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The band gaps, longitudinal and transverse effective masses, and deformation potentials of ScN in the
rock-salt structure have been calculated employing G,Wj-quasiparticle calculations using exact-exchange
Kohn-Sham density-functional theory one-particle wave functions and energies as input. Our quasiparticle gaps
support recent experimental observations that ScN has a much lower indirect band gap than previously thought.
The results are analyzed in terms of the influence of different approximations for exchange and correlation
taken in the computational approach on the electronic structure of ScN.
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I. INTRODUCTION

Scandium nitride (ScN) is emerging as a versatile material
for promising technological applications. As part of the
transition-metal nitride family it initially generated interest
for potential applications as wear-resistant and optical coat-
ings due to its mechanical strength, high melting point of
2600 °C,' and high hardness (H=21 GPa) with respect to
load deformations.?> ScN crystallizes in the rock-salt phase
with a lattice parameter of 4.50 A.> The octahedral bonding
arrangement provides a much more favorable environment
for the incorporation of transition-metal atoms like Mn or Cr
than the tetrahedrally coordinated III-V semiconductors,
which have up until now been popular candidates for spin-
tronic materials. Successful incorporation of Mn into ScN
has been demonstrated* and ab initio calculations predict
Mn-doped ScN to be a dilute ferromagnetic semiconductor.’
Moreover, ScN has a lattice mismatch of less than 2% to
cubic gallium nitride (GaN). This makes ScN structurally
compatible with the group-IIIA nitrides®~!*—an important
technological material class, in particular, for applications in
optoelectronic devices. Alloying ScN with GaN (Refs. 9-12)
might provide a viable alternative to InGaN alloys for use in
light-emitting devices or solar cells. In addition, multifunc-
tional devices are conceivable if the strong electromechani-
cal response predicted for hexagonal ScN (Ref. 14) can be
utilized.

The electronic band structure of ScN—a key quantity for
the design of optoelectronic devices—has been difficult to
access both experimentally and theoretically. Early experi-
ments were hampered by various complications in growing
films with well-defined crystalline orientation, stoichiometry,
low background carrier concentration, and surface rough-
ness. For a detailed discussion we refer to, e.g., Ref. 15.
Recent advances in growth techniques have led to a system-
atic improvement of the material’s quality.'® Employing op-
tical spectroscopy and photoemission, Gall et al.'> concluded
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that ScN is a semiconductor with an indirect I'=X band gap
(EZ’X) of 1.3+0.3 eV. The sizable error bar of 0.3 eV has
been mainly attributed to the large background carrier con-
centration of ~5 X 10** cm™3 causing an apparent increase of
the band gap due to the Burnstein-Moss shift.!” Reducing the
electron carrier concentration to 4.8 X 10'® cm™ and com-
bining tunneling spectroscopy and optical-absorption mea-
surements, Al-Brithen et al.!® were able to reduce the error
bar and found a value for Eg—x of 0.9+0.1 eV.

Early Kohn-Sham density-functional theory (KS-DFT)
calculations employing the local-density (LDA) or Xa ap-
proximations predicted ScN to be a semimetal with a small
negative band gap between —0.01 and —0.21 eV."*"! In or-
der to overcome the well-known underestimation of the LDA
band gap, more advanced exact-exchange [OEPx(cLDA)]
(Ref. 15) and screened-exchange®? calculations have been
performed, and showed that ScN is a semiconductor with an
indirect I" to X band gap, in accord with experimental
evidence.'>!'8 However, the calculated band gap of 1.60 eV
found in both studies is significantly larger than the most
recent experimental value of 0.9+0.1 eV.'8

In order to shed light on this discrepancy we have per-
formed quasiparticle energy calculations in Hedin’s GW
approximation,?> which is a well-established technique to
calculate accurate band-structure energies and currently the
choice for computing quasiparticle band structures of
solids.?*~%% The quasiparticle calculations predict ScN in the
rock-salt phase to have an indirect band gap between the T’
and X point of 0.99+0.15 eV, strongly supporting recent ex-
perimental findings. In addition, we have also determined the
direct band gaps and other electronic structure parameters
relevant for device simulations: the volume deformation po-
tentials of the main band gaps and the longitudinal and trans-
verse effective masses of the conduction band at the X point.
The effective mass has previously been calculated at the
level of the LDA,” but to the best of our knowledge, only
one experimental study has reported a conduction-band ef-
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fective mass for ScN (between 0.1 and 0.2 m)*® so far. For
the deformation potentials no experimental or theoretical
data is available, yet.

