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We propose a powerful scheme to accurately determine the formation energy and thermodynamic

charge transition levels of point defects in nonmetals. Previously unknown correlations between defect

properties and the valence-band width of the defect-free host material are identified allowing for a

determination of the former via an accurate knowledge of the latter. These correlations are identified

through a series of hybrid density-functional theory computations and an unbiased exploration of the

parameter space that defines the Hyde-Scuseria-Ernzerhof family of hybrid functionals. The applicability

of this paradigm is demonstrated for point defects in Si, Ge, ZnO, and ZrO2.
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Point defects critically affect many properties of non-
metals, ranging from conductivity to optical activity to
phase stability. Although first-principles computations
have contributed to our understanding of point defects,
confusion and faith permeate such studies. Conventional
implementations of density-functional theory (DFT) utilize
(semi)local exchange-correlation functionals. Because of
spurious electron self-interactions, these approximations
lead to inaccurate predictions of band gaps and defect
levels and, consequently, to uncertainties in the computed
defect formation energies and charge transition levels
[1,2]. More recent hybrid DFT studies that incorporate a
fraction of exact exchange involve ‘‘optimizing’’ the
hybrid-functional parameters such that the band gap of
the host material best matches experiments [3–6]. Such
(semi)empiricism does not satisfactorily resolve the uncer-
tainties, nor does it guarantee a concurrent improvement in
the accuracy of the predictions [4–6].

In principle, these issues may be settled once and for all
by many-body methods such as self-consistent GW or
quantum Monte Carlo (QMC) calculations, except that
they are not practical today for the large supercells required
in point-defect studies. Even non-self-consistent G0W0

calculations presently do not provide total energies; hence,
determination of defect formation energies within such
schemes involves ad hoc assumptions and (semi)local
DFT starting points [7–9]. Several severe assumptions
also underlie QMC methods [10]. These include the usage
of local-density approximation (LDA) or Hartree-Fock
pseudopotentials, small supercells, and the fixed node as-
sumption [11]. Given this scenario, it is apparent that
computations of point defect properties with high fidelity
are still not at hand.

Here, we adopt a different perspective, viz., we seek to
discover correlations between point defect properties and
electronic structure features of the defect-free parent
material. In order to intentionally vary the underlying

electronic structure and defect properties, we exploit the
availability of the (�;!) parameter space of the Hyde-
Scuseria-Ernzerhof (HSE) ‘‘family’’ of hybrid functionals.
The HSE hybrid exchange-correlation functionals are built
from a semilocal Perdew-Burke-Ernzerhof (PBE) func-
tional; � represents the fraction of the semilocal PBE
exchange interaction replaced by a screened nonlocal func-
tional, and ! is the inverse screening length [12]. We find
that modulations of the neutral point defect formation
energies (due to variations of � and !) are strongly corre-
lated with concomittant variations in the band gap and
valence-band width (VBW) of the defect-free host mate-
rial. Most notably (cf. Fig. 1), it is the apparently linear
correlation of the formation energies with the VBWs that
provides the best reconciliation with experimental data (for
vacancies in Si and Ge) and diffusion Monte Carlo (DMC)
studies (for the self-interstitial in Si). This behavior, i.e.,
the importance of the VBW, immediately calls into ques-
tion the practice of optimizing hybrid-functional parame-
ters to match experimental band gap values alone [3,4] and
underlines the importance of other general features of the
electronic structure, as has been recently alluded to [2].
A second important upshot of this study relates to the

thermodynamic defect charge transition levels, ~�ðq=q0Þ,
and band edge positions. ~�ðq=q0Þ is defined as the elec-
tronic chemical potential � at which point defects in two
different charge states q and q0 are at thermodynamic
equilibrium with each other. When referenced to the aver-
age local electrostatic potential (Vav), we find that ~�ðq=q0Þ
becomes very insensitive to � and !, consistent with prior
observations [4]. This implies that the difference in the
formation energies of defects in different charge states
varies little with treatment, provided � is referred to Vav

