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Abstract

Metal oxides exhibit versatile chemical and physical properties. For example, they are used in
gas-sensor technology, for solar cells, transparent conductors, and in catalysis. Oxygen vacan-
cies, also termed F centers, change the electronic and geometric structure of the oxide and can
appear in different charge states. F centers may enhance theperformance of the material, or they
may be undesirable. In both cases, a fundamental knowledge of these defects is essential.

Realistic metal oxides are typically doped, either intentionally or unintentionally, and this
can affect defect concentrations and charge states.Local andglobal effects of doping can be
distinguished. Global effects of doping include creation of a Fermi level, i.e., the chemical
potential for electrons, formation of a space-charge region, and band bending at the surface.
Local effects occur due to defect-induced localization of charge carriers at the dopant, and a
local change in electronic structure and lattice relaxation around the dopant. Depending on the
system specifics, either local or global or both doping effects can play an important role for the
formation of F centers.

Experiments measuring defect concentrationsin situ are extremely challenging and therefore
scarce. Previous theoretical approaches to defect concentrations and formation energies have
aimed at a description of isolated, non-interacting defects. In this work, bulk and surface F
centers in metal oxides are studied using the example of MgO,which is widely used as a catalyst
or catalyst support. It has been shown, that intentionalp-type doping enhances the catalytic
performance of MgO, and oxygen vacancies can play a decisiverole in this context. However,
charge states and concentration of these defects under realistic working conditions have so far
not been analyzed.

In the present work, the standard methodology for calculating defect formation energies is
extended to include defect-defect interaction, accounting for realistic temperature, pressure,
electron chemical potential, and bulk doping concentrations. It is demonstrated how defect
formation energies can be determined systematically and accurately, usingab initio atomistic
thermodynamics in combination with hybrid density-functional theory (DFT) with parameters
of the exchange-correlation functional optimized according to a consistency requirement on DFT
andG0W0 ionization energies. Formation energies for neutral defects are validated by coupled-
cluster calculations using embedded cluster models. The virtual-crystal approximation is used
for a realistic modeling of doping to describe charged vacancies at the surface.

It is found that at catalytically relevant temperatures of∼400-1,000 K and oxygen partial
pressures> 0.1 atm the concentration of charged F centers at surfaces of doped oxides is largely
determined by two electrostatic effects, so far disregarded in literature: (i) charge transfer be-
tween surface defects and bulk dopants, leading to formation of a macroscopically extended
space-charge region, bending of electronic bands, and an electric field that limits the formation
of charged surface defects, and (ii) attraction between surface defects and the compensating
charge, facilitating oxygen vacancy formation. The higherthe concentration of charged defects,
the larger are band bending and defect formation energy. Nevertheless, the concentration ofF2+

s

centers at the (100) terrace ofp-type MgO can be as high as 1% at realistic conditions, whileF+
s

andF0
s concentrations are negligible.



Zusammenfassung

So vielfältig wie ihre physikalischen und chemischen Eigenschaften sind auch die Anwen-
dungsgebiete von Metalloxiden. Sie kommen z.B. als Gassensoren, Solarzellen, transparente,
elektrische Leiter oder Katalysatoren zum Einsatz. Dabei verursachen Sauerstoff-Fehlstellen,
die auch als F-Zentren bezeichnet werden, Veränderungen der elektronischen und atomaren
Struktur, die für den technischen Einsatz des Materials teils unerwünscht, oft aber auch von
essentieller Bedeutung sind. Ein Verständnis der Stabilität von F-Zentren unter realistischen
äußeren Bedingungen ist in beiden Fällen unerlässlich. Dotieren des Oxids, durch gezieltes
Einbringen von Fremdatomen oder unbeabsichtigte Verunreinigung, kann die Konzentration der
Fehlstellen beeinflussen. Man kann dabei zwischenglobalenund lokalen Dotierungseffekten
unterscheiden. Global wirkt sich die Dotierung auf das Fermi-Niveau aus und kann zu einer
Raumladungszone und Krümmung der elektronischen Bänder ander Kristalloberfläche führen.
Lokale Effekte ergeben sich durch Änderungen der elektronischen Struktur und Gittergeome-
trie in unmittelbarer Umgebung der Fremdatome. Nur wenige experimentelle Studien wurden
bisher zu Gleichgewichtskonzentrationen von F-Zentren durchgeführt, und theoretische Studien
behandeln meist den Grenzfall nicht-wechselwirkender Defekte.

Die vorliegende Arbeit befasst sich mit der Berechnung von F-Zentren in Metalloxiden am
Beispiel von Magnesiumoxid (MgO), das als Katalysator verwendet wird. Obwohl gezielte
p-Dotierung die katalytischen Eigenschaften von MgO verbessert und Sauerstoff-Fehlstellen in
diesem Zusammenhang eine entscheidende Rolle spielen können, wurden deren Ladungszustände
und Konzentrationen in MgO bisher nicht unter realistischen Bedingungen analysiert. In dieser
Arbeit wird das bestehende theoretische Modell zur Berechnung von Formationsenergien unter
Berücksichtigung von Wechselwirkungen zwischen Defektenerweitert, so dass als thermo-
dynamische Parameter Temperatur, Druck, Fermi-Niveau undauch Dotierungskonzentration
eingehen. Formationsenergien werden mit Hilfe vonab initio Thermodynamik und Dichte-
funktionaltheorie (DFT) systematich und präzise berechnet. Dazu werden Hybrid-Funktional-
Parameter, die das Austausch-Korrelations-Potential bestimmen, optimiert, so dass DFT- und
G0W0-Ionisationsenergien übereinstimmen. Formationsenergien für neutrale Sauerstoff-Fehl-
stellen werden durch coupled-cluster-Berechnungen von eingebetteten Cluster-Geometrien va-
lidiert. Für eine realistische Beschreibung geladener Oberflächen-Fehlstellen wird das dotierte
Material als fiktiver Kristall (virtual crystal) behandelt.

Die Konzentrationen von geladenen Oberflächen-Fehlstellen in p-dotierten Oxiden unter kat-
alytisch relevanten Bedingungen, Temperaturen von 400–1000 K und Sauerstoff-Partialdrucken
>0.1 atm, werden von zwei elektrostatischen Effekten bestimmt: Ladungstransfer zwischen
Oberflächen-Defekten und tiefer liegenden Dotierungs-Atomen führt zur Ausbildung einer Raum-
ladungszone, Verbiegung der elektronischen Bänder und einem elektrischen Feld, wodurch die
Konzentration von F-Zentren an der Oberfläche nach oben begrenzt wird. Andererseits erleich-
tert elektrostatische Anziehung zwischen geladenen Oberflächen-Defekten und Kompensation-
sladung das Entstehen von F-Zentren. Die Konzentration vonzweifach positiv geladenen F-
Zentren an der (100)-Oberfläche vonp-dotiertem MgO beträgt ca. 1 %, während Konzentratio-
nen von neutralen und einfach positiv geladenen F-Zentren vernachlässigbar klein sind.
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1. Introduction

Due to their manifold, often tailorable chemical and physical properties, metal oxides are suit-
able for a wide range of applications. Gas sensors, for example for carbon monoxide detection,
are often tin oxide based [1], while doped aluminum oxide in its mineral form is also known as
sapphire or ruby, utilized to make jewellery but also for laser technology [2]. Furthermore, metal
oxides are used in paints, in wallboards, for sunscreens, inelectronic devices like capacitors, or
for heat insulating material in mobile phones [3–6]. While all these areas may still be somehow
specific, there is one class of metal-oxide applications that is of great general economic and eco-
logic interest: Metal-oxide catalysts can help us produce commodity chemicals like ethylene, as
well as fuels and electricity in an efficient and economical way. Two prominent examples are
titanium dioxide and magnesium oxide. Exploring the catalytic properties of titanium dioxide
has led to valuable insights in the context of photocatalytic water splitting [7–10], which may
make hydrogen available as an environmentally friendly fuel. And magnesium oxide (MgO) is
a base material for promising methane conversion catalysts[11–21]. All applications mentioned
above require very specific material properties. Point defects like vacancies, where an atom is
missing from the regular crystal lattice, or dopants, whereone atom has been substituted by a
different species, induce unique features in the electronic and geometric structure of a metal
oxide. While sometimes oxides of high purity are needed, often defects are indeed desirable. In
some cases, oxygen vacancies, also termed F centers, can promote certain surface reactions or
inhibit others and thus influence the selectivity of a catalyst. For example, Wu and van de Krol
recently found a positive influence of oxygen vacancies on the selective photoreduction of nitric
oxide to nitrogen over a TiO2 photocatalyst [22]. Furthermore, dopants may be used to control
electrical conductivity by providing free charge carriers. By doping, also the chemical potential
for electrons, the Fermi level, can be fixed, which is important for charge transfer processes in
the metal-oxide bulk or at interfaces with vacuum or other material. Understanding the defect
physics of a metal oxide is a key to achieve an optimal performance in application. However,
even the very first step is complex. Defect type, concentration, and charge state typically depend
on outer conditions such as temperature and pressure, and furthermore, defects usually interact
with each other in different ways that are sometimes not immediately obvious. Experiments on
point-defect stabilities are challenging, since it is hardto establish thermodynamic equilibrium.
In theoretical studies often only the limiting case of non-interacting defects is considered. For
charged surface defects under realistic ambient conditions even a reliable theoretical framework
has so far been lacking.

This work addresses the very basic and nevertheless very challenging question how stabilities
of oxygen vacancies in different charge states at metal oxide surfaces can be described quanti-
tatively within a self-containedfirst-principlestheoretical approach. The goal is to understand
how defect concentrations and charge states depend on temperature, pressure, electron reservoir
(Fermi level) and doping concentration on the example of bulk and surface F centers in MgO.

Several distinct aspects need to be considered. Two different structure models are commonly
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used to describe point defects within an electronic-structure approach. An embedded cluster
model is a piece of material cut from the crystal lattice and surrounded by potentials that mimic
the extended system. A periodic supercell model also uses a piece of material of the extended
system, but repeats it periodically. In this work, the ambition is to survey advantages and disad-
vantages of both models, so that ideally the specific advantages of each model can be exploited
for the system of interest.

In general, periodic models are more suitable to obtain information on the electronic energy
bands of a solid, which is important specifically for chargeddefects. The challenge in periodic
calculations of charged surface defects is to choose a suitable method of charge compensation.
Due to the periodic repetition, the electrostatic potential in the calculation diverges, if it is not
compensated. This reflects the physical fact that there is a significant energy associated with the
long-range Coulomb interaction, which therefore must be mostly cancelled in realistic systems.
The standard approach to overcome this issue is to apply a uniformly distributed background
charge to the system [23]. However, this approach is somehow artificial and in a surface cal-
culation, where two-dimensional slabs of host material areseparated by vacuum, it is without
doubt unphysical. Therefore, one necessary requirement for the computations of charged surface
defects in this work and for future studies of similar systems is to find a physically meaningful
way of charge compensation in supercell calculations.

To bridge the gap between microscopic and macroscopic effects, the energy gain or loss upon
defect formation and resulting defect concentrations can be calculated using density-functional
theory in combination withab initio atomistic thermodynamics [24,25]. This approach is com-
monly used for studies of bulk defects in semiconductors andoxides, accounting in the case
of oxygen vacancies for three thermodynamic variables: Temperature, partial pressure of the
surrounding oxygen atmosphere, and Fermi level. So far, theoretical approaches have been
concerned to describe isolated, non-interacting defects by these means. This is justified for van-
ishing defect concentrations. However, usually interaction between defects can not be neglected.
Specifically, this is true for charged defects, where electrostatic attraction or repulsion decays
slowly with distance between charges. Furthermore, realistic metal oxides are typically doped,
either with or without intent. It is important to identify and understand the electrostatic inter-
actions that influence the stability and charge state of oxygen vacancies in metal oxides. And
consequently, the existing thermodynamic framework for calculating defect concentrations and
in particular the set of considered thermodynamic variables has to be extended, accordingly.

The quantity that determines the defect concentration is the Gibbs free energy needed to cre-
ate the defect. When calculated with density-functional theory methods, the values of defect
energy levels and total energies need to be tested carefullyfor their sensitivity to the employed
approximate treatment of exchange and correlation of the many-electron system. All system
characteristics that are important for the defect formation need to be identified. It must then be
insured in a robust, self-contained theoretical approach that these characteristics are reproduced
accurately by the optimal exchange-correlation functional.

Furthermore, there are specific challenges concerning oxygen vacancies in MgO. A long-
standing discrepancy exists between the stability of a neutral bulk F center as measured in an
optical-absorption experiment [26] and different published values of the formation energy cal-
culated with electronic-structure methods [27–30]. With regard to the application of MgO in
catalysis, it has been shown thatp-type doping is a requirement for high selectivity of catalysts
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for methane activation [31] and thatp-type doping promotes the formation of oxygen vacancies
in MgO [32]. Doping can affect defect formation in a local way, causingchanges in electronic
and geometric structure in the vicinity of a defect, and in a global way, determining the Fermi
level position. Therefore, the aim is to acquire a detailed understanding of local and global ef-
fects ofp-type doping on oxygen vacancy formation in MgO and to provide estimates for the
equilibrium concentrations of surface oxygen vacancies, including these effects.

