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Adatom density kinetic Monte Carlo: A hybrid approach to perform epitaxial growth simulations
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We describe an alternative approach to perform growth simulations that combines the kinetic Monte Carlo
(KMC) method with elements from continuum and rate equations. Similar to the KMC method it takes the
atomistic structure of the growing surface fully into account but is based on the adatom density rather than on
explicit trajectories of the adatoms. As will be demonstrated, this approach decouples the fast time scale of
adatom motion from the much slower time scale of changes in growth morphology. This decoupling allows a
reduction of the number of simulation time steps by several orders of magnitude. Based on a comparison with
the KMC calculation performance, reliability and limits of this approach are discussed.
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I. INTRODUCTION is that the effective parameters cannot be directly related to
the actual atomic parameters.

Epitaxial growth is a key technique in fabricating In MD simulations as input na@ priori information is
semiconductor-based electronic and optoelectronic devicdieeded and they provide detailed insight into microscopic
such as light-emitting dioded.ED’s), laser diodes, or high- Processes such as funneling and steérig deposition. But
electron mobility transistors. These devices consist of vertidué to limitations in computational power, this method is

S . : mostly restricted to very short simulation times of the order
cally stacked thin films that differ by the material, alloy com-

- doDi | of picoseconds, small simulation areas, and low tempera-
position, or doping. To employ quantum effects some Ofy,e5 Even new MD approaches that separate time scales

these structures are only a few atomic layers thick. For thee o atom-surface impact and adatom diffusion eyeres-
performancef/efficiency of such devices the quality of the in+tain only to very specific experimental setdipghere com-
terfaces between the different layers is crucial. Realistiplex multiatom diffusion mechanisms were found. For a re-
growth simulations could help to understand mechanisms akent review on accelerated molecular dynamics methods see
fecting the interface quality but also to identify optimum Ref. 4. These methods are important tools to identify all
growth conditions or suitable material combinations. revevant diffusion process priori and calculate their diffu-

A challenge to perform such growth simulations is thesion rates. However, so far they are computationally too ex-
large range of relevant length and time scales. The featurddensive to describe large systems consisting of several
interesting for device desigfinterface morphology, forma- 10'-10° atoms. Modeling crystal growth with the KMC
tion of nanostructurésare of the order of 1-10° nm and method allows one to cover experimentally relevant growth
the time to grow these structures is of the order of seconddimes and system sizes, since each event on the surface is just
The origin of these effects, however, lies in the atomic pro-described by a single quantity—the transition rate—rather
cesses on the surfa¢adatom adsorption, desorption, nucle- than b_y modeling th_e full reaction path including atomic ge-
ation, etc), which requires a resolution in the length scaleOmetrles and energies and the maopsuccessfilattempts

~10"! nm and in the time scale of 163 s 1. to realize it

Various approaches have been develobed to overcome t In the present paper we will derive a method that bridges
PP P }fﬁe gap between the different categories of methods allowing

s_calmg_ problem. In ger_1_eralz methods _to perforr_n grOWthfast growth simulationgsuch as(i) and (ii)] but using as
simulations can be classified in three main categofigsate input atomic processesuch as the KMC methgdAn ad-
equationggiving only global information such as island den- \antage of this approach is that the input parameters are
sity or adatom coveragevithout spatial resolutionjii) con-  jgentical to those used in the KMC method, thus allowing a
tinuum equations, which describe the surface morphology ogjrect comparison between the two methods. Thus, it can be
a mesoscopic scale, aiiil) computer simulations, describ- girectly applied to any KMC method, in particular, it can be
ing the full atomistic structure of the growing surface, SUChincorporated also into novel MD-based KMC methddse,

as molecular dynamicéMD) or the kinetic Monte Carlo e.g., Ref. 5 that apply the dimer methotsee Ref.  to
(KMC) simulation. All of these methods had a tremendouseficiently calculate all kinetic parameters.

effect on our understanding about various aspects of growth.

However, all of them have certain deficiencies when applied Il. METHOD
to the above-mentioned topics: The first two approadhes |
and (i) do not really bridge the large range of length and A. General

time scales but work exclusively on a mesoscopic scale by In order to describe growth we must in principle follow
using effective parameters. A problem with these approachee trajectory of each individual atom starting from the ad-
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Here, P,(t) is the probability of finding the system at tinhe

in configurationn, and w,._, is the transition rate to go
from configurationn to n’. For a typical growth simulation
these transitions involve adsorption, desorption, diffusion,
and nucleation.

