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Adatom density kinetic Monte Carlo: A hybrid approach to perform epitaxial growth simulations
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We describe an alternative approach to perform growth simulations that combines the kinetic Monte Carlo
~KMC! method with elements from continuum and rate equations. Similar to the KMC method it takes the
atomistic structure of the growing surface fully into account but is based on the adatom density rather than on
explicit trajectories of the adatoms. As will be demonstrated, this approach decouples the fast time scale of
adatom motion from the much slower time scale of changes in growth morphology. This decoupling allows a
reduction of the number of simulation time steps by several orders of magnitude. Based on a comparison with
the KMC calculation performance, reliability and limits of this approach are discussed.
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I. INTRODUCTION

Epitaxial growth is a key technique in fabricatin
semiconductor-based electronic and optoelectronic dev
such as light-emitting diodes~LED’s!, laser diodes, or high
electron mobility transistors. These devices consist of ve
cally stacked thin films that differ by the material, alloy com
position, or doping. To employ quantum effects some
these structures are only a few atomic layers thick. For
performance/efficiency of such devices the quality of the
terfaces between the different layers is crucial. Reali
growth simulations could help to understand mechanisms
fecting the interface quality but also to identify optimu
growth conditions or suitable material combinations.

A challenge to perform such growth simulations is t
large range of relevant length and time scales. The feat
interesting for device design~interface morphology, forma
tion of nanostructures! are of the order of 102–103 nm and
the time to grow these structures is of the order of secon
The origin of these effects, however, lies in the atomic p
cesses on the surface~adatom adsorption, desorption, nucl
ation, etc.!, which requires a resolution in the length sca
'1021 nm and in the time scale of 10213 s21.

Various approaches have been developed to overcom
scaling problem. In general, methods to perform grow
simulations can be classified in three main categories:~i! rate
equations~giving only global information such as island de
sity or adatom coverage! without spatial resolution,~ii ! con-
tinuum equations, which describe the surface morphology
a mesoscopic scale, and~iii ! computer simulations, describ
ing the full atomistic structure of the growing surface, su
as molecular dynamics~MD! or the kinetic Monte Carlo
~KMC! simulation. All of these methods had a tremendo
effect on our understanding about various aspects of gro
However, all of them have certain deficiencies when app
to the above-mentioned topics: The first two approaches~i!
and ~ii ! do not really bridge the large range of length a
time scales but work exclusively on a mesoscopic scale
using effective parameters. A problem with these approac
0163-1829/2003/68~15!/155429~9!/$20.00 68 1554
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is that the effective parameters cannot be directly related
the actual atomic parameters.

In MD simulations as input noa priori information is
needed and they provide detailed insight into microsco
processes such as funneling and steering1,2 of deposition. But
due to limitations in computational power, this method
mostly restricted to very short simulation times of the ord
of picoseconds, small simulation areas, and low tempe
tures. Even new MD approaches that separate time sc
~e.g., atom-surface impact and adatom diffusion events! per-
tain only to very specific experimental setups3 where com-
plex multiatom diffusion mechanisms were found. For a
cent review on accelerated molecular dynamics methods
Ref. 4. These methods are important tools to identify
revevant diffusion processa priori and calculate their diffu-
sion rates. However, so far they are computationally too
pensive to describe large systems consisting of sev
104–105 atoms. Modeling crystal growth with the KMC
method allows one to cover experimentally relevant grow
times and system sizes, since each event on the surface i
described by a single quantity—the transition rate—rat
than by modeling the full reaction path including atomic g
ometries and energies and the many~unsuccessful! attempts
to realize it.

In the present paper we will derive a method that bridg
the gap between the different categories of methods allow
fast growth simulations@such as~i! and ~ii !# but using as
input atomic processes~such as the KMC method!. An ad-
vantage of this approach is that the input parameters
identical to those used in the KMC method, thus allowing
direct comparison between the two methods. Thus, it can
directly applied to any KMC method, in particular, it can b
incorporated also into novel MD-based KMC methods~see,
e.g., Ref. 5! that apply the dimer method~see Ref. 6! to
efficiently calculate all kinetic parameters.