The thesis is structured in two parts, starting with a discussion of concepts to characterize
charged point defects in oxides in general. For this purpose, first the theoretical background of
electronic-structure calculations used in this work is summarized (Chapter2). In the follow-
ing, embedded cluster and periodic supercell models are discussed with an emphasis on charge
compensation in periodic models of charged systems (Chapter 3). Next, it is explained how sta-
bilities for isolated defects can be calculated, and a thermodynamic model for interacting surface
oxygen vacancies is introduced that allows to calculate formation energies and concentrations
of these defects taking into account their dependence on theconcentrations of all other defects
and dopants in the system (Chapter4). Also, experimental methods are briefly sketched. In the
second part of the thesis the outlined concepts are applied to point defects in MgO. The role of
MgO in the context of methane activation is reviewed (Chapter 5) and the analysis of oxygen
vacancies starts with defects in the bulk (Chapter6). Geometric and electronic relaxation and
charge transfer are examined and an optimal hybrid DFT functional is identified to be used for
the calculations of neutral and charged F centers in MgO. Then, surface F centers in different
charge states in doped MgO are investigated (Chapter7). While the focus of this work is on
global doping effects, finally also short-range effects of doping are studied, considering defect
complexes formed in lithium-doped MgO (Chapter8). At the end, the results of this work are
summarized in the context of existing knowledge (Chapter9) and an outlook on subsequent
questions interesting with respect to future research is given (Chapter10).
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Part I.

Concepts to characterize charged point defects
in oxides
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2. Ab initio methods for electronic-structure calculations

The purpose of this work is to learn about the influence that point defects have on the electronic
and geometric structure of a material and what this means forthe properties of the solid. In
the following, all non-adiabatic effects are neglected andelectrons are considered as moving in
a potential created by frozen nuclei. At atomic scale the corresponding electronic many-body
problem is expressed by the electronic Schrödinger equation. The numerical cost for solving
it scales exponentially with the number of electrons, making it impossible to compute the full
solution for systems other than very small molecules. However, robust methods exist that allow
for approximate solutions, in particular for ground-stateproperties. On the one hand there are
techniques that make assumptions on the wave functions, namely Hartree-Fock (HF) theory and
methods that are based on HF, such as Møller-Plesset perturbation theory, configuration interac-
tion (CI), and coupled-cluster (CC). By construction, these methods allow to increase accuracy
systematically, but this is at the cost of increasing computational effort. For example, high accu-
racy CC theory (in particular CCSD(T)) is still affordable only for molecules or small clusters,
typically with less than 20 atoms. The most successful method for treating bulk and surface
systems of up to several thousands of atoms, such that also long-range effects may be taken
into account, is density-functional theory (DFT). Within this theory all uncertainty is folded into
a density-dependent exchange-correlation potential, which is subsequently approximated. It is
also possible to combine wave function and density-based approaches. Mixing a certain amount
of HF non-local exchange, often called exact exchange, intoa DFT local exchange potential, one
can form a non-local hybrid functional. The underlying theoretical framework of the methods
used in this work to solve the Schrödinger equation is reviewed in the following paragraphs.

2.1. The many-body problem

The key problem of finding the ground-state energy of an atomic system with electrons atri and
nuclei atRj is to solve the time-independent Schrödinger equation, which has the form of an
eigenvalue problem

Ĥ|Φ(R1,...,r1,...)〉 = E|Φ(R1,...,r1,...)〉. (2.1)

Ĥ is the Hamilton operator andΦ(R1,...,r1,...) is the many-particle wave function and an ele-
ment of the Hilbert space. Specifically, a variational principle can be written for the ground-state
eigenvalueE0 and eigenvectorΦ0 of the Hamiltonian operator

E0 = 〈Φ0|Ĥ|Φ0〉 ≤ 〈Φ|Ĥ|Φ〉, (2.2)

whereΦ is an arbitrary element of the Hilbert space. The ground-state energy is for example
needed to determine the system’s ground-state geometric structure. Furthermore, by analyzing
ground-state energy differences, observables like adsorption energies or defect formation ener-
gies may be estimated characterizing the system or process of interest.
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2.1. The many-body problem

Electrons and nuclei each carry charge which is responsiblefor Coulomb interaction between
them. Neglecting relativistic effects, as for example spin-orbit coupling, the Hamiltonian oper-
ator for a system ofNnuc nuclei with atomic numbers Zk located atRk andNel electrons atri,
is

Ĥ = T̂n + T̂e + Vn−n + Ve−e + Ve−n. (2.3)

The different contributions are (atomic units are used) thekinetic energy of the nuclei

T̂n = −
Nnuc∑

k=1

1

2Mk
∆Rk

, (2.4)

whereMk is the ratio of the mass of nucleusk to the mass of an electron, the kinetic energy of
the electrons

T̂e = −
Nel∑

i=1

1

2
∆ri

=

Nel∑

i=1

t̂ei , (2.5)

the nuclear-nuclear interaction

Vn−n =
Nnuc∑

k,k′=1
k 6=k′

ZkZk′

|Rk −Rk′ |
, (2.6)

the electron-electron interaction

Ve−e =

Nel∑

i,i′=1
i 6=i′

1

|ri − ri′ |
, (2.7)

and the electron-nuclear interaction

Ve−n = −
Nel∑

i=1

Nnuc∑

k=1

Zk

|ri −Rk|
=

Nel∑

i=1

vexti . (2.8)

Except for the two lightest elements, the mass of the nuclei is 104-105 times larger than the
mass of the electrons, so that their motions are typically assumed to take place on different time
scales, where the electrons adjust to the nuclear positionsalmost instantaneously. This means
that the electronic energies can be approximated as only parametrically dependent on the nuclear
coordinates, describing a potential energy surface for themotion of the nuclei. The assump-
tion to neglect non-adiabatic coupling of the electronic and nuclear subsystems is known as the
Born-Oppenheimer or adiabatic approximation [33]. The total electron-nuclear wave function is
approximated by a product of the electronic and the nuclear wave functions|Φ〉 = |Ψ〉|χ〉. This
is valid for systems with well-separated adiabatic electronic states, in which electronic transition
due to nuclear motion is not to be expected. The electronic problem for a set of nuclear posi-
tionsR = [R1,...RNnuc

] with electrons atr = [r1,...rNel
] is then described by the electronic

eigenvalue problem
Ĥ|Ψ(R,r)〉 = E(R)|Ψ(R,r)〉, (2.9)

6



2.1. The many-body problem

whereĤ = T̂e + Ve−e + Ve−n is the many-electron Hamiltonian. The nuclear motion follows
from the nuclear Schrödinger equation

Ĥnuc|χ(R)〉 = [T̂n + Vn−n + E(R)]|χ(R)〉 = EBO|χ(R)〉, (2.10)

where the total energyEtot(R) = Vn−n+E(R) provides a potential energy surface for the mo-
tion of the nuclei.EBO, including electronic, vibrational and translational contributions, is the
Born-Oppenheimer approximation to the energyE of the full coupled system in Eq.2.1. Alter-
natively, the nuclear motion may be obtained from the classical equation of motion, neglecting
quantum effects. According to the Hellmann-Feynman theorem [34], forces on a nucleusk,
Fk(R), are given as

Fk(R) = −∇Rk
E(R) = 〈Ψ(R,r)|∇Rk

Ĥ|Ψ(R,r)〉. (2.11)

The kinetic energy of the nuclei is usually10−2 − 10−3 times smaller than the kinetic energy of
the electrons. Within the Born-Oppenheimer approximationthe contribution of nuclear-nuclear
interaction to the total energy of the system depends only onthe nuclei positions. What remains
to be solved is the electronic many-particle problem (Eq.2.9). One step that most methods for
an approximate solution of the Schrödinger equation have incommon is to first separate the
interacting many-electron Hamiltonian̂H into a mean-field, non-interacting Hamiltonian̂HMF

and a remaining interaction Hamiltonian̂H ′,

Ĥ = ĤMF + Ĥ ′. (2.12)

The mean-field Hamiltonian can be written as a sum of effective single-particle Hamiltonians
ĥMF
i , according to

ĤMF =

Nel∑

i=1

ĥMF
i =

Nel∑

i=1

(
t̂ei + vexti + vMF

i

)
, (2.13)

with a corresponding set of effective single-particle Schrödinger equations

ĥMF
i |ϕi〉 = ǫi|ϕi〉, (2.14)

whereϕi are single-particle wave functions andǫi denote single-particle eigen energies. The
mean-field ground state energyEMF

0 is

EMF
0 = 〈ΨMF

0 |ĤMF|ΨMF
0 〉, (2.15)

whereΨMF
0 is the mean-field ground state wave function. For example, inHartree theoryΨMF

0

is a product of single-particle wave functions, and in Hartree-Fock theoryΨMF
0 is a single Slater

determinant constructed of single-particle wave functions. This is discussed in more detail be-
low. In different mean-field approaches,EMF

0 andΨMF
0 are either used directly to approximate

the energy of the full electronic Hamiltonian or they are chosen as a reference, e.g. when pertur-
bation theory is subsequently applied.
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2.2. Hartree-Fock theory

In order to reduce the complexity of the 3Nel-dimensional electronic problem, different approx-
imations have been suggested. Approaches based on the unknown many-particle wave function
are for example the Hartree and Hartree-Fock approximations that were developed in the late
1920s [35].

Within the Hartree approximation each electron is moving inthe average potential, or mean
field, of all other electrons. The wave function is thus written as a product of single particle
wave functions. Since the effective potential depends on the solution of the Hartree equation,
this leads to the self-consistent field approach. An effective potential is guessed and used to
obtain the solution of the equation that is subsequently used to build a new effective potential,
and the procedure is repeated until self-consistency is reached. This concept is restored also in
the practical implementations of density-functional theory.

Building up on the Hartree theory, the Hartree-Fock approximation additionally takes into
account the fermionic character of the electrons. The many-electron ground-state wave function
Ψ0 is approximated by a single Slater determinantΨHF of Nel spin orbitalsϕi that is antisym-
metric upon interchanging the coordinates of two electronsand thus fulfills the Pauli principle

ΨHF =
1√
Nel!

∣
∣
∣
∣
∣
∣
∣

ϕ1(r1,σ1) · · · ϕNel
(r1,σ1)

...
. ..

...
ϕ1(rNel

,σNel
) · · · ϕNel

(rNel
,σNel

)

∣
∣
∣
∣
∣
∣
∣

. (2.16)

ϕi(rj ,σj) denotes the single-particle wave function of thejth electron, located atrj and with
spinσj (spin up or spin down) in statei (comprising orbital and spin quantum numbers).

Applying the Rayleigh-Ritz variational principle [36], the expectation value of the electronic
HamiltonianĤ evaluated at any state is always larger or equal to the exact ground-state energy
E0. Considering the wave functionsϕ∗

i (r) andϕi(r) as independent,EHF
0 can be minimized

with respect to the choice of spin-orbitals under the constraint of normalization introduced with
Lagrange multipliersǫi. This results in the Hartree-Fock equations

{−1

2
∆r + vext(r) + vH(r)}ϕi(r) +

∫

d3r′vxx(r,r
′)ϕi(r

′) = ǫiϕi(r). (2.17)

The Hartree potentialvH(r) is defined as

vH(r) =

∫

d3r′
n(r′)

|r − r′| , (2.18)

where

n(r) =

Nel∑

i=1

|ϕi(r)|2 (2.19)

is the electron density. The non-local, exact exchange potential is

vxx(r,r
′) = −

Nel∑

i=1

ϕi(r)ϕ
∗
i (r

′)

|r − r′| . (2.20)
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2.3. Density-functional theory

Comparing the Hartree-Fock equations with Eq.2.13and Eq.2.14, the exact exchange potential
together with the Hartree potential can be identified with the Hartree-Fock mean-field poten-
tial vMF

i . In general, the Hartree-Fock equations need to be solved numerically. Since the
solutionsϕi(r) have to be known already to solve the equations, a self-consistent scheme is
applied, where the effective single-particle Hamiltonianis first obtained from an initial guess
of theϕi(r). Solving the Hartree-Fock equations for this approximate Hamiltonian leads to a
new set of solutions, that are compared to the previous ones.These steps are repeated until self-
consistency is reached. The Hartree-Fock ground-state wave functionΨHF

0 is then the Slater
determinant of theNel single-particle orbitals with lowest energiesǫi.

Accordingly, the Hartree-Fock total energyEHF
0 is

EHF
0 = 〈ΨHF

0 |Ĥ|ΨHF
0 〉 =

Nel∑

i=1

∫

d3r ϕ∗
i (r)

(

−1

2
∆r + vext(r)

)

ϕi(r) (2.21)

+
1

2

Nel∑

i,j=1

∫

d3r d3r′
|ϕi(r)|2|ϕj(r

′)|2
|r − r′|

− 1

2

Nel∑

i,j=1

∫

d3r d3r′
ϕ∗
i (r)ϕi(r

′)ϕ∗
j (r

′)ϕj(r)

|r − r′| .

The second term in Eq.2.21is the Hartree energyEH, the last term is the HF exchange energy
Exx that does not appear in the Hartree theory. The Hartree-Focktheory is self-interaction free,
since the diagonal terms(i = j) of the HF exchange energy cancel exactly the self-interaction
terms in the Hartree energy. The energy contributions that are not covered by the Hartree-Fock
theory are called correlation energy. The correlation energy effects account for deviations from
the mean-field (dynamic correlation) and the single-determinant (non-dynamic correlation) ap-
proximations. Determining very accurately the missing correlation energy, that typically makes
up a small but still important≈1% contribution, is the subject of quantum-chemistry methods
which are briefly discussed in Sec.2.4. Density-functional theory, on the other hand, takes a
different approach, reformulating the problem such that the explicit functional form of exchange
and correlation energy with respect to electron density remains to be determined.

