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A self-consistent surface-Green-function (SSGF) method

M. Scheffler. Ch. Droste', A. Fleszar", F. Maca’, G. Wachutka® and G. Barzel
Fritz-Haber-Institut der MPG. Faradavweg 4-6. W-1000 Berlin 33. Germany

We describe the basic aspects of a new. self-consistent Green-function method which allows to calculate the density of
states. electron density. and related quantities for a localized perturbation (e.g. an isolated adsorbate or an intrinsic surface
defect) at a crystal surface. The method is based on the density-functional theory and combines several ideas from recent
theoretical developments. as. for example. from the layer-KKR Green-function method. from ab-initio pseudopotential
theory, and from the self-consistent defect-Green-function method. Two applications of the method are presented (S on
Pd(100) and Na on Al(100)) in order to demonstrate its efficiency and to address a recent controversial discussion
concerning the nature of the bonding of alkali adsorbates on metals at very low coverage (@ —10).

1. Introduction

It is well accepted by now that the density-
functional theory (DFT) together with the local-
density approximation (LDA) for the exchange-
correlation functional [1] gives a reliable descrip-
tion of the electron density and of structural and
elastic properties of poly-atomic systems (see.
e.g.. refs. [2. 3] and references therein). Stan-
dard DFT-LDA theory transforms the interact-
ing manv-electron problem into a self-consistent
treatment of non-interacting quasi-particles mov-
ing in an effective potential. Whereas perfect
crystals are nowadays tractable with high nu-
merical accuracy. it is still a significant challenge
to deal with low symmetry poly-atomic systems.
as. for example., a surface where Bloch’s
theorem does not hold and where localized as
well as delocalized electronic states are im-
portant.
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Over the last years and still today several
theoretical methods and techniques are being
developed for the self-consistent calculation of
the surtface electronic structure. Grossly speaking
we may distinguish (a) cluster methods, (b)
super-cell methods, and (c) Green-function
methods. All these methods could be divided
further into techniques which differ, with respect
to their basis set as for example Gaussians, or
muffin-tin orbitals, or plane-waves. We will not
enter a discussion of these details here.

The first two methods ((a) and (b)) have in
common that they are wave function methods.
because thev require to evaluate many (in
principle ~ 10™) individual wave functions which
are usually far extending and are significantly
affected by boundary conditions. In particular
cluster methods suffer from this aspect because
the majority of the atoms in a cluster is located
at the cluster surface giving them an incorrect
coordination. electronic structure and electro-
static potential. This problem is significantly re-
duced in the super-cell or slab approach which
may be viewed as a periodically repeated cluster.
A remaining problem with super-cells is the in-
teraction of the two surfaces through the slab.
which usually has a thickness between four and
twelve atomic layers. Theoretical and ex-
perimental results indicate that for many surface
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properties a system consisting of only a few
lavers is sufficient (see for example refs. [4. 5]).
Super-cell calculations are usually performed for
clean surfaces or for high-coverage periodic ad-
lavers. The description of low-coverage systems
may be approximately dealt with by using large
adlaver unit cells.

For semiconductor surfaces the super-cell ap-
proach together with ab-initio pseudopotentials
was most successful (see for example ret. [2] and
references therein). For general applications and
in particular for transition-metal surfaces the
super-cell approach together with the full-poten-
tial linearized augmented plane-waves method
(FLAPW) of Freeman et al. [6, 7] is the most
accurate method. Since nearly ten years it repre-
sents a standard for any new development. Con-
cerning such new and promising developments
we like to mention the full-potential linearized
muffin-tin orbitals method (FP-LMTO) of Meth-
fessel and Andersen (see the contribution of
Methfessel and Scheffler in these Proceedings,
and references therein).