E, bl

B. Kinetic Monte Carlo method

The most common approach to solve the above master
equation for growth simulations is the kinetic Monte Carlo
FIG. 1. One-dimensional potential energy surf@€S. E;'*1  method:’~**The main idea there is to start from a configu-
is the energy barrier that one adatom has to overcome to hop frof@tion ng, calculate the transition probability, ., for all
sitei to sitei +1. possible events, and select a new configuration by using a

) ) ~ random number 4.4 in the interval between 0 and 1. Simi-
sorption on the surface over the motion on the surface until ifarly, the time for this event can be calculatecby
eventually gets incorporated or desorbed. In general, all in-

formation necessary to get this information can be obtained INCF 100

by calculating the potential energy surface an atom experi- At=— —2¢ 3)
ences on a realistic surface. Realistic means here that the > W,

surface has various structural features such as surface steps, ' 0

kinks, and facets. In principle, such a potential energy sur- _ ] )

face (PES can be calculated based on first-principles total?’ funs over all neighbor configurations of. The above
energy calculationtsee, e.g., Ref.)7Figure 1 shows a sche- procedure is Subsequently repeatgd _and one directly obtains
matic example of such a PES for two terraces separated byW the growing surface evolves in tinmgt). _
surface step. The site in front of the step has a higher coor- A Problem with the KMC method is that with increasing
dination (the atom can form more bonds with the surface 9rowth temperature it becomes exceedingly expensive. The
and is thus energetically more favorable than the adsorptioff@son becomes obvious by inspecting EQ—the transi-
sites (local minima in the PESon the flat surface. In the tion probability increases exponentially with temperatilire
following we assign each of these minirfedsorption sites Since the transition probability is inversely proportional to

an indexi. To move the atom from one stable sit® another  the time step, Eq(3), the number of time steps and thus the

sitei+1 a barrier of heighE‘d'iiﬁ“ has to be overcome. For _computational effort_ to follow the system over a fixed titne
dncreases exponentially.

further discussion we will assume that all barrier heights ar : ; o .

much larger than the thermal energy of the adatom. This 10 discuss this behavior in more detail let us be more
approximation is expected to be well fulfilled, since previousSPecific and consider a characteristic KMC simulation. To
theoretical and experimental studies showed that diffusioff@lculate the diffusion barrier we use a simple linear bond
barriers on semiconductor surfaces are of the order of a fefgUtting model:
tenths of an eV up to a few é/Under these conditions

transition state theory applies and the transition rate for an

adatom jump from sité to i +1 is given by'°

Egii '=Eo+nE. (4)

Here,E, is the energy of an atom on the free surfagg,is
g+l the binding energy the system gains when forming a bond,

Wi_jsq=T; i+1eXD< _ —diff ) (1) andn is the number of neighbors. Specifically, we &&f

' kgT =1 eV andE,=1 eV. We further use a surface where the

Here, the prefactoF is called attempt frequency and can be adsorption site_s_ are arranged on a square lattice. Periodic

directly calculated from total energy calculation&is the ~Poundary conditions are assumed and the size of the surface

temperature anklg the Boltzmann constant. unit cell consists of 108100 sites. Further, a flux of 1

To describe surface growth we have not only to follow amonolayer(ML)/s and a total simulation time of 0.1 s have
single atom but an ensemble of atoms. Let certain configu?€€n assumed throughout.

ration in this ensemble be. As for the individual adatom Table | lists the resulting diffusion mean free path per
each possible configuration is given by a minimum in the@tom and the average time between two diffusion events for

total energy surface and neighboring minima are separatdg§mMpPeratures varying between 500 and 1150 K. As expected,
the number of jumps an atom undergoes before it is incorpo-

rated increases exponentially and the time step between two

jumps decreases exponentially. When looking at these num-
bers one should keep in mind that to perform a growth simu-
lation we are not really interested in following the trajectory
for each individual adatom but eventually only in changes in
the growth morphology, i.e., if a new nucleus/island is

:z [Wor o Prr (1) =W,y Po(D)]. 2) formed on the surface or an adatom attaches to an existing
{n'} island. The number of these events, however, is much

by a barrierEQ;f?'. Using these assumptions, performing a
growth simulation requires us to find the sequence of con
figurations starting from an initial on@vhich corresponds to
the initial surfacg Mathematically, this is described by a
master equatiof ™6