2.3. Density-functional theory

Both Hartree and Hartree-Fock theory result in effective single particle equations which are then
solved numerically within the self-consistent field scheme. This also holds true for density-
functional theory, reusing the techniques that were developed before. In contrast to the wave
function based approaches, DFT focusses on the electron density, which was pointed out by
Hohenberg and Kohn in 1964 to uniquely determine the physical properties of a system [37].
Even shortly before the Hartree theory became known, the electron density had already taken
up an important role in the Thomas-Fermi theory (1927) that suggested an approximation of the
kinetic energy of an atom as a functional of the electron density [38,39].
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2.3. Density-functional theory

2.3.1. Hohenberg-Kohn theorem

The first part of the Hohenberg-Kohn theorem states that for asystem of electrons in an external
potential, as the one due to electron-nuclear interaction,this potential is a unique functional of
the ground-state electron densityn(r), which is related to the number of electrons in the system
via the normalization

Nel =

∫

d3r n(r). (2.22)

The external potential determines the electronic Hamiltonoperator (Eq.2.9) which on the other
hand leads to the electronic states holding the complete physical information on the system.
Consequently, any ground-state physical property, in particular energy, can formally be written
as a functional of the density

E0 = 〈Ψ0|Ĥ|Ψ0〉 = E0[n(r)]. (2.23)

In its original form the Hohenberg-Kohn theorem can be proven via reductio ad absurdum(see
for example Ref. [40]). An extension to also non-degenerate ground states was elaborated by
Levy in 1979 [41].
While the energy contribution of the external electron-nuclear potential is straightforward to
express as a functional of the density using Eq.2.8and2.19, the more challenging part is to deal
with the functional dependence of

F [n(r)] = 〈Ψ0|T̂e + Ve−e|Ψ0〉, (2.24)

whose explicit form as a closed expression in terms of the density is unknown.F [n(r)] is also
referred to as the Hohenberg-Kohn functional.

The second part of the Hohenberg-Kohn theorem offers a way for practical calculations of
the ground state energy. It states that the density that minimizes the total energy is the exact
ground-state density. Any trial density, for whichntrial(r) 6= 0 and

∫
ntrial(r)d3r = Nel, yields

an energy greater or equal to the ground-state energy of the systemE[ntrial
0 (r)] ≥ E0, so that

E0 can be approached applying a variational principle. In orbital-free DFT one calculates the
energy for a certain trial density and improves it iteratively in analogy with the self-consistent
field method known from the Hartree theory. But a successful approximation to2.24, especially
for the kinetic energy functional, is rather difficult to find. Therefore, the approach that was
undertaken by Kohn and Sham in 1965 achieved great approval [42].

2.3.2. The Kohn-Sham equations

Kohn and Sham suggested to choose a non-interacting reference system with the same electron
density as the true interacting system. The respective normalized single-particle states|ϕi〉 (an
index KS for the single-particle orbitals is not introducedfor simplicity) are often referred to as
Kohn-Sham orbitals. The single-particle orbitals are usedto construct a Slater determinantΨKS

which corresponds to the many-electron wave function for the fermionic system, in analogy with
the proceeding in Hartree-Fock theory (Eq.2.16). The electron density of the true systemn(r)

10



2.3. Density-functional theory

can then be expressed as that of the fictitious reference systemnKS(r) according to

n(r) = nKS(r) =

Nel∑

i

|ϕi(r)|2. (2.25)

In contrast to the kinetic energy functional of the interacting system, that of the non-interacting
reference system is explicitly known as

EKS
kin = −1

2

Nel∑

i=1

∫

d3rϕ∗
i (r)∇2ϕi(r). (2.26)

To simplify the unknown full electron-electron interaction term, it is split into the classical elec-
trostatic energy of an electron gas with densityn(r), the Hartree energyEH (compare Eq.2.21),

EH[n(r)] =
1

2

∫

d3r d3r′
n(r)n(r′)

|r − r′| , (2.27)

and an unknown remaining termEe−e[n(r)]−EH[n(r)]. The Hohenberg-Kohn functional may
then be written in terms of the energy quantities for the non-interacting reference system as

F [n(r)] = EKS
kin +EH[n(r)] +Ekin − EKS

kin +Ee−e[n(r)]− EH[n(r)]
︸ ︷︷ ︸

Exc[n(r)]

. (2.28)

The unknown energy contributions for the true interacting system are thus substituted by those
of the non-interacting reference system plus the thereby neglected terms which are summarized
in the exchange-correlation energy functionalExc[n(r)]. Solving the variational problem under
the constraint2.22, whereǫj enter as Lagrange parameters,

∂ϕ∗

i



EH[n(r)]−
Nel∑

j=1

ǫj(

∫

d3r|ϕj(r)|2 − 1)



 = 0, (2.29)

leads to a set of effective single-particle Schrödinger equations, the Kohn-Sham equations

{−1

2
∇2

r + vH(r) + vxc(r) + vext(r)}ϕi(r) = ǫiϕi(r). (2.30)

These describe non-interacting quasi-electrons moving inan effective, local, potential

veff(r) = vH(r) + vxc(r) + vext(r), vxc(r) =
∂Exc[n(r)]

∂n(r)
, (2.31)

where the mean-field potential defined in Eq.2.13 is the sum of the Hartree potential and the
exchange-correlation potential. Reformulating the variational problem in terms of wave func-
tions instead of densities partly spoils the beauty of the Hohenberg-Kohn theorem, but it is
necessary, since they are needed for the kinetic energy of the non-interacting reference system.
Strictly speaking, single-particle eigenstatesϕi(r) of the KS reference system do not have a

11



2.3. Density-functional theory

physical meaning. Nevertheless, the corresponding eigen energiesǫi are often good approxi-
mations to the electronic single-particle ionization energies of the true interacting system. In
specific, it can be shown that in exact DFT, the highest occupied energy level equals the exact
first vertical ionization energy1 [43,44]. Furthermore, according to the Janak theorem [45] (the
DFT analog of the Koopman theorem of HF theory [46]), the exact electron affinity of a system
with Nel electrons is

ENel+1 − ENel
=

1∫

0

εl(n)dn, (2.32)

whereεl(n) is the DFT eigenvalue for the lowest unoccupied orbital of the Nel system, and
0 ≤ n ≤ 1 electrons are introduced into this orbital. Approximatingthis integral, for example
in a lowest-order approximation by evaluating it only at themidpointn = 1

2 , can in practice be
used to calculate electron affinities or ionization energies [45,47].

The Kohn-Sham equations must be solved self-consistently,since the effective potential de-
pends on the final result forn(r). For computational convenience the DFT total energy is typi-
cally calculated using the sum over the KS eigen energies

EDFT
0 [n] =

Nel∑

i=1

ǫi − EH[n] + Exc[n]−
∫

d3r vxc([n(r)],r)n(r). (2.33)

Since the exchange-correlation functional is not generally known, the consecutive step must
be to find an approximate expression forvxc([n(r)]). Opposed to quantum-chemical methods,
which allow for successive improvement of accuracy, there is no obvious systematic way to
do so for the exchange-correlation functional. Still, already rather crude approximations have
proven to lead to good agreement with experimental observations and valuable physical insight.

2.3.3. Exchange-correlation approximations and hybrid functionals

A system, for which the exchange-correlation functional isknown, is the homogeneous electron
gas. For this model system, an analytic expression exists for the exchange energy density [48],
while the correlation energy density can be determined numerically with extremely high preci-
sion [49]. In a jellium approach, the exchange-correlation energy is evaluated locally, at each
point in space, using the exchange-correlation energy density ǫHEG

xc [n(r)] of the homogeneous
electron gas,

Exc[n] ≈ ELDA
xc [n] =

∫

d3r n(r)ǫHEG
xc [n(r)]. (2.34)

This became known as the local-density approximation (LDA)[42, 49, 50]. Using the local
exchange-correlation energy of the homogeneous electron gas and therefore neglecting the true
non-locality ofExc[n] works well for systems with slowly varying electron density, as for ex-
ample for metallic solids orsp-bonded semiconductors [51]. Still, there are serious deficiencies,

1The termvertical ionization energy refers to the energy required to remove one electron from the system, where
possible changes in geometry that may result from the ionization are neglected. In a configuration coordinate
diagram, which shows the total energy of a system as a function of configuration coordinate, this corresponds to the
vertical distance between the energy minimum of the curve for Nel electrons and the curve forNel − 1 electrons.
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as LDA in general tends to an overbinding, which leads for example to overestimated cohesive
energies. Especially for atoms and small molecules, with a strong variation of electron density
in space, this is a severe drawback. Also, the local-densityapproximation introduces an electron
self-interaction error, which means that Kohn-Sham orbitals that are highly localized may be
destabilized.

An improvement in some points was achieved by semi-local generalized gradient approxima-
tions (GGA), which additionally take into account the dependence of the exchange-correlation
energy on the gradient of the electron density

Exc[n] ≈ EGGA
xc [n,|∇n|] =

∫

d3r n(r)ǫGGA
xc [n,|∇n|]. (2.35)

The exchange-correlation energy densityǫGGA
xc [n,|∇n|] can be separated into exchange and cor-

relation contribution. The exchange energy density is expressed as that of the homogeneous
electron gas multiplied with an enhancement factorFx[n,|∇n|],

ǫGGA
x [n,|∇n|] = ǫHEG

x [n]Fx[n,|∇n|]. (2.36)

In the proximity of an electron the probability of finding another electron is reduced. This de-
pletion of electrons (also called exchange-correlation hole) follows the electron density gradient
and the result is an increased exchange energy density. The enhancement factorFx[n,|∇n|] ≥ 0
accounts for this effect. In the limit of a homogeneous system, where|∇n| → 0, the local
density approximation is recovered. However, it is not obvious how the exact functional form
of Fx[n,|∇n|] should be chosen. Different GGA flavors have been suggested,determining the
enhancement factor in accordance with certain physical constraints or using parameters obtained
by fitting certain properties of a class of systems to experimental results. The very successful
Perdew-Burke-Ernzerhof (PBE) GGA, that was published in 1996 [52], obtains the exchange
enhancement factorFx[n(r)] by using the form

Fx(s) = 1 + kF − kF

1 + µs2

kF

, (2.37)

where the reduced density gradients is defined as

s :=
|∇n(r)|

2kF(r)n(r)
. (2.38)

The functional form ofFx(s) and the constantsµ and kF are determined by making the PBE
exchange-correlation energyEPBE

xc reproduce the limit of known linear response for the uniform
electron gas, and by makingEPBE

xc obey the Lieb-Oxford criterium, which provides an upper
bound forFx(s) [53].

In most cases, GGA functionals improve on bulk properties ofsolids like cohesive energies
and lattice constants, as compared to LDA [54–56]. Considering molecules, atomization ener-
gies can be calculated more accurately using GGA than using LDA, while only small improve-
ment is achieved for ionization energies and electron affinities (for details see Ref. [57] and
references therein).
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Still, a major drawback of the semi-local exchange-correlation functional is the incomplete
self-interaction cancellation. For systems where localization plays an important role, e.g. for
defects or surfaces, this deficiency can lead to large systematic errors.

On the contrary, Hartree-Fock theory does not suffer from the self-interaction error, but it
lacks correlation energy, which leads to large errors in thedescription of chemical bonding. In
order to partially cancel the self-interaction error in thesemilocal GGA functional, combining
GGA with HF exchange seems a promising solution. The idea wasintroduced by Becke in 1993
in the following form [58]:

Ehyb
xc [n] = α ·Exx[ϕi[n]] + (1− α)EGGA

x [n] +EGGA
c [n]. (2.39)

So a fractionα of the exchange part of the GGA exchange-correlation functional is substituted
by HF exchange.Exx differs from the HF exchange energy (Eq.2.21) in so far that it is not
evaluated at the optimal HF Slater determinant as in HF theory, but instead at the orbitals of
the non-interacting Kohn-Sham reference system. As a consequence of using the non-local
Exx, the exchange-correlation approximation is no longer local. The formal grounds for the
derivation of this type of hybrid functional are within generalized DFT theory that incorporates
KS-DFT as a special case, using an adiabatic connection between the noninteracting Kohn-
Sham reference system and the fully interacting true systemthrough a continuum of partially
interacting systems, where all of those systems share a common density (see also Sec.2.4).
While the hybrid exchange-correlation energy expressed inEq. 2.39meets the expectations on
reducing the self-interaction error and works well for molecules [59], it cannot be considered
satisfying for metals and narrow-bandgap semiconductors,due to the long-range part of the
exchange that should mostly cancel with the exact correlation [60–62]. Since only approximate
correlation is used, remaining terms from the long-range part of the Hartree-Fock exchange
introduce some error. For this reason it is desirable to include only a short-range part of Hartree-
Fock exchange, and partition the Coulomb operator1

r = 1
|r−r′| in Exx (Eq.2.21) accordingly.

