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Decay properties of the one-particle Green function in real space and imaginary time

Arno Schindlmayr*
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, 14195 Berlin-Dahlem, Germany

~Received 13 June 2000!

The decay properties of the one-particle Green function in real space and imaginary time are systematically
studied for solids. I present an analytic solution for the homogeneous electron gas at finite and at zero
temperature as well as asymptotic formulas for real metals and insulators that allow an analytic treatment in
electronic-structure calculations based on a space-time representation. The generic dependence of the decay
constants on known system parameters is used to compare the scaling of reciprocal-space algorithms for the
GW approximation and the space-time method.
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I. INTRODUCTION

The GW approximation1 for the electronic self-energy i
known to produce quasiparticle band structures in very g
agreement with experimental data for a wide range of cr
talline materials that include semiconductors,2,3 simple
metals,4 and even transition metals.5 It corresponds to a sum
mation of ring diagrams to infinite order and may be thou
of as an extended Hartree-Fock scheme with dynamic
screened exchange. Despite the long-recognized succes
bulk systems there are still comparably few applications
more complicated geometries, however, because of the r
increase in computational cost. Unless additional simplifi
tions like a plasmon-pole model2 for the screened Coulom
interaction are employed, conventional reciprocal-space
gorithms scale likeN4/b2 for a calculation of the complete
spectral function, whereN is a measure of the system siz
such as the number of atoms in a bulk material, andb is
inversely proportional to the number of frequency me
points.6 The scaling problem is further compounded if di
grammatic vertex corrections beyond theGW approximation
are included.7 The design of more efficient implementation
is therefore a pressing task.

In order to achieve a more favorable scaling, Rojas a
co-workers recently proposed an algorithm based on an
ternative representation of the Green function in real sp
and imaginary time.8,9 This approach allows the calculatio
of the irreducible polarizability and the self-energy as sim
products rather than numerically expensive convolutio
Furthermore, it directly exploits locality, i.e., the fact that t
Green function decays to zero as its spatial or temporal
guments move apart. As a result, with a fixed cutoff ene
this so-called space-time method only scales likeN2/g3b,
where g denotes the exponential decay constant in r
space. Logarithmic terms are neglected. Under the assu
tion that the frequency mesh maps one-to-one onto the
evant region of the imaginary-time axis,b can there be iden
tified with the inverse period1

2 kBT in a finite-temperature
formalism and with the exponential decay constant oth
wise. The locality of the Green function is a manifestation
the more general ‘‘nearsightedness’’ principle10 and due to
destructive quantum interference in many-electron syste

While the behavior of the Green function in reciproc
space and the frequency domain has been analyzed in
PRB 620163-1829/2000/62~19!/12573~4!/$15.00
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detail,11 there has so far been no comprehensive study of
decay properties in real space and, for zero temperature
the imaginary-time axis. In fact, even qualitative features
not always recognized correctly: Ref. 6, for instance, d
scribes the asymptotic tail of the Green function as be
proportional tour2r 8u22. While this assertion is correct fo
the homogeneous electron gas at zero temperature, I a
here that real materials in general exhibit exponential rat
than algebraic decay. Attempts to model the self-energy
ing results obtained for the homogeneous electron gas,12–14

which are motivated by seemingly universal features in
short-range part of the nonlocality15 and the success of th
local-density approximation16 in density-functional theory,17

should appreciate such fundamental differences.
The first objective of this paper is to systematically stu

the decay properties of the one-particle Green function
solids, separately for metals and insulators, and to ob
analytic expressions for the asymptotic behavior in r
space and imaginary time. Besides intrinsic interest, th
can be directly exploited in electronic-structure calculatio
In the space-time method, for instance, an analytic treatm
of the asymptotic tail on the imaginary time axis, in comb
nation with a customized Gauss-Legendre grid, reduces
number of mesh points where the Green function must
evaluated numerically by one order of magnitude.18 I show
here that the exponential fit proposed in Ref. 18 is only va
for systems with a finite band gap, however, while metals
zero temperature instead require an algebraic fitting funct
The second objective is to relate the decay constantsg andb
to known system parameters. This is then used for a m
detailed scaling comparison between the space-time
proach and conventional implementations.

