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PHILOSOPHICAL MAGAZINE A. 1988, VOL 58, No. 1, 107-121 

Parameter-free calculations of total energies, interatomic forces 
and vibrational entropies of defects in semiconductors 

By MATTHIAS SCHEFFLER and JAROSLAW DABROWSKI 
Fritz-Haber-Institut der Max-Planck-Gesellschaft, 
Faradayweg 4-6, D-1000 Berlin 33, F.R. Germany 

ABSTRACT 
We discuss calculations from first-principles (using the local-density 

approximation for exchange and correlation) of defect total energies, vibrational 
modes, internal energies and entropies. Results are presented for the defect-induced 
distortion field of an arsenic impurity in silicon and for the vibrational entropy of a 
silicon vacancy. We also discuss the important role of electron and atom chemical 
potentials, presenting results for the Ga vacancy in the GaAs bulk and at the (1 11) 
surface. 

Q 1. INTRODUCTION 
The requirement of semiconductor technology for accurate control of defect 

densities and profiles, atomic structure at interfaces and suchlike has stimulated 
extensive experimental and theoretical research. An important step forward in the 
theory of defects was achieved by the development of first-principles methods to 
calculate the electronic and magnetic structure, and the total energy (Scheffler, 
Vigneron and Bachelet 1982,1985, Baraff, Schliiter and Allan 1983, Baraff and Schliiter 
1984, Car, Kelly, Oshiyama and Pantelides 1984, 1985, Beeler, Scheffler, Jepsen and 
Gunnarsson 1985, Bar-Yam and Joannopoulos 1984, Froyen and Zunger 1986, 
Pandey 1986). These calculations allowed the determination of defect-induced lattice 
distortions, force constants, reaction energies and vibrational modes (Scheffler 1987, 
Scheffler and Scherz 1986). In many cases knowledge of the total energy is not sufficient; 
it may be important to consider the appropriate thermodynamic function for the 
experimental conditions (the Gibbs free energy, for example). If complete 
thermodynamic equilibrium is possible (at sufficiently high temperature) the 
requirement of finding the minimum of the appropriate thermodynamic function refers 
to the entire system (namely, bulk, surfaces and outer region). Difficulties may arise 
because in many (maybe most) practical situations thermodynamic equilibrium is not 
attained. For example, at or below room temperature chemical reactions in the bulk 
may not be in equilibrium with the surface. Then it is often assumed that a ‘partial 
equilibrium’ exists and thermodynamics can be applied only to certain defect reactions 
(see Q 5 below). 

For optical experiments the sample cannot adjust its volume in the time of the 
optical transition. Therefore these experiments should be considered as performed at 
constant volume and entropy. The proper thermodynamic function to use is the 
internal energy. On the other hand, for defect structure, atomic transport and reactions 
the time scale is usually slow so that electrons and nuclei can relax. The usual 
experimental conditions are those of constant temperature and pressure. Then the 
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108 M. Scheffler and J. Dabrowski 

structure of the crystal, its surfaces and its defects are determined by the minimum of 
the Gibbs free energy, 

G ( N A , N B , .  . . , 'I; P)= U -  TS+PI / ,  (1). 

where NA, N,, . . . , 'I; P, U ,  S and V are the particle numbers of particles of types A, 
B, . . . ,temperature, pressure, internal energy, entropy and crystal volume respectively. 
Particle numbers, temperature and pressure are determined by the experimental 
situation. U ,  S and V follow from the atomic configuration, which must be varied to 
find the minimum of G among all possibilities. 

In $2  we summarize the basic equations which must be evaluated to obtain the 
Gibbs free energy. In $ 3 we describe the methods used to calculate those quantities 
from first-principles which enter the evaluation of G. In $ 4 we present results for the 
distortion field induced by a defect, using as an example the As impurity in silicon. A 
short discussion of calculations of the vacancy-induced change in the vibrational 
entropy is also given. In $ 5 we discuss the role of atom and electron chemical potentials 
in defect formation, using as an example the Ga vacancy in GaAs. Finally, in $ 6  we 
summarize the results and give a critical discussion of the capabilities and limitations of 
our methods. 