(Fig. 2). On the other hand, the band gap and band edge
positions—the valence-band minimum (VBm), valence-
band maximum (VBM), and conduction-band minimum
(CBm)—scale nearly linearly with VBW (Fig. 3). When
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referenced to the VBM estimated for trustworthy VBW
values, ~�ðq=q0Þ for point defects in Si, Ge, and ZnO agrees
favorably with experiments. Thus, the VBWof the defect-
free parent material may be viewed as a convenient de-
scriptor to assess the quality of the treatment.

For definiteness, we consider five specific functionals in
the (�;!) parameter space: PBE, PBE0, HSE,HSE>�, and
HSE>!. PBE0 refers to the ð0:25; 0Þ hybrid-functional,

while HSE refers to the (0:25; 0:207 �A�1) HSE06 func-
tional [12]. The last two functionals correspond to those

with larger values of � and !, namely, (0:5; 0:2 �A�1) and

(0:25; 0:4 �A�1), respectively.

Specifically, we focus on point defects in Si, Ge, ZnO,
and ZrO2 (Si: 0=þ 2 charged vacancy, 0=þ 2 charged
self-interstitial, 0=þ 1 charged S substitutional; Ge: 0=�
1=� 2 charged vacancy; ZnO: 0=þ 2 charged O vacancy;
ZrO2: 0=� 2 charged O interstitial, 0=þ 2 charged O
vacancy). These material choices are intended to include
well-studied and technologically important systems span-
ning small to large band gaps. The Si and Ge systems
involved 216-atom supercells, while the ZnO and ZrO2

systems utilized 192-atom wurtzite and 96-atom mono-
clinic supercells. All calculations were performed using
the VASP code within the projector augmented wave meth-
odology [13]. A �-centered 2� 2� 2 k mesh and a plane
wave energy cutoff of 280, 174, 400, and 400 eV for Si, Ge,
ZnO, and ZrO2, respectively, were used. Geometry opti-
mizations were performed at the PBE level of theory, and
the PBE optimized geometry was used in calculations
involving all the hybrid functionals. This allowed us to
directly probe the effect of the treatment of the exchange
interaction. As a side remark, we note that all calculations

FIG. 2 (color online). The formation energy for the neutral and
þ2 charged Si self-interstitial as a function of the electronic
chemical potential (�). In (a), � is referenced to the valence-
band maximum (VBM), and in (b), it is referenced to the average
electrostatic potential (Vav). For each of the five functionals
considered, the curves extend from the respective VBM to the
conduction-band minimum (CBm).

FIG. 1 (color online). Correlations between the formation en-
ergies and the band gap (left) or valence-band width (right) for
point defects in bulk Si (a),(b),(e),(f), bulk Ge (c),(d), bulk
wurtzite ZnO (g),(h), and bulk monoclinic ZrO2 (i),( j). The
PBE semilocal functional and four hybrid functionals within
the HSE ‘‘family’’ (as defined in the text) were considered.
Experimental (Expt), GW, and diffusion Monte Carlo (DMC)
simulation results are also shown.

FIG. 3 (color online). Correlations between the VBW and the
point defect charge transition levels [ ~�ðq=q0Þ], valence-band
minimum (VBm), valence-band maximum (VBM), and
conduction-band minimum (CBm) for Si (a) and ZrO2 (b). All
energies are referred to Vav corresponding to each treatment. In
(a), the vacuum level is also shown.
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were performed self-consistently. However, this was un-
necessary for calculations involving hybrid functionals (at
least for the point defects considered here). The formation
energy and ~�ðq=q0Þ obtained from non-self-consistent cal-
culations using PBE wave functions for all defects consid-
ered differed by less than 0.03 eV from the self-consistent
results.