The Heyd-Scuseria-Ernzerhof functional HSE [63] introduces a screening parameterω that
partitions the Coulomb potential for exchange into a long-range (LR) and a short-range (SR)
part using the computationally convenient error function

1

r
=

erfc(ωr)

r
︸ ︷︷ ︸

SR

+
erf(ωr)

r
︸ ︷︷ ︸

LR

. (2.40)

The exchange-correlation approximation then reads

EHSE
xc (α,ω) = αESR

xx (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c . (2.41)

There are two prominent limiting cases forEHSE
xc . If ω is set to zero, a fractionα of the full ex-

change energy is replaced by exact exchange, and forα = 0.25 the PBE0 exchange-correlation
functional is recovered [64]. As ω approaches infinity or forα = 0, EHSE

xc reduces to the pure
GGA functionalEPBE

xc . In the HSE06 version of the functional [65], the exchange parameter is
set toα = 0.25, as optimized for atomization energies of molecules, basedon perturbation the-
ory arguments [64]. The range-separation parameter is selected empiricallyas 0.11 bohr−1 [65].
The value forω was chosen from the performance of the functional for test sets of atoms,
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molecules (G3/99 test set of 223 standard enthalpies of formation, 88 ionization potentials, and
58 electron affinities), and 29 solids covering insulators,semiconductors and metals. Within
these tests it was shown that variation of the screening parameter strongly influences bandgaps
of solids, while properties of molecular thermochemistry or lattice constants of solids are not
so sensitive to its variation. Apart from the enhancement inmodeling solid-systems properties,
HSE06 is also easing the computational effort as compared tothe earlier, not range-separated,
hybrid functionals. The HF exchange interaction decays slowly with distance in metals and
narrow-bandgap semiconductors, but it only needs to be evaluated for the short-range part and
therefore computational costs are reduced, in particular for bulk and surface models of extended
systems.

Hybrid functionals are sometimes regarded as not trulyab initio, because many of them in-
volve parameters that are obtained by fitting to certain properties of materials. The B3LYP
(Becke, three-parameter, Lee-Yang-Parr) hybrid functional for example owes its name to three
parameters which determine, similar toα for the HSE functional, to what amount exact exchange
and LDA as well as PBE exchange and correlation are mixed [66]. B3LYP was introduced in
1994, nine years before HSE. The three parameters were obtained from fitting to a set of atom-
ization energies, ionization potentials, proton affinities, and total atomic energies, concentrating
on good performance for molecular systems. Therefore, B3LYP has been widely and success-
fully used for calculations of molecules for the last 20 years.

Usually the predefined parameter sets have carefully been chosen to perform well at least
for a large class of systems or materials and are therefore not intended to be changed. Still it
is not uncommon that the parameters are fit to an individual system. This is assuming that a
parameter set, performing well for a known property, will also yield valid predictions for the
property of interest. However, if a hybrid functional’s parameters are chosen to agree with a
known value of property A, is this really the property relevant in order to obtain meaningful
results also for property B? And are there ways to check the quality of the choice? In this
thesis these questions will be addressed in detail on the example of defect formation energies
calculated with HSE(α, ω).

2.4. Beyond DFT and HF: MP2, RPA,GW , and coupled-cluster

Validation with higher level methods is an option to reliably assess the performance of hybrid
functionals. Therefore, also perturbative methods are used in this work to compare ground-state
energy differences calculated with MP2, RPA, and coupled-cluster approaches, and electron-
addition or ionization energies based on theGW approximation, with hybrid DFT results for
specific MgO systems. Since these calculations are computationally expensive, they are, with the
exception of non-self-consistentGW , usually applied to finite systems only, and the number of
electrons that can be treated in practice is limited. The theoretical background of these methods
is briefly reviewed in the following paragraphs.

Starting from the Slater determinant that solves the Hartree-Fock equations (Eq.2.17), some
methods aim to improve the model by introducing the missing correlation between electrons that
is so far neglected. This can be done considering virtual excited states, by replacing occupied
states in the Slater determinant with unoccupied states (virtual orbitals). Replacing one, two,
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three,... states means to consider single, double, triple,... excitations.
One of the methods where excitations are introduced perturbatively is the Møller-Plesset per-

turbation theory [67]. The deviation between the true electronic HamiltonianĤ and the HF
mean-field Hamiltonian̂HHF,

Ĥ ′ = Ĥ − ĤHF, (2.42)

can be expressed as a perturbative contribution to the unperturbed Hartree-Fock total energy.
EHF

0 (Eq.2.21) is already exact to first order, so that, following Rayleigh-Schrödinger perturba-
tion theory, the ground-state energy in second-order perturbation (MP2) is

E0 ≈ EHF
0 +

∑

l 6=0

|〈ΨHF
l |Ĥ ′|ΨHF

0 〉|2
EHF

0 − El
. (2.43)

Excited Slater determinants are denotedΨHF
l , andEl are the respective energy eigenvalues.

According to the Brillouin theorem, singly excited HF states do not contribute in Eq.2.43(see
for example Ref. [68] for derivation). Also, excitations of higher order than double excitations
do not contribute, sincêH ′ is a two-particle operator

Ĥ ′ =

Nel∑

i<j

1

|ri − rj |
−

Nel∑

i=1

vHF
i . (2.44)

Drawbacks of the MP2 method are divergence of the energy for metals and often an overestima-
tion of the absolute value of the correlation energy due to the truncation of the expansion.

A method that overcomes these problems is the random-phase approximation (RPA). Orig-
inally it was used as an approximation in the description of the homogeneous electron gas by
Bohm and Pines in the 1950s [69–71]. In an electron gas of high density the electron density
fluctuates. On the one hand, long-range Coulomb interactionleads to collective oscillations
termed plasma oscillations and screening of the individualelectrons. On the other hand, when
looking at a smaller length scale, there is a two-body screened Coulomb interaction between
individual randomly moving electrons, interpreted as an individual quasi-particles component
of the electron density fluctuations. Bohm and Pines state that the plasma component and the
individual quasi-particles component of the electron density fluctuations can be regarded as de-
coupled. This means that random phase shifts in the collective oscillation, which may be caused
by randomly distributed quasi-particles, are assumed to average to zero. In the form it is applied
today, RPA can be derived in different ways, for example via Green-function-based many-body
perturbation theory or in the framework of coupled-clustertheory, as reviewed by Renet al.[72].
The derivation sketched here (details can be found in Ref. [72]) starts from the adiabatic connec-
tion [73–75], where a mean-field reference system is adiabatically connected to the many-body
interacting system via a coupling strength0 ≤ λ ≤ 1. Within this framework, an exact expres-
sion for the DFT exchange-correlation energy can be deduced. The mean-field reference system
is then the KS single-particle reference system. The exchange-correlation energy expression
depends on the exchange-correlation hole which describes the fact that an electron located at
r reduces the probability of another electron being present in its vicinity atr′. The exchange-
correlation hole can be expressed in terms of density-density correlations which are formally
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fluctuations of the density operator around its expectationvalue. According to the fluctuation-
dissipation theorem [76], the response of a system in thermal equilibrium to a small external
perturbation is equal to its response to a spontaneous internal fluctuation in the absence of a
perturbation. This makes a link between the fluctuations andresponse properties of the system,
shifting the challenge of finding a suitable approximation to the exchange-correlation energy (as
discussed in the context of DFT) to the question of how to approximate the response functions of
a series of fictitious systems along the adiabatic connection path. This is where RPA is applied
– as an approximation to the response functionχλ(r,r′,iω). The exchange-correlation energy
can be written as the sum of exact-exchange energyExx and RPA correlation energyERPA

c ,

ERPA
c =

1

2π

∞∫

0

dωTr[ln(ε(iω)) + (1− ε(iω))]

=
1

2π

∞∫

0

dωTr[ln(1− χ0(iω)v) + χ0(iω)v]

= − 1

2π

∞∫

0

dω

∞∑

n=2

1

n
Tr[(χ0(iω)v)n].

(2.45)

v is the unscreened Coulomb interaction,ǫ is the frequency-dependent RPA dielectric constant.
The independent particle response function of the Kohn-Sham reference systemχ0(r,r′,iω) is
known according to

χ0(r,r′,iω) =

occ∑

i

unocc∑

j

ϕ∗
i (r)ϕj(r)ϕ

∗
j (r

′)ϕi(r
′)

ǫi − ǫj − iω
+ c.c. (2.46)

with single-particle orbitalsϕi(r) and corresponding energiesǫi from the mean-field approach
of choice. The same wave functions are also used to calculateExx. RPA is typically calcu-
lated non-self-consistently. The main improvement of RPA compared to MP2 is that it takes
into account not the bare but the screened Coulomb interaction. The RPA correlation energy
comprises the response of the non-perturbed system to a perturbation as well as the response of
the response, etc., such that the contributions are summed up to infinite order in the perturba-
tion. This makes it applicable also for zero-bandgap materials. Furthermore, the exact-exchange
energy cancels the spurious self-interaction error in the Hartree energy, although there is still
an RPA self-correlation error. The fully non-local RPA correlation energy also includes long-
range van der Waals effects. Deficiencies of RPA are a systematic underestimation of binding
energies [77–79] and insufficient description of short-range correlation [80].

The methods discussed so far have been developed to approximate the ground-state energy of
a system. By taking the Hartree-Fock or DFT ground-state energy differences between systems
of N andN ± 1 electrons, also electron affinities or ionization energiescan be calculated.
This is known as the∆-SCF method, since it uses the energy difference between twoself-
consistent-field (SCF) calculations [51]. An alternative way to compute excited states is to use
a Green function formalism. The basic theory of Green functions can for example be found
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in Ref. [81,82]. The frequency-dependent Green functionG(r,r′;ω) for a Hamiltonian with a
time-independent external potentialvext(r) as introduced in Sec.2.1solves the Dyson equation
according to

[ω +
1

2
δ − vext(r)− vH(r)]G(r,r′;ω)−

∫

d3r′′Σ(r,r′′;ω)G(r′′,r′;ω) = δ(r − r′). (2.47)

vH(r) is the Hartree potential (Eq.2.18) andΣ(r,r′′;ω) is the dynamical, non-local, complex
self-energy, comprising all many-body exchange-correlation effects. The so-calledGW approx-
imation as introduced by Hedin in 1965 [83] expresses the self-energy as the leading term in an
expansion in powers of the screened Coulomb potential according to

ΣGW (r,r′;ω) =
i

2π

∫

dω′G(r,r′;ω + ω′)W (r,r′;ω′)eiων . (2.48)

The screened Coulomb potentialW can be written as

W (r,r′;ω) =

∫

d3r′′ε−1(r,r′′;ω)v(r′′r′), (2.49)

wherev is the bare Coulomb potential andε is the dynamical dielectric function. The Hedin and
Dyson equations require to be solved self-consistently, but in practice the non-self-consistent
G0W0 method is often used, where from DFT single particle orbitals ϕn(r) and energiesǫn a
non-interacting Green functionG0(r,r

′;ω) and an approximateW0 are calculated. The non-
interacting Green function is

G0(r,r
′;ω) =

∑

n

ϕn(r)ϕ
∗
n(r

′)

ω − ǫn − iν sgn(ǫF − ǫn)
, (2.50)

where the Fermi energy is denoted asǫF andν is a positive infinitesimal.G0 andW0 are used
in Eq.2.48to obtainΣG0W0 and from this theG0W0 corrected eigen energies are calculated as

ǫG0W0

n = ǫn + 〈φn|ΣG0W0(ǫG0W0

n )− vxc|φn〉. (2.51)

In the correction term, the local DFT reference exchange-correlation potential is substituted by
the non-local, energy-dependentGW self-energy. TheGW method is very successful in the
description of single-particle excitations in solids [84, 85]. Also total energies and structural
properties can be extracted [86–88]. Compared to a self-consistentGW calculation, theG0W0

method is computationally much more efficient, but can suffer from starting-point dependence
with respect to the DFT method chosen to compute the single-particle reference states and ener-
gies [89–91]. In this work, the consistency between ionization energies calculated withG0W0

and the reference DFT functional is used to identify optimalhybrid-functional parameters for
defect calculations in MgO.

The method of choice for high-accuracy calculations of small molecules and clusters is the
coupled-cluster method. In defect physics this method becomes practically interesting if a defect
is so localized that it can already be described with a small cluster model. For example, for the
neutral oxygen vacancies in MgO this is the case. The idea behind coupled-cluster theory is
closely related to that of the configuration interaction method.
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Rather than treating single, double or higher excitations perturbatively, as for example in MP2,
it is also possible to directly use a modified wave function built from a linear combination of
configuration state functions. In a configuration interaction model [92], symmetry-adapted linear
combinations of the Hartree-Fock Slater determinant are used, where zero (ΨHF), one (Ψ(1)

i ) or

two (Ψ(2)
i ) or more spin orbitals have been substituted with virtual orbitals (representing different

electron configurations). For example, in case of configuration interaction with single and double
excitations (CISD) the electronic ground state of the system can then be approximated according
to

ΨCISD
0 = ΨHF

0 +
∑

i

a
(1)
i Ψ

(1)
i + a

(2)
i Ψ

(2)
i . (2.52)

The coefficientsa(1)i anda(2)i are varied to find the optimal wave function. This means, inter-
action between different configurations is taken into account to obtain the desired ground-state
wave function. If all possible configuration state functions are considered, meaning that all
Slater determinants obtained by exciting all possible electrons to all possible virtual orbitals are
included, full CI is recovered, which solves exactly the electronic Schrödinger equation within
the space spanned by the orbital basis set. If not only the ground-state Hartree-Fock Slater
determinant but also one or more excited configurations are used as a reference from which
corresponding configuration state functions are built, this is referred to as multi-reference CI
(MRCI). In general this should improve the correlation description, but the choice of reference
Slater determinants must be made carefully in order to indeed include the dominant configura-
tions. Opposed to Hartree-Fock theory, many-body perturbation theory, and full CI, the truncated
CI and MRCI methods are not size-consistent, which means that, if obtained with truncated CI
or MRCI, the sum of energies of two separate systems does not equal the energy of a system
where both are included as non-interacting subsystems.