Most commonly, the Greens function G and the screened
potential W, required in the GW approach (henceforth de-
noted GyW,) are calculated from a set of KS-DFT single-
particle-energies and wave functions {e;, ¢;}. Since G, and
W, are not usually updated by the quasiparticle wave func-
tions and energies {€2”, $2”} in a self-consistent manner, the
quasiparticle energies depend on the approximation used to
calculate the input data.?>?-3!

Originally, GyW, calculations were based on LDA data
(LDA-G,W,) and were found to accurately predict band gaps
of sp-bonded semiconductors (with a typical error bar of
~0.1 eV).?* However, complications arise when the LDA-
Gy W, approach is used to calculate the electronic structure of
semiconductors with negative LDA band gaps®>3* or when
occupied shallow semicore d bands are treated as valence in
the pseudopotential framework.>*-3¢ For such semiconduc-
tors, GyW, calculations based on OEPx(cLDA) data
[OEPx(cLDA)-GyW,] have been found to provide a reliable
tool to obtain band gaps with an accuracy of 0.1 eV.>>?°

The key to the improved description in the OEPx(cLDA)-
GoW, approach can be found in the treatment of exchange.
In the exact-exchange KS approach the formal expression for
the total energy is the same as in Hartree-Fock. The differ-
ence between the two methods lies in the potential felt by the
electrons: in Hartree-Fock the exchange potential is nonlo-
cal, whereas in the exact-exchange KS approach it is local
and constructed to be the variationally best local ground-
state potential to the nonlocal Hartree-Fock exchange
potential.’’ Like Hartree-Fock, the exact-exchange KS ap-
proach is therefore free of self-interaction, but since the ei-
genvalues are solutions to a local potential they are, in gen-
eral, closer to (inverse) photoemission data for semicon-
ductors than the Hartree-Fock single-particle energies.?840
The GW formalism, on the other hand, goes beyond the KS
approach and describes the interaction of weakly correlated
quasiparticles by means of a nonlocal, energy-dependent
self-energy. It takes the form of the nonlocal exchange po-
tential encountered in the Hartree-Fock approach, which is
screened by correlation in the random-phase approximation
(RPA). To elucidate the effects of exchange and correlation
on the electronic structure of ScN we therefore first analyze
the influence of exchange by comparing LDA (GGA) and
OEPx(cLDA) calculations, before turning to the difference
between OEPx(cLDA) and G,W,,.

The paper is organized as follows. Section II describes
our computational approach. The results are presented and
discussed in Sec. III. Finally, a summary is given in Sec. IV.