The third class of methods mentioned above
(i.e. Green functions) represents the recent de-
velopments to treat semi-infinite crystal surfaces.
Kriger and Pollmann (8. 9] developed a method
to deal with periodic semiconductor surfaces and
Inglesfield et al. [10-12] designed a method
which is suited for metals. The important low-
coverage limit where only one adsorbate particle
interacts with a surface, became tractable so far
only by the matrix-Green-function method [13]
of Feibelman [14, 15]. However. Feibelman has
not vet treated semi-infinite crystals. but only
very thin slabs of 2-5 layers slabs. Below, we
describe a new and different approach which was
developed in our group. The principle difference
with Feibelman’s method is that our approach is
a Green-function operator approach and treats a
truly semi-infinite system. At this point, it is not
clear which of these two methods is the better
one. As these methods exist now. both have
advantages and disadvantages. We favor our ap-
proach but will also describe its shortcomings.
Some of them mav be corrected in the future.

In short and very simplified. our method may
be described as a successor of the self-consistent
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“defect-Green-function method™ [16-20], which
was developed about ten vears ago and was
successfully applied to many defects in semicon-
ductors. The main limitation of this “defect-
Green-function method™ is that the real part of
the Green function is evaluated from an energy
integral over the imaginary part. Because a re-
striction to a finite energy range was necessary.
the real part of the Green function was not very
accurate. This did not cause problems in the
description of sp-bonded defects but it prevented
an accurate description of transition metals. Al-
ternative formalisms, which allowed to deal with
the latter systems have been developed by Dede-
richs, Zeller et al. (21, 22], by Gunnarsson et al.
[23] and Beeler et al. [24]. Also. the approach
of our self-consistent surface-Green-function
(SSGF) method described below does not suffer
from this problem. Besides, taking some ideas
from the ‘‘defect-Green-function method™ the
new SSGF method is based on the layer-KKR
Green-function formalism of Kambe, Scheffler
and Maca [25. 26], combining it with ab-initio
pseudopotential theory [27-30].

The remaining paper is organized as follows:
section 2 outlines the key ideas of our method.
We briefly indicate how these ideas are im-
plemented in the numerical programs and we
summarize the advantages and possible problems
of the method. In section 3, we then present
results for the electronic structures of two adsor-
bate systems. namely a single S adatom on
Pd(100) and a single Na adatom on Al(100).
With the discussion of the latter system. we
contribute to a recent controversy concerning the
question whether the adsorption of alkalis is
ionic—as it was hitherto generally assumed
[31] — or not — as it was argued recently in sever-
al publications [32-35]. In section 4. we give a
summary.

2. Method

State-of-the-art  self-consistent  calculations
face the problem to solve the Kohn-Sham
equation
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Hd, = E U, (1)
with

R,
H= _ﬁ vV + Vcl’l[n\‘ rl F (2)

where the effective potential functional is given
by
Vcil’[nv‘ f'} = vcxt(r)

[ n(r
Lo [ )

A+ V[, ] (3)
|r—r'| ’

V... 1s the external potential of the atomic nuclei
or frozen-core ions. We will assume throughout
this article that V,  is given by ionic. ab-initio
pseudopotentials [27-30], and n(r) is then the
density of the valence states. The density of the
core electrons, n_(r), is kept frozen to the free
atom density. Because n_(r) does not change, it
is not noted in V,,, or in V,_ although it enters
both.

For low-symmetry, poly-atomic (—-—1023 parti-
cles) systems the direct evaluation of eq. (1) is
practically impossible. Therefore, one usually re-
stricts  investigations to periodic structures,
where Bloch’s theorem can be applied which
reduces the size of the problem to a tractable
one. Localized perturbations in macroscopic sys-
tems can only be approximately described by this
procedure by introducing so-called “super-cells™.
The alternative approach which does not intro-
duce an artificial periodicity is a Green-function
method. Here the Hamiltonian of eqgs. (2) and
(3) is split into two parts,

H=H"+AV . (4)

where H" is an - in principle — arbitrary Hamil-
tonian (H"= —(#%2m)A*+ V") and AV is the
remainder. For our studies we take H' as the
Hamiltonian of a semi-infinite crystal. described
by muffin-tin potentials. and a simple surface
barrier. For reasons which will become clear
below. we take the muffin-tin potentials from
self-consistent bulk calculations. For H" we have
the two-dimensional Bloch theorem and its elec-

tronic structure can be calculated using the
method of Kambe and Scheffler [25] and the
published computer programs [26]. This gives
the Green function