II. METHOD

A. General

In order to describe growth we must in principle follo
the trajectory of each individual atom starting from the a
©2003 The American Physical Society29-1
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sorption on the surface over the motion on the surface un
eventually gets incorporated or desorbed. In general, all
formation necessary to get this information can be obtai
by calculating the potential energy surface an atom exp
ences on a realistic surface. Realistic means here tha
surface has various structural features such as surface s
kinks, and facets. In principle, such a potential energy s
face ~PES! can be calculated based on first-principles to
energy calculations~see, e.g., Ref. 7!. Figure 1 shows a sche
matic example of such a PES for two terraces separated
surface step. The site in front of the step has a higher c
dination ~the atom can form more bonds with the surfac!
and is thus energetically more favorable than the adsorp
sites ~local minima in the PES! on the flat surface. In the
following we assign each of these minima~adsorption sites!
an indexi. To move the atom from one stable sitei to another
site i 11 a barrier of heightEdiff

i ,i 11 has to be overcome. Fo
further discussion we will assume that all barrier heights
much larger than the thermal energy of the adatom. T
approximation is expected to be well fulfilled, since previo
theoretical and experimental studies showed that diffus
barriers on semiconductor surfaces are of the order of a
tenths of an eV up to a few eV.8 Under these conditions
transition state theory applies and the transition rate for
adatom jump from sitei to i 11 is given by9,10

wi→ i 115G i ,i 11expS 2
Ediff

i ,i 11

kBT D . ~1!

Here, the prefactorG is called attempt frequency and can
directly calculated from total energy calculations.T is the
temperature andkB the Boltzmann constant.

To describe surface growth we have not only to follow
single atom but an ensemble of atoms. Let certain confi
ration in this ensemble ben. As for the individual adatom
each possible configuration is given by a minimum in t
total energy surface and neighboring minima are separ

by a barrierEdiff
n,n8 . Using these assumptions, performing

growth simulation requires us to find the sequence of c
figurations starting from an initial one~which corresponds to
the initial surface!. Mathematically, this is described by
master equation:11–16

]Pn~ t !

]t
5(

$n8%

@wn8→nPn8~ t !2wn→n8Pn~ t !#. ~2!

FIG. 1. One-dimensional potential energy surface~PES!. Eb
i ,i 11

is the energy barrier that one adatom has to overcome to hop
site i to site i 11.
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Here,Pn(t) is the probability of finding the system at timet
in configurationn, and wn8→n is the transition rate to go
from configurationn to n8. For a typical growth simulation
these transitions involve adsorption, desorption, diffusi
and nucleation.

B. Kinetic Monte Carlo method

The most common approach to solve the above ma
equation for growth simulations is the kinetic Monte Car
method.17–19 The main idea there is to start from a config
ration n0, calculate the transition probabilitywn0→n8 for all
possible events, and select a new configuration by usin
random numberr rand in the interval between 0 and 1. Sim
larly, the time for this event can be calculated by20

Dt52
ln~r rand!

(
n8

wn0→n8

. ~3!

n8 runs over all neighbor configurations ofn0. The above
procedure is subsequently repeated and one directly ob
how the growing surface evolves in timen(t).

A problem with the KMC method is that with increasin
growth temperature it becomes exceedingly expensive.
reason becomes obvious by inspecting Eq.~1!—the transi-
tion probability increases exponentially with temperatureT.
Since the transition probability is inversely proportional
the time step, Eq.~3!, the number of time steps and thus th
computational effort to follow the system over a fixed timet
increases exponentially.

To discuss this behavior in more detail let us be mo
specific and consider a characteristic KMC simulation.
calculate the diffusion barrier we use a simple linear bo
cutting model:

Ediff
i ,i 115E01nEb . ~4!

Here,E0 is the energy of an atom on the free surface,Eb is
the binding energy the system gains when forming a bo
and n is the number of neighbors. Specifically, we setE0
51 eV andEb51 eV. We further use a surface where th
adsorption sites are arranged on a square lattice. Peri
boundary conditions are assumed and the size of the sur
unit cell consists of 1003100 sites. Further, a flux of 1
monolayer~ML !/s and a total simulation time of 0.1 s hav
been assumed throughout.

