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THERMODYNAMIC ASPECTS OF BULK AND SURFACE DEFECTS
- FIRST-PRINCIPLE CALCULATIONS -

Matthias Scheffler
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Abteilung Theorie
Faradayweg 4-6, D-1000 Berlin 33, F.R. Germany

1) Intreduction

The first-principle calculation of electronic, magnetic and
structural properties of atomic aggregates has evolved into a
rapidly growing branch in theoretical solid-state physics. In this
paper we discuss recent developments in this theory for perfect
crystals, defects and surfaces of covalent semiconductors (e.g. Si
and GaAs). For these systems it is now becomming possible to
calculate the internal energy and the entropy in a parameter-free
way. Experimental investigations are usually performed at non-zero
temperature and well defined pressure. The equilibrium structure
of the crystal, its surfaces and defects are then determined by
the minimum of the Gibbs-enthalpy:

G(N,T,P) = U -~ TS « PV = (1)

N, T, P, U, S and V are the particle numbers, temperature,
pressure, internal energy, entropy and crystal volume
respectively. N, T and P are given by the experimental situation.
U, S and V follow from the atomic configuration. The latter must

be varied to find the minimum of G among all possibilities.

The formation of intrinsic point defects, as for example
vacancies, introduces a significant configurational-entropy gain.
As a consequence, these defects may exist at finite temperature in
considerable concentration. At a surface the formation of
intrinsic defects may be the origin for surface reconstruction. In
order to understand bulk and surface defects it is often necessary
to take into account that besides the crystal there 1is also an

outer region, which we will call the environment. In a
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thermodynamic approach this may be described by the concept of a
reservoir of atoms which enters the theory by the atomic chemical
potentials (see Section 3).

2) calculation of the internal energv and entropv at
finite temperature

In order to calculate the Gibbs enthalpy one needs to evaluate
the internal energy U and the entropy S. They are given by well
known equations /1-4/. The internal energy can be written as

O Ustattc e u vib, 2)

where U‘“ﬁu is usually referred to as the static or structural or

the total enerqyv (see below). The vibrational contribution to the
internal energy is
) £ 4 ko 1
y vib. o { £ + -—#uj (3)
% exp (ku.-/ks T)-1 2 N 2

which approaches for high temperatures the form 3NK,T. The
energies #Gq are the normal vibrational modes. Below we describe
a tractable method how they can be calculated from first
principles.

The entropy can be written as

config. vib, e—=h

S =38 + S + 8 4

where the three terms are the configurational and vibrational
contributions and the contribution due to electron-hole pairs. For
covalent semiconductors at or below room temperature CR is
negligible. The configurational entropy of a defect 1is given by
the number of possible configurations in which the defect can

exist (e.g. Ref. 1). The vibrational entropy is
svb - Kk, 2: h“* (ex ﬁah) -1)

-kw-
- fh (1 - exr( ))} =

which for high temperatures approaches the form

-1




117

k Z (1 - In(Ha/KgT) ).
i=1

From equs. (2)-(5) it follows that the Gibbs-enthalpy can be

Ut  and  the normal

easily evaluated 1if the total energy,
vibrational-mode energies, ﬁay , were kKnown. These quatities can
be calculated in a parameter-free way using the densityv-functional
theory /5/. The main approximations of such calculations are the
Born-Oppenheimer approXimation, the frozen-core approximation and
the local-density approximation for the exchange-correlation
functional. Using a super-cell approach it 1is then possible to
calculate the total energy (U™ 5 for a perfect crystal or a
(periodically repeated) finite number of lavers in order to
simulate a surface. In other words, the super-cell method is a
type of cluster approach where the cluster boundary conditions are

choosen as periodic.

Thus, for bulk, near surface and surface defects it is possible
to calculate the total energy, U™  of semiconductors with
appropriate accuracy. We note in passing, that a Green-function
method /6/ may be more accurate. If the Green-function method Iis
viewed at as a cluster-type calculation, the cluster is embedded
correctly into the macroscopic solid /6/. This apprcach was
recently developed for bulk-defect total energies /7-10/. For
surfaces there are still significant technical problems to
formulate a feasible theory along this line.

The vibrational frequencies can be calculated from
diagonalizing the dynamical matrix. The dynamical-matrix elements
may be obtained from the total energies of the equilibrium
structure and many distorted geometries. This "direct approach"
requires several hundret self-consistent calculations. We believe
that this an unnecessary expense. Instead, Scherz and
Scheffler /11/ have adopted a different approach. If the
equilibrium geometry is known (e.g. at T = 0 from the minimum of
the total energy), the change of the total energy for small
deviations from the equilibrium geometry is well described bv the
analvtic formula of a valence-force model. We use Keating's
valence-force approach, which gives the total-energy change as
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E({R}]) = i{; 14(‘ =5 o (fR-R -(R:-R)")

=1

bonds at
site |
—3 . (& x)(E‘P (R-R:)(R-R
+Z - 8IRRLIR-R ;Pi*( -FRER) o>
bonds adjacent -
-> atsitei bonds
Here R: are the positions of the atoms as calculated from the
-
minimum of the total energy. R; are the positions of the