II. COMPUTATIONAL METHOD

The KS-DFT calculations have been performed with the
ab initio pseudopotential (PP) plane-wave code SPHInX.*! A
consistent set of norm-conserving scalar-relativistic PPs has
been used for each of the exchange-correlation functionals
[LDA, GGA, and OEPx(cLDA)]. The OEPx(cLDA)-PPs
have been constructed as described in Ref. 42 and the LDA
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and GGA ones using the FHI98PP code.** All PPs for both Sc
and N have been generated according to the Troullier-
Martins optimization scheme** and have then been trans-
formed into the separable Kleinman-Bylander form.*> Unlike
in the group-IITA nitrides GaN and InN the cation 3s and 3p
states have moderate binding energies in ScN and the Sc 3p
and to a lesser degree also the Sc 3s electrons couple to the
upper valence bands as a partial charge-density analysis re-
veals (see Sec. III A and also Fig. 4 in Ref. 22). For Sc, the
entire semicore shell (3s, 3p, and 3d states) has therefore
been treated as valence with an ionic configuration
[Ne]3s?3p®3d'. Following Ref. 46, only the 2s and 2p com-
ponents have been included for N. Adding a d component for
N yields negligible effects on the calculated band structure
and total energies of ScN. For Sc, we have chosen a core
radius of 1.4, 1.4, and 1.8 bohrs for the s, p, and d orbitals,
respectively. For N, a common core radius of 1.5 bohrs has
been adopted. The s (p) component is taken as the local
component for Sc (N). Only one projector per angular mo-
mentum channel has been used, i.e., 3p and 3d for Sc. We
have verified that this procedure does not compromise
higher-lying states in the same channel by ensuring that the
eigenvalues of the 4s and 4p levels in the pseudoatom repro-
duce those of the all-electron calculation. These pseudopo-
tentials have been carefully tested (see also below) and are
free of ghost states.*’

For the LDA calculations we have wused the
Ceperley-Alder*® exchange-correlation data as parametrized
by Perdew and Zunger.** The GGA calculations have been
performed with the Perdew-Burke-Ernzerhof> functional. In
the OEPx(cLDA) calculations, the exchange energy and po-
tential have been treated exactly and correlation has been
added on the LDA level. Throughout the paper, the combi-
nation of exact-exchange and LDA correlation will be re-
ferred to as OEPx(cLDA).

The GyW, calculations have been performed employing
the GW space-time approach,’! in the GWST implemen-
tation.”>>* The Kohn-Sham eigenvalues and wave functions
(¢; and ¢,) in either OEPx(cLDA) or LDA are used as input
to construct G, and W,. Head and wings of the dielectric
matrix (which converge slowly with respect to the k mesh)
have been calculated using a fine 10X 10X 10 Monkhorst-
Pack (MP) mesh.>> We find that using an offset of [%,%,%
yields faster convergence with respect to the number of k
points, because the k-point set then contains fewer high-
symmetry points. Contributions arising from the nonlocal
part of the pseudopotential are fully taken into account.’* A
regular 4 X4X4 MP mesh centered on the I' point then
proves to be sufficient for the full GyW, calculations.

Brillouin-zone integrations in the DFT calculations have
been performed on a 4 X4 X4 MP mesh. In all calculations
an energy cutoff of 80 Ry is used for the plane-wave expan-
sion of the wave functions. For the independent-particle po-
larizability x,, which enters in the calculation of the OEPx-
(cLDA) potential (see, e.g., Ref. 39), an energy cutoff of
55 Ry gives converged results. Conduction-band states up to
the same energy cutoff have been included in the calculation
of the electronic Green’s function in the OEPx(cLDA) as
well as in the GW calculations. These parameters yield con-
verged KS and quasiparticle energies to within 0.05 eV.
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TABLE 1. Structural parameters of ScN: lattice constant (),
bulk modulus (By), and its derivative (B) calculated in our pseudo-
potential, plane-wave (PP-PW) approach compared to previous re-
sults obtained with the all-electron full-potential linearized aug-
mented plane-wave approach (FP-LAPW) and experiment.

Approach

(Present work) ag (A) B, (GPa) B,
PP-PW(LDA) 4.455 221 4.27
PP-PW(GGA) 4.533 196 4.36

Other theoretical calculations

FP-LAPW(LDA) (Ref. 22) 4.42 235
FP-LAPW(LDA) (Ref. 71) 4.44 220
FP-LAPW(GGA) (Ref. 22) 4.50 201
FP-LAPW(GGA) (Ref. 71) 4.54 201 3.31

Experiment (Ref. 2) 4.501 182+40

We have tested the reliability of our pseudopotential cal-
culations against all-electron calculations in the full-potential
linearized augmented plane-wave (FP-LAPW) approach,
where available. For ground-state calculations on the level of
LDA and GGA we find good agreement for the structural
properties, as Table I illustrates. LDA slightly underestimates
the lattice constant of ScN compared to experiment” by ap-
proximately 1%, whereas GGA results in a slight overesti-
mation.