The formation energy Eq
fð�Þ of a point defect in charge

state q is given by

Eq
fð�Þ ¼ Eq

def � Ebulk � �þ qð�þ Eref þ�VÞ þ Eq
corr;

(1)

where Eq
def and Ebulk are the calculated total energies of the

supercells containing the point defect and the perfect bulk
host materials, respectively. �, the chemical potential of
the atomic species constituting the defect, is taken to be the
bulk Si (Ge) energy per atom in the case of Si (Ge) defects,
half the energy per O2 molecule in the case of O defects,
and the chemical potential of S corresponding to the equi-
librium between Si and SiS2 in the case of S substitutional
defect. The � sign indicates whether the defect atom was
removed or added. Eref corresponds to a suitable reference
energy, generally taken to be the VBM (other more appro-
priate choices for Eref are discussed below). �V is a
correction to appropriately line up the energy zero of the
supercells with and without the defect. Eq

corr represents
spurious electrostatic interactions of charged defects due
to periodicity and finite supercell sizes. Here, we have
included only the first-order monopole correction [14].
Since this correction is the same for all functionals, it
does not affect the comparison between the functionals.

We first consider neutral point defects, for which Eq¼0
f is

independent of �. E0
f varies with the type of functional

used (Fig. 1), with the variation most pronounced for
systems with the smallest band gaps. For instance, E0

f for

the Si self-interstitial, Si vacancy, and S substitute in bulk
Si varies by as much as 1.1, 1.8, and 2 eV, respectively, and
for the Ge vacancy in bulk Ge, the variation is more than
3 eV. For O vacancy in ZnO, this variation is 1.4 eV. In
contrast, the corresponding variation is 0.4 and 0.3 eV,

respectively, for the O vacancy and O interstitial in
ZrO2—the largest band gap system studied here. In all
cases considered, E0

f increases in the order: PBE,

HSE>!, HSE, PBE0, and HSE>�, with the HSE and
PBE0 values being within 0.3, 0.1, 0.01, and 0.01 eV of
each other in the case of point defects in Ge, Si, ZnO, and
ZrO2, respectively. Table I collects the PBE and HSE
results for all systems studied.
In order to comprehend the variation of E0

f with � and

!, we attempted to draw correlations between such varia-
tion and features of the electronic structure of the respec-
tive defect-free host material. Among all features
considered, E0

f displays the most meaningful variation

with the band gap and VBW (Fig. 1), with the practically
linear correlation of E0

f with VBW most striking. This

correlation may be understood as follows. The valence
band is composed of the Si (Ge) sp3 hybridized states in
the case of bulk Si (Ge), and is dominated by O 2p states
(with some admixture of Zn 3d or Zr 4d states) in the case
of bulk ZnO and ZrO2. The width of these valence bands is
a measure of the cohesive interaction between the respec-
tive atoms within the parent material. The greater this
interaction, the larger the band width. Consequently, the
resistance to form defects will be greater (and hence
the formation energy higher). Correlations between E0

f and

the band gap may also be understood qualitatively by similar
arguments. However, for the simple bonding or antibonding
picture to be valid (and for the band gap to become a good
descriptor), the band gap may have to be appropriately
defined, especially for indirect band gap systems.
The identified correlation between E0

f and the host VBW

(rather than the host band gap) provides a favorable rec-
onciliation with available experimental results. This is
immediately evident from Figs. 1(a)–1(d), which include
the experimental results for E0

f of a vacancy in bulk Si

[18,19] and bulk Ge [20], as well as the band gap and VBW
of Si and Ge [15]. Table I contains our predictions of E0

f for

all defects considered based on well-documented VBWs of
the corresponding hosts. The experimental Si and Ge VBW
values of 12:5� 0:6 eV and 12.6 eV lead to Si and Ge

TABLE I. The formation energies (in eV) of point defects in Si, Ge, ZnO, and ZrO2. The predicted values (Pred) are determined
using the correlation between the formation energies and the VBWs identified in Fig. 1 and the experimental (Si and Ge [15]) or the
GW (ZnO and ZrO2 [16,17]) VBWs (experimental data for the oxides include significant band tails, most likely due to imperfections).
The experimental results for the Si and Ge vacancy formation energies are from Ref. [18–20], respectively.