GUZY=(Z=H"Y", (5)

with Z=E +in in a high numerical accuracy.
G"(Z) can be obtained for any energy on the
real axis (n— +0) or in the complex energy
plane (> 0). We like to emphasize that the real
and imaginary parts of G are obtained directly
and simultaneously without carrying out a nu-
merical Hilbert transformation. This is a signifi-
cant difference to a predecessor of the present
approach, the ‘“defect-Green-function method™
[16-20], and allows to treat simple metals as well
as transition metals.

From G°(Z, r, r') we obtain the reference-
system electron density

Eg

n'(r) = —% Im j G%Z,r,r)dz, (6)

where E is the Fermi energy. It is determined
by the bulk properties of V' Therefore it is
important that V" takes the form of the self-
consistent bulk potential. It is also important
that the surface-barrier height together with E,
gives the correct work function of the clean
surface. On the other hand, it is usually not
necessary that V' is a correct, self-consistent
surface potential, because the surface region.
including muffin-tin  corrections. will be
evaluated in the next step.

Having obtained the Green function of the
“clean surface”, G°(Z), we can evaluate the
Green function of the adsorbate system. written
in operator form

G(Z)=(Z-H)™", (7)
by solving

AG(Z)=G(Z)- G"(Z)=G"(Z)AV G(Z)

=G(2)av[1-G"(2)AV]'G"(2).
(8)
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As we have mentioned. it is not necessary that
V", G"(Z) and n'(r) are self-consistent. How-
ever. eq. (8) should be evaluated in a self-
consistent way using

AV=V [n]-V". (9)

where V_,[n, ] is given by eq. (13). and

n.(ry=n"(r)+ An(r) . (10)
with
Eg
2
An(r)=—:r—lm J’ AG(Z.r,r)dZ. (1)

Equation (8) is an operator equation. So far, we
have not introduced a basis set. but this will be
done now. The basis set only needs to cover the
real space within which An(r) is localized. We
will denote this region as A and the remaining
region as B. Because crystals, and in particular
metals. tend to screen perturbations, region A is
usually very small. For a point defect in silicon
and for adsorbates on metals the radius of this
region is about 1-3 interatomic distances. In this
region the basis set (which will be assumed to be
orthonormal) should have sufficient flexibility to
represent a sufficiently wide class ot physically
meaningful. localized functions An(r).

£

An(r)= E An, x(r)x(r) . (12)

where An, are real numbers and An, =A4n,.
Thus. we split the complete Hilbert space of H
into two parts { x,} . @ { x,} 5. The basis functions
{ x,} » cover the spatial region A and are needed
to represent the possible functions An(r).

When such a basis set is introduced, the matrix
of the potenual pertubation takes the form

AV, . U)'

av=( il (13)

To be precise. we will assume that [[AV, | >
[|AV,,|| with (1. J) equal to (A. B). (B. A) or (B,
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B). Note that the real-space representation of
AV is derived from egs. (3). (9) and (10) and
that it enters the calculations as an intermediate
quantity which we have to project on the basis
{Xi}a-

Equation (8) now takes the form

._[AGAs AG,,
36=(aGsn 3Gay)- e
with
A(;\.»\(Z} = G“]\r\ AV—\)\
X[]A_G:.-:\A(Z]AVAA]_!GT\A(Z)' (15)

And the matrix An,, of eq. (12) is given by

Eg

.
An,=~=Tm j AG,(Z2)dZ . (16)

i

The change in the total density of states is

B

AN(Z) = — ImAG,(Z)

-M3

SN

A,
dz

Ao

¥Z), (17)
with the generalized phase shift [36]
8(Z)=—Imindet[l1 - G"(Z)AV]

= —Imindet[l, — GAA(Z)AV,.]. (18)

AN(Z) will usually differ from the local density
of states change (compare fig. 2 below),

. 2 &
ANY(Z)=== X ImAG,(Z). (19)

Although the two functions given by eqs. (17)
and (19) are usually different. the integrals
should be the same

Ep Ey

J ANY(Z)dZ = J AN(Z)dZ

EA
- [A;l{r)d';r=2An,j=—Z\.. (20)
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This is an important condition which guarantees
that the system stays neutral. Z_ is the valency of
the adsorbate. i.e. of AV, . Equation (20) is also
an important (but still not sufficient) test if the
basis set {y,} ., is appropriate.