4
[
displaced atoms. ot and ij are bond-streching and bond-bending

parameters. We note that the Keating approach has been used in the
past in semi- emp1r1cal calculations for perfect crystals and the
parameters oc;' and ij were fitted to experimental results. In
contrast to this empirical approach we /11,12/ calculate the
parameters from first-principles. To give an example, we consider
the calculation for a perfect silicon crystal. The calculated
equation of state gives the equilibrium geometry, 1i.e. the
positions E: , and the bulk modulus B°. The latter is related to
o and f3 by

B® = £ (d.+3iﬁa)

g &

. (7

We droped the indices of o and /3 because 1in a prefect Si
crystal there is only one type of atoms. a’ is the crystal
lattice constant. As we are interested in defect induced changes
of the vibrations we consider (theoretically) a situation where
the nearest neighbors of one atom distort in a breathing-mode
fashion. All other atoms are kept at the equilibrium geometry. The
force constant of this distortion is related to o and ﬁ by

k = 16 o =+ 42 B . 8)
Fig. 1: ol TG o |
Phonon dispersion of Si. P L( .’ 4
The full lines are ob- E Lo ) y s
tained using equ.(6) to- ¥~ i 7
_g::—:ther with values for §£o :.‘ -_l A : *\¢ ,
R; , o and A from self- g 7 o "
consistent calculations = 0 >

(see text). Reduced Wave Vector
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From the theoretical values B* and k, we obtain the values for «

and ﬁ . Equ. (&) then allows directly and easily to calculate the
dvnamical matrix and, furthermore, the vibrational frequencies.
Fig. 1 shows the results /12/ for the phonons of silicon in

comparison to experimental data.

In order to describe a crystal with a point defect we follow
the same ideas. Because the crystal charge density and the
chemical bonding of farther atoms will not be affected
significantly by the defect, only few parameters ﬁ;. o; and q
(namely those in the neighborhood of the defect) are changed. As a
consequence, only about 10 self-consistent calculations are
necessary in order to obtain the defect-induced changes of the
Keating parameters and the vibrational frequencies of point
defects. This is an enormous saving in the numerical effort, if
compared to the "direct method". For a wvacancy in the bulk of
silicon (using a 16 atom super-cell) we obtained a value for as"ib
of about Skg at room temperature. This implies, that the entropv
part of the defect induced change of the Gibbs-enthalpy, Tas"™™,
is indeed negligibly small ( ~0.026 eV at room temperature) if
compared to the total-energy part. The latter (i.e. the wvacancy
formation energy) is about 4 eV. We also mention, that Bachelet et
al. /13/ have recently calculated the vacancy entropy using an
8-atom super-cell and the direct approach. Their results, as well
as an empirical valence-force model calculation of Lannoo and

Allan /14/ agree well with ours.

Ga VACANCY GaAs (111)
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3) The role of electron and atomic chemical potentials

In order to discuss the role of the environment in defect

formation we use the Ga vacancy at the GaAas (111) surface as an
example. The electronic structure of a bulk Ga wvacancy can be
qualitatively understood in terms of four dangling bonds which are
centered at the four As-atoms around the missing Ga /6/. In an
undistorted situation (T, symmetry) these four dangling bonds
give rise to two energy levels: one singlet (a1 ) and one triplet

(t, )>. This picture also holds for the near-surface defect. Only
when the Ga-vacancy 1is directly at the Ga-terminated (111)
surface, the situation is changed. Then the Ga wvacancy has only
three As neighbors. Thus, the symmetry is lowered and one dangling
bond is removed, if compared to the bulk situation. As a
consequence, the t2 level splitts (see Fig. 2).

The formation of a near-surface or a surface Ga-vacancy can be
described by the following chemical reaction:

o D] ﬂ:? + /“Sa + m EF 9
The zero on the left stands for the perfect GaAs crystal with
surface. Mg, is the energy of the removed Ga-atom in the Ga
reservoir and Eg is the Fermi level. The index (m) means that the
vacancy may exist in several charge states, exchanging electrons
with the Fermi energy (the reservoir of electrons). Concerning the
atomic reserveoir we consider three possible, extreme examples:

1) interstitials in bulk Gaas,

6F 1T Ga- RICH ENVIRONMENT)
Fig. 3: = 5k
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2) Ga-metal, which may exist in Ga-rich environment as Ga droplets
on the surface,

3) As, -gas, which together with the removed Ga atom can form a new
GaAs unit cell ( Ga «—> GaAs - LAs, ).

For surface and near-surface defects the reservoirs 2) and 3) are
important. Of course, depending on the partial pressure, the Ga
chemical potential may have any value between those of the two
limits of 2) and 3). Fig. 3 shows the results of our
calculation /15/. The formation energy is displaved as a function
of the Ga chemical potential (the dotted region) and of the
electron chemical potential (the Fermi energy). Further details of

these results are discussed elsewhere.

1 gratefullvy acknowledge the collaboration with U. Scherz and J.

Dabrowski .
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