$ 2. CALCULATION OF THE GIBBS FREE ENERGY: BASIC EQUATIONS 
In the following we assume that the system has only one stable configuration and 

that metastable structures have a significantly higher Gibbs free energy. In order to 
calculate G one has to evaluate the internal energy U and the entropy S .  The internal 
energy can be written as 

(2) 
where Ustatif is often referred to as either the static or the structural or as the total energy 
(see $3). In the harmonic approximation the vibrational contribution to the internal 
energy is 

u = Ustatif + Uvib. 

exp(hwi/k,T)-l (3) 

which for high temperatures approaches the form 3Nk,T. The energies hoi are for the 
normal vibrational modes. In $ 4 we describe a tractable method for their calculation 
from first principles. 

The entropy can be written as 

+ svib. + seh, (4) s = Sconfig. 

where the three terms are respectively the configurational, vibrational and electron- 
hole pair contributions. For covalent semiconductors at or below room temperatures 
Se-h is negligible. The configurational entropy of a defect is given by the number of 
possible configurations in which the defect can exist (Madelung 1972, Kroger 1974). 
The vibrational entropy is 
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Calculations on defects in semiconductors 109 

which for high temperatures approaches the form 

kB i = l  { l - l n ( z ) ) .  

The vibrational entropy (eqn. (5)) follows from eqn. (3) by solving it for l/T(which 
equals 8Svib./8U) and then integrating this expression over U. It is therefore often 
important to take into account that the entropy depends on the variation of the internal 
energy with volume. For example, Harding (1985) has shown for vacancy formation 
that the defect-induced entropy change A q b .  may even have a different sign than 
AS$b.. Here AS't;Lb. is the entropy change calculated under the assumption that defect 
formation happens at constant volume. A S b .  would be the result if the defect is formed 
under the condition of constant pressure. 

Q 3. FIRST-PRINCIPLES METHODS FOR THE EVALUATION OF FORCES AND TOTAL ENERGIES 
From eqns. (2x5) it follows that the Gibbs free energy can be evaluated if the total 

energy Ustatic and the normal vibrational-mode energies hai  are known. These 
quantities can be calculated in a parameter-free way by using the density-functional 
theory (DFT) (March and Lundqvist 1984). This gives the self-consistent electron 
density and from this the total energy of the many-electron system is obtained. Forces, 
force constants and vibrational frequencies follow from calculations of the total-energy 
gradient with respect to nuclear positions. These forces can be calculated directly (see 
Scheffler et al. (1982,1985)), or from a numerical derivative of total energies calculated 
for different atomic configurations. 

The main approximations of recent density-functional theory calculations are the 
Born-Oppenheimer approximation, the frozen-core approximation and the local- 
density approximation for the exchange-correlation functional (see for example, March 
and Lundqvist (1984)). We currently use two different methods in order to solve the 
Kohn-Sham equation of DFT for the problem of a point defect in a bulk crystal. One of 
the methods is the self-consistent Green-function method (Bernholc, Lipari and 
Pantelides (1978), Baraff and Schliiter (1978), for a review see Scheffler (1982)). This 
method has many of the advantages of cluster calculations without their inaccuracies. 
The Green-function method may be viewed as a special type of cluster calculation, 
where the cluster is embedded correctly in an infinite crystal. This embedding is 
achieved by solving the Dyson equation. Therefore (in contrast to cluster calculations) 
the Green-function method does not place a restriction on the extent of wavefunctions. 

An alternative to the self-consistent Green-function method is the super-cell 
approach (Louie, Schluter, Chelikowsky and Cohen 1976, Bar-Yam and Joannopoulos 
1984, Froyen and Zunger 1986, Pandey 1986). Here a cluster, usually of between 8 and 
54 atoms, is taken as the unit cell of an artificial crystal. With this method it is possible 
to calculate the total energy (Uslatic) for a perfect crystal, for a defect and for a finite 
number of layers plus vacuum region, in order to simulate a surface. Such periodically 
repeated clusters, each containing one defect, introduce a spurious 'defect band 
structure'. Therefore, single-particle energies must be used with caution. However, if the 
size of the super-cell is not too small, the total energies of a super-cell and from the 
Green-function method agree. 