The approach described above corresponds to
the Green-function operator method. Note that
all important quantities. like the local density of
states (eq. (19)). the total density of states (egs.
(17), (18)). and the electron density change (egs.
(12). (16), (17)) are only determined by the
region A. Experience for defects in the bulk of
crystals has shown [19. 24| that only a rather
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small set of basis functions is required in order to
fulfill eqs. (12) and (13). Our (sull limited)
experience with the new SSGF method indicates
that this is also true for surfaces. As an example
we show in fig. 1 the electron density calculated
for Na on Al(100); the physics of this system
will be discussed in section 3.2 below. The refer-
ence system is built from a self-consistent
aluminum bulk calculation. The surface is simu-
lated by a simple step function the height of
which is obtained from the theoretical Fermi
energy and the experimental work function
Do =4.4eV [37]. For the self-consistent

Fig. 1. Electron density for (a) the clean Al(100) surface.
(b) the adsorbate system of a single Na atom on Al(100).
and (c) the adsorbate induced density change (i.e. the differ-
ence of figs. (b) and (a)). Units are 10" " bohr . The step
between contour lines is 5% 10 “bohr * in figures (a) and
(b). In figure (c¢) the separation between contours s | =
10 “bohr . Densely hatched arcas indicate an accumulation
of electron density (positive An(r)). Sparsely hatched areas
correspond to an clectron depletion (negative An(r)). Posi-
tions of nucler ure marked by dots.
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Green-function calculation we then used s, p and
d functions centered at the adsorbate and at its
five Al neighbors. We used Gaussians with three
decays (0.25. 0.50 and 1.00 bohr ~*). This gives a
total of 162 basis functions which we find to be
sufficient to obtain a converged An(r). In fact.
the function An(r) oscillates (see fig. 1(c)), but is
sufficiently simple to be described in terms of eq.

(12).

We conclude this section by summarizing the
main advantages of the SSGF method.

1. The method avoids to calculate wave func-
tions.

2. The Green-function approach enables to use

a rather small and simple basis set: We only

have to represent one function. An(r), which

is very localized and usually not very compli-
cated. An(r) then refines the change in the
potential. which has to be projected on the
basis. We do not have to represent the full

Hamiltonian.

In the Green-function operator approach the

perturbation is only due to the potential dif-

ference. AV. This is usually a well localized
function. In contrast to the matrix Green-

function method [13-15], we do not get a

perturbation contribution from the kinetic

energy which would have a somewhat longer
range.

4, Last but not least we mention that the
method is computationally very efficient. if
compared to other self-consistent surface
methods. For the calculations of an adsorbed
atom (compare section 3.2 below) we need
about four hours of CPU time on a CONVEX
C2 computer to set up the clean-surface
Green function and another 3-5 hours for the
self-consistent calculation of the adsorbate’s
Dyson equation. Note that the Green func-
tion G"(Z) has only to be calculated once and
is independent from the adsorbate atom and
its position. Thus, the method is in particular
suited for trend studies investigating many
different adsorbate atoms.

We should also mention the possible disadvan-

tages of our approach.

1. The definition of the basis set is not very
precise (see the discussion of egs. (12) and

(93]

' A self-consistent surface-Green-funcrion method

(13)). We note. however. that we have not
found any severe problems with this point so
far.

2. Using a potential for V" which is self-consis-
tent in the bulk. but not at the clean surface.
makes the calculation of G'(Z) very efficient.
In the self-consistent calculations for the ad-
sorbate, V" will be only corrected locally. i.e.
in the region of the adparticle. Whether or
not this is sufficient will show up in the calcu-
lations. but one should be aware of possible
problems.

