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Thermal conductivity of Si nanostructures containing defects:
Methodology, isotope effects, and phonon trapping
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A first-principles method to calculate the thermal conductivity in nanostructures that may contain defects or
impurities is described in detail. The method mimics the so-called “laser-flash” technique to measure thermal
conductivities. It starts with first-principles density-functional theory and involves the preparation of various
regions of a supercell at slightly different temperatures. The temperature fluctuations are minimized without
using a thermostat and, after averaging over random initial conditions, temperature changes as small as 5 K can
be monitored (from 120 to 125 K). The changes to the phonon density of states and the specific heat induced by
several atomic percent of impurities are discussed. The thermal conductivity of Si supercells is calculated as a
function of the temperature and of the impurity content. For most impurities, the drop in thermal conductivity is
unremarkable. However, there exist narrow ranges of impurity parameters (mass, bond strength, etc.) for which
substantial drops in the thermal conductivity are predicted. These drops are isotope dependent and appear to be
related to the vibrational lifetime of specific impurity-related modes.
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I. INTRODUCTION

Semiconductors such as crystalline Si are easily doped with
impurities. Some of them introduce charge carriers (electrons
or holes) into the material, thus allowing the electrical
conductivity to be controlled almost at will. Other types of
impurities introduce deep levels in the forbidden energy gap of
the material, become e−-h+ recombination centers, and reduce
charge-carrier lifetimes and concentrations. Other impurities
yet increase the mechanical strength of the crystal, introduce
optically active defect centers, or even allow the control of the
spin of charge carriers.1–3

In a recent paper,4 we have initiated a study of the impact
of impurities on the thermal properties of Si nanostructures.
Being able to control the thermal conductivity κ by doping
could improve the heat dissipation on a chip, e.g., by
implanting a “thermal circuit,” analogous to an electrical
circuit. It could also improve the thermoelectric figure of merit5

ZT = S2T σ/κ (where S is the Seebeck coefficient and σ the
electrical conductivity) by allowing the control of the electrical
and thermal conductivities independently.

We introduced4 a technique to calculate κ from first
principles in periodic supercells, which may contain defects.
The electronic structure is obtained from standard density
functional (DF) theory, which is commonly used to predict
the properties of defects in semiconductors.6 Nonequilibrium
ab initio molecular dynamics (MD) simulations with minimal
temperature fluctuations, without a thermostat, are made
possible by carefully preparing the system slightly away from
equilibrium. Supercell preparation is the key ingredient in the
present calculations. The approach mimics the experimental
“laser-flash” technique7 in which the temperature T (x,t) is
measured at a point x as a function of time t following a
laser-pulse excitation at x = 0 and t = 0.

It is well known8,9 that the presence of any kind of defect in
a material increases phonon scattering and therefore reduces κ .

Our earlier results4 confirm this qualitative statement. Indeed,
the presence of a few atomic percent of impurities generally
leads to a drop in κ which, for most impurities, ranges from
∼20% to a factor of 2 relative to the pure material. However,
theory also predicts that there exists a narrow range of defect
parameters (isotopic mass, bond strength, etc.) for which a
resonance occurs and κ drops precipitously. As far as κ is
concerned, not all defects are created equal, just as is the case
for σ .

Impurities in covalent crystals introduce unique, localized,
vibrational modes. When the concentration of impurities is of
the order of the atomic percent, these localized modes become
vibrational bands which exhibit varying degrees of localization
(see below). As heat propagates through the material from a
warmer region to a colder one, these localized bands may
absorb energy. At the atomic scale, the impact of impurities on
the thermal conductivity depends on the lifetimes of these
impurity-induced localized vibrational bands. In particular,
modes with long lifetimes which trap and keep energy reduce
the flow of heat and therefore κ .

It is necessary—but not sufficient—for a vibrational mode
to exhibit a high degree of localization in order to have a
long lifetime. Experimental10–12 and theoretical12–14 studies
have shown that the lifetimes of highly localized vibrational
modes of light impurities in Si can vary by up to two orders
of magnitude. In some cases, a simple isotope substitution has
a surprisingly large impact on the lifetime of a specific mode,
as a fast two-phonon decay becomes a much slower three- or
even four-phonon decay.12

Thus, no simple “rule of thumb” connects a specific type
of impurity to high degrees of localization, long vibrational
lifetimes, and/or a predictable impact on the thermal con-
ductivity κ , which is a macroscopic quantity. The details
of phonon coupling are far too complicated, and are often
isotope dependent. Thus, experimental studies of the impact
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of impurities on the thermal conductivity of a covalent material
such as Si would have to rely on an inefficient trial-and-error
approach. First-principles theory should take the lead and
provide some insights into this potentially important area of
research.

