the reciprocal space re
sentation of the density, and transformed to position sp
using Fourier transformations, the convergence of all
evant quantities being controlled—as in the case of
LDA—through the plane-wave basis size. The construct
of norm-conserving pseudopotentials within GGA’s pr
ceeds entirely parallel to the one in LDA. The necess
radial density gradients may be inferred, e.g., directly fr
the derivatives of the radial wave functions.

We constructed pseudopotentials50 based on a scalar
relativistic atomic calculation using the scheme of Troull
and Martins.45 Core and valence states were partitioned
usual, i.e., retaining only the uppermost occupieds and p
states as valences, except for Cu and W, where the 3d (5d)
states need to be included in the valence space. The resu
semilocal potentials were further transformed into fully se
rable representations of the Kleinman-Bylander kind.51 In
case of nonlinear CV XC we used a cuspless polynomia
represent the partial core charge density inside the cu
radius. Continuity of the density up to its third derivative
enforced to ensure that the GGA XC potential joi
smoothly. Various tests, carried out for the free pseudoat
and described in the Appendix, indicate comparable trans
ability for the GGA and LDA pseudopotentials. The ion
pseudopotentials are tabulated and transferred without
intermediate fitting to the plane-wave calculation. We ha
refrained from any smoothing34 of the ionic GGA pseudopo
tentials, which on occasion display short-ranged oscillatio
mostly for the PW GGA.30,40 These correspond to a plan
wave energy regime where the kinetic energy dominates
other energy contributions and may, therefore, be conce
to be physically negligible. Care is required, though, to lea
the relevant low Fourier components intact if smoothing
performed. With a numerical tabulation this is attained in
unbiased, systematic manner through the basis size cuto

We have computed52 the total energy per atom in the bu
systems varying the lattice constant within about65% of
the respective equilibrium value. Fitting these energies
Murnaghan’s equation of state,53 we obtained the equilib-
rium values of the lattice parameters and the total energy
atom. The cohesive energy was determined by subtrac
the latter from the total energy of the spin-saturated spher
~pseudo! atom. To correct this value for neglected contrib
tions due to the spin polarization of the atomic ground sta
we added the difference of the total energies of the sp
polarized and -saturated all-electron atom within the resp
tive XC scheme. Corrections of the theoretical values of
cohesive energy for the phonon zero-point energies are
regarded, they amount to'180 meV for diamond and ar
expected to stay below'60 meV for the other solids.54 The
Brillouin-zone sampling for the bulk systems was carried
using 63636 ~diamond, NaCl!, 83838 ~Al, Si, Ge,
GaAs!, and 10310310 ~Na, Cu, W! meshes of specialk
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points.55 For evaluating the cohesive energies we chos
plane-wave cutoff energy of 50 Ry for all crystals other th
diamond, Cu, and W, for which we used 100 Ry. The resp
tive structural parameters were determined with roughly t
thirds of these values. These computational parameters a
for a numerical precision of better than 0.5% for the latti
constants, and better than 50 meV for the binding energie56

IV. RESULTS AND DISCUSSION

Two sets of GGA calculations were performed where
adopted either the consistent GGA approach, employing
GGA for both plane-wave calculationand construction of
the pseudopotentials, or, by contrast, the inconsistent G
approach, employing the GGA for the plane-wave calcu
tion but the LDA for the construction of the pseudopote
tials. The results of our calculations are compiled along w
reference data in the Tables IV–VIII. By a comparison w
all-electron data and calculations including nonlinear C
XC, we first demonstrate the pseudopotentials to be as tr
ferable within the GGA as in the LDA. In particular trans
ferability is not more stringently limited by nonlinear CV XC
in the GGA than in the LDA. This provides the frame o
reference for our subsequent examination of the consis
and inconsistent GGA approaches which are found to be
equivalent indeed. Following our discussion of Sec. II, w
then show that the perturbative potential-energy correc
yields a good quantitative account of the differences betw
these approaches. Together with the fact that the discre
cies are essentially eliminated once nonlinear CV XC is
cluded, this allows us to identify these discrepancies a
manifestation of the distinct behavior of CV XC in the LD
and GGA. That is, we find CV XC to contribute significant
to the correction of the binding energies and lattice para
eters induced by the GGA.