The results presented below were obtained by using the super-cell approach with a 
sixteen-atom unit cell. Test calculations have also been performed with a 54-atom cell. 
The ionic (frozen core) potentials were replaced by the first-principles pseudo- 
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110 M. Scheffler and J. Dabrowski 

potentials of Bachelet, Hamann and Schliiter (1982). We used a plane-wave basis with 
an energy cut-off of 16 Ry. The k-integration is performed by using two special points in 
the irreducible part of the super-cell Brillouin zone. For the exchange-correlation 
functional we used the results of Ceperley and Alder (1980). A comparison with our self- 
consistent Green-function calculations is given for those cases where such calculations 
had been performed earlier. 

0 4. DEFECT-INDUCED LATTICE DISTORTIONS AND VIBRATIONAL FREQUENCIES 

4.1. Method 
It is possible to evaluate the long-range distortion field around a defect, as well as 

the dynamical matrix and the defect's vibrations directly from self-consistent total 
energies. However, we believe that this is unnecessarily rigorous and instead suggest 
taking advantage of knowledge from elasticity theory. We therefore apply an analytic 
formula which describes changes of .the total energy for small deviations from the 
equilibrium geometry and combine this analytic expression with numerical results 
from first-principles calculations. The valence-force approach (Martin 1970, Torres 
and Stoneham 1985) appears to be appropriate. We use Keating's formulation 
(Keating 1966). The change of the total energy of an N-atom cluster is then 

site i 

&[(RP-Ry)(RP-R:)-(Ri-Rj)(Ri-Rk)]2 
3 

-I- 5 8lRP-Ryl.IRP-R:/ 
adjacent 

bonds 

Here RP are the positions of the atoms at (or close to) the equilibrium geometry, while 
Ri are the positions of the displaced atoms and a! and are so-called bond-stretching 
and bond-bending parameters. We note that a:= a{ and flik = &. Equation (6) is quite 
simple, thus a relatively large cluster can be used in order to evaluate the long-range 
lattice distortions and lattice vibrations. For the latter, long wavelength vibrations are 
suppressed when the wavelength becomes comparable to the cluster diameter. In the 
calculations discussed below we use a cluster of 524 atoms. For defects in silicon, 
vibrations with hw, 5 2 0  meV are suppressed (see also Scherz and Scheffler (1988)). We 
believe that this suppression of long wavelength vibrations is not a severe 
approximation as we are interested in defect-induced changes of the entropy. (The 
entropy is given by the sum over all vibrations and defect vibrations are'localized.) 
Calculations for the Si vacancy support this point of view (Biernacki, Scherz and 
Scheffler 1988). 

The Keating approach has been used in semi-empirical calculations in order to 
evaluate perfect crystal vibrations when the parameters a and fi were determined by 
fitting eqn. (6) to experimental results (see for example Martin (1970)). In contrast to this 
semi-empirical approach we calculate the parameters from first-principles using DFT 
as described in 0 2 (see also Scheffler and Scherz (1986,1988)). We note that a defect in a 
covalent semiconductor changes the electron density of the perfect crystal significantly 
only in a small region of the crystal, for instance in a sphere with a radius of 1-2 
interatomic distances (see fig. 2). Therefore, the parameters RP, u and fi which belong to 
more distant atoms are taken to have their values as in the perfect crystal. First we 
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Calculations on defects in semiconductors 111 

determine the perfect-crystal parameters. From density-functional theory we calculate 
for the perfect crystal the total energy as a function of the lattice parameter. This 
numerical 'equation of state' gives the equilibrium geometry, i.e. the positions RP, and 
the bulk modulus Bo. The latter is related to a and /l by 

B0=(l/a0)(a +&?). (7) 

We have dropped the indices of a and B because in a perfect Si crystal there is only one 
type of atom, u0 is the crystal lattice constant. As we are interested in defect-induced 
changes of geometry and vibrations we consider a situation where the nearest 
neighbours of one atom are displaced in a breathing-mode fashion but all other atoms 
are kept at their perfect-crystal positions. The force constant of this distortion is related 
to a and /3 by 

kb = 16a + 428. (8) 
Then with eqns. (7) and (8) and the theoretical values for Bo (0.92Mbar) and kb 
(61 eVA-2) we obtain the values for a and 