Three theoretical approaches are commonly used to cal-
culate the thermal conductivity of materials. The Green-
Kubo method involves equilibrium MD and is based on
the fluctuation-dissipation theorem. The steady-state method
is based on nonequilibrium MD with (usually very large)
temperature gradients maintained between two parts of the
system. Finally, the direct solution of the Boltzmann transport
equation is also possible. For a long time, these approaches
have been limited to semiempirical techniques which work
well for defect-free materials. However, the transferability of
any semiempirical method to systems containing impurities
is questionable.6 First-principles methods are now more
commonly used to calculate the force constants or other input
parameters.

In the Green-Kubo method,15,16 the macroscopic fluxes
of charge (q) and heat (h) are written in terms of the
transport coefficients Lαβ = Lβα (where α,β stand for q or h),
which themselves are defined in terms of the correlation
functions of the microscopic fluxes of charge and heat,
Lαβ = 1

3�

∫ ∞
0 〈 �Jα(t) · �Jβ(0)〉dt , where � is the volume of

the system, 〈 〉 is the average in thermal equilibrium, �Jq =∑
i Zie�vi , and �Jh = d

dt

∑
i Ei�ri , where Zie, �vi , Ei , and �ri are

the nuclear charge, velocity, energy, and position of atom i,
respectively. Once the three Lαβ coefficients are known, one
obtains the electrical conductivity, thermopower, and thermal
conductivity. The latter is κ = (LqqLhh − L2

qh)/LqqkBT 2, but
Lqh is often small and assumed to be zero.

The problem is that the computation of the heat flux requires
the knowledge of the total energies Ei of each single atom,
a quantity that is not directly accessible in first-principles
calculations. An a posteriori decomposition of the total energy
of a system into individual atomic contributions is error prone
and cumbersome, if not impossible in the presence of defects.
Hence the Green-Kubo approach has so far only been applied
within the framework of semiempirical potentials, for instance,
to calculate κ in Si (Ref. 17) and its frequency dependence,18

in Si/Ge superlattices,19,20 and in Ge.21

The steady-state method involves establishing a large
temperature gradient and maintaining it with thermostats until
the steady state is reached. Because of the large temperature
fluctuations, very large temperature gradients are needed and
the specific heat varies from one end of the system to the other.
Very long MD runs are required to achieve a steady-state
situation. The method has been used in conjunction with
semiempirical potentials to calculate κ in C nanotubes,22 in Si
nanowires,23 in solid argon,24 and to study the effects of large
vacancy clusters in Si.25 The steady-state method has also been
used to predict26 the high-temperature thermal conductivity of
MgO using forces obtained from first-principles DF theory.
The large temperature gradients required are better suited to
very high temperatures than to the low temperatures considered
here, where the specific heat varies considerably with T .

Finally, the Boltzmann transport equation can be solved
directly to find κ . The equation contains the specific heat,

the phonon group velocities, and the phonon lifetimes. The
specific heat is readily obtained from first principles if the
phonon density of states is known. The group velocities
can be extracted from the phonon dispersion curves. But
the vibrational lifetimes are more difficult to calculate. This
has been done from first-principles autocorrelation functions
in MgO (Ref. 27) and in elemental semiconductors with
third-order force constants obtained from first-principles DF
perturbation theory.28,29 The Boltzmann equation can also be
solved using Green’s functions to find mode-dependent trans-
mission coefficients. This approach has been used to study the
impact of impurities on the thermal conductivity of graphene.30

As mentioned above, the details of phonon coupling are more
complicated in the case of defects, as the decays of localized
modes involve the coupling of the defect-related modes with
two to five (or more) phonons.12–14 As discussed below, when
defects are present in high concentrations, localized modes can
substantially reduce the thermal conductivity and the reduction
is sometimes strongly isotope dependent.

Our nonequilibrium ab initio MD approach starts with
a supercell prepared slightly away from equilibrium in a
manner that minimizes the thermal fluctuations and allows
the use of very small temperature gradients. We monitor
how the system returns to equilibrium without using a
thermostat. We have tested the supercell preparation technique
in conjunction with the calculations of the temperature and
isotope dependence of vibrational lifetimes12–14 using the
same first-principles approach. Our longest MD simulations,
required for a very slowly decaying vibrational excitation,
involved almost one million time steps. The amplitude of
the temperature fluctuations at 200 K decreased very little
throughout this MD run, demonstrating that, even at moderate
temperatures, our supercell preparation technique does mimic
thermal equilibrium with good accuracy.

In this paper, we extend our earlier work4 in several ways. In
Sec. II, we describe our theoretical method in detail, including
the specifics of supercell preparation, the normal-mode phase
matching at the hot-cold interface, and the averaging required
to obtain κ . In Sec. III, we discuss the changes introduced by
impurities in the phonon density of states and the specific
heat, predict the temperature dependence of the thermal
conductivity in the Si192 supercell, the dependence of κ on
the concentration of impurities, and then focus on the change
in κ(T = 125 K) when the supercell contains 5.2 at.% of
vacancies or various isotopes of C, Si, Fe, or Ge. The strong
variation of κ with the impurity isotope is correlated to the
localization of some impurity-related modes. The key results
are discussed in Sec. IV.