The issue of performing self-consistent GW calculations
is still a matter of debate.’°®® Unlike in DFT, a self-
consistent solution of the full set of equations for the self-
energy in many-body perturbation theory would go beyond
the GW approximation and successively introduce higher-
order electron-electron interactions with every iteration step.
Solving the GW equations self-consistently is therefore in-
consistent if no higher-order electron-electron interactions
are included. It was first observed for the homogeneous elec-
tron gas®! that the spectral features broaden with an increas-
ing number of iterations in the self-consistency cycle. Simi-
larly, for closed-shell atoms the good agreement with
experiment for the ionization energy after the first iteration is
lost upon iterating the equations to self-consistency.’® Impos-
ing self-consistency in an approximate fashion3%0:62:63 ig not
unique and different methods yield different results. Since
the issue of self-consistency within GW is still discussed
controversially, we refrain from any self-consistent treatment
and remain with the zeroth order in the self-energy (G,W,).
We argue (see Sec. III A) that in the case of ScN the error bar
resulting from this approximation is only of the order of
0.15eV.

III. RESULTS AND DISCUSSION
A. Electronic band structure

The quasiparticle band structure of ScN is calculated em-
ploying both the OEPx(cLDA)-G,W, and LDA-G,W, ap-
proach. To understand the effect of the starting point on the
GyW, calculations we first analyze the KS band structure
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FIG. 1. (Color online) Electronic band structure of rock-salt
ScN in LDA, OEPx(cLDA), and OEPx(cLDA)-GyW,. The top
panel shows the upper valence and lower conduction bands, aligned
at the top of the valence band. The bands in the lower panel have
mainly N 2s (around —13 eV), Sc 3p (around -30 eV), and Sc 3s
character (around —50 eV).

using three levels of approximations for the XC potential
[OEPx(cLDA), GGA, and LDA]. For a meaningful compari-
son between the results of these calculations among them-
selves and with experiment, these electronic-structure calcu-
lations have been performed at the experimental equilibrium
volume. As an example, we show in Fig. 1 the electronic
band structures of ScN in LDA, OEPx(cLDA) and
OEPx(cLDA)-G,W,. Table II summarizes the calculated
band gaps (E;*X, E;(*X, and Eé*l), previous OEPx(cLDA)'
and screened-exchange?®” results and experimental data.'>!8
For the following discussion we consider only the latest ex-
perimental data of Al-Brithen ef al. on low background car-
rier samples'® as a reference.

TABLE II. Calculated and experimental band gaps (E,) of ScN
(in eV). sX denotes previous screened exchange calculations and
[GoWolaverage the arithmetic average between the OEPx(cLDA)-
GoW, and LDA-G(W, results (see text).

Approach

(Present work) E{l;’r Eg’x E);’X
OEPx(cLDA)-GyW, 3.51 0.84 1.98
LDA-GyW, 3.71 1.14 2.06
[GoWolaverage 3.62 0.99 2.02
OEPx(cLDA) 4.53 1.70 2.59
GGA 243 -0.03 0.87
LDA 2.34 -0.15 0.75
Other theoretical work
OEPx(cLDA) (Ref. 15) 4.70 1.60 2.90
sX (Ref. 22) 1.58 241
Experiment
Ref. 15 ~3.8 1.30+0.3 240
Ref. 18 0.9+0.1 2.15
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FIG. 2. Schematic diagram of the pd bonding in rock-salt ScN:
the Sc 3d states are split into 7,, and e, states by the crystal field.
The 1,, states then form bonding and antibonding bands with the N
2p states and the e, states nonbonding bands that lie higher in
energy. The occupation of the relevant states and bands is shown by
circles.