As already noted, for a defect system the parameters close to the defect must be 
changed. These changes are determined in the following way. We perform first- 
principles force calculations for the defect system for several geometries under the 
constraint that only the defect and its nearest neighbours move, keeping all other atoms 
at their perfect crystal positions. Then we perform the same calculations using eqn. (6) 
together with the perfect crystal parameters and adjust the parameters RP, a; and /I$, 
close to the defect so that the first-principle and analytic total energies agree. Thus, 
eqn. (6) gives essentially the same results as DFT under the mentioned constraint. For 
tetrahedral substitutional defects we expect that only five parameters will differ 
significantly from the perfect crystal values: namely (i) the distance between the defect 
and its nearest neighbours (d=IRY-RPI, with i=2-5), (ii) the defect to nearest- 
neighbour bond-stretching force constants (a:, with i = 2-5), (iii) the defect to nearest- 
neighbour bond-bending force constant (&, with j ,  k = 2-5), (iv) the nearest-neighbour 
to next-nearest-neighbour bond-bending force constant (&,j= 1, i =  2-5, k = 617)  and 
(v) the defect nearest-neighbour to next-nearest-neighbour bond-stretching force 
constants (a;, with i = 2-5,j = 617). Only five self-consistent defect calculations of total 
energies and forces are required to determine these numbers. 

for the perfect crystal. 

4.2. Lattice distortions at T = 0 
We discuss here the results for a substitutional As impurity in Si. The minimum of 

E({ Ri}) is determined using a cluster of 524 atoms. In these calculations we considered 
only (as a first approximation) defect-induced changes of the parameters R;, a; and Bjk, 
with j ,  k = 2-5. All other parameters were taken the same as in the perfect Si crystal. 

Figure 1 shows the calculated forces acting on the nearest neighbour Si nuclei for 
the single donor As in Si. The results are practically identical to those published earlier 
using the self-consistent Green-function method (Becker and Scheffler 1984, Scheffler 
1987). We note that substitutional As is a shallow donor, namely the donor electron is 
bound in an effective-mass wavefunction derived from the conduction band X-point 
and thus this electron is distributed over a large volume. As a consequence, the charge 
density at the impurity is practically the same whether the shallow level is occupied or 
not, and the atomic relaxation close to the impurity does not significantly depend on 
the defect charge state. The calculations shown in fig. 1 were therefore performed for the 
system Si : As'. What is the mechanism which drives the neighbours of an As' defect 
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112 M. Scheffler and J. Dabrowski 

Fig. 1 

RELAXATION (A) 
0 0.02 0.04 0.06 0.08 0.1 

-4 

0 1 2 3 4 

RELAXATION ( X )  

Force acting on the four nearest neighbours of an As impurity in Si, as calculated from eqn. (6). 
Zero relaxation corresponds to the geometry of the perfect Si crystal. The calculations 
show that the Si atoms undergo a breathing-mode relaxation, moving away from the 
impurity. 

Fig. 2 

The change in electron density induced by an arsenic impurity in silicon. Full lines describe 
an increase in density, dashed lines a decrease. The figure shows contours along the 
(1 10) plane. 
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Calculations on defects in semiconductors 113 

away from the impurity? A heterovalent impurity gives rise to two modifications which 
act on the neighbouring nuclei and which make them move away from their perfect- 
crystal positions. First, there is a change in the ion core (the nucleus and core electrons) 
at the impurity site. Second, there is a change in the electronic charge density, because 
the crystal valence electrons rearrange themselves in order to screen the modified ion 
core, that is, the additional nuclear charge. Figure 2 shows this screening-charge 
density for Si : As' in the (1 10) plane of the Si crystal. Close to the impurity there is a 
strong increase in the electron density. In fact, there are slightly more electrons close to 
the impurity than actually needed for the screening. This overscreening is corrected 
farther away in an oscillating way. These calculations show the following. 

(1) The screening in Si is very efficient, and happens within a very short distance. 
(2) Although we introduced an As+ defect, the centre looks locally more like a 

neutral atom. 
(3) The distortion direction follows from the electrostatic interaction between this 

anisotropic screening charge density together with the change in nuclear 
charge and the ionic potential of the impurity neighbours. In the particular 
example of Si : As' the neighbouring Si nuclei experience repulsion and move 
away from the centre. 