3. Although the operator G'(Z. r, r') is calcu-
lated very accurately, its projection onto the
localized basis set is at present performed by
approximating the crystal volume by a sum
over overlapping atom-centered spheres [38].
This simplifies the calculation of the matrix
G'“A(Z), but it implies that the interstitial
region is not described very accurately. We
believe that for close-packed structures this is
not a severe approximation.

3. Applications

Several test calculations have been performed
using the method described above. These tests
are described elsewhere. Below we give two
examples for adsorbates to show the rapid con-
vergence of results with the basis set (section
3.1) and to address a recent question concerning
the low coverage limit of alkali adsorption on
metals (section 3.2).

3.1. An isolated S atom on Pd(1 0 0)

The main purpose of this section is to demon-
strate the efficiency of our method and to explain
the differences of local and total densities of
states (see eqs. (17) and (19)). We discuss elec-
tronic-structure calculations for S adsorbed on
Pd(100). The S atom is positioned at the four-
fold hollow site with a S-Pd bond length of
2.78 A. which equals the Pd-Pd bond length.
This bond length was chosen for convenience. It
is larger than the S-Pd bond length as de-
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termined for a periodic S layer on Pd(100) [39]
which has a S-Pd distance of 2.35A. The S
potential is taken from a neutral free atom pseu-
dopotential [38]. Although these Green-function
calculations are not self-consistent and also the
geometry is not optimized they are well suited
for the purpose of this section. We also note that
the calculated density of states is already (to
some extent) physically meaningful. This is due
to the fact that AN(E) is largely determined by
the clean-surface density of the states: As it can
be inferred from eq. (18) [19], minima in Tr Im
GAA(E) will often give rise to resonances in
AN(E). These resonances are not very sensitive
to the potential AV.

Figure 2 compares our results for the local and
total densities of states using a single-center basis
centered at the adsorbate and a five-center basis.

3o b a) l-center basis
2.0 F

1.0 F

0.0

%8 T C) 5-center basis

LOCAL DENSITY OF STATES CHANGE (states/eV)

-1.0 I L AL ol L 1 1 n

-6 -5 -4 -3 -2 -y Ep 1

ENERGY (eV)
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We use s, p and d Gaussians and three decays
(0.3, 0.5 and 1.7 bohr‘l). It is intriguing that
AN(E) is already described very well, when only
a single-center basis (27 orbitals) is used (com-
pare figs. 2(b) and 2(d)). On the other hand we
see that the local density of states, AN'*(E),
exhibits the main peaks which are also found in
AN(E), but otherwise it is clearly different.
Even the five-center basis AN **'(E) clearly dif-
fers from AN(E). In fact, a much larger basis set
would be required to achieve that both functions
agree, but in general there is no reason why such
an attempt should be made. It is worth noting
that an inspection of AN'**(E) may usually be
helpful. as it indicates at which energies new
states appear which have a reasonable amplitude
in the region of the adsorbate. This may have a
closer relation to adsorbate chemistry than struc-

5.0 b b) l-center basis
2 4.0
S
o 30
-t
3 20
« 1.0
O o0
Z
< -1.0
-
O -2.0
AR A
=
b
; S. 0 5-center basis
g e
> 3.0
8 20
n
Z 1.0
€3]
a o0 - MM LI_ -
3 o
§ 20
& 30}

1 L 1 A A i L

ENERGY (eV)

Fig. 2. Local density of states changes (left) and total density of states changes (right) for the S adsorbate on Pd(100). Figures
(a) and (b) show the resuits of a single-center basis calculation (27 basis functions) and figures (c) and (d) correspond to a

five-center basis (135 basis functions).
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tures in AN(E) which are in part due to very
extended wave functions.