Table I lists the resulting diffusion mean free path p
atom and the average time between two diffusion events
temperatures varying between 500 and 1150 K. As expec
the number of jumps an atom undergoes before it is incor
rated increases exponentially and the time step between
jumps decreases exponentially. When looking at these n
bers one should keep in mind that to perform a growth sim
lation we are not really interested in following the trajecto
for each individual adatom but eventually only in changes
the growth morphology, i.e., if a new nucleus/island
formed on the surface or an adatom attaches to an exis
island. The number of these events, however, is m

m

9-2
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ADATOM DENSITY KINETIC MONTE CARLO: A . . . PHYSICAL REVIEW B 68, 155429 ~2003!
smaller and of the same order as the number of adso
adatoms~i.e., of the order of one per atom!. For the specific
simulation we have performed here, the total number of
oms reaching the surface is approximately 1000: The ave
time step between two growth events is thus of the orde
1024 s. As can be seen from Table I, for higher temperatu
the time scale for the growth events~which we are eventually
interested in! becomes orders of magnitude larger than t
of the diffusion events. The question we will address in
following is whether and under what conditions it is possib
to separate the two time scales.

C. Adatom-probability kinetic Monte Carlo method

In the following we will therefore derive an alternativ
approach to the KMC method for solving the master eq
tion. To do this we will perform two steps: First, we derive
method that no longer calculates the complete trajectory
each adatom but rather the probabilityra( i ,t), i.e., the prob-
ability to find adatoma at time t on sitei. We will call this
method the adatom-probability KMC procedure~AP-KMC!.
In a second step we will no longer consider each individ
probability but only the total adatom densityr( i ,t)
5(ara( i ,t). This method will be called the adatom-dens
KMC procedure~AD-KMC ! and is described in Sec. II D.

In order to separate adatom motion from surface morph
ogy we formally rewrite the indexn describing a specific
configuration in two parts:~i! the index S describing the
surface without the adatomsand ~ii ! the index
( i 1 ,i 2 , . . . ,i N), which gives the position of the adatoms o
the surface:

n→$~ i 1 ,i 2 , . . . ,i N!,S%. ~5!

i a gives the site index of theath adatom, and the total num
ber of adatoms isN. In the following we describe the surfac
in a solid on solid~SOS! model by simply giving the heigh
on each lattice site:

S5$h1 ,h2 , . . . ,hM%. ~6!

M is the number of lattice sites. An extension to gene
surface structures is straightforward~e.g., by giving directly
the atomic coordinates$RJ%S defining the surfaceS). The
probability function then looks like

Pn~ t !5Pad~ i 1 ,i 2 ,i 3 , . . . ,i N ,t !PS~ t !. ~7!

TABLE I. Diffusion mean free path (dMFP) per atom and aver-
age diffusion time stepDtdiff , for temperatures ranging betwee
500 and 1150 K,dlat is the distance between nearest neighbor si
The results have been obtained employing KMC on a 1003100
matrix ~for more details see text!.

Temperature~K! dMFP/atom (dlat) Dtdiff ~s!

500 30 3.331025

750 470 2.131026

1000 1800 5.631027

1150 60000 1.731028
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Here, Pad( i 1 ,i 2 ,i 3 , . . . ,i N ,t) is the probability for finding
the adatoms in the configuration (i 1 ,i 2 ,i 3 , . . . ,i N) at time t
and PS(t) is the probability for finding the surface in th
configurationS at time t. The advantage of this separation
that all the fast events~which are related to small activatio
barriers!, are inPad , and all the slow events~in which, how-
ever, we are interested! are inPS . For the typical time scale
for growth, Dtgrowth, the surface does not change. Th
means thatPS51 and we can take it out of the master equ
tion. Then, the master equation can be simplified. To see
let us first formally rewrite the probability function:

Pn~ t !5P~ i 1 ,i 2 ,i 3 , . . . ,i N ,t !. ~8!

If the adatoms do not interact, the probability function can
factorized in single adatom probability functions:

Pnonint~ i 1 ,i 2 ,i 3 , . . . ,i N ,t !5r1~ i 1 ,t !r2~ i 2 ,t !•••rN~ i N ,t !
~9!

and the master equation, Eq.~2!, decomposes into a set o
single adatom equations:

]ra~ i ,t !

