
Theory of electron-phonon interactions on nanoscales:
semiconductor surfaces and two dimensional electron gases

N. Bueckinga, S. Butschera, M. Richtera, C. Weberb, S. Declaira, M. Woernerc, K. Reimannc,
P. Kratzerd, M. Schefflere and A. Knorra

aInstitut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische
Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

bMathematical Physics, Lund University, Box 118, 22100 Lund, Sweden

cMax Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A,
12489 Berlin, Germany

dTheoretische Physik, Universität Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany

eFritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

ABSTRACT

A theory of electron relaxation for electron gases in semiconductor quantum well structures and at semiconductor
surfaces is presented. The electron relaxation is described by quantum-kinetic equations. In the nonlinear optical
response of a two dimensional electron gas in a GaN quantum well, polaronic signatures are clearly enhanced
compared to the linear response, if the pump pulse is tuned to the polaron energy. For the phonon-induced
electron relaxation at Si (001) surface structures, the interplay of bulk and surface states yields a complex
temporal relaxation dynamics depending on the slab thickness.

1. OUTLINE

After introducing the theoretical formalism for the underlying density matrix theory, we calculate in this paper
the linear and nonlinear optical response of higher order electron-phonon interaction in ISB transitions in a GaN
quantum well (QW) within a Bloch equation approach1 using a correlation expansion2, 3 beyond the second order
Born approximation. By generalizing such an approach beyond a single band problem,4 our approach is able
to qualitatively reproduce experimental results for doped gallium nitride quantum wells5, 6 in the linear and the
nonlinear regime. In the last part of this paper, we investigate the relaxation dynamics at a silicon surface7, 8

after optical excitation. After performing density-functional-theory calculations for the Si (001) 2 × 1 surface,
density matrix equations in the second order born limit are used to compute the evolution of the population of
the conduction bands.9, 10

2. THEORY OF THE ELECTRON-PHONON INTERACTION

Many-particle effects are of fundamental importance for the optical properties of two dimensionally quantum
confined electrons in nanostructured semiconductors. Examples constitute finite free standing semiconductor
slabs9–12 as well as the ideal two dimensional electron gas (2DEG) in doped quantum wells.13 The Hamilton
operators of the free phonons and electrons, the electron-field interaction in dipole approximation and for the
electron-phonon interaction are:2, 9

H0 =
∑

nk

εnka†
nkank +

∑

iq

h̄ωiqb†iqbiq, Hfield =
∑

kn�=n′
A(t)pn′k

nk a†
nkan′k,

HEPI =
∑

nk
n′k′
iq

gn′k′
nk
iq

a†
nkan′k′biq + h.a.. (1)
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Figure 1. Schematic diagram of the band structures and possible optical transitions. On the lhs, the left arrow indicates
a single particle transition in a doped quantum well, where the lowest conduction subband is occupied. The right arrow
indicates a transition via a virtual level, combined with a phonon emission process. On the rhs, excitation and electron
relaxation in multiband-structure (band dispersion parallel to the surface) is illustrated.

Here, a†
mk, amk and b†iq, biq are creation and annihilation operators for electrons with wave vector k in (sub)band

m and for phonons of mode i with wave vector q (q|| is its in-plane projection). εlk is the free energy of an electron
in (sub)band l with wavevector k and ωiq the phonon frequency of a phonon in mode i at wave vector q. With
these operators, we can express coherences pml

nk := 〈a†
nkaml〉, (sub)band occupations fnk := 〈a†

nkank〉, and the
phonon occupation numbers niq = 〈b†iqbiq〉. gn′k′

nk,iq denotes the electron-phonon coupling matrix elements, pmk
nk

is the momentum matrix element between (sub)band n and m, and A(t) the external electric vector potential
describing the applied optical field.