The wave function analysis of the calculations
of fig. 2 shows [38] that the sulfur p. orbital
forms a covalent bond with the substrate and
gives rise to the peak in the density of states at
about 6 eV below the Fermi energy. This peak is
very sharp, because it is shifted below the Pd
density of states. The sulfur p,, p, orbitals.
which are oriented parallel to the surface, inter-
act less strongly with the Pd states. They give
rise to some resonance structures (see fig. 2(d))
as tor example that at 4.5 eV below E, which is
just at the lower edge of the Pd d band. In the
range above E. —4.5eV we find a complicated
resonance and antiresonance structure. Both, the
p. and p,, p,-like state, have a resonance at
E. —3eV (fig. 2(d)) which is pinned at this
energy by a dip in the density of states of the
clean Pd surface.

3.2. An isolated Na atom on Al(1 00)

The interaction of a single alkali atom with a
perfect-crystal metal surface represents probably
the most simple chemisorption system. Never-
theless. over the last years it became clear from
several experimental and theoretical studies [32-
35] that it is a matter of high controversy what
are the dominant quantum-mechanical interac-
tions in this system. Whereas the Langmuir—
Gurney model [40-42], which invokes a partial
charge transfer from the alkali atom to the metal
substrate. had been accepted for many decades,
it was concluded from recent ab-initio calcula-
tions [32. 35] and experimental studies [33. 34|
that the alkali atom adsorbed on metals is bon-
ded with practically zero charge transfer. The
reason for this controversy is largely due to the
fact that parameter-free. self-consistent calcula-
tions describing the alkali adsorption on realistic
(atomistic) metal surfaces only exist for thin
metal slabs (simuldting the substrate) and
periodic adlayers [32, 35]. For the low coverage
limit (@ —10) such calculation were lacking so
far.

The calculations are performed using ab-initio
pseudopotentials for the ions [29]. Tests of the

quality of the basis set have been performed to
ensure that the results reported below are well
converged [43]. These results are obtained with
s. p and d Gaussians with three decays (0.25.
0.50 and 1.00 bohr %) centered at the adsorbate.
at its four top-laver Al neighbors, and at the Al
atom below it, in the second Al layer. Details of
these calculations will be published elsewhere.
Some results were shown in fig. 1 above.
Figure 3 shows the self-consistent change of the
electron density:
A _ ,Na/Al100) _  Na

n _”AI(I(]O}. (21]

Here. n™/21'%% s the self-consistent electron
density of the adsorbate system Na on Al(100)
(see fig. 1(b)). n™* is the electron density of the
free, neutral Na atom, and n*'" " is the density
of the references system, namely the semi-infi-
nite Al(100) surface (see fig. 1(a)). Figure 3
reveals that the electron-density change is very
localized. We see that, compared to the free,

NHIR

\\\
Q\\\\
‘

& " " " - " " — . M
* L

Fig. 3. Electron-density change. n*(r). for Na adsorbed on
Al(100). For the definition of n* see eq. (21): n™* is taken
from a free. neutral atom. Units are 10 *bohr " The step
between contour lines is 1x 10 *bohr *. Densely haiched
areas indicate accumulation of electron density (positive
n*(r)). Sparsely hatched areas correspond to electron deple-
tion (negative n*(r)). The positions of nuclei are marked by
dots.
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neutral atom, the adsorbed atom has lost charge
on the vacuum side while there is an accumula-
tion of charge on the metal side. Our results,
which fully include the atomic structure of the
substrate. are qualitatively similar to n™ obtained
by Lang and Williams [44] in their study of Li
adsorbed on jellium. Important information,
which is not contained in the Li/jellium results,
is the behavior relative to the nuclei of the
substrate. We see that the adsorbate-induced
change of the electron density (fig. 1(c)) oscil-
lates. having nodes at the substrate nuclei. From
figs. 1(c) and 3 it is not clear whether these
results should be interpreted in terms of an
internal polarization of the adatom, i.e. a hybrid-
ization of the Na 3s and 3p, orbitals, or in terms
of charge transfer. The similarity between these
two possibilities would also complicate an inter-
pretation of experimental results which try to
probe An(r) (i.e. fig. 1(c)). In fact, one could
safely argue that a clear distinction between the
polarization and charge-transfer pictures is not
possible.