II. METHODOLOGY

A. Supercell construction

The host crystal is represented by periodic supercells
constructed by stacking slices along a specific crystalline
direction. Most of our calculations are done with twelve 16-Si
atoms slices stacked along the 〈100〉 direction to create a
parallelepiped which is 33 Å long and has a diameter of 15
Å. We have also used4 the Si384 and Si768 supercells (Fig. 1)
to investigate the impact of the cross-sectional area on the
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FIG. 1. (Color online) The Si192, Si384, and Si768 supercells consist
of 12 Si16, Si32, and Si64 slices, respectively, aligned along the 〈100〉
direction. The supercells are shown with a random distribution of
5.2 at.% of substitutional impurities [magenta (darker) atoms]. The
three supercells are 3.3 nm long. Their diameters are 1.54, 2.44, and
4.50 nm, respectively.

thermal conductivity. A similar construction can be performed
for Si nanowires to investigate the impact of the surface
conditions or impurity content on the thermal conductivity.31

Because the thermal conductivity calculations are highly
computer intensive, we restrict the Brillouin-zone sampling
to the � point.

B. Electronic structure method

The first-principles DF calculations are carried out using
the SIESTA package,32,33 but our method is not restricted to
this particular electronic structure code. Indeed, it has also
been successfully used to calculate the thermal conductivity of
oxides34 using the all-electron simulation package FHI-AIMS.35

In the SIESTA approach, the electronic core regions are
removed from the calculations using ab initio norm-conserving
pseudopotentials with the Troullier-Martins parametrization36

in the Kleinman-Bylander form.37 The SIESTA pseudopo-
tentials have been optimized using the experimental bulk
properties of the perfect solids and/or first-principles
calculations38 as well as vibrational properties of free
molecules or known defects, when such experimental data are
available.

The valence regions are treated using first-principles
spin-DF theory with the exchange-correlation potential of
Ceperley-Alder39 as parametrized by Perdew-Zunger.40 The
calculations involving heavier elements such as Fe or Ge

are treated within the generalized gradient approximation for
the exchange-correlation potential.41 The basis sets for the
valence states are linear combinations of numerical atomic
orbitals.42,43 We use a double-zeta basis set for H, C, and Si, and
add polarizations functions for Ge. The basis set for Fe consists
of two sets of valence s’s and d’s and one set of p’s. The charge
density is projected on a real-space grid with an equivalent
cutoff of 350 Ryd to calculate the exchange-correlation and
Hartree potentials.

C. Vibrational spectra

The defect configurations must be optimized with care
using a conjugate gradient algorithm. Our standard require-
ment is that the maximum force component be 0.003–0.001
eV/Å. Supercell preparation relies on accurate dynamical
matrices (see below), and unphysical negative frequencies
appear when the geometries are insufficiently optimized. They
indicate that the system is not at a true minimum of the
3N-dimensional potential energy surface (N is the number
of atoms), i.e., that the curvature is negative in at least one
direction.

The potential energy is sometimes very flat in one direction,
and finding the precise minimum is computationally difficult.
In such cases, we tolerate a few negative frequencies as long
as their absolute value is small. A few of the orthonormal
eigenvectors are incorrect, but the basis set is still complete
and the error has a minor impact on supercell preparation.

Note that when dealing with a high concentration (a few
atomic percent) of defects, conjugate gradient calculations of-
ten converge poorly. For example, the geometry optimizations
with 5 at.% of vacancies in the supercell properly converged
only when we started by optimizing the supercell with a single
vacancy, then again with two vacancies, etc., until all the
vacancies were in place. Only then do we obtain dynamical
matrices with no negative frequencies.

Once the geometry is properly optimized, the force constant
matrix, and then the dynamical matrix are calculated. Its
eigenvalues are all the normal-mode frequencies ωs of the
system. The eigenvectors es

αi (i = x,y,z) give the relative
displacements of the nuclei α for each mode s. These 3N
orthonormal vectors are central to the present calculations as
they allow us to prepare the supercell (or parts of the supercell)
in thermal equilibrium at the temperature T . They also allow
us to quantify the localization of any normal vibrational mode.
Indeed, a quantitative measure of how localized a specific
mode is on one atom or a group of atoms is provided by a plot
of L2

{α} = (es
αx)2 + (es

αy)2 + (es
αz)

2 vs ωs , where {α} is a single
atom or the sum over a group of atoms.