As a result of the movement of the four neighbours of the impurity, the more distant 
nuclei also relax. For an outwards distortion of the nearest neighbours by 0.03 A, the 
distortion pattern of fig. 3 is obtained. Note that the distortion amplitudes in fig. 3 are 
multiplied by a factor RZ, where R is the distance to the impurity. Figure 3 reveals that 
the amplitude of the distortion decreases rather rapidly with increasing distance from 
the centre and that the distortion pattern is quite anisotropic: the distortion propagates 
in particular along the zigzag bonding chains of the (110) planes (see also fig. 2). With 
increasing distance from the impurity, which is at the centre (denoted by (OW)), the Si 
nuclei along these bonding chains are characterized by the prototype vectors (1 11) 
(nearest neighbours), (220) (second-nearest neighbours), (33 1 ) (fifth-nearest 
neighbours), (440) (tenth-nearest neighbours), (55 l), (seventeenth-nearest neigh bours), 

Fig. 3 

Relaxation amplitudes (multiplied by R2)  induced by an arsenic impurity in silicon. The impurity 
sits at R=O. All atoms move away from the centre. 
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114 M. Scheffler and J. Dabrowski 

etc. Their relaxation amplitudes are rather large compared to other nuclei closer to the 
impurity. Corresponding results concerning this anisotropy of the distortion pattern 
and the electron charge density had been obtained and discussed also by Kane (1985) 
and Fleszar and Resta (1986). 

The results of fig. 3 for the relaxation of the first- and second-nearest neighbours at 
Si : As+ agree well with a recent analysis ofextended absorption fine structure (EXAFS) 
measurements by Erbil, Weber, Cargill and Boehme (1986). These authors find that the 
nearest neighbours of an Asf impurity move away from the defect by 0.06 f 0.02 A. Our 
theory gives a value between 0.02 and 004A. Concerning the second-nearest 
neighbours the theoretical relaxation amplitude is between +0.005 and +0.012 A. 
Here the EXAFS analysis and the theoretical results agree perfectly. 

4.3. Defect-induced vibrations and vibrational entropy 
Vibrational frequencies are determined by 

det (D - Ma?) = 0. (9) 
Here M is the matrix of atomic masses and D is the dynamical matrix, 

where X, denote the 3N coordinates of the N-atom system and { X p }  is the equilibrium 
geometry. 

The dynamical-matrix elements may be obtained from the total energies of the 
equilibrium structure and distorted geometries. This ‘direct approach’ requires several 
hundred self-consistent calculations. Instead, Scheffler and Scherz (1986) have adopted 
a different approach using eqn. (6) together with first-principles calculations to 
determine firstly the lattice distortions and then the dynamical matrix. Some results for 
vibrations of defects in GaAs had already been published (Scheffler and Scherz 1986). 
Here we discuss our first attempt to evaluate the vibrational entropy for the doubly 
positive charge state of the Si vacancy using eqn. (5). At room temperature we obtain a 
value for of about 3 k ,  (Biernacki, Scherz and Scheffler 1988). This implies that 
the entropy part of the defect-induced change of the Gibbs free energy, TAS:b., is 
indeed negligibly small ( ~ 0 . 0 6 e V  at room temperature) if comparedd to the total- 
energy part. The latter (i.e. the vacancy formation energy) is about 4eV. We also 
mention that Bachelet et al. (1987) have recently calculated the vacancy entropy using 
an eight-atom-super-cell and the direct approach. Their results, as well as an empirical 
valence-force model calculation of Lannoo and Allan (1982,1986), agree well with ours. 

9 5. FORMATION OF A GA VACANCY IN BULK GAAS AND AT THE (1 11) SURFACE 
We give here a short discussion of calculations for the formation of defects in crystal 

bulk and at the surface. In particular we will stress the important role of atom and 
electron chemical potentials in defect reactions. We consider small defect 
concentrations so that defect-defect interactions can be neglected and the defect 
distribution can be assumed to be at random. Furthermore, as a result of 94.3, we 
neglect contributions from the vibrational entropy. 

Defect reactions are conveniently described in terms of chemical reactions between 
so-called structure elements (Kroger 1974). We consider the perfect, but finite, crystal as 
the reference state and label it in the reaction equation by zero. With the exception of 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
I
B
-
L
i
z
e
n
z
e
n
 
-
 
T
I
B
 
L
i
c
e
n
c
e
 
A
f
f
a
i
r
s
]
 
A
t
:
 
0
5
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
0
8



Calculations on defects in semiconductors 115 

the immediate surface region the crystal is considered as built from identical layers 
parallel to the surface of interest. This layer is built from crystal unit cells and is of 
minimal thickness. The layers in the immediate surface region may differ from other 
layers only due to adsorption or reconstruction, if present. Defects in different charge 
states or in a different chemical bonding state (in the bulk or at the surface), the 
electrons at the Fermi level, as well as the different atoms in their various charge states 
are treated as distinct chemical species: A, B, C..  . . Their chemical potentials are: 