]t
5(

d
@wi 1d→ ira~ i 1d,t !2wi→ i 1dra~ i ,t !#.

~10!

Here,wi 1d→ i is the transition probability of an adatom to g
from site i 1d→ i and d is an index that goes over a
nearest-neighbor sites. The time evolution of each sin
adatom probability can then be calculated as follows:~i! it is
zero before adsorption of adatoma at time ta

des; ~ii ! it is

ra~ i ,ta
ads!5d i ,i ads

, ~11!

whered i ,i ads
is the Kronecker symbol andi ads the adsorption

site. Then,~iii ! it is determined by Eq.~10!, and ~iv! after
desorption or attachment it becomes zero again.

To implement and discuss this method we make the
lowing assumptions: We choose the adsorption time de
ministically

ta
ads5aDtgrowth, ~12!

whereDtgrowth51/L2F is the average time for an adsorptio
growth event.F is the flux of incoming particles~in ML/s!
andL2 is the total number of adsorption sites on the surfa
The transition probabilitiesWi→ i 1d are chosen identical to
those used for the KMC simulations~see Sec. II B!. The
one-particle equation, Eq.~10!, is solved by a finite differ-
ence scheme:

]ra~ i ,t !

]t
5

ra~ i ,t1Dt !2ra~ i ,t !

Dt
. ~13!

A typical choice isDt5Dtgrowth, i.e., the simulation time
step is no longer limited by the diffusion time stepDtdiff ,
which is orders of magnitude smaller thanDtgrowth ~see Sec.
II B !.

To discuss the time evolution in more detail let us co
sider a single adatom in front of a surface step. This is sho
in Fig. 2 for a temperature of 500 K and in 0.03 s tim

s.
9-3
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intervals on an array of 40340. At t50 s the adatom densit
is unity at the deposition site and zero everywhere else@see
Eq. ~11! and Fig. 2~a!#. In the next two time steps the adato
density spreads out on the surface@Figs. 2~b! and 2~c!# and
eventually reaches the step. Since the probability to m
away from the step is low—the barrier for jumping from th
step to the terrace is 2 eV compared to 1 eV for the ju
from the terrace to the step@see Eq.~4!#—the adatom density
accumulates at the step edge@Figs. 2~d! and 2~e!#. In the last
figure of this sequence the initial peak at the deposition
completely disappeared and almost all densities are con
trated along the step edge. We note that the density corre
describes all relevant processes: diffusion on the terrace
tachment and detachment at steps, and diffusion along
step.

It is important to note that the knowledge of the sing
particle densitiesra( i ,t) allows us to obtain the position o
the adatom at each time. To this end the single-particle d
sity has to be collapsed on a single site, which can be d
by choosing a random numberprand in the interval@0,1# and
selecting the sitel such that

(
i 50

l

ra~ i ,t !<r rand<(
i 50

l 11

ra~ i ,t !. ~14!

Note that the integrated density is

r̄a5(
i 50

L2

ra~ i ,t ![1. ~15!

FIG. 2. Time evolution of the adatom density for an adato
close to a step. The snapshots are taken betweent50.00 s andt
50.03 s forT5500 K. Fort.0 the adatom density has been mu
tiplied by an arbitrary scaling factor for ease of viewing.
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It should be noted that the collapse isnot a deterministic
processbut stochastic in analogy to a measurement proc
of a quantum mechanical wave function. To be more spec
let us again consider the evolution of the single-particle d
sity of an adatom in front of a surface step. This is shown
Fig. 3. The simulations were done at a temperature of 50
and the collapse took place after a time interval ofDt
50.01 s. As can be seen the adatom attaches to the
already after three collapses/simulation steps. Using
KMC method, where each individual jump is described
much larger number of time steps would have been requ
~for the specific case shown in Fig. 3, approximately 8
steps!, i.e., this approach indeed allows us to dramatica
reduce the number of time steps.

Let us now generalize this method to take also inter
tions between adatoms into account. In the following we w
assume that only adatoms on nearest-neighbor sites int
with each other. This would be, e.g., the case if adatoms
neighboring sites form a strong chemical bond so that lo
range interactions due to elastic and/or electrostatic inte
tions can be neglected. For the simplified energy functio
we use here, Eq.~4!, this assumption is always fulfilled.