D. Supercell preparation in thermal equilibrium

The central ingredient is the preparation of the supercell
slightly away from thermal equilibrium at t = 0. This is
achieved by initializing the atoms in a linear combination
of normal vibrational modes at the desired temperature. This
involves random distributions of mode energies and phases.

In thermal equilibrium, the average energy of each
mode is kBT . We write 〈Es〉 = γskBT , where γs = ∫ Es

0
{e−E/kBT /kBT }dE defines a random distribution of mode
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energies that averages out to kBT . This gives 〈Es〉 =
−kBT ln(1 − γs). Thus, the average kinetic energy of each
mode is

〈Ks〉 = − 1
2kBT ln(1 − γs), 0 < γs < 1.

The Cartesian coordinates of atom α in the mode s is related
to the eigenvectors es

αi via the normal-mode coordinate qs(T ),
which we assume to be harmonic

rs
αi = qs(T )es

αi = 1√
mα

As(T ) cos(ωst + ϕs)e
s
αi .

The relative phase ϕs of each mode is in the range [0,2π [.
The harmonic assumption for the initial state of the

supercell is never perfect since even the zero-point motion is
slightly anharmonic.44 The assumption becomes increasingly
worse as the temperature increases. However, it is only used
for supercell preparation at t = 0. It is simple, produces
remarkably constant temperature fluctuations, and obviates the
need for a thermostat.

If (�rs
α)2 = ∑

i{rs
αi}2, the average kinetic energy of the mode

s is

〈Ks〉 = 1

2

∑
α

mα

〈(�̇rs

α

)2〉

= 1

2
ω2

s A
2
s (T )

1

2

∑
αi

{
es
αi

}2 = 1

4
ω2

s A
2
s (T )

= −1

2
kBT ln(1 − γs).

Thus, in thermal equilibrium at the temperature T , the mode
amplitudes are given by

As(T ) =
√−2kBT ln(1 − γs)

ωs

,

which allows the calculation of the initial positions and
velocities of all the atoms in the supercell in (very near) thermal
equilibrium. The price we pay for eliminating the need for
a thermalization and a thermostat is that we introduce two
random quantities: the initial phases and initial energies of the
normal vibrational modes. The results must be averaged over a
statistically relevant number of initial conditions (see below).
However, this averaging further reduces the magnitude of the
temperature fluctuations.

E. Preparation away from equilibrium
and the hot-cold interface

When calculating vibrational lifetimes,12–14 the supercell
is prepared away from equilibrium by exciting one specific
vibrational mode by one phonon, that is, using the appropriate
eigenvector of the dynamical matrix to assign to this mode
the initial potential energy 3h̄ω/2 (zero-point energy plus
one phonon). This guarantees that the classical oscillator
starts with the same oscillation amplitude (same amount of
anharmonicity) as the quantum oscillator in the sample being
measured.

In the present work, we prepare one slice of the supercell
at a higher temperature than the rest. For example, consider a
supercell divided into N = 12 slices. If we prepare the first
slice at Thot = 180 K and the other 11 at Tcold = 120 K,

the final (equilibrium) temperature will be 125 K. The
temperature in the central slice, where T (t) is calculated,
increases by only 5 K. Even smaller temperature changes can
be monitored at lower temperatures. We have tested this with
averages including up to 120 runs. This number can be reduced
if the modes at the hot-cold interface are prepared in phase at
t = 0. Further, it is important that the initial temperature of
the central slice—not just the initial average temperature of
the 11 cold slices—be at the desired temperature. Thus, in
each run, we want (a) the temperature of the first slice to be
Thot, (b) the average temperature of the other 11 slices to be
Tcold, and (c) the temperature of the central slice to be as close
as possible to Tcold as well. This is achieved in the following
way.

First, we randomly generate initial mode phases and
energies (of the entire supercell) consistent with Tcold until the
temperature of the central slice and the average temperature
of the 11 cold slices are within 0.5% of Tcold. From now
on, the phases are kept constant. Second, we scale the mode
amplitudes (of the entire supercell) until the first slice is exactly
at Thot. Third, we apply the Thot conditions to all the atoms in
the first slice and the Tcold conditions to the atoms in the 11
other slices. Thus, requirements (a), (b), and (c) listed above
for supercell preparation away from equilibrium are satisfied
to a high degree of accuracy, and the modes are in phase at the
hot-cold interface.

F. Averaging and thermal conductivity

MD runs without a thermostat in the prepared supercell
allow the calculation of T (t) in the central slice. The time
step is selected to be 1/40th–1/30th of the shortest oscillation
period in the system. Because of the periodic boundary
conditions applied, half of the temperature increase in the
central slice comes from the hot slice and the other half from
its nearest image outside the supercell. Thus, the temperature
in the central slice increases because of a heat flux from both
sides, and depends on the impurity distribution in the entire
supercell.