In ScN the scandium atom donates its two 4s and single
3d electron to the nitrogen atom. According to the bonding
analysis of Harrison and Straub,®* the five d states of Sc
hybridize with the three-valence p states of the neighboring
N atoms in the rock-salt structure of ScN, forming three
p-like bonding, three d-like antibonding f,,, and two d-like
nonbonding e, bands. The bonding scheme together with the
electron filling of these bands is sketched in Fig. 2. Perform-
ing a partial charge-density analysis we have confirmed that
the upper three valence bands in the DFT calculations corre-
spond to the bonding states and originate mainly from the N
2p states with some admixture of the Sc 3d states, while the
lowest conduction bands are the antibonding 1,, states with
Sc 3d character. The two bands derived from the nonbonding
e, states are around 1.2 eV higher in energy. This assignment
is consistent with the partial density-of-states analysis of
Stampfl et al.?*> The character of the deeper-lying bands is
given in the caption of Fig. 1.

Focusing first on the band gaps presented in Table II we
note that both LDA and GGA underestimate the fundamental
indirect by more than 100%. The GGA band gaps are only
marginally (~0.1 eV) larger than those of LDA. The reason
is a combination of three factors: (1) in direct and inverse
photoemission experiments electron addition and removal
energies are probed, but the derivative discontinuity of the
exchange-correlation potential with respect to changes in the
particle number is not taken into account in KS-DFT single-
particle energy calculations,® (2) LDA and GGA are ap-
proximate exchange-correlation functionals, which (3) suffer
from inherent self-interaction effects. The OEPx(cLDA) for-
malism also does not fulfill criterion (2), but it is self-
interaction free. This leads to a significant opening of the
Kohn-Sham band gaps compared to those of LDA and GGA
(Refs. 38—40) as is evident from Table II. Although the
OEPx(cLDA) formalism exhibits a derivative
discontinuity®®%7 and therefore fulfills criterion (1) this is of
no benefit in KS-DFT single-particle energy calculations.
When the excitation energies are calculated by computing
total-energy differences in OEPx(cLDA) between the N and
the N+1 electron system [frequently denoted A self-
consistent field (ASCF) approach], the derivative discontinu-
ity is taken into account properly.®® In KS-DFT, however, the
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FIG. 3. (Color online) Eigenvalue spectrum of the isolated Sc
atom compared to N and Ga. Dotted lines show the levels in the
LDA and solid lines in OEPx(cLDA).

excitation energies are approximated by Kohn-Sham eigen-
value differences of the N-electron system alone. The deriva-
tive discontinuity hence does not enter the calculation and all
states experience the same exchange-correlation potential.

Having established that the removal of the self-interaction
in the OEPx(cLDA)-KS approach is the distinguishing fea-
ture compared to KS-LDA or KS-GGA calculations we will
now illustrate how this leads to an opening of the band gap
in ScN. For this it is illuminating to start from the eigenval-
ues of the isolated Sc and N atoms, depicted in Fig. 3. The
removal of the self-interaction in OEPx(cLDA) leads to a
downward shift of all atomic states. Since the electrons in the
second shell of the nitrogen atom are more localized than the
electrons populating the third and fourth shells in scandium
the self-interaction correction to the N 2p state is much
larger than that of the Sc 3d state. Inspection of the differ-
ence between the exchange potential in OEPx(cLDA)
(U?EPX(CLDA)) and LDA (v-"*) shown in Fig. 4(a) reveals that
the large relative shift of the atomic N 2p state also translates
to the solid. Figure 4(a) illustrates that U?EPX(CLDA) is signifi-
cantly higher than U;D A in the Sc regions and lower around
the N atoms. This difference in v, leads to a significant
charge-density redistribution [shown in Fig. 4(b)]. The
charge transfer from the Sc to the N regions gives rise to an
increase in the bond ionicity, which, in turn, leads to an
opening of the band gap—consistent with our OEPx(cLDA)
band-structure calculations.