Since interaction is restricted between adatoms on ne
boring sites it means that once an interaction occurs
cluster/nucleus consisting of two or more adatoms on
surface is formed. Depending on the growth parame
~temperature, fluxes! the minimum size of such a cluster t

FIG. 3. Surface before~left! and after~right! a collapse of the
adatom density. The collapse is performed at equal time interva
Dt50.01 s. The simulation has been performed at a temperatu
T5500 K. The adatom density has been scaled for ease of view
9-4
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form a stable nucleus may vary~see, e.g., Ref. 21!. In order
to keep the following discussion simple, we assume that
ready a nucleus consisting of two atoms is stable and
result in the formation of an island. A generalization to larg
critical island sizes is straightforward and will be describ
elsewhere.22

Based on the above discussion, adatom-adatom inte
tions can be described by including nucleation events in
noninteracting adatom-adatom system. Following Eq.~10!
the nucleation probabilitypa,b( i , j ,t) of adatoma to nucle-
ate with adatomb on neighboring sitesi and j at time t can
be calculated from the single-particle densitiesra( i ,t),
rb( i ,t) by

pa,b~ i , j ,t !5(
d i

wi 1d i→ ira~ i 1d i ,t !rb~ j ,t !

1(
d j

wj 1d j→ jra~ i ,t !rb~ j 1d j ,t !. ~16!

d i andd j describe neighboring sites around sitesi and j.
To perform a growth simulation including adatom-adato

interactions is then straightforward and very similar to so
ing the noninteracting adatom-adatom system. The only
ference is that in addition to solving Eq.~10! after each time
step also all nucleation probabilitiespa,b( i , j ,t) have to be
calculated. Similarly as for the collapse of the single-parti
densities we perform also a collapse for the nucleation d
sity to decide whether and where a nucleation takes pl
We therefore calculate the nucleation time by

tnuc52
ln r rand

ntot
. ~17!

Here, ntot5
1
2 (a,b,i , j pa,b( i , j ,t) is the total probability of a

nucleation event (j is restricted to be a nearest neighbor
i ). If tnuc is larger than the simulation time stepDtgrowth, no
nucleation event occurs. If, however,tnuc is smaller a nucle-
ation event is performed by applying a further collapse@in
analogy to Eq.~14!# to select the pair of atoms (a and b)
and the nucleation sitesi and j. On the site where the nucle
ation occurs the surface is updated, i.e.,

S5~ . . . ,hi ,hj , . . . !⇒S85~ . . . ,hi11,hj11, . . . !.
~18!

The method will be applied and discussed in Sec. III.

D. Adatom-density kinetic Monte Carlo method

While the method described in the preceding section s
cessfully decouples the ‘‘fast’’ time scale of the diffusio
events from the ‘‘slow’’ time scale of the growth events, it
numerically still very expensive. The most expensive co
putations are those of the single-particle density and of
nucleation probability~which is a two-particle density an
scales thus with the square of the number of adatoms!.

In order to discuss further optimizations let us consid
the case of high growth temperatures, which is particula
relevant for realistic growth simulations. Since the diffusiv
~the jump probability! of an adatom increases exponentia
15542
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with temperature at high temperatures, an adatom quic
explores a large part of the surface and gets quickly trap
on energetically favorable sites~such as surface steps o
kinks!. Under these conditions the total adatom density a
thus the nucleation rate will be small. In other words, t
one-particle density will be rather delocalized and w
quickly ‘‘lose’’ the information about the initial adsorption
site @see, e.g., Fig. 2~f!#. In the limit of infinite diffusivity
each adatom can explore the entire surface, i.e., the sin
particle density will be infinite and describe thethermody-
namic probability to find an adatom on a certain site. Th
probability function is of course identical for all adatom
For conditions close to thermodynamic equilibrium the de
sities are not identical but similar.

If the one-particle densities are~at least in a local region!
similar to each other and largely delocalized, the adato
can be described by thetotal adatom density

r~ i ,t !5(
a

ra~ i ,t ! ~19!

rather than by the complete set of single-particle densit
Using the same arguments as in the preceding section
then obtain a method called the AD-KMC method and th
completely avoids the calculation of the single-particle de
sities. To keep the following discussion simple we assu
aggregated growth, i.e., once an adatom has been inco
rated it cannot be dislodged to become an adatom again.
equation describing the time evolution is similar to Eq.~10!,

]r~ i ,t !