IPx(1)
ot
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TABLE I. Diffusion mean free pathdyep) per atom and aver- Here, Pq(i1,iz,i3, .. ..in,t) is the probability for finding
age diffusion time step\tyy, for temperatures ranging between the adatoms in the configuratioi (i, ,is, ... ,iy) at timet
500 and 1150 Kd,, is the distance between nearest neighbor sitesgng P«(t) is the probability for finding the surface in the
The results have been obtained employing KMC on aXl000  configurationS at time t. The advantage of this separation is
matrix (for more details see text that all the fast eventévhich are related to small activation
barrierg, are inP,q4, and all the slow eventén which, how-

Temperaturdk) durp/atom (@) Atgir (5) ever, we are interestgdre inPg. For the typical time scale
500 30 3.%10°° for growth, Atgowin, the surface does not change. This
750 470 2. K108 means thaPs=1 and we can take it out of the master equa-
1000 1800 5610 7 tion. Then, the master equation can be simplified. To see this,
1150 60000 1.%10°8 let us first formally rewrite the probability function:

Pn(t)zp(il,iz,i3,...,iN,t). (8)

smaller and of the same order as the number of adsorbagithe adatoms do not interact, the probability function can be

adatomd(i.e., of the order of one per atgnfor the specific  factorized in single adatom probability functions:
simulation we have performed here, the total number of at- ,

oms reaching the surface is approximately 1000: The averageP™"(i,is,is, - . . in,t) =p1(i1,t)pa(iz,t)- - pn(in,t)
time step between two growth events is thus of the order of

10 * s. As can be seen from Table I, for higher temperatureS,q the master equation, E@), decomposes into a set of
the time scale for the growth everitghich we are eventually single adatom equations:

interested ih becomes orders of magnitude larger than that

of the diffusion events. The question we will address in the  gp_(i,t) _ _
following is whether and under what conditions it is possible  —_—= E{s [Wit5-ipali+0,t) =Wy spalit)].
to separate the two time scales. (10)

C. Adatom-probability kinetic Monte Carlo method Here,w; ., ;_.; is the transition probability of an adatom to go
) . ) . from sitei+6—i and § is an index that goes over all
In the following we will therefore derive an alternative noqrestneighbor sites. The time evolution of each single

approach to the KMC method for solving the master equaygatom probability can then be calculated as follogisit is
tion. To do this we will perform two steps: First, we derive a%ero before adsorption of adatomat time t9es: (ii) it is

method that no longer calculates the complete trajectory o @’

each adatom but rather the probability(i,t), i.e., the prob- it299=24 . (12)
. . A LE . . pall, @ i qqd

ability to find adatoma at timet on sitei. We will call this

method the adatom-probability KMC procedufeP-KMC). where&i,iadS is the Kronecker symbol anidythe adsorption

Ina se_c_ond step we will no longer consider each in_dividualsite_ Then,(iii) it is determined by Eq(10), and (iv) after
probability but only the total adatom density(i.t)  desorption or attachment it becomes zero again.
=2 4p4(i,t). This method will be called the adatom-density  To implement and discuss this method we make the fol-

KMC procedure(AD-KMC) and is described in Sec. IID.  |owing assumptions: We choose the adsorption time deter-
In order to separate adatom motion from surface morpholminjstically

ogy we formally rewrite the index describing a specific
configuration in two parts(i) the indexS describingthe tade aAtgrowth, (12
surface without the adatomsand (ii) the index
(1,2, ... ,in), Which gives the position of the adatoms on
the surface:

whereAtg o= 1/L°F is the average time for an adsorption/
growth eventF is the flux of incoming particle¢in ML/s)
andL? is the total number of adsorption sites on the surface.
n—{(i1,iz ...Jin),Sh (5)  The transition probabilitie§V;_. 5 are chosen identical to
those used for the KMC simulationNsee Sec. I B The
i, gives the site index of theth adatom, and the total num- one-particle equation, Eq10), is solved by a finite differ-
ber of adatoms i8l. In the following we describe the surface ence scheme:
in a solid on solid SO model by simply giving the height
on each lattice site: Ipa(1,1)  pa(i,t+At)—p,(i,t)
at At '