The preparation procedure is repeated as many times as
necessary until the fit (see below) to the calculated T (t)
produces a converged κ(Tfinal). Because of the random nature of
the initial normal-mode phases and energies, the temperature
versus time behavior must be monitored in each run for the
occasional bizarre behavior resulting from a rare coincidence
of phase and/or energy between strongly coupled modes. For
example, the temperature of the central may suddenly drop
instead of increasing. Such runs are discarded. This would be
irrelevant when averaging over a a huge number of runs and/or
when using very large supercells, but should be monitored
when only a few dozen runs are computationally practical and
relatively small supercells are used. If the supercell is carefully
prepared, 60 runs normally suffice for a properly converged
value (Fig. 2). However, when dealing with a heavily perturbed
system—such as 5.2 at.% of vacancies or impurities which
produce a large reduction in thermal conductivity—additional
averaging is sometimes necessary.

The averaged temperature T (t) of the central slice is fit to
the analytic solution to the heat diffusion equation, which is
the same function used by experimentalists.7 Adapted to the
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FIG. 2. (Color online) Effect of averaging for T (t) in the central
slice in the 28Si162

56Si30 supercell after 1 run (top) and after averaging
over 30 (middle) and 60 (bottom) runs. With Thot = 180 K and Tcold =
120 K, the temperature in the central slice increases by 5 K. Note
that the temperature fluctuations drop to just a few degrees K after
averaging. The (red) solid line shows the fit from which we extract κ .

present configuration, this is

T (x,t) = Tcold + (Tfinal − Tcold)
∑

n

(−1)n exp{−n2π2αt/x2}

and κ = αρC, where ρ is the density of the material and C

the calculated specific heat at the appropriate temperature. For
example, if the temperature of the central slice increases from
120 to 125 K, we use the calculated Cv at the average 122.5 K.
Accurate specific heats can easily be calculated once the
dynamical matrix is known.45–49 Our sum runs from n = 0
to n = 10.

G. Validity of the fitting equation

The fitting equation we use to extract the thermal conductiv-
ity was developed for macroscopic samples. It is not obvious
that it can be used in our nanostructures as well. This equation
assumes that Fourier’s law is valid. It also contains the specific
heat, which varies with temperature. Finally, it assumes that
we are in the diffusion, not the ballistic, regime.

All the results we obtained to date (see Ref. 4 and the
results discussed in this paper) suggest that our predictions
are sound. For example, the calculated κ(T = 125 K) =
2.1 × 10−2 W/cm K is larger than, but consistent with, that
of Si nanowires of small diameter.50–53 This discrepancy is
expected since phonon scattering at the surface reduces the
thermal conductivity of nanowires (especially if the surface
is heavily damaged54), while we use periodic boundary
conditions and have no surface. Further, the cross-sectional
area of our supercell is smaller than that of the smallest
nanowire measured to date. The κ(T = 125 K) of a 22-nm
diameter (our 1.5-nm supercell) is measured (calculated) to be
150 (300) times smaller than the bulk,55 6.0 W/cm K.

Our calculated κ increases with supercell diameter. In the
Si192, Si512, and Si768 supercells, we obtain κ(125 K) = 2.1 ×
10−2, 2.6 × 10−2, and 4.5 × 10−2 W/cm K, respectively. The
diameters of these supercells are 1.54, 2.44, and 4.50 nm,

FIG. 3. (Color online) Thermal conductivities at T = 125 K
measured in Si nanowires of various diameters [blue crosses—the
values are extracted from Fig. 3(a) in Refs. 50 and 51] vs calculated
values in the Si192, Si512, and Si768 supercells (red circles—these
supercells have no surface) and in the H-saturated Si200H32 nanowire
(Ref. 31) (solid square). The thin dashed line is a linear fit to the four
experimental points, where we assume that a zero-diameter nanowire
has zero thermal conductivity.

respectively. Figure 3 shows that the calculated κ(T = 125 K)
in the H-terminated Si200H32 nanowire31 is consistent with the
value extrapolated from existing measurements.50,51

Our method is not applicable to arbitrary small supercells.
The fitting function used to determine the thermal conductivity
is only valid in the diffusive regime of heat transfer, i.e.,
when the length of the supercell is larger than the mean free
path of the heat carrier.56 If the simulated supercell is too
small, ballistic effects dominate the heat transfer and hence the
simulated temperature profile exhibits a spatial and temporal
behavior that is not compatible with our fitting function.57 In
our case, the temperature changes we monitor are only a few
degrees K, the simulations closely follow the heat diffusion
equation (Fig. 2) and ballistic effects are expected to be very
small.

H. Quantum corrections to T and κ

In classical MD simulations, the temperature TMD is
obtained from the kinetic energy of the nuclei

E = 2
∑

α

1

2
mαv2

α = 3NkBTMD.