In the II-VI compounds and group-III nitrides this mecha-
nism is also responsible for an opening of the band gap in
OEPx(cLDA) compared to LDA, but it is complemented by
a contribution arising from the coupling between the anion
semicore d electrons and the 2p electrons of nitrogen. Taking
GaN as an example again, the Ga 3d electrons of gallium are
energetically lower than the 2p electrons of nitrogen, while
in Scandium the Sc 3d lie above the N 2p states (cf Fig. 3).
Not the anion 3d, like in ScN, but the Ga 4s electrons thus
form the lower conduction bands with the nitrogen 2p states.
Since the OEPx(cLDA) shift of the N 2p states is larger than
that of the Ga 4s states the bond ionicity and hence the band
gap increase just like in ScN. In addition, the Ga 3d electrons
localize stronger in GaN when the self-interaction is re-
moved in the OEPx(cLDA) approach.?> As a result the pd
repulsion reduces and the valence bands are lowered in en-
ergy leading to a further opening of the band gap.®

We now turn to the quasiparticle band structure. In the
OEPx(cLDA)-GyW, approach the band structure is calcu-
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FIG. 4. (Color online) The difference between (a) the OEPx-
(cLDA) and LDA exchange potentials (in Hartree) and (b) the elec-
tronic charge densities (in electrons/unit cell) of ScN for one of the
square faces of the conventional rock-salt unit cell. Black circles
denote Sc and white circles denote N atoms.

lated directly at the experimental lattice constant. However,
the negative LDA band gap (see Table II) impedes the appli-
cation of this direct approach in the LDA-GyW, formalism
with the GWST code, since in its current implementation®>- a
clear separation between conduction and valence bands is
required. Therefore, an indirect approach is adopted. First,
LDA-GyW, calculations are performed at a lattice constant
(ag=4.75 A) larger than the experimental one, where the
fundamental band gap in the LDA is small but positive. We
then use the LDA volume deformation potentials (see Sec.
III B) to determine the corresponding LDA-G,W, band gaps
at the equilibrium lattice constant. Using the volume-
deformation potentials of the LDA instead of the quasiparti-
cle ones is a well-justified approximation, as we will show in
the next subsection. While this approach is, in principle, not
limited to band gaps, it proves to be too cumbersome for a
whole band-structure calculation, because for every band-
structure point the corresponding deformation potential
would have to be determined.

The quasiparticle band structure is shown in Fig. 1 and
the direct band gaps at the I' and X point are presented to-
gether with the indirect gap between I" and X in Table II. It is
interesting to note that the LDA-G,W,, and OEPx(cLDA)-
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Gy W, calculations, starting from the two extremes [negative
band gap in LDA, 0.8 eV overestimation in OEPx(cLDA)],
yield quasiparticle band gaps that agree to within 0.3 eV.
Since the LDA-based calculations are close to the limit of
metallic screening, whereas the OEPx(cLDA)-based calcula-
tions form the opposite extreme of starting from a com-
pletely self-interaction free exchange-correlation functional,
we expect the results of a self-consistent GW calculation to
fall in the range between the LDA-G(W, and OEPx(cLDA)-
Gy W, calculations. From these results we estimate the error
bar associated with omitting self-consistency in GW to be of
the order of 0.15 eV for ScN. Taking OEPx(cLDA)-GyW,
results as lower and those of the LDA-G,W, as u}})per
bounds, the arithmetic averages for Eg_x’ Eg‘ , and EXY are
0.99, 3.62, and 2.02 eV, respectively. These are signiécantly
lower than those from OEPx(cLDA) and the more approxi-
mate screened-exchange calculations, as Table II demon-
strates. Our quasiparticle gaps clearly support recent experi-
mental findings of an indirect gap of 0.9+0.1 eV (Ref. 18)
and are at the lower bound of earlier measurements on
samples with unintentionally high background carrier con-
centration (1.3+0.3 eV)."