System Defect PBE HSE Pred Expt

Si Si vacancy 3.61 4.49 4:05� 0:4 4.0, 3:6� 0:2
Si Si interstitial 3.60 4.13 3:86� 0:3 � � �
Si S substitutional 1.01 2.11 1:6� 0:4
Ge Ge vacancy 2.09 3.70 2.43 2:35� 0:11
ZnO O vacancy 3.67 4.32 4.62

ZrO2 O vacancy 5.99 6.17 6.25 � � �
ZrO2 O interstitial 1.54 1.69 1.73 � � �
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vacancy E0
f values in excellent agreement with available

experimental results for these defects (Table I). Such a
favorable agreement with experiment was not obtained if
one attempted extrapolations based on the band gap as the
descriptor. This implies that a treatment that provides a
better description of electronic structure features such as
the VBW may also provide a better estimate of the defect
formation energies, as alluded to recently [2].

The DMC result for E0
f of the Si self-interstitial [10]

(determined for a 16-atom supercell) is higher than the
corresponding PBE value by about 1 eV—a discrepancy
that has remained a puzzle for some time [11]. We argue
that this large E0

f may be traced to the rather large VBW

values underlying the DMC treatment. Indeed, fixed node
DMC calculations to determine the band structure of Si
yield a VBW of 13:6� 0:2 eV [21], compared to the PBE
VBW of 11.8 eV. The correlation between the large DMC
VBW value for Si and the large self-interstitial formation
energy is manifest in Fig. 1(b).

G0W0 calculations place the neutral Si self-interstitial
E0
f 0.4 eV below the DMC result [7] (i.e., �0:3 eV larger

than our predicted value). TheG0W0 correction scheme for
computing E0

f relies on two critical ingredients: (1) the

LDA Eþ2
f value (with the assumption that the þ2 charge

state, owing to the empty gap levels, is least prone to self-
interaction errors), and (2) the G0W0 energies for the
successive addition of two electrons to the þ2 charged
defect (with the assumption that theG0W0 and LDAVBMs
are aligned). As will be pointed out below, both assump-
tions may be questioned (the latter may be eliminated by
suitable band edge realignments).

We next move on to charged point defects. Eq
f determi-

nations for q � 0 require the specification of Eref , the
conventional choice being the VBM, as this allows for a
comparison with experiments. However, this choice of Eref

leads to an issue when comparing Eq
f across treatments.

The reason is that one has made the implicit questionable
assumption that the VBM positions provided by each func-
tional are all aligned. Two other natural choices for Eref are
Vav and the vacuum level. For the case of the Si self-
interstitial, Fig. 2 shows the formation energies of the
neutral and þ2 charged defect as a function of � defined
with respect to VBM (a) and Vav (b). Both choices of Eref

lead to large variations in the Eþ2
f values, indicating that

theþ2 charge state of the Si self-interstitial is not immune
to self-interaction errors (see above discussion on G0W0

calculations). A similar warning was also made in the past
[2]. Also, the choice of Eref ¼ Vav leads to two immediate
observations: (1) The ~�ð0=þ 2Þ values [the ‘‘knees’’ in
Fig. 2(b)] are aligned for all functionals considered, and
(2) for any given value of �, (E0

f � Eþ2
f ) is a constant

across treatments.
The assumption of the alignment of Vav across func-

tionals has thus revealed important invariant features,

making this choice of Eref not only attractive but also
necessary especially when comparing �-dependent quan-
tities across treatments. With this assumption, we explore
in Fig. 3 the evolution of ~� for point defects in Si and ZrO2