As discussed by Volz et al.,19,20 the quantum temperature T is
obtained from

E =
∫ ∞

0
g(ω)n(ω,T ) h̄ω dω,

where g(ω) is the phonon density of states and n(ω,T ) the
Bose-Einstein distribution function. Note that the zero-point
energy is ignored here so that the two temperature scales have
the same zero.

In order to get the correction to the thermal conductivity,
Volz et al. assume Fourier’s law and write that, for a fixed
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FIG. 4. Quantum correction factor dT /dTMD to the thermal
conductivity κ plotted as a function of T .

temperature gradient 
T = 
TMD, the ratio of the fluxes of
heat j to the thermal conductivity κ are equal

1

κMD

dj

dTMD
= 1

κ

dj

dT
= 1

κ

dj

dTMD

dTMD

dT

and therefore

κ = κMD
dTMD

dT
.

Figure 4 shows the quantum correction factor dT /dTMD to the
thermal conductivity κ vs T . It is applied in our calculations.

III. RESULTS

A. Impact of impurities on the phonon density
of states and the specific heat

When the crystal contains small concentrations of impuri-
ties, new localized modes appear in an otherwise little-changed
phonon density of state. However, when a few atomic percent
of a substitutional impurity X is present, the total number
of normal modes remains constant but the presence of a large
number of Si-X (instead of Si-Si) stretch modes strongly affects
the optical region of g(ω). This is illustrated in Fig. 5, which
compares the g(ω) calculated from the perfect 28Si192 supercell
to those from the 28Si182

12C10, 28Si182
56Fe10, and 28Si182

74Ge10

supercells.
The consequence of these impurity-related changes is

visible in the specific heat. In the harmonic approximation
and at constant volume,46,49 it is given by

Cv(T ) = d

dT

∫
h̄ωg(ω)n(h̄ω/kBT ) dω.

The integral depends on the entire phonon density of states.
One would expect that if the flow of heat decreases, then
more thermal energy remains in the material and the specific
heat increases. This increase is shown in Fig. 6 for 28Si192,
28Si182

12C10, 28Si182
56Fe10, and 28Si182

74Ge10. However, the
magnitude of the change 
Cv is not quantitatively related to
the changes in κ (see below).

FIG. 5. Phonon density of states g(ω) obtained with a 50 q-point
sampling (and smoothing with narrow Gaussians) with 28Si192

(top left-hand side), 28Si182
12C10 (top right-hand side), 28Si182

56Fe10

(bottom left-hand side), and 28Si182
74Ge10 (bottom right-hand side).

Note that the most dramatic changes occur in the optical region,
between 400 and ∼500 cm−1.

B. Temperature dependence κ(T)

In bulk semiconductors and insulators, the thermal conduc-
tivity increases as T 3 starting from T = 0 K until it reaches its
peak value at a characteristically low temperature58–60 Tmax.
Since κ = αρC, the specific heat also increases as T 3 in this
temperature range. The increase is due to the occupation of
higher-energy vibrational modes with T . However, the number
of umklapp processes also increases with temperature, and
these resistive processes begin to dominate at Tmax, beyond
which the thermal conductivity decreases with T .8,9 In Si
nanowires,50 Tmax is much higher and the magnitude of κ(Tmax)
considerably smaller than in bulk Si.58 The same holds in
our supercells. This is illustrated in Fig. 7, which shows κ(T )
calculated in 28Si192 and 28Si182

56Si10. Note that the “impurity”

FIG. 6. (Color online) Specific heat of the 28Si192 (solid black
line), 28Si182

12C10 (dashed blue line), 28Si182
56Fe10 (dotted red line),

and 28Si182
74Ge10 (dotted-dashed purple line). The differences relative

to Cv(28Si192) are shown in the inset.
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FIG. 7. (Color online) Log-log plot of κ vs T calculated in 28Si192

and 28Si182
56Si10. The temperature Tmax at which κ is maximum and

the low value of κ(Tmax) are consistent with the measurements in Si
nanowires (Refs. 50 and 51) (see Fig. 3). Note that, except for the
scaling, the isotope effect is very similar to that observed for bulk
Si (Ref. 58).

we use here is the nonexistent isotope 56 of Si, as this value
of the mass results in a large change in κ (see below).

In the Si192 supercell, κ reaches its maximum value at
227 K, and κ(227) = 10.7 W/mK. At that temperature, the
thermal conductivity for the Si182

56Si10 isotope combination
drops by ∼80%, to 2.0 W/mK.

C. Concentration dependence

We also calculated the dependence of κ(T = 125 K) on the
concentration of impurities. Figure 8 shows κ as a function of
the concentration of 56Si in the Si192 supercell. The behavior
we find is comparable to that predicted for vacancy clusters in
Si (Ref. 25) and for 14C isotopes in 12C graphene,61 as well as
that predicted and measured in Y-stabilized zirconia.62

FIG. 8. Dependence of κ on the concentration of 56Si in the Si192

supercell.

