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Decay properties of the one-particle Green function in real space and imaginary time
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The decay properties of the one-particle Green function in real space and imaginary time are systematically
studied for solids. | present an analytic solution for the homogeneous electron gas at finite and at zero
temperature as well as asymptotic formulas for real metals and insulators that allow an analytic treatment in
electronic-structure calculations based on a space-time representation. The generic dependence of the decay
constants on known system parameters is used to compare the scaling of reciprocal-space algorithms for the
GW approximation and the space-time method.

[. INTRODUCTION detail!* there has so far been no comprehensive study of the
decay properties in real space and, for zero temperature, on
The GW approximatioh for the electronic self-energy is the imaginary-time axis. In fact, even qualitative features are
known to produce quasiparticle band structures in very goodot always recognized correctly: Ref. 6, for instance, de-
agreement with experimental data for a wide range of crysscribes the asymptotic tail of the Green function as being
talline materials that include semiconductbfs,simple  proportional to|r —r’|~2. While this assertion is correct for
metals? and even transition metaldt corresponds to a sum- the homogeneous electron gas at zero temperature, | argue
mation of ring diagrams to infinite order and may be thoughthere that real materials in general exhibit exponential rather
of as an extended Hartree-Fock scheme with dynamicallyhan algebraic decay. Attempts to model the self-energy us-
screened exchange. Despite the long-recognized success fag results obtained for the homogeneous electron'3as,
bulk systems there are still comparably few applications tavhich are motivated by seemingly universal features in the
more complicated geometries, however, because of the rapghort-range part of the nonlocaltfyand the success of the
increase in computational cost. Unless additional simplificatocal-density approximatidfiin density-functional theory’
tions like a plasmon-pole modelor the screened Coulomb should appreciate such fundamental differences.
interaction are employed, conventional reciprocal-space al- The first objective of this paper is to systematically study
gorithms scale likeN*/b? for a calculation of the complete the decay properties of the one-particle Green function in
spectral function, wher&l is a measure of the system size, solids, separately for metals and insulators, and to obtain
such as the number of atoms in a bulk material, &nd  analytic expressions for the asymptotic behavior in real
inversely proportional to the number of frequency meshspace and imaginary time. Besides intrinsic interest, these
points® The scaling problem is further compounded if dia- can be directly exploited in electronic-structure calculations.
grammatic vertex corrections beyond tB&V approximation In the space-time method, for instance, an analytic treatment
are included. The design of more efficient implementations of the asymptotic tail on the imaginary time axis, in combi-
is therefore a pressing task. nation with a customized Gauss-Legendre grid, reduces the
In order to achieve a more favorable scaling, Rojas anchumber of mesh points where the Green function must be
co-workers recently proposed an algorithm based on an akvaluated numerically by one order of magnitdéié.show
ternative representation of the Green function in real spachere that the exponential fit proposed in Ref. 18 is only valid
and imaginary tim&?° This approach allows the calculation for systems with a finite band gap, however, while metals at
of the irreducible polarizability and the self-energy as simplezero temperature instead require an algebraic fitting function.
products rather than numerically expensive convolutionsThe second objective is to relate the decay constamisdb
Furthermore, it directly exploits locality, i.e., the fact that theto known system parameters. This is then used for a more
Green function decays to zero as its spatial or temporal amdetailed scaling comparison between the space-time ap-
guments move apart. As a result, with a fixed cutoff energyproach and conventional implementations.
this so-called space-time method only scales N&y°b, Due to the central role of locality in ™) methods®
where y denotes the exponential decay constant in realvithin density-functional theory, the spatial decay rate of the
space. Logarithmic terms are neglected. Under the assumpne-particle density matrix, which is a special element of the
tion that the frequency mesh maps one-to-one onto the relSreen function, has recently received some atterffiGh.
evant region of the imaginary-time axiscan there be iden- Physically, the nonlocality of the density matrix stems en-
tified with the inverse periodkgT in a finite-temperature tirely from the delocalized quantum character of the wave
formalism and with the exponential decay constant otherfunctions, while the Green function also describes the actual
wise. The locality of the Green function is a manifestation oftransport of particles. The results obtained for the density
the more general “nearsightedness” princifland due to  matrix can therefore not be generalized in a straightforward
destructive quantum interference in many-electron systemsway, although they are recovered here if the imaginary-time
While the behavior of the Green function in reciprocal argument approaches zero from below. Furthermore, the
space and the frequency domain has been analyzed in greate-particle density matrix contains no information about the
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behavior of the Green function on the imaginary time axis. the localization persists even if defects or surfaces break the
This paper is organized as follows. Section Il introducesperiodicity of the solicf® As the decay length of Wannier