The coupled-cluster method is formally similar to CI, but fulfills size-consistency. It was first
presented in the context of nuclear physics in 1960 [93] and six years later adapted to be used
as an electronic-structure method [94]. Instead of including excitations linearly, an exponential
approach is taken, where excitation operatorsT̂ (j) in the exponent act on the reference wave
function, which is, as in CI, typically the Hartree-Fock Slater determinant. Again, states con-
taining single, double, triple (...) excitations are generated. The single-excitation operator is
most intuitively expressed in second quantization using the creation and annihilation operators
â+ andâ as

T̂ (1) =
∑

f

∑

i

tfi â
+
f âi. (2.53)

ForT̂ (1) acting directly on the HF Slater determinantT̂ (1)|ΨHF
0 〉 this means that for each initially

occupied statei a set of Slater determinants is created, where the statei is swapped for one of
the available unoccupied statesf . In the same fashion double (j=2), triple (j=3) and further
excitation operators may be defined, making up the overall excitation operatorT̂ =

∑

j
T̂ (j)

from which the coupled-cluster wave function is constructed with the overall excitation operator
in the exponent, according to

|ΨCC〉 = eT̂ |ΨHF
0 〉. (2.54)
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The coefficientstfi for all included excitations remain to be determined. In order to make this
task feasible, usually only excitation operators generating up to double or triple excitations are
included. Due to the exponential approach this does not keephigher excitations from contribut-
ing as well, since

eT̂ =
∑

n

T̂ n

n!
, (2.55)

where the summation is restricted by the number of occupied and unoccupied states in the sys-
tem. The coupled-cluster coefficients can be obtained by multiplying the CC Schrödinger equa-
tion

Ĥ eT̂ |ΨHF
0 〉 = E eT̂ |ΨHF

0 〉 (2.56)

by e−T̂ (resulting in a similarity transform of the Hamilton operator) and then projecting it to the
set of the excited determinants that correspond to the sought coefficients. If all singly-excited
determinants are denoted as|ΨCC

S 〉, all doubly-excited as|ΨCC
D 〉, etc., the CC coefficients are

determined from the following system of equations

〈ΨHF
0 |e−T̂ ĤeT̂ |ΨHF

0 〉 = E

〈ΨCC
S |e−T̂ ĤeT̂ |ΨHF

0 〉 = E〈ΨCC
S |e−T̂ eT̂ |ΨHF

0 〉 = 0

〈ΨCC
D |e−T̂ ĤeT̂ |ΨHF

0 〉 = E〈ΨCC
D |e−T̂ eT̂ |ΨHF

0 〉 = 0

...

(2.57)

The highest excitation level is determined by that in theT̂ operator. The first equation yields the
energy of the system after the coefficients have been obtained from iteratively solving the rest of
them. In analogy with the CI nomenclature, CCS, CCSD, CCSDT may be performed including
the excitation operators up to single, double or triple excitations, respectively. Because of the
immense computational costs for including double or even triple excitations, it is also common to
include for example triple excitations only perturbatively, denoted as CCSD(T). Again, including
all possible excitations leads to the full CI solution, but the convergence to this limit with the
highest level of excitation included in the excitation operator is known to be much faster than
in the case of the CI expansion. In analogy to CI, also multi-reference CC methods exist, but
computationally so demanding that today they can hardly be applied to systems other than small
molecules.

2.5. Electronic-structure code of choice: FHI-aims

The usual strategy to solve the DFT effective single-particle equations is to expand the Kohn-
Sham orbitalsϕi(r) into a set of basis functionsφj(r)

ϕi(r) =
∑

j

cijφj(r). (2.58)

These basis functions are for example plane waves, suiting well periodic boundary conditions,
or atom-centered localized orbitals. The latter are often described by Gaussians, as for example
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2.5. Electronic-structure code of choice: FHI-aims

in the electronic-structure package NWChem [95] and TURBOMOLE [96] used for reference
calculations in this work, or Slater-like orbitals. Also, numeric atom-centered orbital (NAO)
basis functions can be used, as utilized in DMol [97, 98] and in the electronic-structure code
employed for most of the calculations presented in this work, FHI-aims [99]. In FHI-aims,
localized NAO basis functions of the form

φi(r) =
ui(r)

r
Ylm(Θ,Φ) (2.59)

are employed, whereYlm(Θ,Φ) are spherical harmonics andui(r) is the numerically tabulated
and therefore flexible radial part. It is obtained by solvinga radial Schrödinger-like equation on
a logarithmic grid using a steep potential to spatially confine the basis functions. This makes
a linear scaling with system size possible for large systems. Species-dependent basis sets are
constructed in a hierarchical manner, such that the accuracy due to the used basis set in a calcu-
lation can be systematically increased. The minimal basis set is built from the core and valence
functions of spherically symmetric free atoms. This is beneficial for the all-electron calcula-
tion, because the oscillatory behavior of the wave functions in the core-region is sufficiently
accurately taken into account already at this level. A systematic hierarchy of basis sets for each
atomic species is constructed by adding to the respective minimal basis set on the one hand
radial functions of free ions mainly responsible for the description of chemical bonds, and on
the other hand hydrogen-like functions which also improve the description of polarization and
diffuse functions. These additional basis functions are arranged into tiers according to the im-
provement they induce for the total energy of a dimer of each element obtained with an LDA
functional (see Ref. [99] for details on the basis construction process). Each tier contains several
basis functions of different angular momenta, such ass, p, d, f, ... functions.

In FHI-aims the three-dimensional integrations needed forthe setup of the Hamiltonian and
overlap matrices are performed on a real-space grid that includes all points from overlapping
atom-centered grids. For localization of integrations needed to construct the Hamiltonian and
overlap matrices, atom-centered partition functions are used. A Lebedev grid [100] of spherical
integration shells around each atom is then employed for accurate integral evaluations.

To determine the Hartree potential, first the electrostaticpotential associated with the initial
superposition of free-atom densities is calculated. This main contribution of the Hartree po-
tential is accurately interpolated with cubic spline functions on dense logarithmic grids. It is
therefore convenient in each following scf cycle to only compute the electrostatic potential cor-
responding to the difference∆n(r) between current electron density and superposition of free
atoms.∆n(r) is decomposed into a sum of partitioned, atom-centered charge multipoles and,
according to the Green-function solution to the Poisson equation for multipoles from classical
electrostatics, the respective Hartree potential components are calculated on a dense logarith-
mic grid, then numerically tabulated, and finally evaluatedusing cubic spline interpolation. For
periodic boundary conditions, long-range contributions from distant unit cells of the difference
density multipole components are accounted for by using theEwald method [101,102].

Hybrid density-functionals, RPA, MP2 and theGW method for finite and in the case of hybrid
DFT also for periodic systems, which involve exact-exchange and/or non-local correlation terms,
are implemented in FHI-aims using the resolution of identity technique. This is advantageous for
calculating two-electron Coulomb repulsion integrals andthe linear density-response function
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(required for RPA andGW ), based on NAO basis functions [103].
It is important to ensure that convergence with respect to the numeric and basis settings used

to calculate a certain property for a specific system is reached. To ease the process of obtaining
converged parameters, FHI-aims provides preconstructed default parameter options controlling
the basis set (tiers), all integration grids (in particularthe location-dependent grid density), and
the accuracy of the Hartree potential (specifying the highest angular momentum for the multi-
pole decomposition of the atom-center-partitioned chargedensity) for each species. These are
called light, tight, andreally tight (or safe), and allow to systematically increase the accuracy
of a total energy or, more commonly desired, total energy differences. Within each default nu-
meric parameter set the basis set tiers can orderly be increased or decreased. If not mentioned
otherwise, for the calculations of defect formation energies performed in this work thelight pre-
defined settings have been used for geometry prerelaxations, and final, converged results for the
ground-state structures and energies have been obtained using tight settings. Convergence tests
for the parameter options used for the calculations in this work, as well as further computational
details, can be found in the appendix.

Forces are needed in this work for structural relaxation andphonon computations via the
finite displacement method. They are calculated by taking the negative analytic gradient of
the total energy with respect to the nuclear coordinates including Hellmann-Feynman forces
due to the embedding of each nucleus into the electrostatic field of the electron density and all
other nuclei, as well as a correction term consisting of electrostatic multipole derivatives, and
a further correction term, the Pulay forces [104], which is due to the dependence of the chosen
atom-centered basis functions on the atomic coordinates. For GGA functionals, the variation of
the density gradient with respect to the atomic coordinateshas to be accounted for in addition
(see also Ref. [105] and references therein).

22



3. Computational models for defect calculations

Different structure models can be employed to calculate point defects in the bulk or at the sur-
face of a solid, applying the electronic-structure methodsdiscussed above. Most common are
the embedded cluster and the supercell model. Also, a cycliccluster approach [106] or Green
function methods [107–111] can be used, but are today rather scarce in application, dueto their
methodological complexity. In the following, embedded cluster and supercell method are de-
scribed and the advantages and challenges of both approaches are discussed. A novel scheme
for charge compensation in supercell calculations is introduced, since previous approaches are
dissatisfying, in particular for charged surface systems.Charge compensation is necessary on
the one hand, from a technical point of view, to avoid divergence of the electrostatic potential
in a periodic calculation. On the other hand, it is shown thatrealistic charge compensation can
make the theoretical model of defects in a metal oxide more realistic.

3.1. Two well-established approaches: cluster and supercell

For an embedded cluster calculation a part of the crystal structure containing the defect and sur-
rounding atoms is chosen. This set of atoms is treated fully quantum-mechanically. The cluster
is embedded in a set of point charges or a potential to accountfor long-range electrostatic inter-
actions due to atoms of the crystal lattice outside the cluster region. For example, when modeling
a defect in the strongly ionic material MgO, point charges2+ for magnesium and2− for oxygen
ions are placed at the respective lattice positions, mimicking the further extended crystal lattice
outside the cluster region. In addition to the point charges, the embedding can be improved by
an intermediate region of pseudopotentials. In this work, pseudopotentials are placed at the first
shell of embedding magnesium atoms of an MgO cluster to minimize non-physical polarization
of peripheral oxygen anions by the embedding point charges.Alternatively, this intermediate
region can be approximated using the shell model, as done fordefects at the MgO surface by
Sushkoet al. [112]. Within this model an ion in the intermediate region is treated as a a point
core and shell connected by a spring simulating its dipole polarizability. The positions of the
cores and shells in the intermediate region can be optimizedwith respect to the total energy
of the system, in accordance with the relaxed geometric and electronic structure of the inner
cluster. For materials with a more covalent bonding character pseudopotential and point charge
embedding is also possible. In this case, point charges should be chosen according to the true
ionicity of the crystal, which may not equal the formal charges of the atoms in the cluster. Ox-
idation numbers can for instance be determined by a population analysis of wavefunctions (e.g.
Mulliken analysis [113]) or by partitioning the electron density (e.g. Hirshfeld analysis [114]).
Another possibility for these materials is to saturate dangling bonds with hydrogen atoms or
fractional hydrogen atoms. See for example the work by Rittneret al. and Stodtet al. [115,116]
for a comparison of these techniques for the rutile (110) surface.
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Choosing a suitable set of atoms in the cluster, as well as accurate embedding, and at the
same time keeping the cluster size reasonable, is the challenge of the embedded cluster approach.
Preferably, clusters for point-defect calculations should be geometrically symmetric with respect
to the point defect they host and they should keep the stoichiometry of the original crystal. Also,
the cluster must be large enough and embedded such that also long-range electrostatic effects are
reproduced. A defect may then be in a state very similar to a defect in real, extended material.
However, depending on the crystal lattice structure and thetype of point defect it is sometimes
impossible to create a cluster that fulfills all these criteria (Fig. 3.1). While neutral, localized
defects, such as the neutral oxygen vacancy in MgO bulk or at an MgO surface, are nevertheless
straightforward to calculate, the electronic and lattice polarizabilities around a charged defect
is more difficult to reproduce with a cluster model. Cluster models have to be tested carefully
for convergence of electronic structure as well as geometric relaxation with respect to cluster
size and embedding. This is often difficult to achieve in a systematic way. On the other hand,

Figure 3.1.: Cluster models for an oxygen vacancy in bulk MgO.Left: Mg20O18, the cluster is
symmetric with respect to the defect site, but the stoichiometry is not kept.Right: Mg32O32, the
stoichiometry is as in natural MgO, but the defect can not be created in the center of the cluster.

the strong advantage of an embedded cluster calculation is that the cluster is typically small
with respect to the number of atoms treated quantum-mechanically, allowing for the application
of higher-level methods such as coupled-cluster. For supercell calculations that make use of
periodic boundary conditions these methods are today not feasible for the system sizes typically
needed to study defects in oxides.

In this work cluster calculations are employed for validation of hybrid density-functional the-
ory with higher-level (GW and coupled-cluster) methods.