A. Pseudopotential transferability within the GGA

Possible uncertainties rooted in the pseudopotential
proximation itself are properly distinguished from effec
due to the use of different XC functionals by a comparis
with all-electron data. To this extent, in Fig. 3 we show t
relative error of the lattice constant with respect to its expe
mental value based on a compilation of results from rec
all-electron calculations,26,29 and as obtained in the prese

FIG. 3. Top panel: Relative error of the bulk lattice consta
evaluated within LDA and GGA with respect to the experimen
value. Filled squares refer to the present work, open circles to
electron results of Refs. 26 and 29. Bottom panel: Increase of
bulk lattice constant (da0) from the LDA to the GGA value relative
to the experimental value for either method.
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pseudopotential framework, accounting for nonlinear CV X
and working with the consistent approach to the PW GGA
can be seen in the LDA as well as in the PW GGA that
results of the pseudopotential and the all-electron met
agree on the order of or better than 1%. In particular b
methods yield virtually the same lattice expansion due to
GGA compared to the LDA. Merely in case of Al, the agre
ment is not fully quantitative. Concerning the bulk modu
we note that the pseudopotential calculations reproduce
reduction of the LDA values due to the GGA as obtain
from the all-electron calculations. The residual discrepanc
between pseudopotential and all-electron results for the b
moduli of Ge and GaAs in the LDA as well as in the GG
may be seen as a reminder that a more accurate treat
requires the extended 3d states of Ga and Ge to be consi
ered as valence states.29

The routine disregard of nonlinear CV XC entails no
terations of the calculated lattice properties compared to
results obtained with explicit account of nonlinear CV X
for diamond, Al, and Si. For Ge and GaAs the lattice co
stants are reduced by'1% in the LDA, and changed some
what less in the GGA. The values of the lattice constants
sodium metal turn out smaller by'2% in the LDA, and
change again less for the GGA’s. For NaCl the neglect

TABLE I. Cohesive properties of Na. The first column indicat
the XC scheme used to generate the pseudopotentials, the se
the one employed for the XC energy of the~pseudo! atom and solid.
Bracketed values are based on nonlinear core-valence XC.
show the lattice constanta0, the bulk modulusB0, and the cohesive
energyEb . The latter includes spin corrections of the free Na at
of 0.20 ~LDA ! and 0.22 eV~GGA!.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 3.98 ~4.05! 8.7 ~9.1! 1.28 ~1.22!
LDA BP 3.97 ~4.22! 8.7 ~7.3! 1.06 ~0.94!
BP BP 4.20~4.22! 7.3 ~7.4! 0.94 ~0.94!
LDA PW 3.98 ~4.21! 8.7 ~7.3! 1.19 ~1.08!
PW PW 4.24~4.21! 7.0 ~7.3! 1.05 ~1.08!

LDA a 4.05 9.2
PW a 4.22 7.1

Experimentb 4.23 6.92 1.11

aAll-electron data from Ref. 5.
bReference 67.

TABLE II. Cohesive properties of NaCl. Like Table I, and usin
a spin correction of 0.20 eV~LDA ! and 0.22 eV~GGA! for the free
Cl atom.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 5.19 ~5.43! 32 ~32! 7.28 ~6.99!
LDA BP 5.27 ~5.67! 27 ~22! 6.59 ~6.24!
BP BP 5.74~5.68! 21 ~22! 6.20 ~6.19!
LDA PW 5.28 ~5.65! 28 ~23! 6.85 ~6.43!
PW PW 5.87~5.66! 18 ~23! 6.22 ~6.40!

Experimenta 5.64 24.5 6.51

aReference 67.
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nonlinear CV XC reduces the LDA value of the lattice co
stant by'4%, and raises the PW GGA value by'4%. It is
well established that an explicit account of nonlinear CV X
is essential in order to predict dependable lattice proper
for compounds of alkali metals within the LDA.47 Our re-
sults for NaCl suggest that this conclusion applies to
GGA’s as well. Such a behavior seems reasonable, a
view of the relatively easily polarizable valence shell of N
its core-valence overlap in metallic sodium or NaCl is like
to depart considerably from the one in the isolated Na ato
so that an explicit account of the ensuing nonlinear chan
of core-valence XC becomes indispensable at large.
presence of slight differences in the calculated lattice pr
erties with and without explicit nonlinear CV XC for GaAs
Ge, and W can be similarly conceived as a signature of
extended core charge densities in these atoms compare
C, Al, and Si, for which such differences are not observ
They are likewise absent in copper, where the semicored
electrons are considered as valence states so that thei
interactions with the 4s electrons are incorporated exactl
Thus we altogether find the neglect of nonlinear CV X
within the GGA’s of similar importance to the transferabili
of the pseudopotentials as within the LDA. In all cases wh
nonlinear CV XC is dispensable in the LDA, it proved to b
negligible in the GGA’s as well. Judged by the systems a
properties considered we clearly find the pseudopotential
proach itself to be equally applicable and accurate in
GGA as in the LDA.