Using the Heisenberg equation of motion we can find equations of motion (EOM) for the coherence and the
phonon assisted density matrices sm′l′

ml,iq = 〈a†
mlam′l′biq〉:9

ih̄
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)
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where Rml,i′q′
nk,iq = 〈a†

nkamlbiqbi′q′〉 and T ml,i′q′
nk,iq = 〈a†

nkamlb
†
iqbi′q′〉. Through the electron-phonon interaction, the

resulting equations of motion9, 14, 15 (Eqs. (2a), (2b)) of the single particle density matrices pm′l′
ml couple to phonon

assisted density matrices sml
m′l′,iq, which in turn couple to higher order interaction matrices Rml,i′q′

nk,iq , T ml,i′q′
nk,iq and

〈a†
mla

†
nkam′l′an′k′〉. In order to get a closed set of equations of motion, we truncate the resulting hierarchy, using

a correlation expansion.2

2.1 Quantum kinetics

For larger couplings of the electron-phonon interaction as in GaN, a second Born approximation (theory in g2)
fails and higher order interactions (in gn) need to be included, in particular two particle correlations such as
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Rml,i′q′
nk,iq and T ml,i′q′

nk,iq . A full dynamical treatment of such quantities is very involved. Therefore the two-particle
correlations R and T are treated in Markov approximation, while keeping the full non-Markovian dynamics of
the s matrices. This scheme was introduced for the scattering dynamics in a single band.4 Besides the first
order contributions to the equations of motion published in Ref.,14 the higher order contributions (HO) to the
phonon-assisted density matrices read:

d

dt
sn′k′

nk
iq

|HO = −
( in

Γn
n′k′ +

out

Γn′
nk

)
sn′k′

nk
iq

(3)

where the scattering rates Γ are defined as

in

Γn
n′k′ =

π

h̄

∑

k′q±

∣∣∣gn′k′
nk
iq

∣∣∣
2

δ(εnk − εn′k′ ± h̄ωiq)(nq +
1
2
± 1

2
)fn′k′ (4)

out

Γn
n′k′ =

π

h̄

∑

k′q±

∣∣∣gn′k′
nk
iq

∣∣∣
2

δ(εnk − εn′k′ ± h̄ωiq)(nq +
1
2
∓ 1

2
)(1 − fn′k′).

A detailed derivation of these equations can be found in Ref.16 Obviously, within the used self-consistent Born
approximation microscopically determined lifetime contributions Γ, Eq. (4), occur for the phonon-assisted density
matrices.

2.2 Markovian dynamics
If we apply a second order Born approximation within a Markovian limit (Γ → 0) and a bath hypothesis to the
equations of motion (2a) and (2b), we obtain equations of the form2, 9

d

dt
fnk = − 2

∑

n′

( in

Γn′
nkfnk +

out

Γn′
nk(1 − fnk)

)
. (5)

In a weak coupling regime and weak excitation, these EOM are sufficient to describe the relaxation dynamics.

2.3 Single particle energies
For the modelling of the intersubband structure of the quantum wells a parabolic band approximation within
the effective mass concept can be used for the single particle energies εnk. This concept generally fails for more
complex two dimensional systems like a surface structure. While for a bulk structure, simplifying assumptions
for the electronic band structure are often possible, the dynamics of excited electrons at a surface structure
is usually dominated by the interplay of bulk electrons and additional surface induced bands. Consequently, a
precise knowledge of the electronic band structure is necessary for the accurate description of dynamical processes
in such a structure. We show that a possible approach to calculate the relaxation dynamics in this field is to
combine density-functional theory (DFT) for the calculation of the electronic band structure and the interaction
matrix parameters gn′k′

nk,iq with a density-matrix (DMT) approach to derive dynamical equations.

3. OPTICAL RESPONSE OF A DOPED GALLIUM-NITRIDE QUANTUM WELL

Recent studies have investigated the linear optical response of doped quantum well systems with special emphasis
on intersubband (ISB) transitions in the conduction band.17, 18 In particular, it was shown in Ref.14 that a non-
Markovian treatment of the electron-phonon interaction in the weak coupling regime reveals polaron signatures
in absorption, e.g. phonon satellites spectrally located around the Huang Rhys shifted subband gap. A similar
behavior is known from two level systems, like interband transitions of a semiconductor quantum dot, where the
independent boson model provides an analytic solution.19–21 Such exact solutions, which are valid in all coupling
regimes, do not exist for a two subband system in two dimensions, in contrast to one dimensional systems where
linear absorption was investigated in detail.22 Nevertheless, a time-convolutionless density matrix approach has
been used successfully to calculate the non-perturbative effects of the electron-phonon interaction for the linear
absorption spectrum of ISB transitions in GaN quantum wells,23 including polaron satellites of arbitrary order.
Unfortunately, this non-perturbative approach is not suitable for non-linear optical excitations.
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3.1 Linear absorption
To characterize the doped quantum well used to describe the nonlinear response, we consider the linear absorption
spectrum of the ISB transition in a GaN QW, shown in Fig. 2. The absorption is calculated using −lnT = αL
with L = 6nm assumed for the calculation and α is calculated using:

α0(ω) =
ω

cn(ω)
Im

(
P (ω)

ε0E(ω)

)
. (6)

Here, the dipole density reads P (t) :=
∑

n,n′,k

1
ω0

epn′
nkpn

n′k(E(t)), where ω0 and e are the frequency and polarization

of the incident light field E(t). The considered ISB transition has a gap energy of 270 meV and a carrier density
of 1013cm−2. All calculations are carried out at room temperature using Eq. (4) and equations of motion of
Ref.14 including the contribution from Eqs. (3) and (4). Matrix elements are calculated in Ref.23, where all
material parameters can be found. Fig. 2 shows, that the electron-phonon interaction (solid line) introduces a
considerable polaron shift of 20 meV, the maximum of the absorption (zero phonon peak) is found at 250 meV.
Due to scattering with phonons, we also observe a strong broadening of the ISB transition towards higher energies,
well known from previous calculations with the time convolutionless theory.23 The qualitative agreement with
experimental data (dotted line from Ref.5) considering the unusually long absorption tail towards higher energies
is good, but yet our calculations reveal a clearly smaller line width of the main resonance (solid line). This is
not surprising, since other line broadening mechanisms, effectively acting on the zero phonon line width have not
been considered. Interaction with impurities or strain effects may explain this discrepancy. These effects are not
the topic of the paper. If we introduce an additional phenomenological dephasing of the intersubband coherence,
with a time constant of γ (dashed lines in Fig. 2), the agreement for the zero phonon peak line width can be
improved, while this has no impact the absorption tail on the high energy side, which is the focus of this paper
(Sec. 3.2). An improvement of γ seems to reduce the oscillator strength in the visible range, since the increased
line shape width leads to an redistribution of oscillator strength out of the plotted energy range. The broad
absorption peak arising through the electron-phonon interaction (see curves labeled 10 meV-40 meV in Fig. 2),
does not yield deeper insight into the many-particle physics of the electron-phonon interaction. Therefore, we
consider the nonlinear optical response of the high energy part absorption tail.

3.2 Nonlinear optics: pump-probe spectra
We consider a non-linear optical excitation during a 100 fs pulse that has a center frequency of 355 meV (first
phonon resonance, cf. Fig. 2) and an intensity of 9.6 GWcm −2. Such an excitation transfers about 6 % of the
ground state carrier density into the upper subband. The calculated differential transmission:24

DTS(ω) =
∆T (ω)
T0(ω)

=
eαPP (ω)L − eα0(ω)L

eα0(ω)L
= e[αPP (ω)−α0(ω)]L − 1, (7)
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Figure 2. Linear absorption spectra of a GaN QW at 300 K, theoretical calculation including the interaction with LO-
phonons (solid line) and with additional phenomenological dephasing γ of 10, 20, and 40 meV/h̄ (dashed lines) and
experimental data from.5
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is shown in Fig. 3 (solid lines) for different time delays τ between pump and probe pulse. Data (experimental
details can be found in Ref.5) are shown as dots. A detailed derivation of the formula for αpp is given in Ref.,25

only the ω-dependence is not neglected in this treatment, so that the ω dependent prefactors are kept (cf. the
linear case Eq. (6)). Especially for negative delay times (probe before pump, see Fig. 3 a), we obtain a dispersive
signature around the single particle transition energy, due to the off-resonant excitation (Stark effect).26 The
position of the resonance has to be identified with the zero crossing at 250 meV. One phonon energy above the
single phonon energy (355 meV) we find a resonant signature in the DTS spectra, which shows a very similar
behavior in theory and experiment and decays rapidly after the excitation.5 This signature is caused by the
dynamical Stark effect during the overlapping pulses. Only a non-Markovian treatment of the EPI can reveal
this effect, while a Markovian theory fails in second order Born approximation (not shown).