(13

S={hy,hy, ... hy}. (6) . o . . o
A typical choice isAt=Atg o, 1-€., the simulation time
M is the number of lattice sites. An extension to generalstep is no longer limited by the diffusion time stey g,
surface structures is straightforwalelg., by giving directly ~ which is orders of magnitude smaller thag,., (see Sec.
the atomic coordinate$R;}s defining the surfaces). The 11 B).

probability function then looks like To discuss the time evolution in more detail let us con-
sider a single adatom in front of a surface step. This is shown
Pa(t)=Paq(iq,in,ig, ... in,1)Pg(t). (7) in Fig. 2 for a temperature of 500 K and in 0.03 s time
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(@) t=00s. (b)  t=0.006 s.
P o

(¢) t=0.012s.

) t=0.024s. (f) t=0.03s.

FIG. 2. Time evolution of the adatom density for an adatom
close to a step. The snapshots are taken betweéh00 s andt b
=0.03 s forT=500 K. Fort>0 the adatom density has been mul-
tiplied by an arbitrary scaling factor for ease of viewing. 30

40 0

intervals on an array of 4040. Att=0 s the adatom density =~ FIG. 3. Surface beforéleft) and after(right) a collapse of the

is unity at the deposition site and zero everywhere Ese adatom density. The collapse is performed at equal time intervals of
Eq.(12) and Fig. Za)]. In the next two time steps the adatom At=0.01 s. The simulation has been performed at a temperature of
density spreads out on the surfdéégs. 2b) and Zc)] and T=500 K. The adatom density has been scaled for ease of viewing.

eventually reaches the step. Since the probability to move |; <hould be noted that the collapserist a deterministic

away from the step is low—the barrier for jumping from the ,.,cesqnyt stochastic in analogy to a measurement process

fstep tﬁ the terrace rils 2 eV compared LO 1 eV for the jumpyt 5 quantum mechanical wave function. To be more specific,
rom the terrace to the st¢pee Eq(4)]—the adatom density ot 5 again consider the evolution of the single-particle den-

accumulates at the step edgegs. 2d) and 2e)]. Inthe last gy of an adatom in front of a surface step. This is shown in
figure of this sequence the initial peak at the deposition sitg;jg 3 The simulations were done at a temperature of 500 K
completely disappeared and almost all densities are conce nd the collapse took place after a time interval Xof
trated along the step edge. We note that the density correct 0.01s. As can be seen the adatom attaches to the step
describes all relevant processes: diffusion on the terrace, aly eaqy after three collapses/simulation steps. Using the
tachment and detachment at steps, and diffusion along they,~ method, where each individual jump is described, a
step. _ much larger number of time steps would have been required
It is important to note that the knowledge of the smgle—(fOr the specific case shown in Fig. 3, approximately 800

particle densitie$>a(i,_t) allows us to obtain_the positi_on of steps, i.e., this approach indeed allows us to dramatically
the adatom at each time. To this end the single-particle def, 4, ce the number of time steps

sity has to be collapsed on a single site, which can be done | o ;5 now generalize this method to take also interac-
by choosing a random numbpfa,gin the intervall0,1] and  jong petween adatoms into account. In the following we will

selecting the sité such that assume that only adatoms on nearest-neighbor sites interact
with each other. This would be, e.g., the case if adatoms on
! I+1 neighboring sites form a strong chemical bond so that long-
2 Palil,)=Tand= > palib). (14  range interactions due to elastic and/or electrostatic interac-
=0 =0 tions can be neglected. For the simplified energy functional
we use here, Eq4), this assumption is always fulfilled.
Note that the integrated density is Since interaction is restricted between adatoms on neigh-
boring sites it means that once an interaction occurs, a
L2 cluster/nucleus consisting of two or more adatoms on the
;azz p (i, =1 (15) surface is formed. Depe.n(.:iing on the growth parameters
i=o (temperature, fluxgghe minimum size of such a cluster to
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form a stable nucleus may va(gee, e.g., Ref. 31In order  with temperature at high temperatures, an adatom quickly
to keep the following discussion simple, we assume that alexplores a large part of the surface and gets quickly trapped
ready a nucleus consisting of two atoms is stable and wilbn energetically favorable sitesuch as surface steps or
result in the formation of an island. A generalization to largerkinks). Under these conditions the total adatom density and
critical island sizes is straightforward and will be describedthus the nucleation rate will be small. In other words, the
elsewheré? one-particle density will be rather delocalized and will