and the band edges of the respective defect-free parent
materials with respect to treatment (or VBW, our descrip-
tor). Results for Ge and ZnO (not shown) follow the same
trend. The valence (conduction) band edges move down-
ward (upward) linearly with VBW, consistent with the
varying levels of self-interaction error correction.
However, ~� (when referenced to Vav) is relatively in-

variant to treatment (or VBW) in all cases, and the degree
of variation with treatment decreases with increasing band
gap of the host. In the worst case (Si vacancy), the rms
variation of ~� across treatments is �0:08 eV. These
trends, at least in the case of the localized defects consid-
ered here, are consistent with recent PBE, HSE, and PBE0
studies of a variety of point defects and insulators [4–6].
Properties related to total energy differences—such as
~�—for localized (or ‘‘atomiclike’’) defects appear to be
well represented by (semi)local functionals just like the
energy difference between highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) or ionization potentials of atoms or molecules
computed using the �SCFmethod [4–6] (a method similar
to standard DFT but with one or more electrons placed in
higher lying Kohn-Sham orbitals).
One question still remains, related to the choice of Eref :

How do our results stack up if we choose to set Eref to be
the vacuum level instead of Vav (a natural choice for the
definition of ionization potentials of atoms or molecules).
This point was addressed by a series of 13-layer (001) Si
slab calculations. The energy difference between Vav in the
bulk and the vacuum parts of the slab was determined for
the five functionals, and corrected for the (slight) differ-
ences in the surface dipole moment in the different treat-
ments. The vacuum level thus obtained is portrayed in
Fig. 3(a). As can be seen, the vacuum levels are aligned
to an acceptable level of accuracy. One may thus use either
Vav or the vacuum as proper Eref choices, with the former
being a practical option [4,22].
We now attempt to make a connection between our

predictions for ~� and experiments. Once again using well-
documented values for the VBW of the respective parent
materials, we estimate the most likely ~� values (defined
with respect to the VBM). These predictions, along with the
corresponding PBE, HSE, and available reliable experimen-
tal values for point defects in Si, Ge, and ZnO [23–25] are
listed in Table II. As can be seen, the predictions are within
acceptable levels of accuracy, accounting for the uncertain-
ties in the experimental VBW value for Si, the slight fluc-
tuations in the ~� value across treatments, and the omission
of finite size effects such as the quadrupole contributions in
charged defect calculations. Such predictions, if made
based on the band gap as the descriptor, were in marked
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disagreement with experiments [e.g., ½ ~�ð�1=� 2Þ �
VBM� for the Ge vacancy was 0.5 eV].

We are thus persuaded to conclude that the properties of
intrinsic point defects in nonmetals are strongly controlled
by electronic structure features such as the VBW of the
defect-free parent material—an important finding, in light
of the emerging practice of optimizing hybrid-functional
parameters to match experimental band gap values. The
present work, in terms of the importance of the VBW, also
brings a measure of redemption for conventional DFT
calculations. Despite the severe underestimation of band
gaps, reasonable descriptions of the Si and Ge valence-
band manifolds by (semi)local functionals lead to defect
property predictions comparable in quality to the corre-
sponding predictions by hybrid functionals. Moreover, this
analysis also indicates that assumptions underlying higher
level DMC and GW treatments of defect formation ener-
gies need to be reevaluated.

A practical strategy for accurately determining Eq
f and

~�ðq=q0Þ could be the following: (1) determination of
VBW, Eq

f, VBM and ~�ðq=q0Þ at the PBE and HSE levels

of theory, (2) determination of VBW for the defect-free
parent material using a higher level (e.g., GW) calculation,
if reliable experimental measurements are not available,
and (3) extrapolation or interpolation to the ‘‘correct’’ Eq

f

and ~�ðq=q0Þ (with respect to the VBM) values using the
GW or experimental VBW value. While very different
materials and point defect types were indeed considered
in this study, the veracity of the emerging notions for an
even larger variety of point defects and insulators needs to
be ascertained in the future.
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