D. Dependence of κ on the mass and type of impurity

If the material contains impurities, a reduction in the value
of κ relative to the impurity-free material is always observed.
This is due to the scattering of phonons at impurities. What is
unexpected is that the reduction sometimes varies in a strongly
nonlinear fashion with the isotope of the impurity.

Our first study4 of the impurity dependence of κ at a
fixed temperature involved 5.2 at.% of impurities. This large
concentration of impurities was selected because the large
changes in thermal conductivity measured58 as a function
of the isotopic purity of Si involved several atomic percent
of 29Si and 30Si. However, the “impurities” used in Ref. 4
were simply (invented) Si isotopes with arbitrarily small or
large mass, MSi. This approach was based on the following
argument. Impurities introduce unique localized vibrational
modes into the phonon density of states, and we wanted
to see how κ varies when the frequencies of these modes
change. These frequencies depend mostly on the impurity
mass and on the Si-impurity bond strength. The simplest way
to vary the frequencies of the impurity-related bands is to
vary the mass. This greatly facilitates the calculations since
no additional geometry optimizations are required and the
same force constant matrix can be used. κ(T = 125 K,M)
calculated in 28Si182

MSi10 exhibits a sharp drop for M = 56.
However, this approach has little impact on the phonon density
of states since the bond strengths remain constant.

We have now extended this study to 28Si182
MX10 for X = C,

Fe, and Ge. We also considered the case M = 0, that is,
5.2 at. % of Si vacancies. The results are shown in Fig. 9.
The dependence of the thermal conductivity on the impurity
isotope is highly unexpected.

A concentration of 5.2% of vacancies in the material causes
κ to drop by a factor of ∼2.5. A substantial drop in the thermal
conductivity has indeed been mentioned in conjunction with
a Si surface exposed to a hydrogen plasma, which is known
to generate damage near the surface of Si.63 These studies

FIG. 9. (Color online) κ(T = 125 K) in the 192-atom supercell
containing 5.2 at.% impurities. The (black) dots are for 28Si182

MSi10

(note: most of these Si “isotopes” do not exist); the (green) × for
ten vacancies in the supercell; the (blue) triangles for 28Si182

MC10

(note: the 11C does not exist); the (red) squares for 28Si182
MFe10 with

M = 54, 55, 56, and 57; the (purple) crosses for 28Si182
MGe10 with

M = 70, 72, 74, and 76.
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focused on the behavior of ortho- and para-H2 molecules
in the subsurface region of Si, and neither the damage on
this Si surface nor the change in thermal conductivity have
been quantified. The experimental observation is nonetheless
consistent with our prediction.

κ is strongly affected by the isotope of all the impurities
we have studied (C, Si, Fe, and Ge). As mentioned above,
if the impurity is MSi, κ sharply drops for the nonexistent
56Si isotope. A qualitatively identical behavior is predicted
when 28Si is doped with 5.2 at.% of C, Fe, and Ge. The drop
occurs for 12C (we invented 11C and it shows κ bouncing back
upward), 55Fe, and 74Ge. The magnitude of the drop depends
on the impurity, and some isotopes reduce κ much more than
others.

Thus, the qualitative statement that impurities lower the
thermal conductivity because of phonon scattering is true but
imprecise. That behavior is expected if one uses a mix of
isotopes. However, we predict here that 5.2 at.% of 74Ge
introduced into isotopically pure 28Si has a much greater
impact on the thermal conductivity than the same amount of
70Ge. This prediction can be tested experimentally.

Unexpectedly large isotope effects have been reported when
measuring the vibrational lifetimes of impurity-related vibra-
tional modes. Such effects can be dramatic when substituting
D for H,11 but one could argue that the mass changes by a
factor of 2. However, the lifetime of the asymmetric stretch
of interstitial O in Si is highly sensitive to the isotope of
one of its Si neighbors. Indeed, substituting 28Si-16O-28Si by
29Si-16O-28Si shifts the asymmetric stretch frequency by 0.1%
but the vibrational lifetime increases by over 70%.12

E. Correlation between the isotope dependence of κ

and the localization of impurity-related modes

The very large isotope effects on the calculated thermal
conductivity in Si nanostructures containing impurities and on
the measured and calculated vibrational lifetimes of impurity-
related local vibrational modes lead us to suspect that the
two phenomena are connected. Indeed, should a localized
vibrational mode trap energy, it will remain in the excited state
until the excitation decays into some linear combination of
lower-frequency phonons. The longer the lifetime, the longer
the energy remains trapped instead of propagating, and the
lower the thermal conductivity. This process can be called
“phonon trapping.”64

Vibrational lifetimes can be calculated12–14 using our super-
cell preparation technique, but the calculations are computer
intensive even when we know precisely which mode is excited.
In the present case, we deal with dozens of modes which
exhibit various degrees of localization. The normal-mode
frequencies and eigenvectors are calculated at T = 0 K, a
temperature at which the thermal conductivity is zero. At
finite temperatures, the frequencies of different modes shift by
different amounts. Calculating the lifetimes of all the possible
modes for all the possible isotopes becomes an enormous
computational task, especially if the lifetime of some modes
becomes very long. A much simpler calculation involves the
localization L2

{α} = (es
αx)2 + (es

αy)2 + (es
αz)

2 of selected modes
as a function of the isotopic mass of the impurity.