Based on the above discussion, adatom-adatom interaquickly “lose” the information about the initial adsorption
tions can be described by including nucleation events in thsite [see, e.g., Fig. @)]. In the limit of infinite diffusivity
noninteracting adatom-adatom system. Following Ed) each adatom can explore the entire surface, i.e., the single-
the nucleation probabilitp, 4(i,j,t) of adatome to nucle-  particle density will be infinite and describe thigermody-
ate with adatonmB on neighboring sites andj at timet can  namic probability to find an adatom on a certain site. This
be calculated from the single-particle densitips(i,t), probability function is of course identical for all adatoms.
pp(i,t) by For conditions close to thermodynamic equilibrium the den-
sities are not identical but similar.

If the one-particle densities atat least in a local region
similar to each other and largely delocalized, the adatoms
can be described by thetal adatom density

pa,ﬁ(i !j vt):; Wi+5i—>ipa(i + 5i vt)pB(J vt)

+ 2 Wi palipg(i+ 8.0, (16)
% p(i,)=2 pa(it) (19
6; and o; describe neighboring sites around sitesndj. ¢
To perform a growth simulation including adatom-adatomrather than by the complete set of single-particle densities.
interactions is then straightforward and very similar to solv-Using the same arguments as in the preceding section we
ing the noninteracting adatom-adatom system. The only difthen obtain a method called the AD-KMC method and that
ference is that in addition to solving E(L0) after each time completely avoids the calculation of the single-particle den-
step also all nucleation probabilitigs, 4(i,j,t) have to be sities. To keep the following discussion simple we assume
calculated. Similarly as for the collapse of the single-particleaggregated growth, i.e., once an adatom has been incorpo-
densities we perform also a collapse for the nucleation derrated it cannot be dislodged to become an adatom again. The
sity to decide whether and where a nucleation takes placequation describing the time evolution is similar to EL0),
We therefore calculate the nucleation time by (00
dp(l,t

=E§ [Wissoip(i+ 80 —wi it sp(i,0)]

In I'rand
nuc— :

Niot

Here, Ni= 3=, 4. iPa. (i, 1) is the total probability of a M 18) = Nl )+ F (L), (29

nucleation eventj(is restricted to be a nearest neighbor of except that nucleation, {i,t), attachmenth,(i,t) and ad-

i). If tycis larger than the simulation time stéfiyq,m, N0 sorptionF(i,t) are now explicitly included. For the further

nucleation event occurs. If, howevey,,. is smaller a nucle- discussion we will assume a constant and homogeneous flux

ation event is performed by applying a further collapse [F(i,t)=F]. Attachment is described by a deterministic

analogy to Eq.(14)] to select the pair of atomsa(and 3) event, i.e., it occurs once the adatom density atigitend at

and the nucleation sitésandj. On the site where the nucle- time ty is unity [p(ig,tg)=1]. If such an event occurs,

ation occurs the surface is updated, i.e., nan(i,t)zc?i,ioﬁt,to, i.e., the density on this site is reset to
zero. Also, the surface and thus the transition probabilities

S=(....hphy, =8 = i+ lhi+1, ). Wi, s around the attached atom are modified:

(18)
The method will be applied and discussed in Sec. III. S=(....h,..)=8=(...h+1,..). (2]

For a nucleation event on a terrace away from steps and
for realistic growth parameters E(L6) can be further sim-
While the method described in the preceding section sucplified. On a free terrace all transition rates are identical and
cessfully decouples the “fast” time scale of the diffusion given by the surface diffusion constabt
events from the “slow” time scale of the growth events, it is
numerically still very expensive. The most expensive com- Wiwﬁi:D/IS. (22
putations are those of the single-particle density and of the
nucleation probability(which is a two-particle density and Here, |, is the distance between two nearest-neighbor sites.
scales thus with the square of the number of adatoms If we further assume that the adatom density around the
In order to discuss further optimizations let us considemucleation site is approximately constant, we get the prob-
the case of high growth temperatures, which is particularlyability that a nucleation event takes place on siétimet as
relevant for realistic growth simulations. Since the diffusivity
(the jump probability of an adatom increases exponentially Prudi,t)=DIGp?(i,1), (23

D. Adatom-density kinetic Monte Carlo method
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which is a well-known relation often applied in rate O KVC
equations’ To calculate the nucleation rate,(i,t) needed AD-KMC
to solve Eq.(20) we assume: —  RE