]t
5(

d
@wi 1d→ ir~ i 1d,t !2wi→ i 1dr~ i ,t !#

2nnuc~ i ,t !2natt~ i ,t !1F~ i ,t !, ~20!

except that nucleationnnuc( i ,t), attachmentnatt( i ,t) and ad-
sorptionF( i ,t) are now explicitly included. For the furthe
discussion we will assume a constant and homogeneous
@F( i ,t)5F#. Attachment is described by a determinist
event, i.e., it occurs once the adatom density at sitei 0 and at
time t0 is unity @r( i 0 ,t0)51#. If such an event occurs
natt( i ,t)5d i ,i 0

d t,t0
, i.e., the density on this site is reset

zero. Also, the surface and thus the transition probabili
wi 1d→ i around the attached atom are modified:

S5~ . . . ,hi , . . . !⇒S85~ . . . ,hi11, . . . !. ~21!

For a nucleation event on a terrace away from steps
for realistic growth parameters Eq.~16! can be further sim-
plified. On a free terrace all transition rates are identical a
given by the surface diffusion constantD:

wi 1d i→ i5D/ l 0
2 . ~22!

Here, l 0 is the distance between two nearest-neighbor si
If we further assume that the adatom density around
nucleation site is approximately constant, we get the pr
ability that a nucleation event takes place on sitei at timet as

pnuc~ i ,t !'Dl 0
2r2~ i ,t !, ~23!
9-5
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which is a well-known relation often applied in ra
equations.21 To calculate the nucleation ratennuc( i ,t) needed
to solve Eq.~20! we assume:

nnuc~ i ,t ![ p̄nuc~ t !5E
t2Dtgrowth

t

(
i

pnuc~ i ,t !dt. ~24!

The replacement of a localized nucleation term by a delo
ized term is well justified for the high-temperature conditio
assumed here and avoids the formation of localized reg
with negative adatom density. For the modification of t
surface and the transition states the nonaveraged nucle
term according to Eq.~23! is used. As can be seen from th
above equations all quantities entering Eq.~20! are either
explicitly given~like the fluxF) or can be directly calculated
from the total adatom densityr( i ,t). Thus, in contrast to the
AP-KMC method the explicit calculation of single-partic
densities and two-particle nucleation terms is avoided, m
ing the AD-KMC method computationally much more ef
cient. Only for high temperatures do we expect the num
of adatoms on the surface to be low, so the number of eq
tions to solve~one for each adatom! will be small and the
AP-KMC method can be almost as fast as the AD-KM
method. Applications of the method and a discussion ab
the validity of the underlying assumptions will be given
the next section.

III. RESULTS FOR THE SUBMONOLAYER GROWTH

To check the validity of the single and total adato
density-based approaches we performed an extensive
parison with the KMC method. For all three approach
identical simulation parameters have been chosen: The s
lations have been performed on a square lattice~mesh size
80380), and the transition rates are calculated accordin
Eq. ~1! using a prefactorG51013 s21 and the diffusion bar-
rier according to Eq.~4!.23,24 The flux of incoming adatoms
is F51 ML/s. The total simulation time is 0.1 s, i.e., a tot
of 0.1 ML is deposited on the surface. We further assu
that already a dimer forms a stable nucleus. This is explic
enforced in the KMC calculations and allows us to appro
mate the nucleation in the AD-KMC simulation by Eq.~23!.
The growth temperature has been varied over a large ra
of temperatures~from 500 to 1000 K!. In order to analyze the
results we have calculated and compared various statis
quantities such as island nucleation density, island size
tribution, and island shape.

A. Island nucleation density

The first quantity that will be discussed is the isla
nucleation density, which is simply the number of islan
formed on the surface. Rather than using directly the te
perature as a variable we use the ratio ofD(T)/F as a free
variable to allow a direct comparison with previous stud
~see, e.g., Ref. 25!. The calculated island nucleation dens
as function ofD/F is shown in Fig. 4. As can be seen, th
AD-KMC and KMC methods give virtually identical results
With increasingD/F ratio, the island density rapidly de
creases.
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Employing rate equations the slope of this curve can
described analytically and is given by

N>S D

F D 2 i /( i 12)

. ~25!