Due to the central role of locality in O(N) methods19

within density-functional theory, the spatial decay rate of t
one-particle density matrix, which is a special element of
Green function, has recently received some attention.20,21

Physically, the nonlocality of the density matrix stems e
tirely from the delocalized quantum character of the wa
functions, while the Green function also describes the ac
transport of particles. The results obtained for the den
matrix can therefore not be generalized in a straightforw
way, although they are recovered here if the imaginary-ti
argument approaches zero from below. Furthermore,
one-particle density matrix contains no information about
12 573 ©2000 The American Physical Society
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behavior of the Green function on the imaginary time ax
This paper is organized as follows. Section II introduc

the Green function in real space and imaginary time. In S
III an analytic solution for the homogeneous electron ga
presented. I derive asymptotic formulas for real metals
insulators in Secs. IV and V. The results are summarize
Sec. VI together with a discussion. Atomic units are us
throughout.

II. THE GREEN FUNCTION

The imaginary-time or thermal Green function is defin
as22

G~r ,r 8;t!5Q~2t!^e(Ĥ2mN̂)tĉ†~r 8!e2(Ĥ2mN̂)tĉ~r !&

2Q~t!^e2(Ĥ2mN̂)tĉ~r !e(Ĥ2mN̂)tĉ†~r 8!&,

~1!

where ĉ†(r ) and ĉ(r ) denote the creation and annihilatio
operator for an electron atr . The HamiltonianĤ is modified
by the chemical potentialm and the electron number operat
N̂, the angular brackets indicate the thermodynamic aver
andQ(t) denotes Heaviside’s step function. Spin degrees
freedom are suppressed to simplify the notation. At fin
temperature the real variablet is restricted to2b,t,0
with b51/kBT for the hole part and 0,t,b for the elec-
tron part, and the Green function is periodically repeat
Due to the additional antiperiodicityG(t)52G(t1b) it
suffices to examine the hole part. At zero temperature
period becomes infinite, however, and the properties of b
parts must be studied separately. Note that Refs. 9 and
employ an alternative prefactor conventionG( i t)5 iG(2t)
for the imaginary-time Green function at zero temperatu
which stems from analytic continuation in the time doma
rather than the frequency domain.

For real materials it is convenient to rewrite the hole p
of the Green function in the form

G~r ,r 8;t!5(
n

Gn~r ,r 8;t!, ~2!

Gn~r ,r 8;t!5 (
R,R8

wn~r2R!Fn~R2R8;t!wn* ~r 82R8!,

~3!

wn~r2R!5
1

VB
E e2 ik•Rcnk~r !d3k, ~4!

Fn~R2R8;t!5
1

VB
E eik•(R2R8)

e2(enk2m)t

11e(enk2m)b
d3k ~5!

and analogous for the electron part. HereR labels the lattice
vectors, wn(r2R) indicates the Wannier orbitals corre
sponding to a set of Bloch wave functionscnk(r ), and the
integrals extend over the first Brillouin zone with volum
VB . Wannier orbitals are widely accepted to exhibit exp
nential localization. In addition to a rigorous proof for is
lated bands,23 there is compelling numerical evidence to th
effect for the general case of composite bands.24 Crucially,
s
c.
is
d
in
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e
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e
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18

,

t

-

the localization persists even if defects or surfaces break
periodicity of the solid.25 As the decay length of Wannie
orbitals is of the order of the interatomic spacing, only
small number of terms contributes significantly to the su
~3!.

III. THE HOMOGENEOUS ELECTRON GAS

For the homogeneous electron gas, the hole part of
Green function is given by

G~r ,t!5
1

8p3E eik•r
e2(ek2m)t

11e(ek2m)b
d3k ~6!

with ek5 1
2 k2. The range of integration can be extended

infinity, because the spherical Fermi surface is fully co
tained inside the Brillouin zone. The angular integrals a
straightforward and lead to

G~r ,t!52
i

4p2r
E

2`

`

keikr
e2(ek2m)t

11e(ek2m)b
dk. ~7!