FIG. 10. (Color online) Correlation between the localization
L2 = L2(SiNN) (0 < L2 < 1 by definition) of the breathing mode
of the four NN to the impurity (black line, right-hand scale)
and the change of thermal conductivity 
κ = {κ(28Si192) −
κ(28Si182

MSi10)}/κ(28Si192) at 125 K (red dashed line, left-hand scale).

We started this analysis by looking at the modes that involve
a substantial amount of impurity motion. However, the most
promising mode proved to be the breathing oscillation of the
four Si nearest neighbors (NNs) of the impurity, which involves
no impurity motion. Note that four Si atoms participate in
this mode for each impurity present. Thus, the 5.2 at.%
concentration implies that over 20% of the host atoms in the
crystal could be involved in phonon trapping. Figure 10 shows
the correlation between the localization L2 of the breathing
mode of the four NN to the impurity and the percent change
of the thermal conductivity relative to the isotopically pure
28Si192 supercell.

As discussed above, localization by itself is not a proof of
long vibrational lifetime. Some highly localized modes have
very short lifetimes. However, all the modes that exhibit a long
lifetime are strongly localized. Thus, the striking correlation
between L2 and the change 
κ as a function of the isotopic
mass is not a proof but a strong hint that the underlying cause
for the isotope effect on the thermal conductivity is related to
the vibrational lifetimes of localized modes associated with
the impurity.

IV. KEY POINTS AND DISCUSSION

A new method for calculating entirely from first principles
the thermal conductivity in nanostructures containing defects
has been discussed in detail. The method minimizes the
thermal fluctuations and allows us to monitor changes of tem-
perature as small as 5 K, from T = 120 to 125 K, without using
a thermostat. The results must be averaged over two initial
conditions: the relative phases and energies of all the modes at
the time t = 0. However, MD simulations can be performed
without thermalization or thermostat. This method is used here
to prepare the supercell slightly away from equilibrium, and
then monitor how it returns to equilibrium. The calculation
of thermal conductivities mimics the experimental laser-flash
method.

The impact of the presence of a few atomic percent of
impurities on the phonon density of states shows that all of g(ω)
is impacted, not just the low-frequency regions which is the
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most critical to the thermal conductivity at low temperatures.
As a result, the specific heat also changes when impurities are
present, but the magnitude of the changes does not correlate
with the calculated changes in the thermal conductivity.

As expected, the largest thermal conductivity of Si occurs
for defect-free 28Si samples. The presence of impurities at the
atomic percent level always reduces κ . We have considered a
wide range of Si isotopes (most of which do not exist in nature
but are convenient for the present calculations) and have shown
that the drop in κ is substantial for 56Si.

When actual impurities are introduced into the supercell,
the drop in κ is also isotope-dependent. We used 5.2 at.%
of substitutional C, Fe, and Ge in otherwise isotopically pure
28Si. The drop is relatively small in the case of substitutional
C and Fe. Note that while Si samples can easily be doped with
12C or 13C impurities, it would be most challenging to grow
a sample with the desired concentration of substitutional Fe.
This impurity much prefers to remain interstitial.

The most interesting prediction deals with 5.2 at.% of
Ge in Si, especially since the presence of substitutional Ge
in Si does not affect very much the electrical conductivity
(except for an increase in mobility). This impurity is almost
always substitutional, samples of Si1−xGex with a wide
range of x are common, although samples with the desired
isotope combinations are not. Our prediction is that the

thermal conductivities at T = 125 K of nanostructures of
28Si0.95

70Ge0.05 and 28Si0.95
74Ge0.05 should differ by a factor

of ∼7. Note that substantially increasing the Ge concentration
may not affect the result very much (Fig. 8). Using natGe
instead of isotopically pure 70Ge or 74Ge leads to κ(T =
125 K) = 0.42 W/mK.

Although it is difficult to relate macroscopic quantities such
as κ to specific atomic-level processes, our results suggest that
the key is the vibrational lifetime of some impurity-related
localized vibrational modes. In particular, we find a strong
correlation between the localization of the fully symmetric
breathing mode of the four Si NN to the impurity and the
relative change in the thermal conductivity in 28Si182

MSi10 in
the range 10 < M < 110. This suggests that some impurity
isotopes are capable of trapping phonons.
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