One advantage of using periodic boundary conditions over cluster models is that no assump-
tions on the effects of the cluster boundary are needed. Thisis especially important for charged
defects, where the long-range Coulomb interaction can be strongly influenced in a cluster cal-
culation, for example due to different polarization properties of atoms at the boundary, or due to
induction of spurious multipole moments. Furthermore, thesize of the supercell model used in
a periodic calculation can be much larger than that of a cluster. In general, periodic boundary
conditions offer a much more realistic way of modelling an extended system. However, care
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Figure 3.2.:Supercell models for an oxygen vacancy in MgO bulk and at the MgO (100) surface.
The yellow boxes show the boundaries of the unit cell that is periodically repeated in three
dimensions.Left: Model for a bulk defect.Right: Model for a surface defect. The vacuum
region between repeating slabs has to be converged, so that the spurious interaction between
slabs is minimal.

has to be taken, when charged systems are calculated within aperiodic approach. The charge is
periodically repeated, so that the corresponding electrostatic Coulomb energyvCb is

vCb =
∑

i 6=j,R

qi qj
|rij +R| ,

wherei andj run over all atoms within the supercell andR is a supercell lattice vector. Since
the potentials of infinitely many image charges have to be summed up, the electrostatic energy
diverges in the case of periodic systems with non-zero net charge per unit cell. Different ways to
deal with this problem, providing charge compensation in the cell, are discussed in the following
Sec.3.2.

Furthermore, in addition to charge compensation, special care must be taken in supercell cal-
culations to avoid errors due to interaction between imagesof the supercell generated by periodic
boundary conditions. For example, constraints in geometric relaxation by the supercell size, or
remaining electrostatic interactions have to be accountedfor. Indeed, constraint in atomic relax-
ation is an important issue that occurs in both cluster and periodic calculations. The effects of
the geometric relaxation around a defect on the electronic structure and formation energies can
be quite significant, especially in case of charged defects.A sufficiently large number of host
atom layers around the defect should lead to a reliable relaxation of the lattice. However, for
some cases such as the vacancy in silicon in charge state 2+ important changes in the relaxation
behavior will only be visible when going to very large cell sizes [117]. Also for charged oxy-
gen vacancies in MgO large cell sizes are needed to obtain converged geometric relaxation and
reproduce the lattice polarizability correctly.
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3.2. Modeling charged defects with supercell methods

The main challenge when calculating charged defects in a periodic model is to find a suitable
technique for charge compensation. The electrostatic potential for a charged, infinitely repeated
system diverges. Therefore, in a periodic calculation of a charged system the charge must be
compensated, so that the supercell is kept neutral. However, this is not a purely technical issue.
In a real system with a non-vanishing concentration of charged defects for example, charge com-
pensation typically occurs via dopants. A defect is chargedby charge transfer between defect
and dopants. The most common approach to address charge compensation in bulk calculations
is to apply a uniform constant background charge density to the supercell. However, for surface
systems, where the supercell contains not only atoms in a crystal lattice but also a vacuum re-
gion, the background method is not readily applicable [118]. In the following, the theoretical
approach of the background method is briefly summarized. On the way to a more realistic de-
scription, introducing dopant atoms is discussed next. Finally, an alternative method for charge
compensation, a variant of the virtual-crystal approximation (VCA) is tested and found to be
the best approximation to reality. Opposed to the background method, applying the VCA has
a physical meaning of modeling doped material and it can be used for both, bulk and surface
systems. All periodic calculations of charged surface systems in this work were performed using
the VCA.

3.2.1. Neutralizing background charge density

The electrostatic energy of a charged periodic system diverges, while this divergence is cancelled
for neutral systems. Neglecting the divergent term in a charged periodic system, corresponds to
implicitly introducing a constant background charge density, which cancels the divergence [101].
This standard approach of adding a neutralizing, uniformlydistributed background charge is a
very useful, although somehow artificial, concept for charged bulk systems. However, applied
to a surface, the charge density would also spread through the vacuum region between repeating
slabs. Confining the background to the slab could partly overcome the problem, but it is not
obvious in what form the decay of the background at the slab surfaces should be defined.

Level alignment

Although the neutralizing background removes the divergence of the electrostatic energy and,
therefore, allows to calculate the total energy of a chargedsystem, difficulties occur when energy
differences between systems in different charge states arerequired, as it is the case for charged-
defect calculations.

Introducing the background potential not only cancels the divergent term in the Fourier sum
but also introduces an additional arbitrary shift in the total energy of the charged system. The
difference between the valence band maximum (VBM) of the charged and the neutral system
has to be corrected in order to achieve consistent band edge energies. While for cluster cal-
culations the vacuum can always be used as a reference energyzero, it is necessary to find a
common reference energy level for the charged and the neutral periodic system to which the
respective potentials can be aligned. Several ways of performing this potential alignment have
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been suggested, e.g. aligning by the average electrostaticpotential in the whole unit cell, or by
the average difference of the atomic-site electrostatic potentials [119–121], where sometimes
only atoms most distant from a charged defect are taken into account [122], taking the lowest
energy level of the system as a reference [123], aligning to the core levels of most distant atoms,
or correcting by the average core level shift excluding atoms close to the defect. However, there
is no generally accepted scheme. This may be due to the fact that from different codes that ap-
ply for example pseudopotential versus full-potential concepts also different quantities are more
easily accessible. In an all-electron approach, as taken for the FHI-aims code, the deep lying
core states are readily available.

3.2.2. Compensating impurities

In a realistic material sample, compensating charges can beaccommodated by impurities. In
fact, metal oxides are often deliberately doped to modify their properties. A first approach to
model this situation in a supercell calculation is to substitute a metal atom in the supercell by a
dopant atom and consider this as the host system in which a vacancy is formed. Doping with
low-valence (acceptor) or high-valence (donor) dopants, is possible, depending on the number
of valence electrons of the dopant species with respect to the number of valence electrons of the
host metal atoms. Low-valence dopants introduce holes as free charge carriers, which is referred
to asp-type doping, while high-valence dopants provide electrons, termedn-type doping. Dop-
ing pins the Fermi level of the system, in case ofp-type doping close to the VBM, in case of
n-type doping to the CBm. Hence, the charge state of a vacancy in a metal oxide is determined
by the concentration and type of the dopants and therefore bythe availability of acceptor states
or donator electrons and by the position and occupation of electronic levels introduced by the
defect (defect levels). For example, oxygen vacancies inp-type MgO can be positively charged
and at the same time have low formation energy, since there are dopant states near the valence
band maximum that can accommodate the defect electrons.

On the other hand there are local effects of doping: depending on the atomic species and the
distance between defect and dopant, geometric and electronic relaxation will be affected by the
dopant. Therefore, these effects are important for formation of defect complexes.

When an explicit dopant is introduced in the supercell, the local and global effects of doping
cannot be easily separated due to the limited size of the supercell. It is possible to obtain some
information by studying the influence of a dopant on an oxygenatom close by in comparison
with an oxygen atom further away from the dopant. For example, the local and global effects of
doping on the formation of oxygen vacancies at La2O3 surfaces and in ceria have been studied
in this way by Li and Metiu [124] and by Hu and Metiu [125]. However, very large supercells
are needed to model far distances. Also, for surface defectsit will typically make a difference,
if the dopants are located at the surface, in the subsurface or deeper in the bulk.

To demonstrate the dependence of the local effect of doping on the position of dopants with
respect to the defect, MgO with lithium dopants and an oxygenvacancy in the surface layer were
calculated for two different supercell sizes, a 320-atom 5-layer slab, and a 500-atom 5-layer slab.
Lithium has one valence electron, while magnesium has two valence electrons, so lithium is a
low-valence,p-type dopant in MgO. As a global effect of lithium doping, electronic states are
emptied near the VBM where as a consequence the Fermi level ispinned. A neutral oxygen
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Figure 3.3.:a) Local and global effects of low-valence doping on the energy required to remove
an oxygen atom from the MgO (100) surface, calculated according to Eq.4.1 in an oxygen-rich
environment (µO = 1/2EO2

) using PBE. The Fermi level is at the VBM.L is the supercell
lattice constant. Oxygen vacancies in charge state 1+ and 2+(F+

s and F2+s ) compensated by
one or two lithium dopants at the surface were calculated. Data points labeledp-type MgO,
where long-range effects of doping dominate, are shown for comparison. They were calculated
using a virtual-crystal approach, introduced in the following Sec.3.2.3. Solid lines show the
defect formation energy extrapolated to the dilute limit ofa single defect in extended material
(L−1 → 0). The dilute limit, the extrapolation procedure, and finite-size correction schemes,
suggested by Makov and Payne, and by Freysoldtet al., are discussed in Sec.4.1.3). b) Two
different configurations were simulated, lithium dopants close by and further away at a distance
of 8.8 Å, here shown in the top view of the 320-atom 5-layer surface slab for the doubly charged
oxygen vacancy.

vacancy has two defect electrons occupying a defect level deep in the bandgap. To model a

28



3.2. Modeling charged defects with supercell methods

singly positively charged oxygen vacancy, one magnesium atom is substituted by lithium in the
supercell, so that one defect electron can transfer from thedefect level to the dopant-induced
states near VBM. For a doubly positively charged oxygen vacancy, two magnesium atoms are
substituted to allow for transfer of two electrons. The energy needed to remove a surface oxygen
atom (Eq.4.1) can be used to show the influence of a dopant on the defect. It is lower when
the lithium dopant is located adjacent to the vacancy, and higher when dopants and vacancy
are at a larger distance (Fig.3.3). This difference is due to different charge separation, and
changes in local bonding and local electronic relaxation for the different configurations. For
the adjacent dopant arrangements, defect complexes are formed, and the local effects of doping
dominate. Since the defect complex is charge neutral, variation of the supercell size hardly has
an effect, even when moderately large cells used. This is different when the dopant is situated
at a larger distance from the defect. Long-range electrostatic interaction starts to dominate, and
the Coulomb interaction with the charges in neighboring supercells is comparable in magnitude
with the interaction within one unit cell. Thus, the interaction energy is affected globally by
many unit cells, and the dependence on the supercell size becomes non-trivial. To examine
the local and global effects of lithium doping on oxygen vacancies in MgO, dopants at various
distances and in different layers would have to be studied, requiring very large supercells at high
computational cost. In general, only unphysically high dopant concentrations can be calculated
using the compensating impurity method.

3.2.3. Doped material as a virtual crystal

Besides explicit introduction of dopant species into the host material, doping can be modeled
using the virtual-crystal approximation (VCA) [126–130]. In this approach, virtual atoms are
constructed that interpolate between the native (A) and doping (B) atoms in the host material
AC. The potential of the virtual atom modeling the doped material (A1−xBx)C becomes

VVCA(r) = (1− x)VA(r) + xVB(r). (3.1)

So the real system is mimicked by constructing its potentialfrom fractions of the potentials of
the two different compounds. Pseudoatoms can for instance also be used in (embedded) cluster
calculations to provide a realistic saturation of danglingbonds [131,132].

In all-electron calculations, doping via the VCA is introduced by modifying the nuclear num-
ber of the atoms in the system, which determines the number ofelectrons from the condition of
charge-neutrality. The dopant concentrationND is controlled via the amount∆Z by which the
nuclear numberZ is changed. Ap-type doped metal oxide (MO) with a hole concentration of
Nholes is modeled by changing the nuclear numberZM of all nM metal ions with a concentration
of NM = nM/Ω, whereΩ is the supercell volume, according to

ZM → ZM +∆ZM, (3.2)

where
∆ZM = −Nholes/NM. (3.3)

In analogy,n-type doping can be modeled by changing the nuclear charges of the metal atoms
by ∆Z = Nelectrons/NM, whereNelectrons is the concentration of electrons. Opposed to the
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3.2. Modeling charged defects with supercell methods

compensating impurity method, in this approach also very small dopant concentrations can be
simulated.

In this work, the concentration ofp-type dopants in the simulation cell is chosen to allow for
one or two defect electrons to transfer from the defect levelto the VBM. This is obviously only
possible, if a defect exhibits an occupied defect level in the bandgap. The nuclear number of all
magnesium atoms in the supercell is changed by

∆ZMg = −q/nMg, (3.4)

whereq is the desired charge of the oxygen vacancy (+1 or +2), andnMg is the number of
magnesium atoms in the supercell.

It is important to keep in mind the chemical and physical properties of a material, when
applying the VCA for defect charge compensation. In principle, the nuclear charges can be
modified in several different ways. One way is to distribute the charge of the defect among all
nuclei according to their contribution to the overall nuclear charge, keeping the system neutral.
Consider again the formation of an oxygen vacancy in MgO. Foran MgO unit cell withnMg

magnesium atoms andnO oxygen atoms, not including the oxygen atom that is being removed,
the changes in magnesium and oxygen atom charges are:

∆ZMg = −q
ZMg

nMgZMg + nOZO
(3.5)

∆ZO = −q
ZO

nMgZMg + nOZO
. (3.6)

However, this corresponds to simultaneousp- andn-type doping, since the reduction (in case
q > 0) of the cation nuclear charge (Mg) reduces the number of electrons it can give away, while
the reduction of the anion nuclear charge (O) reduces its ability to accept electrons. In reality,p-
type doping of MgO is achieved by substituting magnesium atoms with atoms of lower valency
like lithium. This situation is modeled by distributing thedefect charge only among the cations.
Thereby, delocalized states are emptied at the top of the valence band, which is composed mostly
of oxygen 2p orbitals. As mentioned before, the formation ofan oxygen vacancy creates a defect
level occupied by two electrons in the bandgap, and therefore, electrons from this level transfer
to the vacant states at the top of the valence band of the simulateddopedmaterial, which results
in the electronic configuration of an F+ or F2+ center (Fig.3.4). The charge state of the defect
can be tuned by the value by which the nuclear charge was modified, which is related to the
concentration of the dopants.

The defect charge could also be distributed only among nuclei far away from the defect. This
has the advantage that the immediate surrounding of the defect resembles the situation in the
undoped material with the charged defect, at the expense of amore significant modification
further away.