Our results compare well with those of previous pseu
potential calculations reported in Refs. 14~BP GGA! 28 ~BP

ond

e

TABLE III. Cohesive properties of hcp Mg. Like Table I. Th
equilibriumc/a ratio was obtained as 1.59~LDA ! and 1.66~GGA!,
and the experimental value is 1.62.a

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 3.05 ~3.16! 39 ~37! 2.09 ~1.76!
BP BP 3.17~3.18! 32 ~31! 1.27 ~1.22!
PW PW 3.20~3.20! 30 ~32! 1.42 ~1.40!

Experimenta 3.21 35.4 1.51

aReference 67.

TABLE IV. Cohesive properties of Al. Like Table I, including
spin corrections of the free Al atom of 0.15~LDA ! and 0.19 eV
~GGA!.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 3.97 ~3.97! 83 ~85! 4.09 ~4.09!
LDA BP 3.97 ~4.03! 80 ~75! 3.39 ~3.27!
BP BP 4.05~4.05! 75 ~75! 3.26 ~3.25!
LDA PW 3.97 ~4.02! 81 ~77! 3.64 ~3.54!
PW PW 4.05~4.04! 79 ~79! 3.52 ~3.53!

LDA a 3.98 83.9
PW a 4.10 72.6

Experimentb 4.05 77.3 3.39

aAll-electron data from Ref. 26.
bReference 67.
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and PW GGA’s!, and 35~PW GGA!. The severe overcorrec
tion of the lattice constants of Al, Si, Ge, and GaAs in t
case of the PW GGA without nonlinear CV XC, found b
Juan and Kaxiras,34 is not confirmed here. Similar to Ref. 28
our findings do not support the conjecture put forward by
authors in Ref. 35 that an explicit treatment of nonlinear C
XC is necessary in order to arrive at transferable pseudo
tentials within the PW GGA.

For the present sytems we find both GGA’s to pred
closely agreeing structural properties with only immater
differences. Compared to the LDA we note enhanced ag
ment with experimental data regarding the lattice consta
of Na, Mg, Al, and Si. For the other materials the GG
functionals overestimate the lattice constants to a similar
gree as the LDA underestimates them. The bulk mod
within the GGA’s are predicted in good accordance w
experiment only for Na and Cu; for the other materials th
are clearly underestimated, in particular~by up to ' 25%!
for the semiconductors. In all cases the PW GGA yie
cohesive energies in close agreement with experimental
ures, and corrects the overbinding of the LDA. Obser
however, that in the GGA the values of the atomic ene
and hence the cohesive energy were still lowered by up
several tenths of an eV by allowing for nonspherical grou
state densities,12,57 possibly unveiling a slight ‘‘underbind
ing’’ indicated already by the overestimate of the lattice p
rameters. We note that the BP GGA yields cohesive ener
systematically lower than the PW GGA, suggesting a sligh
weaker binding than the PW GGA.

B. LDA vs GGA pseudopotentials in GGA calculations

Having reassured ourselves of the validity of the pseu
potential ansatz itself, we now turn to an account of
inconsistent GGA approach where LDA rather than GG
pseudopotentials are employed. As argued in Sec. II, L
and GGA pseudopotentials exhibit substantial differen
even in the interatomic regions of molecular or crystalli
compounds. This eventually implies that LDA and GG
pseudopotentials perform differently when they are co
bined with the GGA XC energy functionals.

It is evident from the results listed in Tables I—VIII tha
the outcome of the inconsistent approach depends sensit
on the handling of core-valence XC. We shall address
linear CV XC first. Within it, the inconsistent GGA approac
yields a description of the cohesive properties clearly disp
ate to that obtained from the consistent one: the character
lattice expansion in either BP or PW GGA does not occ

TABLE V. Cohesive properties of diamond. Like Table I, usin
spin corrections of 1.13~LDA ! and 1.26 eV~GGA! for the C atom.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 3.54 ~3.54! 436 ~436! 8.96 ~8.93!
LDA BP 3.55 ~3.58! 421 ~406! 7.93 ~7.57!
BP BP 3.59~3.59! 399 ~400! 7.56 ~7.58!
LDA PW 3.54 ~3.58! 424 ~406! 8.09 ~7.92!
PW PW 3.58~3.58! 408 ~405! 7.80 ~7.83!

Experimenta 3.57 442 7.37

aReference 67.
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and instead the lattice parameters closely resemble t
LDA values. Likewise, the cohesive energies turn out lar
by 0.3–0.7 eV in the inconsistent GGA approach than in
consistent GGA approach. These values amount to 10%~dia-
mond! up to 50%~Ge! of the correction of the LDA value for
the cohesive energy that results from the consistent G
approach. A somewhat modified behavior is observed
copper, where the lattice parameters are close to those
the consistent GGA approach, and the cohesive energy
rection turns out larger by about 0.2 eV than with GG
pseudopotentials. We find the consistent and inconsis
GGA approaches to both yield congruous descriptions of
binding properties once the calculations include nonlin
CV XC: the inconsistent GGA approach uniformly recove
the typical lattice expansion as well as the decrease of
cohesive energy. The only incongruencies found between
two approaches concern residual deviations of about 0.2
for the cohesive energies of diamond and copper~see Tables
V and IX!.