Here,N is the island density, andi gives the critical nucleus
size, i.e., to be thermodynamically stable against dissocia
a nucleus must consist of at leasti atoms. Since for our
system already a dimer forms a stable nucleusi 51, the
nucleation density should follow a scaling law with pow
21/3. This scaling relation has been also included in Fig
Since an analytical solution of the proportionality factor
the scaling relation, Eq.~25!, is not known it has been fitted
to the KMC result forD/F5109. As can be seen the scalin
relation correctly approximates the slope of the KMC a
AD-KMC results except for very lowD/F ratios. Under
these conditions the adatom diffusivity is negligible and n
clei are no longer formed by two adatoms moving toget
but by adsorption of an adatom next to an existing adato

B. Island size distribution

Having verified that the nucleation density is correc
described we will now focus on spatial information. To th

FIG. 4. Island densityN obtained with AD-KMC and KMC
methods as a function ofD/F between 104 and 109 at a coverage of
u50.1 ML. The solid line~RE! is an analytic approximation base
on rate equations and a critical nucleus size of two atoms~see text!.

FIG. 5. Island size distribution obtained from KMC~filled
squares! and AP-KMC ~empty squares! methods forT5630 K,
D/F5106, and with a coverage ofu50.1 ML. Under these condi-
tions fractal islands are formed~see Fig. 7!.
9-6
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purpose we have calculated the island size distribution. P
vious studies26 addressing this quantity showed that ove
large range of fluxes, temperature, and diffusion barriers
island size distribution approximately follows a univers
scaling law:

ns5
Q

sav
2

gi~s/sav!. ~26!

Here, ns is density of islands of sizes, sav is the average
island size, andgi(u) is a scaling function withi the critical
nucleus size. Based on scaling laws Amar and Family25 gave
an analytic fit for the scaling functiongi(u):

gi~u!5Ciu
iexp~2 iaiu

1/ai !. ~27!

Here,ai andCi are determined by

G~~ i 12!ai !

G~~ i 11!ai !
5~ iai !

ai, ~28!

Ci5
~ iai !

( i 11)ai

aiG~~ i 11!ai !
. ~29!

G is the Gamma function.
As a first comparison between KMC and AP-KMC met

ods let us consider the island size distribution. A tempera
T5630 K has been chosen and the results are shown in
5. At this temperature both methods show the formation
fractal islands. The agreement is excellent, demonstrating
accuracy of the AP-KMC method. Figure 6 shows the isla

FIG. 6. Island size distribution as obtained by the KMC~empty
squares!, AP-KMC ~filled squares!, and AD-KMC ~diamonds!
methods forT5630 K and a ratioD/F5106. The solid line is the
universal scaling relation Eq.~26!, as given in Ref. 25.

FIG. 7. Example of a growth simulation applying~a! KMC, ~b!
AP-KMC, and~c! AD-KMC methods for 630 K.
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size distribution for all three approaches. A total of 45 ru
on a 3003300 matrix has been performed to obtain reliab
statistics. As can be seen~see also Fig. 5! the island size
distribution as calculated by KMC and AP-KMC methods
identical within the statistical error bars. However, the A
KMC method exhibits rather large deviations: The maximu
is larger and shifted towards larger island sizes. Also,
distribution function is narrower than that for KMC and AP
KMC methods. An interesting behavior we obtain from F
6 is that the asymptotic fit Eq.~27! describes the KMC and
AP-KMC results only rather poorly. This is not too surpri
ing since these results are not yet in the asymptotic sca
limit of very large D/F. Interestingly, however, there is goo
agreement between the AD-KMC results and this asympt
expression.

In order to understand this puzzling behavior we ha
analyzed in more detail the morphology and shape of
islands. Figure 7 shows example surfaces for each of
three approaches. As can be seen both KMC and AP-K
methods exhibit fractal growth, indicating that the flux rat
chosen here corresponds to rather low temperatures.