Contrary to the neutralizing background method, the reference system in the virtual crystal
method should be the doped undefected system, not the perfect undoped system. Modification
of the nuclear charges results in a large change in the total energy even if the modification is
very small, due to the strong on-site electron-nuclear interaction. The change in the total energy

30



3.2. Modeling charged defects with supercell methods
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Figure 3.4.:F2+ center, modeled with the VCA. Schematic band structures of the pristine doped
system (left) and the system with a defect (right)

can be written as:

EVC
el−nuc ≈

∑

i

∫
(Zi +∆Zi)n(r)

|r− ri|
d3r (3.7)

= Eref
el−nuc +

∑

i

∆Zi

∫
n(r)

|r− ri|
d3r, (3.8)

wheren(r) is the electron density. In fact, since the modification of the nuclear charges is
inversely proportional to the number of the corresponding atoms in the supercell, the overall
shift in energy is independent on the supercell size and it isquite large:

∆E = −q ·
∑

i

∫
n(r)

|r− ri|
d3r. (3.9)

As a proof of concept, the VCA method is tested for charged bulk F centers in MgO against
the neutralizing background approach. The formation energies, neglecting vibrational effects,
for the F+ and F2+ centers were calculated for five different supercell sizes,once with the
background method and once using distributed doping (Fig.3.5), where the nuclear charge of all
magnesium atoms in the system was modified. Both methods of charge compensation, constant
background and VCA, yield the same total energy differences.

It becomes obvious from Fig.3.5that periodic models for charged defects can be used to study
the defect concentration dependence for moderate to large concentrations. This is important,
since studying isolated defects, as suitable for a cluster model, is not always justified, although
it is a well-defined limiting case.
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3.3. Summary

Figure 3.5.:Formation energy of F+ and F2+ centers in MgO bulk, calculated with the neutral-
izing background method (blue and red symbols) and using theVCA (black symbols). The PW-
LDA [ 50] exchange-correlation functional was used. The oxygen chemical potential is 1/2EO2

,
and the Fermi energy is at the VBM. Solid lines show the defectformation energies of an F+ and
F2+ defect extrapolated to the dilute limit of a single defect inextended material (L−1 → 0).
The dilute limit, the extrapolation procedure, and finite-size correction schemes are discussed in
Sec.4.1.3).

3.3. Summary

In summary, embedded cluster models allow for efficient application of high-level methods like
coupled-cluster, yet, embedding has to be tested carefullyand the approach is restricted to small
system sizes. Periodic models allow for simulations of higher defect concentrations, for a more
reliable description of the electronic bands, and they incorporate long-range effects such as
polarization. Hence, for defect studies, embedded-cluster models calculated with high-level
methods can be very beneficial to identify a DFT functional providing thebest compromise
between accuracy and computational cost, using a small model system. The actual analysis of
electronic and geometric structure of a defect in an extended material can then be performed
with supercell models making use of the optimal DFT exchange-correlation treatment.

So far, for periodic calculations of charged surface systems, in particular of charged surface
defects, it has been an unsolved issue how charge compensation could be provided in the super-
cell in a physically meaningful way. Here, an approach basedon the VCA has been employed
as a reliable compensation scheme for charged slab calculations. The VCA allows to model
charged bulk or surface defects in doped metal oxides, incorporating global and also some local
effects of doping as they can be observed in reality, providing a well-defined Fermi level and
allowing for simulations of variable dopant concentrations. For the change in energy upon de-
fect formation in bulk systems, the standard neutralizing constant-background approach and the
VCA yield the same results. The difference is that with the VCA a realistic situation is mod-
eled and can be interpreted as such. While the constant-background method is a technical trick,
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3.3. Summary

that lacks any physical justification for surface systems, the VCA method, which can be used to
modelp- or n-doped material, is applicable for both, bulk and surface systems, in a physically
meaningful way.
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4. Defect stability – formation energy and concentration

Creating a point defect in the bulk or at the surface of a solidchanges the free energy of the sys-
tem. Depending on outer conditions, it may cost energy to introduce the defect or it may even be
energetically favorable for the system. Therefore, the change in Gibbs free energy, when a defect
is formed, termed the Gibbs free energy of formation, determines the equilibrium concentration
of a defect for a given temperature, partial pressures of theinvolved atomic species, position of
Fermi level, and dopant concentration.

A change in local bonding is one effect that contributes to the defect formation energy. For
instance, removing an atom breaks bonds, while introducingan interstitial creates new bonds
- but also weakens existing bonds. Also, geometric relaxation effects play a role. The atoms
will take up new equilibrium coordinates, according to the changes in the Born-Oppenheimer
potential energy surface. In addition, charging effects such as charge transfer from a defect level
to the Fermi level, as well as defect-defect and defect-dopant interactions, will contribute to the
formation energy. Changes in the vibrational energy and long-range dispersion interaction can
also have a considerable effect.

In the literature, the term formation energy usually refersto the formation energy of a point
defect in the dilute limit. This means, a single, non-interacting defect is hosted in extended
material and it is not affected by other defects of the same orof a different type. For neutral
defects, the formation energy in the dilute limit can be obtained already using moderate sizes of
embedded clusters or supercells. For charged systems, long-range effects of electrostatic inter-
action and lattice polarization make the situation more complicated. Assuming very low defect
concentrations, from the formation energy of a defect in thedilute limit, also its concentration
can be calculated. The dependence of formation energies andconcentrations on temperature and
pressure is accounted for usingab initio atomistic thermodynamics.

However, considering defects as isolated is rather unrealistic, since due to long-range and
short-range mutual interaction the formation energy for a certain type of defect will depend on
its own concentration and also on the concentration of otherdefects. Thus, the most important
part of this chapter discusses how formation energies and concentrations of interacting surface
F centers in doped metal oxides can be obtained and how they are determined by different types
of defect-defect interaction.

Since it would obviously be very interesting to compare theoretical predictions of defect sta-
bilities with experimental measurements, an overview on experimental approaches to point de-
fect concentrations is given at the end of this chapter.

4.1. Stability of an isolated point defect

The Gibbs free energy of formationGq
f (T,p) for an isolated point defect is given by the change

in free energy of the system containing the defect with respect to the pristine system. It can be
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4.1. Stability of an isolated point defect

written as

Gq
f (T,p) = Eq

def − Ehost +
∑

i

niµi(T,pi) + qǫF +
∑

i

pi∆V+∆F q
vib(T ). (4.1)

ni is the number of atoms of speciesi that have been removed (ni > 0) and/or added (ni < 0)
upon defect creation.Eq

def andEhost are the total energies of the system with and without the de-
fect in charge stateq. The total energies can be obtained from electronic-structure calculations.
µi(T,pi) is the chemical potential of speciesi, which is a function of temperatureT and partial
pressurepi. The chemical potential of electrons, the Fermi levelǫF, determines the electron
reservoir for the formation of negatively and positively charged defects.∆V is the change in
volume of the crystal due to a defect, which is negligible forthe defects in MgO discussed in this
work. ∆Fvib(T ) denotes the vibrational free energy contribution to the Gibbs free energy of for-
mation. Using Eq.4.1the formation energy of an isolated defect can be calculatedas a function
of Fermi energy and atomic chemical potentials. Temperature and pressure dependence enter
the formation energy via the atomic chemical potentials andthe vibrational energy contribution.

The concentration in the dilute limit can be obtained by minimizing the change in Gibbs free
energy of the system due to the defects. Gibbs free energyG, Helmholtz free energyF , and
enthalpyH are related to each other via

G = H − TS = U + pV − TS = F + pV, (4.2)

whereU is the internal (total) energy, andS is the entropy of the system. In the following, the
textbook expression for the concentration in the dilute limit will be derived.

The enthalpy of a system withn defects isH = H0 + nHF, whereHF is the formation
enthalpy of the isolated defect. The total change in entropyof the system with a defect with
respect to the pristine systemS − S0 = Sd + nSF can be separated into the entropy due to
configurational disorderSd, and a contribution due to disorder induced by lattice vibrationsSF.
The total change in Gibbs free energy∆G due to defect formation is then

∆G = G−G0 = H − TS − (H0 − TS0) = n(HF − TSF)− TSd. (4.3)

In order to minimize∆G, the derivative with respect to the number of defects is taken. In the
dilute limit, the dependence ofHF andSF on defect concentration can be neglected, so that

∂∆G

∂n
= HF − TSF − T

∂Sd

∂n
, (4.4)

whereGq
f = HF − TSF is the free energy of formation of a single, isolated defect.According

to Boltzmann’s entropy formula, the configurational entropy is

Sd = kB ln

(
N !

(N − n)!n!

)

, (4.5)

whereN is the number of possible defect sites, and kB is the Boltzmann constant. Using Stir-
ling’s formula (ln x! ≈ x(lnx− 1)), and assuming that the defects do not interact, leads to

∂Sd

∂n
= k{∂N

∂n
ln

N

N − n
+ ln

N − n

n
} ≈ k ln

N − n

n
(4.6)
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4.1. Stability of an isolated point defect

Using this expression in Eq.4.4, and determining the minimum of∆G, where the derivative is
zero, yields the concentration of defects in the limit of lowconcentrationsρ0:

ρ0 =
n

N
= exp(−(Gq

f /kBT + 1)). (4.7)

According to Eq.4.7, the equilibrium concentration of defects atT = 1,000 K is greater than
1 ppm only ifGq

f ≤ 1.1 eV. The formation energyGq
f as a function of defect concentration in

the dilute limit is shown for two different temperatures in Fig. 4.1.
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Figure 4.1.: Formation energyGq
f as a function of concentration of defects in the dilute limit

(Eq.4.7) for temperaturesT = 300 K andT = 1,000 K.

4.1.1. Fermi level position

According to Eq.4.1, charged defects’ formation energies depend on the position of the Fermi
level, a reservoir for electrons and holes. Analyzing the formation energy dependence on the
Fermi level in a region between valence band maximum (VBM) and conduction band minimum
(CBm) usually covers the most realistic conditions. In an experimental setup, the position of
the Fermi level is often hard to determine accurately. Doping, applying an electric field, or cre-
ating non-equilibrium populations of charge carriers by optical excitation can alter its position.
However, this can also be used as an advantage in the context of defect engineering, where for
example the charge state of a defect can be tuned by modifyingthe Fermi energy. In a theo-
retical approach, any position of the Fermi level can in principle be modeled. It is convenient
to introduce a reference for the Fermi level,ǫrefF = ǫF − ∆ǫF. The choice of reference will
not affect any observables, but helps to identify a physically meaningful range of the electronic
chemical potential. For practical reasonsǫrefF is often set to the vacuum level in cluster calcula-
tions, since this is also the natural energy reference. Another possibility which is well-defined in
both finite and infinite systems, is an easily identifiable electronic energy level, for example the
lowest unoccupied or the highest occupied molecular orbital in a cluster, and the CBm or VBM
in a crystal. In the dilute limit, the VBM and CBm of a system containing charged defects and
of the host system, coincide. For finite defect concentrations (finite supercells), the Fermi level
will shift. Therefore, care must be taken to identify a correct reference for the Fermi level, when
using periodic models to calculate isolated charged defectformation energies.
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4.1. Stability of an isolated point defect

4.1.2. Ab initio atomistic thermodynamics

The strength of DFT is to provide information about the electronic structure of a system as well
as its total energy at zero temperature. Combining the DFT total energies with concepts known
from thermodynamics can bridge the gap to higher temperatures and realistic pressures of the
gaseous atmosphere, and to macroscopic properties of the system. This methodology is known
as ab initio atomistic thermodynamics, and has been successfully used in defect and surface
physics for the last 25 years [24,133–135].

Calculating the Gibbs free energy of formation and the defect concentration, as described
before, is already one example for applying this idea. The total energies of a system with a
defect and the pristine system are used to calculate a thermodynamic potential function that is
dependent on the ambient conditions - here, the Gibbs free energy. The concentration of defects,
which is a macroscopic system property, can then be obtainedusing the standard methodology
of thermodynamics. From the DFT total energies for different defect configurations and charge
states, the corresponding defect formation energies can beobtained and used to find the most
stable defect type for a certain set of chemical potentials.

The chemical potentials of the atoms involved depend on temperature and partial pressure.
For an oxygen vacancy in a metal oxide, the chemical potential of oxygen has to be taken into
account. It is determined by the condition of thermodynamicequilibrium with the surrounding
gas-phase reservoir, which can be approximately treated asan ideal gas composed ofN indistin-
guishable O2 molecules. The chemical potential of oxygen at given temperatureT and pressure
p can be written as

µO(T,p) =
1

2
µO2

(T,p) =
1

2

(
−kBT lnZtot

O2
+ pV

)
/N, (4.8)

whereZtot
O2

is the partition function of the ideal oxygen gas. Assuming,that the Born-Oppenheimer
approximation holds, nuclear and electronic degrees of freedom are decoupled from vibrations
and rotations. Taking place on different time scales, also vibrational and rotational motions are
decoupled from each other, so thatZtot

O2
can be written as:

Ztot
O2

=
1

N !
(zO2

)N =
1

N !
(ztranszrotzvibzelectrznucl)N . (4.9)

Statistical mechanics can now be applied to calculate the individual contributions to the partition
function. For details see the original work by Mc Quarrieet al. (1976) and the application ofab
initio atomistic thermodynamics to surfaces by Rogal and Reuter (2007) [25,136]. This leads to
the following very convenient representation of Eq.4.8

µO(T,p) =
1

2
Etot

O2

︸ ︷︷ ︸

µref

O

+∆µO(T,p
0) +

1

2
kBT ln

(
p

p0

)

︸ ︷︷ ︸

∆µO(T,p)

, (4.10)

whereEtot
O2

is the total energy of the O2 molecule,p is the partial pressure of oxygen,p0 is
the standard pressurep0 = 1 atm, and∆µO(T,p) is the chemical potential of oxygen with
respect to the reference chemical potential of oxygenµref

O . The total energy of the O2 molecule,
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4.1. Stability of an isolated point defect

can be calculated with DFT. However, the binding energy of the O2 molecule,Ebind
O2

, is one
of the big challenges for electronic-structure theory [50, 52, 137, 138]. The calculated binding
energy is -6.23 eV at PBE level and -5.32 eV when HSE06 is used.To reduce the uncertainty
due to this specific error, the experimental binding energy without zero-point energyEbind

O2
=

−5.22 eV [139] is used in this work, but the total energy of the free atom,Etot
O , is calculated

with the corresponding electronic-structure approach. This choice corresponds to a shift of the
energy zero of the∆µO axis.∆µO(T,p

0) can be obtained from tabulated enthalpy and entropy
values at standard pressurep0 = 1 atm. (Values used in this work are taken from the JANAF
Thermochemical Tables [140].)