P(A) aG/aN.&, T, Na, Nc,<. . . (1 1) 

p(A)+p(B)+ ... = O .  (12) 

In thermodynamic equilibrium we have 

In the following we investigate the formation of a Ga vacancy in GaAs. This reaction 
reads: 

OP vg!, + e a  + m e- (13) 

where Vl,",',s denotes a vacancy on a Ga site in the Bth layer. For the surface layer p= 1 
and for the crystal bulk B= 00. The defect charge state is indicated by the exponent (m), 
which gives it in terms of positive elemental charges. As the vacancy in the reaction of 
eqn. (13) is in the mth charge state, melectrons e- are transferred to (or from, if m <O) the 
electron reservoir, the Fermi level. We assume that this is determined by the 
background doping of the crystal. e a  in eqn. (13) denotes a neutral Ga atom in the Ga 
reservoir. Its chemical potential is p@a) and the chemical potential of the vacancies 
depend on the concentration as: 

P(vg',/9) = P0(Vf2,fl) + k J 1 n  (%&?/W (14) 

NvW,a is the number of m-charged Ga vacancies and N is the number of Ga lattice sites 
per layer. Equations (13) and (14) hold quite generally because the specific experimental 
conditions are contained in the values of the Ga and electron chemical potentials. 

Surface vacancies (/3 = 1) differ from bulk vacancies because of a different electronic 
structure (see the discussion offig. 4 below). However, from the second or third layer on, 
the main difference between a near surface and a bulk vacancy is due to a different 
electrostatic field caused by ionized defects (space-charge region), if such charged 
defects are present. For f l=  1 or 2 a distinction between electrostatic and chemical 
effects appears to be difficult. We may write: 

p(V(,', s) = p(Vg', m) + m + e + * (ps, if B > 2. (15) 

'psis an average electrostatic potential in the Bth layer and we used the convention that 
'pa= 0. Thus for p> 2 p(Vg',,) equals the electrochemical potential of vacancies. 

For defect formation in the bulk at or below room temperature the defects may not 
be in equilibrium with the surface. Then one should consider a 'partial equilibrium', 
neglecting the existence of surface and crystal environment. The removed Ga atom will 
then go to bulk interstitial positions. Thus, the Ga reservoir ('Rl') for the reaction of 
eqn. (13) consists of bulk interstitials. Their chemical potential is 

d e a )  = p(Gaf'L) = po(Ga{f&) + n . E ,  +In (NGap& /aN). (16) 

Here Git{Y& denotes a bulk ( B =  co) Ga-interstitial in charge state n. N G , f : ~  is their 
number per layer. u is an integer giving the number of available interstitial sites per 
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116 M. Schemer and J. Dabrowski 

lattice site. Strictly speaking, these Ga interstitials are not a true reservoir, but this is not 
important here. Assuming that the crystal bulk is perfect and the number of Ga 
interstitials equals that of Ga vacancies, the Ga- vacancy concentration then follows 
from eqns. (14) and (16) as 

The energy po(Vg’, ,J + po(Gai”) + (m+ n)E, has been calculated by Baraff and 
Schluter (1985). It varies between 6.2 and 4 5  eV, depending on the Fermi level. Note 
that it is multiplied in eqn. (17) with a factor +, due to the fact that two defects (vacancy 
and interstitial) are created simultaneously. 

On the other hand, the formation of defects close to a surface (in the second or third 
atomic layer, for example) or directly at the surface differs by three important aspects 
from the bulk situation. First, the electronic structure of a surface defect differs from the 
bulk defect (see the discussion of fig. 4, below). Second, the electrostatic field at the 
surface may differ from the average field in the bulk, due to the electron dipole layer and 
due to charged defects (space-charge region). Third, the Ga chemical potential is not 
only determined by the crystal bulk, but also by the environment. We consider two 
extreme possibilities: 

(1)  The reservoir ‘R2’ which consists of droplets of Ga metal on the surface, which 
may occur in Ga-rich environment, and 

(2) the reservoir ‘R3’, which consists of As, gas, which can, together with the 
removed Ga atom, form a new GaAs unit cell: 