the Green function in real space and imaginary time. In Sewrbitals is of the order of the interatomic spacing, only a
[Il an analytic solution for the homogeneous electron gas ismall number of terms contributes significantly to the sum
presented. | derive asymptotic formulas for real metals and3).
insulators in Secs. IV and V. The results are summarized in
Sec. VI together with a discussion. Atomic units are used IIl. THE HOMOGENEOUS ELECTRON GAS
throughout.

For the homogeneous electron gas, the hole part of the

Il. THE GREEN EUNCTION Green function is given by

The imaginary-time or thermal Green function is defined 1 » e (w7 .
2 == [ @gkr—
ad Giri= 5[ e Sk @
P\ — A= uN) 773t 1y o= (H—uN) 77
Gr.r';7) =0 (= n(e Nyl )e (meNm(r)) with e,= k2. The range of integration can be extended to
_@ —(A-uN)73 (H=uN)773 1o infinity, because the spherical Fermi surface is fully con-
O(7)(e yr)e AU tained inside the Brillouin zone. The angular integrals are
(1) straightforward and lead to

where /7(r) and ¢(r) denote the creation and annihilation

1 ] 7(Ek7/‘1’)7-
- i e
operator for an electron at The HamiltoniarH is modified g(r,n=-— f ke"“wdk. 7
by the chemical potentigl and the electron number operator 4mrJ e 1+e

N, the angular brackets indicate the thermodynamic averagehe remaining integral is most simply solved by closing the
and®(7) denotes Heaviside’s step function. Spin degrees otontour across the upper complex half-plane. The integrand
freedom are suppressed to simplify the notation. At finitehas relevant first-order poles atk, +i7y, with
temperature the real variable is restricted to— 8<7<0
with 8=1/kgT for the hole part and € 7< 3 for the elec- B \/7 >, 2
tron part, and the Green function is periodically repeated. Ki=NVut Vu'tof, (8)
Due to the additional antiperiodicitg(7)=—G(7+ ) it
suffices to examine the hole part. At zero temperature the n=\N—pu+ ‘/M2+w|2. 9)
period becomes infinite, however, and the properties of both
parts must be studied separately. Note that Refs. 9 and l&d the fermion Matsubara frequencies= (21 +1)x/p.
employ an alternative prefactor conventiGti r)=iG(— ) Evaluation of the residues yields the final result,
for the imaginary-time Green function at zero temperature,
which stems from analytic continuation in the time domain 1 &
rather than the frequency domain. g(r,m)=— e lz e " cogkir—w7), (10
For real materials it is convenient to rewrite the hole part -0
of the Green function in the form which explicitly shows the periodicity along the imaginary-
time axis. At finite temperature the Green function is essen-
g(r,r’;q-)=2 Gn(r,r';7), ) tially a superposition of (.axp'onentiqlly damped oscillat.ions,
n whose long-range behavior is dominated by lthed contri-
bution. For sufficiently smalll the chemical potential ap-
proximately equals the Fermi energy= %kﬁ . The damping
constants are given by,~w,/kg in this regime, and the
(3 Wwave vectors of the corresponding oscillations becdqe
~Kg . The overall decay constant is hence proportional to the
1 . temperature and given by= yo= wkgT/Kg .
Wi(r—=R)= Q—f e M Ryp(r)dk, (4) As the limit T—0 is nontrivial, the Green function at zero
. temperature is most simply calculated from E€) with a
step function instead of the Fermi distribution. The integral

Ga(r,r';7)= 2, Wo(r—=R)F(R—R’;1)W(r' =R,
R,R’