— t >
Mo =Pt = [ S prindt (29 0"
t— tgrowth ! N
The replacement of a localized nucleation term by a delocal-
ized term is well justified for the high-temperature conditions
assumed here and avoids the formation of localized regions 10°

with negative adatom density. For the modification of the
surface and the transition states the nonaveraged nucleation
term according to Eq.23) is used. As can be seen from the
above equations all quantities entering EBO) are either
explicitly given (like the fluxF) or can be directly calculated ~ FIG. 4. Island densityN obtained with AD-KMC and KMC
from the total adatom densipy(i,t). Thus, in contrast to the methods as a function &/F between 16and 16 at a coverage of
AP-KMC method the explicit calculation of single-particle 6=0.1 ML. The solid line(RE) is an analytic approximation based
densities and two-particle nucleation terms is avoided, makon rate equations and a critical nucleus size of two at(zes text

ing the AD-KMC method computationally much more effi- , ) ,

cient. Only for high temperatures do we expect the number, EMPIOYing rate equations the slope of this curve can be
of adatoms on the surface to be low, so the number of equaiescribed analytically and is given by
tions to solve(one for each adatoywill be small and the (D) —il(i+2)

10° 10 10° 10° 10° 10® 10° 10
DIF

AP-KMC method can be almost as fast as the AD-KMC
method. Applications of the method and a discussion about F

the validity of the underlying assumptions will be given in Here,N is the island density, anidgives the critical nucleus

the next section. size, i.e., to be thermodynamically stable against dissociation

a nucleus must consist of at ledastatoms. Since for our

system already a dimer forms a stable nuclésasl, the

- . nucleation density should follow a scaling law with power
TO. check the validity of the single and total agiatom —1/3. This scaling relation has been also included in Fig. 4.

density-based approaches we performed an extensive COBince an analytical solution of the proportionality factor in

parison W.'th th? KMC method. For all three approaches[he scaling relation, Eq25), is not known it has been fitted
identical simulation parameters have been chosen: The simys . "\ \1c result forD/F = 10°. As can be seen the scaling

lations have been perfqrmed on a square lattinesh SIZ€ © yolation correctly approximates the slope of the KMC and
80x 80), and the transition rates are calculated according MAD-KMC results except for very lowD/F ratios. Under

. _ 3 _1 . . .
Eq. (@) using a prefaCtO£,§4lol S and_ the d_|ffu5|on bar- these conditions the adatom diffusivity is negligible and nu-
rier according to Eq(4).~""The flux of incoming adatoms clei are no longer formed by two adatoms moving together

is F=1 ML/s. The total simulation time is 0.1 s, i.e., a total ; -
. ; ! ! but by adsorption of an adatom next to an existing adatom.
of 0.1 ML is deposited on the surface. We further assume y P ¢

that already a dimer forms a stable nucleus. This is explicitly
enforced in the KMC calculations and allows us to approxi-
mate the nucleation in the AD-KMC simulation by Eg3). Having verified that the nucleation density is correctly
The growth temperature has been varied over a large rangkescribed we will now focus on spatial information. To this
of temperaturesirom 500 to 1000 K. In order to analyze the
results we have calculated and compared various statistical 0.7 Eﬂjﬁﬂ:"jun
guantities such as island nucleation density, island size dis- % -Dcu

tribution, and island shape. 0.5 uf. . o KMC

(25

IIl. RESULTS FOR THE SUBMONOLAYER GROWTH

B. Island size distribution

A. Island nucleation density

The first quantity that will be discussed is the island

0.3

ns,’/0

[m]

%

= AP-KMC

nucleation density, which is simply the number of islands

formed on the surface. Rather than using directly the tem- 0.1
perature as a variable we use the ratiddfT)/F as a free
variable to allow a direct comparison with previous studies
(see, e.g., Ref. 25The calculated island nucleation density
as function ofD/F is shown in Fig. 4. As can be seen, the  FiG. 5. Island size distribution obtained from KMGilled
AD-KMC and KMC methods give virtually identical results: squares and AP-KMC (empty squarésmethods forT=630 K,
With increasingD/F ratio, the island density rapidly de- D/F=10f, and with a coverage df=0.1 ML. Under these condi-
creases. tions fractal islands are formddee Fig. 7.
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T=1 K
1 » AD-KMC compact islkand 000
o KMC fractal island 80
0.8 = AP-KMC fractal island
g . B, o, — Amar fit 60
gO06 5
c o Dﬂ: 40
0.4 DD: Cio
, i 20
02
o Qi:m% 0
i 5 E““Gmnm~3 0 20 40 60 80 0 20 40 60 80
S/S,, T=1100K

FIG. 6. Island size distribution as obtained by the KN&npty
squarey AP-KMC (filled squares and AD-KMC (diamond$
methods forT=630 K and a ratid/F = 10°. The solid line is the 0
universal scaling relation Eq26), as given in Ref. 25.