GasGaAs-+As,. (18) 
The actual chemical potential can have any value between those of R2 and R3, 
depending on the partial pressure and composition of the As gas. Taking the energy of a 
neutral free Ga atom as zero, the energy gain in bringing this Ga atom to reservoir R2 is 
2-8 eV (the Ga metal cohesive energy). For reservoir R3 the energy gain is 4-8 eV: 
breaking a bond between two As atoms in As, costs 1.98 eV per atom and forming a 
new GaAs unit cell brings a gain of 6.8 eV. Thus we find for the Ga chemical potential: 

- 4.8 eV < p@a) d - 2.8.eV. (19) 
The values of Ga metal and GaAs cohesive energy and the binding energy of As, are 
taken from experiment (Hultgren et al. 1973, Weast 1980). Ofcourse, they could also be 
calculated. The vacancy concentration in the flth layer is 

It is obvious from eqn. (20) that the vacancy concentration is controlled by E, and the 
crystal environment, that is, by p(ea). A more accurate treatment of the different defect 
charge states would introduce a correction in the exponentials of eqns. (17) and (20) 
which is usually not important. 

We now focus our study further, considering the unreconstructed Ga-terminated 
(1 11) surface. This surface is built entirely from Ga atoms, each having a dangling bond 
normal to the surface. These dangling bonds are not occupied by electrons. Our above 
introduced notation of layers f l ,  which build the crystal, refers here to atomic double 
layers consisting of a pure Ga and a pure As planar layer. 
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Calculations on defects in semiconductors 

Fig. 4 
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I17 

The energy levels of a Ga vacancy in the bulk and at the unreconstructed Ga-terminated GaAs 
(1 1 1) surface. 

Figure 4 shows the important energy levels of a Ga vacancy in the bulk and at the 
unreconstructed Ga-terminated GaAs ($1 1) surface. In the bulk each atom has four 
nearest neighbours, located at tetrahedral positions. At the surface, which is considered 
here, the Ga surface atom is bound only to three As atoms, which lie in the second layer. 

The results of our super-cell calculation for the bulk vacancy are practically 
identical to those of earlier self-consistent Green-function calculations (Bachelet, Baraff 
and Schliiter 1981, Scheffler and Scherz 1986). The electronic structure of a Ga vacancy 
in the bulk can be understood in terms offour dangling orbitals which are centred at the 
vacancy’s nearest neighbours, namely at the As atoms. Neglecting lattice distortions, 
these four orbitals give rise to two one-electron states, a singlet a, state and triplet t2 
state (see fig. 4). The result of our self-consistent calculation for the t, state is shown in 
fig. 5. The orbital character is mainly arsenic p-like. This picture also holds qualitatively 
when the vacancy sits close to the surface, as in the second Ga layer (p  = 2), which is the 
third atomic layer from the surface. Only when the Ga vacancy is directly in the surface 
layer (p= 1)  is the situation changed significantly, since the Ga vacancy has only three 
As neighbours. As a consequence the bulk t, level splits (see fig. 4). 

Figure 6 shows the energy p o  (VEJ, a) + p @a) + mE, calculated for a near-surface 
Ga vacancy. Defect-induced distortions are neglected as well as electrostatic fields due 
to defects (space-charge). The latter would change the energies by m . e+ . qps. The near- 
surface vacancy can exist in four charge states: neutral, negative, double negative and 
triple negative, corresponding to an occupancy of the t2 level with three, four, five and 
six electrons. Because the total system must be neutral, the additional electrons are 
taken from the crystal Fermi energy E,. As a consequence, the formation energy 
depends on the Fermi-level position, that is, on the electron chemical potential. 
Furthermore, the formation energy also depends on the Ga chemical potential. In fig. 6 
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118 M. Scheffler and J. Dabrowski 

Fig. 5 

3.6 
1.1 I 

Electron density of the t, level wavefunction of a Ga vacancy in bulk GaAs along the (1 10) plane. 

Fig. 6 

As-RICH ENVlRONMENT 

NEAR SURFACE Ga VACANCY IN GaAa 

0 0.2 0.4 0.6 0-8 1.0 1.2 1.4 
FERMI ENERGY (ev) 

The formation energy calculated for a near-surface Ga vacancy. 
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Calculations on defects in semiconductors 119 

we assume that this is determined by the crystal environment, namely the reservoirs R2 
and R3. As mentioned above, any value between these limits is also possible (see eqn. 
( 19)). 