1 ) e (enc— w7 : .
—R''f)=— | ek®R-RY_____ 43 can be solved analytically and yields
F(R=R"7) QBJ € 1+ elenk—m)B k= (5
and analogous for the electron part. H&dabels the lattice G(r,r)=— sin(ker) + - exp<kF_T - r_)
vectors, w,(r —R) indicates the Wannier orbitals corre- 27%rr 2(27|7])%? 2 27

sponding to a set of Bloch wave functiogsg,(r), and the ) )
integrals extend over the first Brillouin zone with volume pTHIT +erfi Ker—ir

Qg . Wannier orbitals are widely accepted to exhibit expo- W \/m '

nential localization. In addition to a rigorous proof for iso-

lated band$3 there is compelling numerical evidence to this For the electron part erfgf=1—erf(z) replaces erfif)
effect for the general case of composite baffdSrucially, ~ =erf(iz)/i. The limiting formulas are identical in either case

X | erfi (11
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and follow from the asymptotic representation of the error V. INSULATORS
function erf(z) in the complex plane. For—« the Green

: Temperature effects are negligible for insulators if the
function becomes

thermal energkgT is much smaller than the band gApAs
K K 1- K2 this condition is almost always fulfilled below the melting
F COSker) FTsin(k r (120  point, it suffices to examine the case=0. If no band
27%r? 27%r3 e crosses the chemical potential, thenFgllare spatially short-
ranged. Forr—0 the integral(5) has the straightforward
%olutionFn(R— R’;0)=6r r' . At finite imaginary times the
only significant contribution comes from the vicinity of the
. band edges. The energy dispersion can hence be replaced by
_ Sin(ker) _ cos(ker) (13 s harmonic approximation  |ep— u|~3A
2mrr  2mPker? +53; jki(m*);;'k;, wherem* denotes the effective mass
tensor at the top of the valence band for the hole part and at
the bottom of the conduction band for the electron part. The
range of integration may now be extended to infinity, &pd
IV. METALS is readily seen to be of Gaussian type. The overexponential
alloff implies that for insulators the asymptotic properties of

The explicit solution for the homogeneous electron ga he Green function in real space are determined by the Wan-
illustrates more general principles that also apply to real met: P Y

als. Bands above or below the Fermi level yield contribu-n!er prbitals, which are exponentially localized. In the yveak-

tions to the Green function analogous to the case of insulat-’Indlng case, where the band structure can be obtained b_y

tors, which is discussed below. They are short-ranged, s erturbation from that of the homogeneous electron gas, their
’ ' ' “decay rate is given byyxaA, where a is the lattice

that for|r —r'| oo the sum(2) is dominated by terms aris- constant! Many common semiconductors have gaps sub-
ing from partially occupied bands that cross the Fermi level. o y . : gap
Furthermore, the strong localization of the Wannier orbitaIsStantlally smaller than their bandwidth and are thus expected

L : . to fall into the weak-binding regime, e.g., for silicah
implies that the spatial decay properties of the relegnt >
are in turn determined bk, . If the homogeneous electron =1.15 eV(Ref. 26 as opposed t§(2m/a)°=5.1 eV. The

as is used for guidance, then the decay lengthfer so- proportionality factor is direction-depenc!ent but about unity,
gium with an a\?erage density,=3.99 (Rgf. Zgﬁgt room  S° that the decay length jl/may be estimated as 1.22 A,

temperaturd =298 K may be estimated as 85.8 A . In con- which is of the order of the interatomic spacing 2.35 A in

trast, the decay length of the temperature-independent War?lhcon' as expected, and compatible with numerical

. 4 . _ . . . . . _
nier orbitals is comparable to the interatomic spacing 3.72 Acalculatlonsz. In the tight-binding regime the Wannier orbit

in the bcc cell and more than an order of magnitude smaller"?1IS also decay exponentially, but the dependence of the