To further discuss the GGA correction of the cohes
energydEb , dependent on the choices for pseudopoten
and the treatment of CV XC, we examine the constitu
corrections of the total energies for~pseudo! atom and solid
separately by the decomposition

TABLE VI. Cohesive properties of Si. Like Table I, using sp
corrections of 0.66~LDA ! and 0.79 eV~GGA! for the Si atom.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 5.38 ~5.39! 94 ~94! 5.34 ~5.32!
LDA BP 5.40 ~5.46! 91 ~86! 4.60 ~4.47!
BP BP 5.47~5.47! 85 ~85! 4.46 ~4.45!
LDA PW 5.39 ~5.45! 92 ~87! 4.79 ~4.66!
PW PW 5.46~5.46! 87 ~87! 4.64 ~4.64!

LDA a 5.41 96 5.28
BP a 5.54 80
PW a 5.50 83

Experimentb 5.43 98.8 4.63

aAll-electron data from Ref. 29.
bReference 67.

TABLE VII. Cohesive properties of Ge. Like Table I, using sp
correction of 0.60~LDA ! and 0.74 eV~GGA! for the Ge atom.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 5.56 ~5.60! 73 ~71! 4.75 ~4.58!
LDA BP 5.59 ~5.74! 67 ~57! 3.96 ~3.66!
BP BP 5.73~5.76! 59 ~56! 3.70 ~3.66!
LDA PW 5.58 ~5.74! 69 ~59! 4.14 ~3.82!
PW PW 5.74~5.74! 58 ~58! 3.82 ~3.82!

LDA a 5.63 78 4.54
BP a 5.76 60
PW a 5.75 61

Experimentb 5.66 76.8 3.85

aAll-electron data from Ref. 29.
bReference 67.
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dEb[Eb
GGA2Eb

LDA5dEtot
atom2dEtot

solid, ~12!

making use of the the perturbative analysis of Sec. II. F
lowing Eq.~4! the GGA entails a twofold change of the tot
energy compared to the LDA: the direct correction of the X
energydEXC and the potential-energy correctiondEV . Now
the consistent approach comprises both corrections so
the change in total energy is given bydEtot.dEXC1dEV .
By contrast, the inconsistent approach neglects the differe
of the LDA and GGA pseudopotentials so thatdEV vanishes
and the change in total energy is limited todEtot.dEXC . In
Table XI we detail the various terms for some exempla
cases.

We see, first of all that the perturbative treatment is w
justified, as it closely reproduces the total-energy correcti
extracted from the respective self-consistent LDA and G
calculations in both atoms and solids to within 0.02 e
Adopting linear CV XC, the XC energy correction in eac
case is found to account only partly for the GGA-induc
change of the cohesive energy. Instead a substantial fra
must be attributed to the potential-energy correction, an
thus indeed effected by the difference of the LDA and GG
pseudopotentials. Acting in a like manner todEXC , dEV

TABLE IX. Cohesive properties of fcc Cu. Like Table I, usin
spin corrections of 0.20~LDA ! and 0.25 eV~GGA!.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 3.55 ~3.56! 172 ~172! 4.31 ~4.24!
LDA BP 3.68 ~3.70! 124 ~122! 3.09 ~3.06!
BP BP 3.67~3.68! 130 ~131! 3.22 ~3.23!
LDA PW 3.67 ~3.69! 127 ~123! 3.23 ~3.20!
PW PW 3.67~3.67! 134 ~132! 3.38 ~3.38!

LDA a 3.52 192 4.29
BP a 3.12
PW a 3.62 151 3.30

Experimentb 3.60 138 3.50

aAll-electron values from Refs. 26 (a0, B0) and 12 (Eb).
bReference 67.

TABLE VIII. Cohesive properties of GaAs. Like Table I, usin
spin corrections of 0.15~LDA ! and 0.18 eV~GGA! for Ga atom,
and 1.41~LDA ! and 1.67 eV~GGA! for the As atom.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 5.50 ~5.57! 79 ~75! 8.68 ~8.15!
LDA BP 5.52 ~5.72! 74 ~62! 7.19 ~6.33!
BP BP 5.68~5.72! 64 ~62! 6.52 ~6.33!
LDA PW 5.51 ~5.70! 76 ~64! 7.51 ~6.63!
PW PW 5.69~5.71! 63 ~64! 6.74 ~6.63!