The remaining integral is most simply solved by closing t
contour across the upper complex half-plane. The integr
has relevant first-order poles at6kl1 ig l with

kl5Am1Am21v l
2, ~8!

g l5A2m1Am21v l
2, ~9!

and the fermion Matsubara frequenciesv l5(2l 11)p/b.
Evaluation of the residues yields the final result,

G~r ,t!52
1

pbr (
l 50

`

e2g l r cos~klr 2v lt!, ~10!

which explicitly shows the periodicity along the imaginar
time axis. At finite temperature the Green function is ess
tially a superposition of exponentially damped oscillation
whose long-range behavior is dominated by thel 50 contri-
bution. For sufficiently smallT the chemical potential ap
proximately equals the Fermi energyeF5 1

2 kF
2 . The damping

constants are given byg l'v l /kF in this regime, and the
wave vectors of the corresponding oscillations becomekl
'kF . The overall decay constant is hence proportional to
temperature and given byg5g05pkBT/kF .

As the limit T→0 is nontrivial, the Green function at zer
temperature is most simply calculated from Eq.~6! with a
step function instead of the Fermi distribution. The integ
can be solved analytically and yields

G~r ,t!52
sin~kFr !

2p2r t
1

1

2~2putu!3/2
expS kF

2t

2
2

r 2

2t D
3FerfiS kFt1 ir

A2utu
D 1erfiS kFt2 ir

A2utu
D G . ~11!

For the electron part erfc(z)512erf(z) replaces erfi(z)
5erf(iz)/ i . The limiting formulas are identical in either cas
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and follow from the asymptotic representation of the er
function erf(z) in the complex plane. Forr→` the Green
function becomes

G~r ,t!;2
kF cos~kFr !

2p2r 2
1

12kF
2t

2p2r 3
sin~kFr !, ~12!

which decays algebraically rather than exponentially. On
imaginary-time axis the Green function decays as

G~r ,t!;2
sin~kFr !

2p2r t
2

cos~kFr !

2p2kFt2
~13!

for large positive or negativet.

IV. METALS

The explicit solution for the homogeneous electron g
illustrates more general principles that also apply to real m
als. Bands above or below the Fermi level yield contrib
tions to the Green function analogous to the case of ins
tors, which is discussed below. They are short-ranged
that for ur2r 8u→` the sum~2! is dominated by terms aris
ing from partially occupied bands that cross the Fermi lev
Furthermore, the strong localization of the Wannier orbit
implies that the spatial decay properties of the relevantGn
are in turn determined byFn . If the homogeneous electro
gas is used for guidance, then the decay length 1/g for so-
dium with an average densityr s53.99 ~Ref. 26! at room
temperatureT5298 K may be estimated as 85.8 Å . In co
trast, the decay length of the temperature-independent W
nier orbitals is comparable to the interatomic spacing 3.7
in the bcc cell and more than an order of magnitude sma
The high-temperature region whereFn becomes sufficiently
short-ranged such as not to dominate the asymptotic be
ior is irrelevant for solid-state physics, because it lies ab
the melting point of the crystal lattice.

Fn has the mathematical form of a three-dimensional F
rier transform and is long-ranged because of rapid osc
tions of the integrand in Eq.~5!. Quantitatively, at finite tem-
perature the integrand falls from near unity to zero in
narrow region around the Fermi surface. Its width is given
dk}kBT/u“enku, where the gradient is taken at the Fer
level. Directional effects due to the anisotropic crystal str
ture are ignored here, and it is assumed that the energy
persion is analytic and smooth on the scale ofdk. For suffi-
ciently small T the latter condition is always fulfilled
According to basic Fourier analysis,27 the extent of this rapid
variation is directly proportional to the exponential dec
constant of the transform, so thatg}dk for Fn and hence for
G.

At T50 the integrand changes qualitatively, because
Fermi distribution has a discontinuity at the Fermi surfa
As the Fourier transform of a discontinuous function dec
algebraically rather than exponentially,27 both the electron
and the hole part of the Green function now assume
asymptotic formG(r ,r 8;t);ur2r 8u2h with h.0. Their de-
cay on the imaginary-time axis is likewise algebra
G(r ,r 8;t);utu2k with k.0, because the exponenti
exp(2enkt) in the integrand reaches the Fermi level and th
exhausts the prefactor exp(mt).
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V. INSULATORS