: . e ap is indeterminate and subject to details of the atomic
The high-temperature region Whe& becomes sufﬂqently go'f)ential.21 This case may applyJ for large-gap Mott-Hubbard
_sho_rt-_ranged such as _not to domln_ate the asym_pt(_)tlc behalﬁsulators like NiO but is less relevant in practice, because
ior is irrelevant for solid-state physics, because it lies abovefhe GW approximation anyway shows serious deficiencies
the melting point of the crystal lattice.
F, has the mathematical form of a three-dimensional Foufor such strongly correlated systertisThe falloff on the

. . i . . _imaginary time axis is exponential with a decay constant
rier transform and is long-ranged because of rapid oscilla-_ LA both for the electron and the hole part, because the

tions of the integrand in Ed5). Quantitatively, at finite tem- _ 2

perature the integrand falls from near unity to zero in af|n|te difference between the chemical potential and the band

narrow region around the Fermi surface. Its width is given byedges implies an incomplete cancellation of the prefactor
SkockgT/|Ven], where the gradient is taken at the Fermi SXP7).
level. Directional effects due to the anisotropic crystal struc-
ture are ignored here, and it is assumed that the energy dis-
persion is analytic and smooth on the scaleskf For suffi-
ciently small T the latter condition is always fulfilled. In this paper | have investigated the asymptotic properties
According to basic Fourier analysi§the extent of this rapid  of the one-particle Green function in real space and imagi-
variation is directly proportional to the exponential decaynary time. An analytic solution for the homogeneous electron
constant of the transform, so that sk for F,, and hence for gas shows the Green function as a superposition of damped
g. harmonic oscillations with a wave vector approachkggas

At T=0 the integrand changes qualitatively, because th@ —0. The damping;~exp(—yr—r’|) is exponential at fi-
Fermi distribution has a discontinuity at the Fermi surface.nite temperature but changes qualitatively to algebraic falloff
As the Fourier transform of a discontinuous function decaygj~|r—r’|~7 at T=0. While the thermal Green function is
algebraically rather than exponentiafiyboth the electron by definition periodic on the imaginary time axis with the
and the hole part of the Green function now assume th@eriod 28, it decays likeG~|7|~* when the periodicity is
asymptotic formg(r,r’;7)~|r—r’|~7 with >0. Their de- lifted at T=0. | have shown that these results also apply to
cay on the imaginary-time axis is likewise algebraicreal metals. In contrast, for insulators at zero temperature the
G(r,r';7)~|7|~% with x>0, because the exponential Green function decays exponentially lik6~exp(—y|r
exp(— ey ) in the integrand reaches the Fermi level and thus—r’|) in real space ang~ exp(—b|7)) in imaginary time.
exhausts the prefactor expf). The limiting formulas can be exploited in electronic-

Gg(r,m)~—

which decays algebraically rather than exponentially. On th
imaginary-time axis the Green function decays as

Gg(r,m~

for large positive or negative.

VI. SUMMARY
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structure calculations based on a space-time representatite appreciated if the electron-gas self-energy is applied to
and allow an analytic treatment of the long-range tails. Theeal materials. The problem is naturally solved by dldehoc
asymptotic behavior of derived propagators within a perturintroduction of a gap in the otherwise metallic spectriim.
bation scheme follows directly from the Green function. In  Finally, the generic dependencg<ksT/|Ven and b
particular, the self-energy in thé W approximation is the — 2ksT for metals as well ag<aA andb=3A for insula-
product of the Green functiof and the screened Coulomb tors can be used to assess the scaling of different algorithms

interactionW. In insulators screening is incomplete wht for self-energy calculations in th@ W approximation. If all
o : 9 Mplete other parameters remain fixed, then conventional reciprocal-
~1/e|r—r’| at large distances, wheteis the dielectric con-

- 4 ) space implementations scale lik¢/T? for metals at finite
stant, but the self-energy still decays exponentially in reatemperature andN*/A2 for insulators at zero temperature,

space because the Green function does. On the other harghereas the space-time method scales IN&T* and

for the homogeneous electron gas at zero temperatWe N2/A4, respectively. This difference in efficiency gain as the
~cos(e|r—r'[)/|r—r’|3, so that the self-energy only de- temperature or the band gap increase is an important factor to
cays algebraically. This distinct asymptotic behavior shouldbe taken into account for benchmarking purposes.
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