LDA a 5.62 74 7.99
BP a 5.76 60
PW a 5.74 65

Experimentb 5.65 74.8 6.52

aAll-electron data from Ref. 29.
bReference 67.
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results in a decrease of the cohesive energy, except for
per, where we observe the above-mentioned slight enla
ment. Taking nonlinear CV XC into consideration, the ma
nitude of the potential-energy correction is reduc
compared to linear CV XC. Importantly,dEV no longer con-
tributes to the change of the binding energy, which is inste
captured completely by the XC energy correction for Na,
and Ge, shown in detail in Table XI. It does retain signi
cance in the case of diamond and copper, however. Save
these, the inconsistent and consistent approaches with
plicit nonlinear CV XC thus produce similar values for th
binding energies.

We note the lattice expansion observed upon switch
over from the LDA to the GGA to be consistent with th
repulsive character of the difference potential between
LDA and GGA pseudopotentials seen in the real space
spection of the respective pseudopotentials, cf. Fig. 2. S
larly the potential-energy correction turns out positive, a
more so in the solid where valence charge accumulates in
bonding region. Once nonlinear CV XC is taken into a
count, the XC-related differences outside the core region
eliminated. What remains are essentially the genuine dif
ences of the LDA and GGA pseudopotentials, reflecting
different description of the core states in the respective
schemes. In principle the more tightly bound core states
the GGA should make the Pauli and Coulomb repuls
more short-ranged compared to the LDA, adding some
pulsion about the ion sites and some attraction at interm
ate distances. The details are certainly quite species de
dent, and, moreover, one cannot rule out some interfere
from residual XC-related differences, e.g., due to the unl
partial and full core densities, frustrating anya priori esti-
mate of their contribution to the potential-energy correcti
dEV . Nevertheless, as the genuine differences are small
confined to the immediate vicinity of ion sites, they shou
be rather inconsequential to the calculation of total-ene
differences. Such a scenario is conceivable, and consis
with our results for Na, Al, Si, etc., but has its limitations
major portions of the valence charge density reside and
just to charge transfer close to the ion sites. This clea
applies for the 2p states of the first-row elements like C an
the 3d transition metals like Cu, which take on their maxim
in the domain of the genuine differences. Hence we find
potential-energy correction for these elements to be o

TABLE X. Cohesive properties of bcc W. Like Table I, usin
spin corrections of 2.04 eV~LDA ! and 2.32 eV~GGA!.

Potential EXC a0 ~Å! B0 ~GPa! Eb ~eV!

LDA LDA 3.14 ~3.16! 324 ~331! 10.76~10.24!
LDA BP 3.15 ~3.21! 308 ~306! 9.26 ~8.52!
BP BP 3.20~3.21! 299 ~308! 8.73 ~8.54!
LDA PW 3.14 ~3.20! 313 ~308! 9.63 ~8.87!
PW PW 3.22~3.21! 298 ~310! 8.88 ~8.87!

LDA a 3.14 337
PW a 3.19 307

Experimentb 3.16 310 8.90

aAll-electron values from Ref. 26.
bReference 67.
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TABLE XI. Change of the cohesive energydEb , due to the replacement of the LDA by the PW GG
We list the total-energy change per atom as obtained from self-consistent calculations,dEtot , and according
to Eq.~ 4!, dEtot.dEXC1dEV . The latter is decomposed into its consituent terms arising from the diffe
XC energies,dEXC , and from the different pseudopotentials,dEV . The values without and with bracket
correspond to calculations with linearized core-valence XC, and nonlinear core-valence XC respectiv
spin corrections were applied to the atomic energies. The lattice constants were kept at their exper
values in all calculations, the ensuing error of the total energy due to the deviation from the theo
equilibrium structure staying below'50 meV per atom. Symbols are explained further in the text.

dEtot
solid ~eV! dEtot

atom ~eV! dEb ~eV!

Na dEtot 0.32 ~-3.21! 0.10 ~-3.35! -0.22 ~-0.14!

dEXC1dEV 0.32 ~-3.20! 0.10 ~-3.35! -0.22 ~-0.15!
dEXC -0.01 ~-3.20! -0.07 ~-3.34! -0.06 ~-0.14!
dEV 0.33 ~-0.00! 0.17 ~ 0.01! -0.16 ~ 0.01!

Diamond dEtot 0.31 ~-1.42! -0.71 ~-2.42! -1.02 ~-1.00!

dEXC1dEV 0.32 ~-1.40! -0.70 ~-2.41! -1.02 ~-1.01!
dEXC -0.46 ~-1.37! -1.19 ~-1.34! -0.74 ~-0.81!
dEV 0.78 ~-0.03! 0.49 ~-0.13! -0.29 ~-0.10!