The fact that LDA-G,W, and OEPx(cLDA)-G,W, calcu-
lations yield very similar quasiparticle band gaps is in dis-
agreement with our previous observation for II-VI com-
pounds and GaN.? The difference between ScN and these
compounds is that for the latter the cation semicore d shell is
fully filled and the remaining s and p electrons in the semi-
core shell are much lower in energy. Taking GaN as an ex-
ample the 3s electrons in the Gallium atom are approxi-
mately 100 eV and the 3p electrons approximately 60 eV
lower than in scandium. Unlike in ScN the 3p derived bands
therefore show no noticeable dispersion in GaN (cf. Fig. 1).
Resolving these more strongly localized 3s and 3p electrons
in GaN with plane waves will thus require significantly
higher plane wave cutoffs? than the 80 Ry used in the
present study for ScN. In a pseudopotential framework it
would hence make sense to explicitly include the d electrons
of the cations in the II-VI compounds and group-III nitrides
as valence electrons, but to freeze the chemically inert semi-
core s and p electrons in the core of the pseudopotential.
However, due to the large spatial overlap of the atomic semi-
core s and p with the d wave functions, core-valence ex-
change is large in these compounds. As a consequence core-
valence exchange is treated inconsistently when going from
LDA to LDA-G,W,, if pseudopotentials are used in this fash-
ion, because the exchange self-energy in the GW approach
acts on the d electrons in the solid, but cannot act on the s
and p electrons in the semicore shell, too. The result is a
severe underestimation of the LDA-GyW,, band gaps and d
bands that are pushed energetically into the p-derived va-
lence bands in the II-VI compounds.?>-3+3

The only way to remedy this problem within LDA-G,W,
is to free the electrons in question by performing all-electron
G,W, calculations®> or by using pseudopotentials that in-
clude the entire shell as valence electrons,>*3° which in the
latter case introduces formidably high plane-wave cutoffs. If,
on the other hand, OEPx(cLDA) is used for the ground-state
calculation, then the exchange self-energy already acts on the
semicore s and p states in the generation of the pseudopo-
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TABLE III. Transverse (m;k) and longitudinal (m;F) effective masses of the conduction electrons at the X
point (in units of m) and different band-gap volume deformation potentials (a,) (in eV) for ScN.

Approach m: m; agfr aEiX afﬁX
OEPx(cLDA)-G,W, 0.189 1.483 1.54 2.02 2.04
OEPx(cLDA) 0.253 1.450 1.07 2.06 2.21
GGA 0.139 1.625 1.43 1.87 1.92
LDA 0.126 1.570 1.36 1.95 2.03
LDA (Ref. 27) 0.124 1.441

tential. Since the exchange self-energy can be linearly de-
composed into a core and a valence contribution no nonlin-
ear core corrections® arise in the Hartree-Fock case and they
are expected to be small for OEPx(cLDA)
pseudopotentials.’® We take the fact that the quasiparticle
band structure in the OEPx(cLDA)-G,W, approach agrees
well with (inverse) photoemission data for these materials as
an indication that when switching from the local potential in
OEPx(cLDA) to the nonlocal self-energy in OEPx(cLDA)-
GyW, core-valence exchange is treated consistently, as long
as OEPx(cLDA) pseudopotentials are used.>> Since the semi-
core s and p states are less localized in ScN it is computa-
tionally feasible to include the entire third shell of Sc as a
valence in the pseudopotentials (see Sec. II) and thus to con-
duct a meaningful comparison between the LDA-G,W, and
OEPx(cLDA)-G,W, calculations, which enables us to assess
the error bar with respect to a self-consistent GW treatment.

It remains to be added that in previous studies, where a
significant starting-point dependence in LDA-G W, com-
pared to GGA-GyW, calculations was noted, this was either
due to structural effects’® or significant differences in the
ground state®' introduced when going from LDA to GGA.
Since all calculations in this work were performed at the
experimental equilibrium volume the KS band structures in
LDA and GGA are very similar (cf. Table II) and LDA-GyW,
and GGA-GyW, calculations yield essentially the same re-
sult.