A further analysis of our calculations shows
that the picture of a partially ionized alkali atom
is indeed appropriate. For a neutral Na atom far
away from the AIl(100) surface the DFT-LDA
eigenvalue E}* is above the metal Fermi level at
—2.82 eV below vacuum. The calculated ionisa-
tion energy, as obtained from the transition
state. is 5.21eV. which agrees well with the
experimental result of 5.14 eV. Our calculations
also give, that the distant alkali atom. when
brought in equilibrium with the Al(100) Fermi
level. will partially ionize to an occupation 7, =
0.65. Thus. 0.35 electrons are transferred to the
metal. The now slightly positively charged alkali
atom induces an image charge density in the
metal surface. Figure 3 shows that this picture
remains qualitatively valid when the alkali ap-
proaches the surface and adsorbes. The upper
half of the adsorbed Na has a negative n” and
thus a smaller electron density than the free,
neutral alkali atom.

In order to elaborate on this “*charge transfer
picture” we show in fig. 4(a) plots of n*(n,, =
0.1). where n™* (compare eq. (21)) is now taken
from a self-consistent calculation for the partially

ionized free atom. This picture describes the
response of the Na-Al (100) system to the
partially ionized Na atom. In order to determine
whether this figure should be interpreted in
terms of a hybridization of Na s and p. states
(internal polarization), in terms of covalent
bonding between the Na atom and the substrate.
or in terms of metallic screening, we compare it
to a result of a calculation which only contains
the metallic screening (fig. 4(b)). Figure 4(b)

Fig. 4. Same as fig. 3 but in part (a) we now take for n™ the
partially ionized free Na atom. Units are 107" bohr % Part
{b) shows the screening charge density of an external point
charge of —0.1 ¢. Here the units are 10 * bohr *
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displays the screening charge density which we
obtain for an external point charge (see fig.
4(b)). The shape of this screening charge density
is very similar for a negative point charge and for
a positive point charge. as long as the latter is
sufficiently weak, so that it cannot bind an elec-
tron. The magnitude of the contour lines nearly
scale linearly with the magnitude of the external
point charge [43]. The similarity between figs.
4(a) and (b) is quite surprising, because a Na-ion
is —of course - different from a point charge.
Nevertheless. the response of the metal is similar
for both cases. The slight differences between
figs. 4(a) and (b) may be interpreted as an
indication that some covalency and some s-p.
mixing are present in the Na-Al(100) inter-
action. but that these contributions are not very
large. From the similarity of figs. 4(a) and (b) we
conclude that the ‘“‘charge transfer picture” is
indeed useful and appropriate to describe the
physics of alkali adsorption at low coverage.
However. charge transfer alone is not sufficient
to understand the resulting An(r). It is important
to realize that the charge transfer actuates a
significant change in the surface electron density.
Because the metal screening charge is largely
located in front of the metal (see fig. 4(b)), the
adsorbate induced electron-density change (see
fig. l(c)) cannot be divided any more directly
into adsorbate and metal contributions. As a
consequence of this difficulty one may be
tempted to abandon the charge transfer picture
for this adsorbate system. We believe. however,
that one would then give up an important piece
of physical understanding.

For higher coverage adlayers or for adsorbate
islands the picture discussed above will change.
because then the Na 3s orbitals will interact and
form a band.

4. Summary

In this paper we described the key ideas of a
recently developed Green-function approach,
which allows to treat a localized perturbation on
the surface of a semi-infinite crystal. By this
method theoretical studies of the initial stage of
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adsorption (@ —0) become feasible. No shape
approximations to the potential and the charge
density are applied in the region of the adparti-
cle: only further away from this region the
potential is approximated by the muffin-tin form.
The method is extremely efficient. compared to
other self-consistent surface methods. and it is in
particular suited for trend studies, investigating
different adatoms. We presented resuits of inves-
tigations of a single Na atom adsorbed on
Al(100). These -calculations show that the
“charge transfer picture™ of alkali adsorption on
metals is indeed a useful concept. It is, however,
important to realize that the charge transfer is
followed by a screening-charge density in the
metal. Both effects together give rise to the
adsorbate induced electron density shown in fig.
1(c). Some covalent contribution to the bonding
is also present, but this is quite small.
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