Si dEtot 0.60 ~-0.97! 0.03 ~-1.52! -0.57 ~-0.55!

dEXC1dEV 0.61 ~-0.96! 0.04 ~-1.51! -0.57 ~-0.55!
dEXC -0.27 ~-1.09! -0.69 ~-1.62! -0.42 ~-0.53!
dEV 0.88 ~ 0.13! 0.73 ~ 0.11! -0.15 ~-0.02!

Ge dEtot 1.50 ~-5.50! 0.65 ~-6.16! -0.85 ~-0.66!

dEXC1dEV 1.50 ~-5.48! 0.65 ~-6.16! -0.85 ~-0.68!
dEXC -0.24 ~-5.49! -0.66 ~-6.17! -0.42 ~-0.68!
dEV 1.74 ~ 0.01! 1.31 ~ 0.01! -0.43 ~ 0.00!

Cu dEtot 1.63 ~-1.99! 0.69 ~-2.96! -0.94 ~-0.97!

dEXC1dEV 1.64 ~-1.99! 0.70 ~-2.95! -0.95 ~-0.96!
dEXC -5.54 ~-7.48! -6.66 ~-8.64! -1.12 ~-1.16!
dEV 7.19 ~ 5.50! 7.36 ~ 5.69! 0.17 ~ 0.19!
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partly conditioned by the treatment of nonlinear CV XC.
case of Cu the 3d electrons are considered as valence rat
than as core electrons, so that their XC interactions with
4s electrons are accounted for exactly and not linea
through pseudopotentials. For such a core-valence partit
ing it is readily verified by inspection~cf. Fig. 2! that the
differences of LDA and GGA pseudopotentials are primar
of the genuine kind, and thus quite independent of a furt
account of nonlinear CV XC with still deeper core state
Accordingly we obtain an actually equivalent description
the bulk lattice parameters in the GGA with either LDA
GGA pseudopotentials, with the potential-energy correct
to the cohesive energy being of the order of 0.2 eV with
both linear and nonlinear CV XC. We would like to point
an analogous observation made in a pseudopotential s
employing the linearized augmented plane-wave meth
where the full atomic core density was retained: investig
ing Fe within the PW GGA, Cho and Scheffler25 reported
nearly identical structural and magnetic parameters with
ther LDA- or GGA-based pseudopotentials.
r
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V. SUMMARY AND CONCLUSIONS

In conclusion, we showed that GGA pseudopotentials
deed convey a substantial share of the GGA’s correcti
over the LDA. Accordingly we deem the consistent use
GGA’s in the application of the pseudopotential,and their
construction, to be generally a key requirement to att
GGA quantities equivalent to those obtained within GG
all-electron methods. By contrast, inequivalent results a
when the XC energy is treated in GGA but the pseudopot
tials are taken, inconsistently, to be the same ones as in
LDA. We have found such ‘‘portability errors’’ to be mos
significant when the XC interaction of core and electrons
treated linearly as a component of the pseudopotential,
less important when the nonlinear core-valence XC inter
tion is incorporated properly into the XC energy function
of the valence electrons, itself employing a partial core d
sity. The precise agreement of the results for the cohe
energies from our perturbative and self-consistent calc
tions conforms with the common lore15,49 that self-
consistency has only a small effect on the value of GGA to
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energies and differences thereof. Instead these can be
rately evaluated with the LDA wave functions and char
density. Our analysis shows however that such ana poste-
riori GGA scheme within the pseudopotential framewo
must treat the difference in the valence-valence XC ener
and the ionic pseudopotentials on an equal footing, as g
in Eq. ~4!: either carrying out the initial LDA calculation
with LDA pseudopotentials and adding to the total ene
the correctiondEXC1dEV or, equivalently, doing the LDA
calculation with GGA pseudopotentials (dEV[0) and add-
ing just dEXC to the total energy.

As the differences of the pseudopotentials originate fr
the distinct core-valence XC potentials in the LDA a
GGA, we moreover understand our findings as evidence
the bond softening in GGA is directly related to a strong
XC repulsion between the valence and upper core states
in the LDA. The reduction of the binding energy by th
GGA on the other hand appears to a larger extent du
describing the XC of the valence electrons among the
selves within the GGA instead of the LDA. The notion of
more repulsive nature of GGA core-valence XC agrees w
and qualifies earlier observations that the GGA correction
bonding properties in solids arise mainly from the immedi
vicinity of the ions rather than from the interstitial regions58

Likewise it is supported by the fact that the GGA XC pote
tial of atoms like the exact XC potential is superimpos
with a peaked structure which acts repulsively at sh
boundaries compared to the LDA XC potential.31 Interest-
ingly, our findings suggest that inadequacies in the desc
tion of core-valence XC are an important aspect of defici
cies in the description of chemical bonds within either t
LDA or GGA.