40
purpose we have calculated the island size distribution. Pre
vious studie® addressing this quantity showed that over a 20
large range of fluxes, temperature, and diffusion barriers the

80

60

40

20

island size distribution approximately follows a universal
scaling law:

ns:Tgi(S/Sau)-

av

(26)

Here, ng is density of islands of sizs, s, is the average
island size, andj;(u) is a scaling function with the critical
nucleus size. Based on scaling laws Amar and F&mijgve
an analytic fit for the scaling functiog;(u):

gi(u)=Cu'exp( —ia;ut?), (27)
Here,a; andC; are determined by
U((i+2)a) a
m*('ai) , (28
B (iai)(i+l)ai
CTar ) 29

I' is the Gamma function.
As a first comparison between KMC and AP-KMC meth-

ods let us consider the island size distribution. A temperatur
T=630 K has been chosen and the results are shown in Fig;
5. At this temperature both methods show the formation o

fractal islands. The agreement is excellent, demonstrating t
accuracy of the AP-KMC method. Figure 6 shows the islan

9

(a) (b)

40 80 40 80 40 80

FIG. 7. Example of a growth simulation applyit@ KMC, (b)
AP-KMC, and(c) AD-KMC methods for 630 K.

0

20 40 60 80 0 20 40 60 80

T=1200K
80

60

40

20

0 20 40 60 80 0 20 40 60 80

FIG. 8. Comparison of the island shape in KMIEft) and AD-
KMC (right) simulations for temperatures ranging from 1000 K to
1200 K. Simulations have been performed on &80 matrix.

size distribution for all three approaches. A total of 45 runs
on a 300< 300 matrix has been performed to obtain reliable
statistics. As can be sedsee also Fig. bthe island size
distribution as calculated by KMC and AP-KMC methods is
identical within the statistical error bars. However, the AD-
é(MC method exhibits rather large deviations: The maximum
larger and shifted towards larger island sizes. Also, the
istribution function is narrower than that for KMC and AP-
MC methods. An interesting behavior we obtain from Fig.
is that the asymptotic fit Eq27) describes the KMC and
AP-KMC results only rather poorly. This is not too surpris-
ing since these results are not yet in the asymptotic scaling
limit of very large D/F. Interestingly, however, there is good
agreement between the AD-KMC results and this asymptotic
expression.

In order to understand this puzzling behavior we have
analyzed in more detail the morphology and shape of the
islands. Figure 7 shows example surfaces for each of the
three approaches. As can be seen both KMC and AP-KMC
methods exhibit fractal growth, indicating that the flux ratio
chosen here corresponds to rather low temperatures. The
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At=10"% At=6.7 10" 801
60f
4071 E
0 20 40 60 80
At=510"s At=3.310"s 20t
ot ,/
0 20 40 60 80

FIG. 10. Density plot of the adatom density. Dark regions mark
surface areas with low density, bright regions those with high ada-
tom density. The island borders are easily visible by a bright rim
due to the enhanced adatom density. The dark regions around the
islands are adatom-depleted ar¢he adatoms have been captured
by the islands The density has been obtained from an AD-KMC
At=2.5 10% At=1.7 10% calculation withD/F = 10°.