FIG. 8. Comparison of the island shape in KMC~left! and AD-
KMC ~right! simulations for temperatures ranging from 1000 K
1200 K. Simulations have been performed on a 80380 matrix.
9-7
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AD-KMC method shows a very different shape: islands
not fractal but more compact. The obvious failing of t
AD-KMC method is related to the fact that to derive th
scheme we assumed that the system is close to therm
namic equilibrium, i.e., temperatures are high enough to
alize delocalized adatom densities. Based on the discrep
in the island size distribution, but also in the island sha
~see Fig. 7! the temperature chosen here is much too low

C. Island shapes

Let us now focus on a comparison of the different grow
simulations at high temperatures. The calculations of the
land size distribution with reliable statistics at high tempe
tures is computationally rather expensive and we will the
fore focus on a discussion of the island shapes. Figur
shows characteristic surfaces as obtained from KMC
AD-KMC simulations for temperatures between 1000 a
1200 K. For temperatures above 1100 K the agreemen
excellent: Both methods show compact islands with sim
features such as the density of kinks. Also, both meth

FIG. 9. AD-KMC simulations forT51100 K with different
time stepsDt51023–1.731024 s.
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show that with increasing temperature the deviations fr
the equilibrium shape~which is a square for the paramete
and lattice chosen here! become smaller. Only for the lowes
temperature, where the KMC method shows the formation
fractal-like structures, the AD-KMC method gives islan
too compact as already found for the low-temperature ca
We can therefore conclude that for high temperatures~where
the KMC method becomes exceedingly expensive! the AD-
KMC method is an efficient and accurate tool. Let us no
check the sensitivity of the AD-KMC method to the choic
of the discrete time stepDt. This time step determines afte
which time the adatom density is updated according to
~20!. For the AD-KMC results atT51100 K in Fig. 8 we
used a time stepDt56.731024 s. The typical growth time
scale for this simulation isDtgrowth'1.631023 s, so the
time stepDt is roughly a factor of 2 smaller thanDtgrowth. In
Fig. 9 we show AD-KMC simulations with the same grow
parameters, but withDt ranging between 1023 and 1.7
31024 s. As one can see, the simulations with smaller ti
stepsDt5531024–1.731024 s do not sensitively depen
uponDt. However, for a larger time step (Dt51023 s) the
number of islands is increased. The reason is that dire
after a nucleation event the nucleus grows very quickly t
large island. In order to describe this process correctly
time step must be chosen small enough to resolve the pro
correctly. In the case considered here we find that the t
step should be smaller than 1/2 of the growth time s
(Dt< 1

2 Dtgrowth). If it is chosen larger, the adatom density
the vicinity of the island is too large, leading to an enhanc
nucleation.

D. Capture zones

An important quantity to analyze in growth simulations
the capture zone. The capture zone of an island defines

FIG. 10. Density plot of the adatom density. Dark regions ma
surface areas with low density, bright regions those with high a
tom density. The island borders are easily visible by a bright
due to the enhanced adatom density. The dark regions around
islands are adatom-depleted areas~the adatoms have been captur
by the islands!. The density has been obtained from an AD-KM
calculation withD/F5106.
9-8
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region around an island where adsorbing adatoms on
average diffuse to that island and are incorporated there
interesting feature of the density-based KMC methods
scribed in this paper is that they give direct insight into t
capture zones. As an example let us discuss Fig. 10, w
shows a characteristic adatom density as calculated by
AD-KMC method. Clearly visible are the adatom-deplet
regions~dark areas! around all islands, which mark the cap
ture zones. From the picture it becomes also clear that s
capture zones coalesce~these islands compete for the sam
adatoms and will grow more slowly!, while others are open
to higher-density regions~those islands will grow faster!.

IV. CONCLUSION

We have introduced density-based KMC simulations t
allow for an efficient separation of the fast time scale for
adatom kinetics from the much slower time scale describ
changes in the surface morphology. In contrast to conv
tional KMC methods, where the characteristic time step
that of an adatom jump, the characteristic time step for
approach considered here is that of a growth event. T
particularly at high growth temperatures the number of sim
lation steps is reduced by orders of magnitude compare
the KMC method. An interesting feature of our approa
compared to alternative approaches proposed for fast gro
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