Temperature effects are negligible for insulators if t
thermal energykBT is much smaller than the band gapD. As
this condition is almost always fulfilled below the meltin
point, it suffices to examine the caseT50. If no band
crosses the chemical potential, then allFn are spatially short-
ranged. Fort→0 the integral~5! has the straightforward
solutionFn(R2R8;0)5dR,R8 . At finite imaginary times the
only significant contribution comes from the vicinity of th
band edges. The energy dispersion can hence be replace
its harmonic approximation uenk2mu' 1

2 D
1 1

2 ( i , j ki(m* ) i j
21kj , wherem* denotes the effective mas

tensor at the top of the valence band for the hole part an
the bottom of the conduction band for the electron part. T
range of integration may now be extended to infinity, andFn
is readily seen to be of Gaussian type. The overexponen
falloff implies that for insulators the asymptotic properties
the Green function in real space are determined by the W
nier orbitals, which are exponentially localized. In the wea
binding case, where the band structure can be obtained
perturbation from that of the homogeneous electron gas, t
decay rate is given byg}aD, where a is the lattice
constant.21 Many common semiconductors have gaps s
stantially smaller than their bandwidth and are thus expec
to fall into the weak-binding regime, e.g., for siliconD
51.15 eV~Ref. 26! as opposed to12 (2p/a)255.1 eV. The
proportionality factor is direction-dependent but about uni
so that the decay length 1/g may be estimated as 1.22 Å
which is of the order of the interatomic spacing 2.35 Å
silicon, as expected, and compatible with numeri
calculations.24 In the tight-binding regime the Wannier orbi
als also decay exponentially, but the dependence ofg on the
gap is indeterminate and subject to details of the ato
potential.21 This case may apply for large-gap Mott-Hubba
insulators like NiO but is less relevant in practice, becau
the GW approximation anyway shows serious deficienc
for such strongly correlated systems.28 The falloff on the
imaginary time axis is exponential with a decay constanb
5 1

2 D both for the electron and the hole part, because
finite difference between the chemical potential and the b
edges implies an incomplete cancellation of the prefac
exp(mt).

VI. SUMMARY

In this paper I have investigated the asymptotic proper
of the one-particle Green function in real space and ima
nary time. An analytic solution for the homogeneous elect
gas shows the Green function as a superposition of dam
harmonic oscillations with a wave vector approachingkF as
T→0. The dampingG;exp(2gur2r 8u) is exponential at fi-
nite temperature but changes qualitatively to algebraic fal
G;ur2r 8u2h at T50. While the thermal Green function i
by definition periodic on the imaginary time axis with th
period 2b, it decays likeG;utu2k when the periodicity is
lifted at T50. I have shown that these results also apply
real metals. In contrast, for insulators at zero temperature
Green function decays exponentially likeG;exp(2gur
2r 8u) in real space andG;exp(2butu) in imaginary time.

The limiting formulas can be exploited in electroni
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structure calculations based on a space-time represent
and allow an analytic treatment of the long-range tails. T
asymptotic behavior of derived propagators within a pert
bation scheme follows directly from the Green function.
particular, the self-energy in theGW approximation is the
product of the Green functionG and the screened Coulom
interactionW. In insulators screening is incomplete withW
;1/eur2r 8u at large distances, wheree is the dielectric con-
stant, but the self-energy still decays exponentially in r
space because the Green function does. On the other h
for the homogeneous electron gas at zero temperature11 W
;cos(2kFur2r 8u)/ur2r 8u3, so that the self-energy only de
cays algebraically. This distinct asymptotic behavior sho
ion
e
-

l
nd,

d

be appreciated if the electron-gas self-energy is applied
real materials. The problem is naturally solved by thead hoc
introduction of a gap in the otherwise metallic spectrum.13

Finally, the generic dependenceg}kBT/u¹enku and b
5 1

2 kBT for metals as well asg}aD andb5 1
2 D for insula-

tors can be used to assess the scaling of different algorit
for self-energy calculations in theGW approximation. If all
other parameters remain fixed, then conventional recipro
space implementations scale likeN4/T2 for metals at finite
temperature andN4/D2 for insulators at zero temperature
whereas the space-time method scales likeN2/T4 and
N2/D4, respectively. This difference in efficiency gain as t
temperature or the band gap increase is an important fact
be taken into account for benchmarking purposes.
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