show that with increasing temperature the deviations from
the equilibrium shapéwhich is a square for the parameters
and lattice chosen herbecome smaller. Only for the lowest
temperature, where the KMC method shows the formation of
fractal-like structures, the AD-KMC method gives islands
too compact as already found for the low-temperature case.
We can therefore conclude that for high temperatinédeere
the KMC method becomes exceedingly expensthe AD-
0 20 40 60 80 0 20 40 60 80 KMC method is an efficient and accurate tool. Let us now
check the sensitivity of the AD-KMC method to the choice
~ FIG. 9. AD-KMC simulations forT=1100 K with different  of the discrete time stefit. This time step determines after
time stepsAt=10"°~1.7x10"*s. which time the adatom density is updated according to Eq.
(20). For the AD-KMC results af=1100 K in Fig. 8 we
AD-KMC method shows a very different shape: islands areused a time stept=6.7x10* s. The typical growth time
not fractal but more compact. The obvious failing of thescale for this simulation is\tguw~1.6X10"%s, so the
AD-KMC method is related to the fact that to derive this time stepAt is roughly a factor of 2 smaller thalitg.oym. In
scheme we assumed that the system is close to thermodig. 9 we show AD-KMC simulations with the same growth
namic equilibrium, i.e., temperatures are high enough to reParameters, but withit ranging between 10 and 1.7
alize delocalized adatom densities. Based on the discrepancyl0 S As one can see, the simulations with smaller time
in the island size distribution, but also in the island shapestepsAt=5X10""-1.7X10"" s do not sensitively depend

(see Fig. 7 the temperature chosen here is much too low, UPONAt. However, for a larger time step\¢=10"° s) the
number of islands is increased. The reason is that directly

after a nucleation event the nucleus grows very quickly to a
C. Island shapes large island. In order to describe this process correctly the

Let us now focus on a comparison of the different growthtime step must be chosen small enough to resolve the process
simulations at high temperatures. The calculations of the iscorrectly. In the case considered here we find that the time
land size distribution with reliable statistics at high tempera-Step should be smaller than 1/2 of the growth time step
tures is computationally rather expensive and we will there{At=3Atgqu . If it is chosen larger, the adatom density in
fore focus on a discussion of the island shapes. Figure € vicinity of the island is too large, leading to an enhanced
shows characteristic surfaces as obtained from KMC anducleation.
AD-KMC simulations for temperatures between 1000 and
1200 K. For temperatures above 1100 K the agreement is
excellent: Both methods show compact islands with similar ~An important quantity to analyze in growth simulations is
features such as the density of kinks. Also, both methodshe capture zone. The capture zone of an island defines the

D. Capture zones
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region around an island where adsorbing adatoms on thgimulations(such as, e.g., the level set methds that it is
average diffuse to that island and are incorporated there. Adirectly linked to the microscopic structure and kinetics. This
interesting feature of the density-based KMC methods deallows, e.g., a direct comparison between KMC and density-
scribed in this paper is that they give direct insight into thebased KMC simulations by using identical parameters. These
capture zones. As an example let us discuss Fig. 10, whictests show that for conditions far away from thermodynamic
shows a characteristic adatom density as calculated by theguilibrium (fractal growth the adatom density for each ada-
AD-KMC method. Clearly visible are the adatom-depletedtom (AP-KMC) has to be calculated. For high temperature
regions(dark areaparound all islands, which mark the cap- close to thermodynamic equilibriutwhere the conventional
ture zones. From the picture it becomes also clear that sonteMC method becomes numerically exceedingly expensive
capture zones coales¢these islands compete for the sameonly the total density of all the adatoms is needéd-
adatoms and will grow more slowlywhile others are open KMC). At these conditions, island nucleation density, island

to higher-density regiong&hose islands will grow fastgr size distribution, and shape are correctly reproduced. From a
numerical point of view the density-based approach has a
IV. CONCLUSION number of advantages. Numerically, the main effort is in

. ) . ] solving a diffusion equation, which has been extensively
We have introduced density-based KMC simulations thakiydied and for which efficient tools exige.g., multigrid

allow for an efficient separation of the fast time scale for thescheme@). Also in contrast to the KMC method where do-
adatom kinetics from the much slower time scale describingain decomposition poses a severe problem for paralleliza-

changes in the surface morphology. In contrast to convenon, the latter is straightforward for a diffusion problem.
tional KMC methods, where the characteristic time step is

that of an adatom jump, the characteristic time step for the
approach considered here is that of a growth event. Thus,
particularly at high growth temperatures the number of simu- The project is financially supported by the EU TMR pro-
lation steps is reduced by orders of magnitude compared tgram “IPAM” under the reference number HPRN-CT-1999-
the KMC method. An interesting feature of our approach00040 and by Sfb 296. We like to thank C. Rat$tiCLA)
compared to alternative approaches proposed for fast growtior stimulating discussions.
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