The theoretical results show deviations, in particular line shifts, from the experiment around the zero phonon
line at 250 meV. We attribute these deviation to similar processes discussed for the linear absorption, Sec. 3.1,
like Coulomb effects or strain induced effects. In particular, electron localization effects in the plane of the well
may resemble to a more level like response5 in comparison to the bulk response shown here. Our main point is
to show that the phonon replica at 355 meV is clearly enhanced in nonlinear (Fig. 3) in comparison to the linear
spectroscopy (Fig. 2).

One might wonder, why the energetic distance between the two resonant signatures is not exactly equal to the
phonon energy like it was with the two level assumption in.5 We attribute the reason for this to the electronic
dispersion inside the quantum well subband: With the resonant excitation at the first phonon side band, a
part of the polaronic states connected to electron distribution in the subband are mostly resonantly excited,
nevertheless these states have a less effective dipole moment than the main peak (cf. Fig 2). Additionally, the
electrons inside the subbands that cause the main linear absorption peak are non-resonantly excited, where the
excitation strength is determined by their dipole moment and the invidual detuning. Such effects cannot occur
in a two level system system and are specific to the two subband system.

 0

 0.02

 0.04

 200  250  300  350

D
if

fe
re

nt
ia

l T
ra

ns
m

is
si

on
 D

T
S

 

(a)
-50 fs

 200  250  300  350

Photon Energy (meV)

(b)
0 fs

 200  250  300  350  400

 

(c)
50 fs

theory
experiment

Figure 3. DTS spectra at different delay times (a) -50 fs, (b) 0 fs, (c) 50 fs. The sample is nonlinearly excited with a
second 100 fs pulse at the first phonon replica around 355 meV.

4. RELAXATION DYNAMICS AT THE SILICON (001) 2×1 SURFACE

Electron relaxation phenomena at silicon surfaces are a topic of recent research.27, 28 A characteristic detail of
the silicon (001) surface is the reconstruction incorporating a tilted dimer.7, 8 In the band structure, this feature
results in the formation of additional surface bands located partly inside the semiconductor bandgap.9 These
surface bands (Dup and Ddown)are related to the p-orbitals of the dimer atoms.8 While the Dup band is a valence
band, the Ddown band is not populated at zero temperature. In experimental studies,27, 28 it has been found that
the phonon-induced relaxation inside the conduction bands is a complex process on multiple timescales. The
interplay of interband scattering from the bulk to the Ddown band and intraband scattering inside the Ddown

bands are found to be the dominating processes. In this section, we use the Markovian dynamical equations (5) to
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Figure 4. Electronic DFT-LDA band structures and atomic structures for supercells with 7 layers (lhs) and 40 layers (rhs).
Besides the bulk-related bands (grey shaded regions), the Dup and Ddown bands are observable in the band gap.

calculate the population dynamics at the Silicon 2×1 surface, while the surface bandstructure and wave functions
calculated preliminarily by DFT.29

4.1 Linking density-functional theory and density-matrix theory

Phonon induced relaxation dynamics at the silicon (001) surface is investigated in terms of a two-step model.
In a first step, the electronic structure of the surface structure is computed using DFT within the local-density
approximation (LDA).30 The calculation is performed in the supercell-approach,9 with a reconstruction of 3
layers at the surface, while at the other end of the structure, the chemical bonds are saturated by hydrogen
atoms. The implementation of the DFT computer code uses plane-wave-basis set and pseudopotentials. In the
second step, the population dynamics is calculated using the results of the first (DFT) step by DMT in the
Markovian limit.