Finally, Fig. 1 illustrates that the Sc 3p and Sc 3s bands
are significantly lowered by the quasiparticle energy calcula-
tions. We have argued recently®® that this lowering can to a
large degree be attributed to charge-density relaxation effects
arising from the removal of an electron from these states.
These effects are accounted for in the GyW, approach, but
not in DFT Kohn-Sham single-particle energy calculations
and are larger for more localized states such as the Sc 3s and
3p bands.

B. Effective masses and deformation potentials

In this final part we present additional band-structure pa-
rameters of ScN, namely, the transverse (mf) and longitudi-
nal (mf) conduction-band effective masses—at the X point—
and the volume band-gap deformation potentials, extracted
from our quasiparticle energy calculations. For comparison
we will also discuss the corresponding values obtained from
LDA, GGA, and OEPx(cLDA).

The conduction-band effective masses at the X point are
calculated by fitting a quadratic function to the correspond-

ing band-structure energies along the A (I'-X) and Z (X-W)
directions for m; and m;k, respectively. A small k-point spac-
ing of 0.01 in units of 2w/a yields converged effective
masses, which are listed in Table III. Our LDA results are in
good agreement with those of Ref. 27. As far as an experi-
mental reference is concerned, we are only aware of one
study, where a conduction-band effective mass between 0.1
and 0.2 my has been reported.?® Apart from the OEPx(cLDA)
results, all our KS-DFT and quasiparticle energy calculations
give a transverse effective mass in this range, while the lon-
gitudinal effective mass is approximately one order of mag-
nitude larger.

To determine the volume deformation potentials aj, (Ref.
70) for the band gaps Egr—r, Eg‘x, and E?‘X, the relevant band
gaps are calculated at four different lattice constants around
the experimental equilibrium one. For illustration, we show
in Fig. 5 the variation of E?F and Eg’x, with respect to their
values at the experimental equilibrium volume, as a function
of In(V/ V). The corresponding band gaps are then fitted to a
quadratic function of In V. The linear deformation potentials
obtained in this way are listed in Table III. To the best of our
knowledge, no experimental or previous theoretical results
are available for the deformation potentials of ScN. Based on
our results we conclude that aj, is almost insensitive with
respect to the computational alpproaches considered in this
article. The only exception is a‘fF obtained using the OEPx-
(cLDA) approach. The fact that the LDA curves in Fig. 5 are
very close to the OEPx(cLDA)-G,W,, ones, a posteriori jus-
tifies the use of the LDA volume-deformation potential for
the indirect calculation of the LDA-GyW, band gaps.
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FIG. 5. (Color online) Variation of the indirect band gap (Eg’x)
and the direct band gap at the I'-point (E?F) of ScN with respect to
the corresponding band gaps at the experimental equilibrium vol-
ume (V;), as a function of In(V/V,).
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IV. CONCLUSIONS

Pseudopotential GyW,, calculations based on Kohn-Sham
density-functional theory calculations in both the LDA and
OEPx(cLDA) have been performed for the electronic struc-
ture of ScN in the thermodynamically stable rock-salt phase.
To analyze the effects of exchange and correlation the atomic
and electronic structures have been studied within DFT for
several levels of approximations for the exchange-correlation
functional [LDA, GGA and OEPx(cLDA)]. In agreement
with previous calculations for ScN, our LDA [OEPx(cLDA)]
band gaps are underestimated (overestimated) by about
100%. Despite this large difference, OEPx(cLDA)-G,W, and
LDA-GyW, calculations for the quasiparticle band structure
agree to within 0.3 eV. Our quasiparticle gap of
0.99+0.15 eV supports the recent observation that ScN has a

PHYSICAL REVIEW B 74, 245208 (2006)

much lower indirect band gap than previously thought. The
main advantage of the OEPx(cLDA)-G,W, approach lies in
the fact that it facilitates a direct calculation of the electronic
structure of ScN at the experimental equilibrium volume,
whereas for the LDA-G,W, calculation an indirect approach
has to be taken due to the negative LDA band gap.
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