In concluding, we note that a conceptual parallel of t
~‘‘inconsistent’’! combination of LDA pseudopotentials wit
the GGA XC is encountered in wave-function-based ma
body methods such as quantum Monte Carlo~QMC!
simulations.59 In applications the QMC method has be
mostly combined with pseudopotentials derived from eff
tive one-particle schemes.60 Thereby the interactions amon
the valence electrons are described exactly, whereas th
fects of the core electrons are dealt with in an approxim
manner, say, on the level of the LDA. In principle, su
QMC calculations provide an exact reference against wh
we could check the performance of approximate XC sche
like the GGA for the valence electrons alone. Indeed a s
vey of the literature indicates that cohesive energies for
mond, Si,61,62 and Ge63 obtained with QMC and LDA
pseudopotentials are in significantly closer agreement w
experimental figures than are our GGA results using LD
pseudopotentials. At least for these cases this raises the q
tion whether the GGA affords a better description of X
amongall electrons, then yielding highly accurate bindin
energies, than of XC among the valence electrons alone
the other hand, one is well aware that the use of LD
pseudopotentials in QMC simulations introduces some
certainty in the QMC values for the cohesive ener
themselves,60,63 quite analogous to the ‘‘portability errors’
we found in GGA calculations using LDA pseudopotentia
to be of the order of up to some tenths of an eV. On this le
of accuracy it is then clearly desirable to obtain accur
estimates of the systematic uncertainties related to the us
cu-
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pseudopotentials derived from density-functional theory
exact methods like, e.g., QMC simulations as well in order
facilitate a quantitative assessment of approximate
schemes like the GGA.

APPENDIX

In this appendix we present some tests on the transfera
ity of our GGA pseudopotentials compared to the LDA on
These serve further to corroborate that GGA and LD
pseudopotentials show a similar inherent transferability
exhibit significant differences due to CV XC, as discussed
Sec. II. As is rather well established transferable pseudo
tentials should closely preserve the following:~1! The all-
electron atomic scattering properties as given by the logar
mic derivatives at some radius outside the core region o
the range of valence energies relevant to chemical bond
say up to61 hartree about the reference energies.~2! The
all-electron atomic hardness,64,65 i.e., reproduces total energ
and eigenvalues for excited atomic configurations, to wit
the accuracy of the the underlying frozen-core approxim
tion.

In Fig. 4 we show the logarithmic derivatives evaluat
with screened pseudopotentials@cf. Eq. ~5!#, taking germa-
nium as an example. Good agreement with the respec
all-electron logarithmic derivatives, to be expected from t
norm-conservation constraints, is confirmed for both LDA
well as GGA pseudopotentials in the semilocal and also
the Kleinman-Bylander representation. For the latter we h
additionally verified the absence of ghost states follow
Ref. 66.

We have applied criterion~2!, employing excited neutra
and ~positively! ionized configuations of the spherical iso
lated atom. In the case of Ge, e.g., examining a 4s→4p
electron transfer to mimic orbital hybridization upon bon
formation, and the first ionization potential. In Fig. 5 we pl
the error of the excitation energies for consistent calculati
within the LDA and GGA with respect to all-electron calcu
lations.

FIG. 4. Logarithmic derivativesRl8(«)/Rl(«) vs energy« for
the germanium atom~at r 52.4 bohr, and with the 4s component as
the local potential!. Solid lines correspond to the all-electron pote
tial, dashed lines to the semilocal pseudopotentials, and long-da
lines to their Kleinman-Bylander form. Reference energies
marked by solid triangles. In the all-electron case the pole in thed
channel at'-1 hartree is associated with the 3d core state.
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For linearized CV XC we find the ensuing errors to be
the same magnitude, albeit of opposite sign to those i
frozen-core calculation, where only the all-electron valen
states are allowed to adjust self-consistently but the c
charge density is kept fixed like that in the atomic grou
state. For nonlinear CV XC the errors of the pseudopoten
calculation approach those of the frozen-core calculati
Thus we conclude that the pseudopotential related errors
indeed comparably small, absolutely and relatively, as th
due to neglect of core relaxation, the excitation energy
the transfer (4s2,4p2)→(4s1,4p3) being about 8 eV. Carry-
ing out the tests in inconsistent manner—using GGA XC a
LDA pseudopotentials with linearized CV XC—leads
large devations.