DFT: In Fig. 4, the electronic band structures are shown for supercells of 7 layers and 40 layers. The atomic
positions and the size of the supercell are plotted by a ball-and-stick model for those two structures. The number
of bulk-bands is highly dependent on the number of layers in the calculation, and for a reasonable sampling of the
band structure, obviously a fairly thick slab (� 20 layers) is needed to model the bulk effects of a single surface.
Due to the description of the bandstructure within DFT-LDA, the semiconductor band-gap is underestimated by
ca. 0.52 eV with respect to the experimentally provided values.10, 30 As the electron dynamics is only investigated
for the conduction bands by our approach and this shift of the band-gap energy is mostly independent of the
k-location, this effect has no big influence on the conduction band structure and it is a good approximation to
use the Kohn-Sham eigenvalues of the DFT-LDA calculation for the further discussion of the dynamics.

DMT: The electronic structure from the DFT calculations is now used to perform calculations on the electron
population dynamics of the conduction band states using Eq. (5). Using Kohn-Sham eigenvalues from the DFT-
LDA calculation (step 1), the properties of the silicon surface enter into these equations of motion via the electron
field interaction pmk

nk (momentum matrix elements) and the electron-phonon coupling parameters:

gn′k′
nk,iq = giq

∑

G,G′
u∗

nk(G)un′k′(G′)δk+G,k′+G′+q. (8)

Here, umk′(G′) represent electronic Bloch waves in the k-space representation (Fourier transform of the real
space representation). Through the inhomogeneous delta condition in this equation (where the k vectors are not
generally decoupled from the reciprocal lattice vectors G), a scattering over the Brillouin zone boundary can be
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Figure 5. Square modulus of the electron matrix elements for different transitions. Top row: intraband transitions, inside
Ddown band (lhs) and inside lowest bulk conduction band (rhs), bottom row: interband transition from Ddown band to
first bulk band (lhs) and corresponding umklapp process via zone boundary. The transition are shown for a transition
from an an initial state to a final state on the symmetry line.

described. For small k and q however, the general delta condition falls back to the commonly used momentum
conservation condition k = k′ + q.

While the phonon-mode dependent coupling parameter giq is approximated by typical values from bulk
silicon,31 the part In′k′

nk =
∑

G,G′ u∗
nk(G)un′k′(G′) depends on the electronic wave functions of the underlying

structure. Here, the Kohn-Sham wave functions are used to calculate the electron-state dependent transition
amplitudes for all involved bands. In Fig. 5, the modulus of the transition integrals In′k′

nk of the electronic wave
functions is depicted. For the intraband transitions (top row of Fig. 5), the modulus approaches a value of 1 on the
diagonal (q = 0, initial and final states are the identical). Furthermore, for intraband scattering, the modulus
remains unchanged with respect to the exchange of inital and final states, and in place of the corresponding
symmetrical representation, an umklapp process is plotted in the upper left half of the top row pictures in Fig. 5.
It is obvious that the scattering via umklapp process is only of minor importance for this intraband scattering
(one order of magnitude less than via direct scattering). For the interband processes (bottom row of Fig. 5),
scattering is limited to some specific points within the Brillouin zone (here, scattering on the diagonal is always
vanishing, as initial and final states are orthogonal for different bands at the same k-point). Furthermore, the
umklapp-scattering (rhs of the bottom row of Fig. 5) now differs only by a factor of 3 from the direct processes.
As a consequence, we cannot generally neglect the scattering over the Brillouin zone boundary. We note that
these considerations are focused on one part of the electron-phonon scattering processes (In′k′

nk ), while the phonon
mode dependent form factor giq and scattering in the equations of motion Eq. (5) is highly dependent on the
wave number q as the scattering matrices (4) contain the energy conservation for the scattering processes. In
the numerical simulation of Eq. (5), all these effects are taken into account.

The discussion of the involved electron-phonon interaction induced relaxation dynamics is investigated using
Eq. (5). The initial population in this approach is provided by simulating the linear absorption of a finite-
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Figure 6. Linear absorption spectra for the Si 2×1 (001) surface for different supercell structures and for the bulk. On
the rhs, a cutout of the full spectrum at the lhs is shown.

length optical pulse without considering the interference of the optically induced electron preparation with the
relaxation dynamics.