The calculations behind fig. 6 are performed in two steps. At first we remove a 
neutral Ga atom (creating a neutral vacancy) and take it to infinity. Then, in the second 
step, we bring the neutral atom back from infinity to the reservoir. The Fermi-energy 
dependence of fig. 6 follows from the theoretical energy-level structure (compare the 
middle part of fig. 4) and the calculated electron4ectron interaction energy of the t, 
level. 

The important result of this study is that for n-type material vacancy formation is 
particularly favourable, if thermodynamic equilibrium with the crystal environment is 
possible. If the Ga vacancy is formed directly at the surface the formation energy is 
lowered (even more) so that the formation energy becomes negative. This means that, at 
an unreconstructed surface, vacancies form automatically. In other words, the 
unreconstructed Ga-terminated (1 11) surface is not stable. This result is consistent with 
a recent study of Kaxiras et al. (1986). These authors investigated the 4 2 x 2 )  
reconstruction of GaAs (111). They showed that in a Ga-rich environment a Ga- 
vacancy structure (every fourth surface atom missing) on the Ga-terminated surface has 
the lowest total energy. For an As-rich environment an As-triangle c(2 x 2) structure 
should have even lower energy. 

5 6. CONCLUSION 
In recent years it has become possible to perform parameter-free calculations of the 

total energy, forces and atomic vibrations of defects in semiconductors. As a 
consequence, it is now also possible to evaluate the entropy and thermodynamic 
potentials, such as the Gibbs free energy, from first principles. The latter two steps are 
only now being considered in such calculations (see $4.3). 

Total-energy and force calculations had already facilitated the understanding of 
defect formation, lattice distortions, reactions and migration in cases where 
experimental methods were impractical or gave incomplete information (see for 
example Beeler et al. (1985) and Scheffler (1987)). Whereas in earlier investigations we 
had applied the self-consistent Green-function method, the calculations discussed in 
this paper were based on the super-cell approach. It turns out that this approach gives 
essentially the same results as the Green-function method, although the spurious 
‘defect band structure’ may cause some difficulties if the super-cell is too small. Often a 
cell size of between 16 and 54 atoms seems appropriate. For defect-induced distortions 
it is also important to ensure that the basis set is sufficiently complete. It is our 
impression that this aspect was sometimes not taken seriously in earlier super-cell 
calculations. Bigger unit cells (54 atoms, for example) together with good basis sets have 
become tractable only recently, because of the availability of big computers (such as the 
Cray X-MP and Cray 2) and because of new developments in the theory (such as the 
Car-Parrinello method: Car and Parrinello (1985)). 

The results presented here show that the theory is able to describe the physics 
behind defect-induced lattice distortions and to give quantitative predictions of 
relaxation amplitudes (see $4.2 above and Scheffler (1987)). Our first calculation of a 
defect-induced change in vibrational entropy presented in 0 4.3 indicates that this term 
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120 M. Scheffler and J. Dabrowski 

may not be very important for simple defects. Thus at or below room temperature the 
entropy part of thermodynamic potentials may be negligible compared to the internal 
energy. 

The super-cell approach also allows one to model surfaces. In this paper we 
presented results for the bulk and near-surface Ga vacancy in GaAs. One result of this 
investigation is the sensitivity of the formation energy to the electron and atom 
chemical potentials. A change in either of them can affect the formation energy by 
several electron volts. 

We believe that first-principles theoretical studies can help elucidate defect 
properties (as well as other solid-state properties) on a quantitative microscopic level. 
With recent developments and refinements of theoretical methods the impact of theory 
on the better understanding of chemical bonding, the structure of matter, 
metastabilities and so on will continue to increase. Nevertheless, there is still room for 
significant improvements of the theory. Accurate calculations are at present only 
possible for simple point defects and for periodic structures with small unit cells. Defect 
complexes of more than three atoms and low-symmetry surface structures or steps have 
not yet been investigated by first-principles calculations. Maybe the main challenge at 
present is to go beyond the Born-Oppenheimer approximation. An understanding of 
high-temperature phenomena and of the instabilities of defects in the bulk and at the 
surface will probably remain incomplete until this important next step has been taken. 
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