FIG. 5. Deviations in the excitation energies of the germani
pseudoatom compared to all-electron results, calculated from to
energy differences with respect to the ground-state configurat
The left panel corresponds to the consistent approach using
same XC scheme throughout. The right panel refers to the inc
sistent approach, using the LDA pseudopotential, but the GGA
the XC energy. Solid symbols stand for LDA, open symbols for P
GGA values. Squares (h) correspond to calculations within linear
ized CV XC, and triangles (n) to those within nonlinear CV XC.
Results obtained within the frozen-core approximation are sho
for comparison, and marked by circles (s). Lines are meant as
guide to the eyes. Note that the underlying excitation energies re
up to '8 eV.
f
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In particular, excitation energies are overestimated co
pared to full GGA calculations, suggesting that the pseu
potentials in the LDA are more attractive than in the GG
in accordance with our findings in Secs. II and IV. Emplo
ing LDA pseudopotentials together with nonlinear CV XC
we obtain agreement with the GGA frozen-core calculati
however. Considering the eigenvalues we have observed
analogous pattern. This is illustrated in Fig. 6 for the dev
tion of the level spacing«4p2«4s with respect to all-electron
calculations within the LDA and GGA. Again, a large erro
occurs in case of the inconsistent GGA calulation using LD
pseudopotentials and linearized CV XC, while the consist
approach is accurate, errors being of the order of a few
meV compared to changes in the level spacing of about
eV.

In summary these tests affirm our conclusion reached
the bulk systems: Within the GGA and LDA the respecti
pseudopotentials possess similar transferability, errors du
the usual linearization of CV XC being small; LDA pseudo
potentials are adequate in GGA calculations~and vice versa!
only if CV XC, acting more repulsively in the GGA com
pared to the LDA, is incorporated explicitly.

m
tal-
on.
the

on-
for
W

wn

ach

FIG. 6. Deviations of the level spacing of the 4s and 4p states
of the germanium atom with respect to all-electron results. See
5 for a legend. The level spacing is'8 eV for the ground-state
configuration, and varies by'0.8 eV.
*Present address: Lehrstuhl fu¨r Theoretische Festko¨rperphysik,
Universität Erlangen, Staudtstrasse 7/B2, D-91058 Erlangen, Ge
many.

† Present address: Physik Department T30, Universita¨t München,
James-Franck-Strasse, D-85747 Garching, Germany.

1D. C. Langreth and M. J. Mehl, Phys. Rev. Lett.47, 446 ~1981!;
Phys. Rev. B28, 1809~1983!.

2 J. P. Perdew, Phys. Rev. Lett.55, 1665~1985!.
3A. D. Becke, Phys. Rev. A38, 3098~1988!.
4J. P. Perdew, Phys. Rev. B33, 8822~1986!; 34, 7406~1986!.
5J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B46, 6671
~1992!.

6P. Hohenberg and W. Kohn, Phys. Rev.136, B864 ~1964!.
7R. M. Dreizler and E. K. U. Gross,Density Functional Theory

~Springer Verlag, Berlin, 1990!.
8W. Kohn and L. Sham, Phys. Rev.140, A1133 ~1965!.
r-

.

9R. O. Jones and O. Gunnarsson, Rev. Mod. Phys.61, 689~1989!.
10B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys.98,

5612 ~1993!.
11A. D. Becke, J. Chem. Phys.97, 9173~1992!.
12P. H. T. Philipsen and E. J. Baerends, Phys. Rev. B54, 5326

~1996!.
13M. Körling and J. Ha¨glund, Phys. Rev. B45, 13 293~1992!.
14A. Garcia, C. Elsa¨sser, J. Zhu, S. G. Louie, and M. L. Cohen,

Phys. Rev. B46, 9829~1992!; 47, 4150~1993!.
15B. Hammer and J. K. No”rskov, Phys. Rev. Lett.73, 3971~1993!.
16B. Hammer, M. Scheffler, K. W. Jacobsen, and J. K. No”rskov,

Phys. Rev. B73, 1400~1994!.
17E. Pehlke and M. Scheffler, Phys. Rev. Lett.74, 952 ~1995!.
18D. Porezag and M. R. Pederson, J. Chem. Phys.102, 9345~1995!.
19J. Baker, M. Muir, and J. Andzelm, J. Chem. Phys.102, 2063

~1995!.
20L. Fan and T. Ziegler, J. Am. Chem. Soc.114, 10 890~1992!.



er

y

s.

tu

.

B

ef-

bye

pe

es
e

y,

. C.

-

l-

nd

olt-
nd

57 2145PSEUDOPOTENTIAL STUDY OF BINDING PROPERTIES . . .
21T. C. Leung, C. T. Chan, and B. N. Harmon, Phys. Rev. B44,
2923 ~1991!.

22D. R. Hamann, Phys. Rev. Lett.76, 660 ~1996!.
23N. Moll, M. Bockstedte, M. Fuchs, E. Pehlke, and M. Scheffl

Phys. Rev. B52, 2550~1995!.
24U. Engberg, Phys. Rev. B55, 2824~1997!.
25J.-H. Cho and M. Scheffler, Phys. Rev. B53, 10 685~1996!.
26A. Khein, D. J. Singh, and C. J. Umrigar, Phys. Rev. B51, 4105

~1995!.
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