4.2 Linear spectra

The linear spectrum of the silicon 2×1 surface can be calculated according to Eq. (6). In Fig. 6, linear spectra
are shown for a variety of supercells with increasing slab thickness. Within these plots, only the direct optical
transitions (via the matrix elements pn′k

nk , Eq. (1)) are considered, while indirect optical scattering and relaxation
processes are neglected. On the lhs of Fig. 6, the spectrum is shown in the range from 0 eV to 4 eV. While
significant differences are observable for the different surface supercells the onset of the bulk spectrum is only
visible above 2.7 eV (due to the indirect bandgap of silicon), while there are pronounced contributions to the
surface spectra at lower energies (2.0 - 2.5 eV). These additional transitions in the spectrum are related to the
Ddown surface band in the band structure (Fig. 4). In the cut of the spectrum (rhs of Fig. 6) for the range of
0.5-1.3 eV, all visible peaks are related to transitions from the valence bands to the Ddown band. Due to the
scissors shift (cf. Sec. 4.1), the optical pulse used for the simulation of the relaxation dynamics corresponds to a
pulse of 1.07 eV in the DFT-LDA bandstructure.

The initial population for the relaxation dynamics discussed in the next section is consequently induced by
some of the peaks in Fig. 6 (rhs). Furthermore, the position of some the peaks differs in this figure between the
slabs (the height of the peaks is decreased with increasing layer number due to a volume-surface effect). As a
consequence, for the simulation of optical excitation in the very narrow energy range of 0.5-1.3 eV, a big layer
number is obviously needed.

4.3 Relaxation dynamics

The evolution of the population of the conduction band states is shown in Fig. 7 for two supercells of 7 (lhs)
and 40 layers (rhs). At top level, the corresponding conduction band structure is depicted, where the zero of
the energy axis corresponds to the minimum of the Ddown band (the leftmost bands in the two bandstructure
pictures in Fig. 7). The inital occupation10

f initial
nk =

1
h̄2

∑

m

∣∣∣∣p
m
nkÃ

(εmk − εnk
h̄

)∣∣∣∣
2

(9)

with the Fourier-transform optical vector potential Ã(ω) is calculated for an optical pulse of 1.69 eV (correspond-
ing to 1.07 eV in the LDA-bandstructure) and 100 fs duration. Only a few bands are located in the relevant
optical excitation energy range which can be populated: For the 7-layer slab, the entire relaxation process ex-
tends on 2 bands (the Ddown and one bulk band), for the 40-layer slab, about 10 bands are in the ”active region”.
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Figure 7. Relaxation dynamics after initial excitation with optical initial conditions for a slab of 7 layers and 40 layers.

In both calculations, the major part of the initial population is located within a few states at about 0.46 eV,
but the energetical localization is much narrower in the 40 layer calculation. By projection to real space (Fig.
8), it can be seen that this initial population is almost completly inside the surface band, while the bulk band(s)
are not strongly populated by the optical excitation.

It is clearly visible in Fig. 7 (bottom) that the relaxation processes out of a non-equilibrium initial situation to
a quasi-equilibrium final state happens on multiple timescales and includes the whole energy scale of the energy
dispersion. The shape of the initial distribution is dispersed fast (30 fs), and after 50 fs, a significant population
of the conduction band minimum is found. While this fast timescales do not differ for the two supercells, larger
differences can be found after 100 fs: for the 7-layer supercell, a strong population forms at the energetic position
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190 ps

Figure 8. Projection of the conduction band population into the real space for timesteps of 0, 2 and 190 ps. While the
initial population is strongly localized at surface, the population partly shifts to the bulk at 2 ps, and finally returns into
a surface state (minimum of Ddown-band).

of the (single) bulk band minimum (0.24 eV), reaching its maximum at 500 fs and is almost gone after 2 ps. At
this timestep, the rest of the population already resembles a fermi distribution at the conduction band minimum.
For the 40-layer supercell, the lowest bulk band minmum is at 0.08 eV, and a local population maximum forms
at 0.08-0.1 eV. Both the formation time of this population accumulation and the decay time are much longer
than for the 7-layer case: the maximum is reached at about 2 ps, and some minor peaks are still present at 200 ps
relaxation time. As an obvious conclusion, we can see that the relaxation highly depends on the slab thickness
leading to a electronic band structure in the involved energetic region relevant for the relaxation processes (and
thus the representation of the supercell with only a few layers is insufficient to calculate the relaxation process).

By comparing this specific relaxation behaviour (Fig. 7) in the real-space representation (Fig. 8), it can be
seen that the slower relaxation processes (2 ps) are obviously related to a population of the bulk bands (after
the initial preparation at the surface) and a subsequent backscattering to the surface state (the conduction band
minimum of the surface band structure is in the Ddown-band). A qualitative explanation of the involved processes
is that the intra-surface-scattering is much stronger than the bulk-scattering due to the difference in the strength
of the related matrix elements (cf. Fig. 5). A more quantitative discussion of the relaxation will be done in the
next paragraph. In any case, the relaxation via the bulk states is an alternative (but slow) relaxation channel
to the direct intraband relaxation inside the surface band.

The dependence of the relaxation times on the supercell thickness can be investigated by an examination of
the population of the conduction band minimum (which is also the minimum of the Ddown band). In Fig. 9,
the time-dependent population of the state representing the minimum is drawn on a logarithmic timescale. Two
timescales can be clearly identified (lhs of Fig. 9): At the beginning of the relaxation (t <1 ps), the state is
populated with on a ps-timescale. At the end of relaxation (middle of Fig. 9), a much slower timescale highly
sensitive to the supercell size applies. The dashed lines refer to the exponential fit functions to extract numerical
values for the timescales. Those extracted timescales are visualized in Fig. 9 (rhs) for different supercells on
a logarithmic scale: While the short-term time-scale remains close to the 1 ps relaxation time for all different
supercells, the long-term timescale varies from 2.5 ps (7-layer slab) to 60.0 ps (40-layer slab), where a thicker
slab generally leads to a slower relaxation. This can by explained by the interplay of the scattering via electron-
optical and -acoustical phonons: The intraband scattering inside the surface band is always dominated by optical
phonons due to the fairly strong bending of the band in the X − M -direction. The same explanation applies
for the scattering from the surface-band to bulk states. The character of the scattering from bulk to surface for
a specific supercell, however, depends strongly on the actual position of the bulk bands in the band structure
(Fig. 4): while for 7 bands, an energetical gap of 0.2 eV between the lowest bulk band and the minimum of the
Ddown-band is observable, this gap is only about 0.01 eV for the 40 layer slab. As a consequence, for 7 layers,
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Figure 9. Relaxation timescales of the Si 2×1 surface for different supercells. On the lhs, the population of the conduction
band minimum (Ddown-band) is shown on a logarithmic timescale. In the middle column, a cutout of this population
dynamics is drawn for times gt. than 10 ps. On the rhs, the relaxation timescales extracted from the lhs. data is shown
for the different supercells.

also bulk-surface scattering is dominated by optical scattering, whereas for 40 layers only acoustical phonons
allow to override the small energy gap. As the optical phonons are both coupled by a much stronger deformation
potential (5× stronger than for acoustical phonons) to the electrons and the energy transfer per scattering event
is bigger for optical phonons, the typical relaxation times for an optical-phonon mediated scattering are much
faster than for acoustical scattering.

5. CONCLUSION

We have reviewed a theory for the description phonon-induced relaxation phenomena in two dimensional sys-
tems. By applying this theory to nonlinear optical properties of phonon assisted intersubband transitions in
GaN including the non-Markovian nature of the electron-phonon interaction, our numerical calculations agree
qualitatively with recent experimental work5 and shows a satellite peak due to LO electron-phonon interaction,
which is clearly visible only in nonlinear pump probe spectra. Our conclusion is that pump probe spectroscopy
is appropriate to uncover non-Markovian polaron effects, that are not visible in linear spectra. The investiga-
tion of phonon induced relaxation at the silicon 2×1 (001) surface reveals a complex relaxation process on two
timescales involving surface-surface and bulk-surface scattering. The timescales are in agreement to experimental
findings recently published28 and the different magnitude can be related to optical phonon scattering inside the
Ddown-surface band for the fast timescale and acoustical phonon scattering for the slower processes from the
bulk to the surface band.
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