The chemical potential of the metal can be deduced from the condition of thermodynamic
stability of the bulk metal oxide. For the chemical potential of magnesium in MgO this means

µMg + µO = Ebulk
MgO, (4.11)

where the DFT total energy of an MgO unit cellEbulk
MgO approximates the corresponding Gibbs

free energy. Choosing the chemical potential of magnesium in MgO bulk as a reference,µref
Mg =

Ebulk
MgO − 1

2E
tot
O2

, one can obtain∆µMg(T,p) = −∆µO(T,p) from Eq.4.11.
Bounds for the chemical potentials are determined by limiting conditions for the system in

thermodynamic equilibrium. One limit is the decompositionof the material into bulk metal and
oxygen gas. For the chemical potential of magnesium this meansmax(µMg) = Ebulk

Mg (T,p).

Again, the DFT total energy of a magnesium unit cellEbulk
Mg approximates the corresponding

Gibbs free energy. Employing Eq.4.11, the lower bound for the chemical potential of oxygen is
thus given by

min(µO(T,pO)) ≈ Ebulk
MgO − Ebulk

Mg (4.12)

Since the ionic bonds in MgO are strong, its melting and boiling temperatures at standard pres-
sure are quite high (3,125 K and 3,873 K, respectively). Therefore, experimental conditions of
interest for this work are usually far from the oxygen-poor limit.

A well-defined, reasonable estimate of the oxygen-rich limit is half the total energy of a free,
isolated O2 molecule atT = 0K,

max(µO(T,pO)) =
1

2
Etot

O2
, (4.13)

corresponding to∆µO = 0. This highest possible value for the oxygen chemical potential may
be identified with the liquid O2 phase. In summary, the range of interest for the relative chemical
potential of oxygen is

Ebulk
MgO(T = 0,p0O, p

0
Mg)− Ebulk

Mg (T = 0,p0O, p
0
Mg)−

1

2
Etot

O2
< ∆µO(T,pO) < 0. (4.14)

Sometimes information on the chemical potentials of extrinsic species is needed, too. For ex-
ample, in order to study the local interaction between defects and dopants, also lithium substi-
tutional and interstitial defects in the vicinity or far away from oxygen vacancies in MgO have
been calculated in this work. To explore a wide range of possible experimental situations, the
chemical potential of lithium has been varied between the free energy of the lithium atom and
that of a lithium atom in Li2O, corresponding to fully oxidized lithium.
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4.1. Stability of an isolated point defect

The remainingT -dependent contribution to the Gibbs free energy of formation of a defect
is the difference in vibrational energy between the system with a defect and without a defect
∆Fvib(T ). Within the harmonic approximation, the vibrational energy contribution to the Gibbs
free energy can be written as an integral over the frequenciesω

Fvib(T ) =

∫

dω Fvib(T,ω)σ(ω), (4.15)

whereσ(ω) is the phonon density of states (DOS). This expression can bederived by separating
Fvib(T ) into vibrational energy

Evib(T ) = − ∂

∂β
lnZ, (4.16)

and vibrational entropy
Svib(T ) = kB(lnZ + βEvib(T )), (4.17)

whereβ = 1
kBT

. Z is the partition function of anN -atomic system [141]

Z =

3N∑

i=1

∫
dk

(2π)3

∞∑

n=0

e−(n+ 1

2
)β~ωi(k). (4.18)

This yields Eq.4.15with

Fvib(T,ω) =
~ω

2
+ kBT ln

(

1− eβ~ω
)

. (4.19)

The information needed to obtain the phonon density of statesσ(ω) is contained in the potential
energy surface and can therefore be calculated using DFT. The phonon properties in this work are
calculated via the finite displacement method as implemented in Phonopy [142]. By displacing
each atom in a supercell by a small amount from its equilibrium position and calculating the
respective forces (using FHI-aims), the dynamical matrix for the system is constructed, and the
corresponding eigenvalue equation yields the dispersion relation for the phonon frequencies.
From this, the phonon density of states can be obtained and the vibrational energy is computed.

4.1.3. Obtaining the dilute limit with supercell models

Before considering interacting surface defects, the dilute limit (a single bulk or surface defect
in extended material) is discussed. When the formation energy for an isolated, charged defect
in a periodic model is calculated applying Eq.4.1, the result will depend on the supercell size
and shape. Even for very large supercell sizes, electrostatic interaction between defect and
compensating charge, as well as Coulomb interaction between the defect and its periodic images
will contribute to the computed formation energy. In accordance with a simple electrostatic
model of point charges immersed into the jellium of oppositecharge, these interactions scale
as 1

ǫL , due to Coulomb interaction between defects and compensating charge, for a cubic unit
cell with the supercell lattice constantL corresponding to the distance between the defect and
its closest images. In the limit of an infinitely large supercell the Coulomb interaction vanishes
and the isolated, non-interacting defect is described. If the dilute limit of an isolated defect
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4.1. Stability of an isolated point defect

is desired from the calculation of a realistic supercell size (100-1,000 atoms), the effects of
Coulomb interaction between defect and compensating charge need to be removed, either by
extrapolation or by correction schemes as discussed below,especially in systems with small
static dielectric constant.

Makov-Payne correction scheme

Various post-processing corrections have been suggested to obtain the dilute limit in super-
cell calculations. The most widely used and discussed method for bulk defects is the correc-
tion scheme derived by Makov and Payne in 1995 [23] that builds on the work by Leslie and
Gillan [143]. They considered an array of point charges compensated by aconstant background
charge within a structureless dielectric medium with dielectric constantε. The Makov-Payne
correction is

∆Ecorr =
q2α

2εL
+

2πqQr

3εL3
+O(L−5), (4.20)

whereL = Ω
1

3 is the length of a cubic supercell of volumeΩ, α is the Madelung constant that
depends on the crystal structure (simple cubic, face-centered cubic, or body-centered cubic) and
on the number of basis atoms, andQr is the second radial moment of the defect charge density

Qr =

∫

Ω
d3rρp(r)r

2. (4.21)

The leading term in Eq.4.20 is the screened Madelung lattice energy of point charges [143].
By decomposing the total charge density of a crystal containing a point defect into a periodic
(net neutral) contribution of the underlying crystalρp and the charge density of the aperiodic
defect, Makov and Payne reproduced this first-order term, and additionally obtained a third-
order correction term representing the interaction between the periodic density and the defect
images.

The Makov-Payne correction scheme has been analyzed in numerous studies [119,122,144–
149]. It has been shown that in most cases it leads to improved convergence to the dilute limit,
but there are also shortcomings of the method. Lentoet al. pointed out thatQr is not necessarily
independent on the supercell size, because the change in thecharge density introduced by the
defect need not be well localized as assumed by Makov and Payne [144]. Furthermore, Segev
and Wei found that there may be situations for which the lattice relaxations lead to a symmetry
breaking, and, as a consequence, a net dipole can appear, that would have to be taken into
account [145]. Shim et al. showed that strongly localized charges are far better described by
the Makov-Payne scheme than delocalized ones, by calculating vacancies and interstitials in
diamond [122].

Freysoldt et al. correction scheme

Another correction scheme for bulk defects was suggested in2009 by Freysoldtet al [150,151].
The electrostatics in a system containing a charged point defect are analyzed and formulated in
terms of the electrostatic potential in this approach.
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4.1. Stability of an isolated point defect

The basic idea is to distinguish between two partsEinter andEintra of the correction term to
the charged defect formation energy calculated for a finite cell size.

∆Ecorr = Einter +Eintra (4.22)

Einter is the interaction energy of the defect charge densityqd(r) and the compensating charge
density with the artificial potential due to periodic repetition, andEintra is the interaction energy
of the defect charge density and the background charge density in the reference cell.

To derive the corresponding terms, the creation of charged defects is divided into three steps,
starting from a neutral defect. First, electrons are added to (or removed from) the defect state. An
unscreened defect charge densityqd(r) is introduced. Second, electrons are allowed to screen
the introduced charge. This leads to a change in electrostatic potential with respect to the neutral
defectVq/0(r) = Vdefect,q(r) − Vdefect,0(r). Third, artificial periodicity and a compensating
homogeneous background charge densityn = − q

Ω is introduced, leading to a periodic defect
potentialṼq/0(r). All spurious interactions can be expressed through these quantities, according
to

Einter =
1

2

∫

Ω

d3r[qd(r) + n][Ṽq/0(r)− Vq/0(r)] (4.23)

and

Eintra =

∫

Ω

d3r n Vq/0(r). (4.24)

The change in potential with respect to the neutral defect isthen split into a long-range and a
short-range partVq/0(r) = V lr

q (r) + V sr
q/0(r). The long-range part

V lr
q (r) =

1

ǫ

∫

Ω

d3r′
qd(r

′)

|r − r′| (4.25)

can be calculated analytically using a model charge densityfor qd(r), for example assuming a
gaussian shape.Einter+Eintra is rewritten as a sum of two terms, where the first summand only
contains long-range, and the second only comprises short-range contributions

∆Ecorr = Elat
q − q ·∆q/0. (4.26)

The term∆q/0 is an alignment term, that suggests potential alignment between systems in dif-
ferent charge states based on the Hartree potential. It can be obtained by calculatingV lr

q (r)

analytically using Eq.4.25and demanding thatV sr
q (r) = Vq/0(r)− V lr

q (r) must approach zero
far from the defect. Depending on the infrastructure of the applied electronic structure code this
type of level alignment can be convenient.

If the lattice sum

Elat
q =

∫

Ω

d3r

[
1

2
[qd(r) + n][Ṽ lr

q (r)− V lr
q (r)] + nV lr

q (r)

]

(4.27)

41



4.1. Stability of an isolated point defect

is evaluated using a point charge model distribution, the linear term of the Makov Payne cor-
rection is recovered. In most casesElat

q only weakly depends on the choice of model charge
distribution. This is shown on the example of charged F centers in MgO bulk, for which the
Freysoldt corrections to the formation energies have been calculated using a gaussian charge
distribution for different widths (Table4.1). Up to a gaussian width of 2.0 the Freysoldt correc-
tion yields the same value as the first order Makov-Payne correction to within 0.03 eV.

Table 4.1.: Freysoldt finite-size correction (in eV) to the formation energies of an F+ and F2+

center in a 64-atom bulk MgO supercell. The corresponding Makov-Payne first-order correc-
tions for this example are 0.25 eV and 0.98 eV, respectively.The static dielectric constant of 9.8
and Madelung constant of 2.8373 were used.

Gaussian width F+ F2+

0.1 0.25 0.98
0.8 0.25 0.98
2.0 0.25 0.95

Extrapolation to dilute limit

Although the correction pre-factors of the Makov-Payne scheme have been questioned, it is
generally accepted that the leading contributions to the bulk defect formation energy dependence
on the supercell size are the terms∼ 1/L and∼ 1/L3, whereL is the supercell lattice constant.
This implies that finite-size scaling according to

Gbulk,q
f (L, ǫF , µO) = Gbulk,q

f (L → ∞, ǫF , µO) +
aq1
L

+
aq3
L3

(4.28)

leads to the correct formation energy in the dilute limitGbulk,q
f (L → ∞) [152–154]. Different

variations of this scaling method have been proposed to improve the accuracy of the extrapolated
energy [122,145,155–158].

In Fig. 4.2the formation energies for the F0, F+, and F2+ center in MgO bulk are shown as a
function of reciprocal supercell length in the oxygen-richlimit for the Fermi level at the VBM.
All cells are fully relaxed, so that all elastic effects are taken into account for the calculated
values.

The formation energy of a neutral F center is already converged for a small supercell of 64
atoms, while the formation energies of the F+ and the F2+ center show a strong dependence on
L, the higher the charge state the more pronounced is the effect. The difference in formation
energy for a 1,728-atom supercell compared to a 1,000-atom supercell is still 50 meV for the
F2+ center. Finite size scaling is performed by fitting each set of data (for F+ and F2+) to
Eq. 4.28. The extrapolation procedure correctly incorporates the effects of atomic relaxation.
When supercells containing up to 1,728 atoms are calculatedfor the doubly charged vacancies,
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4.1. Stability of an isolated point defect

Figure 4.2.: Calculated formation energies of bulk F centers (filled symbols) as a function of
the reciprocal supercell lengthL−1 at PBE level, neglecting vibrations. Formation energies
including the first-order Makov-Payne correction are depicted by open symbols. Solid lines
show finite-size scaling, where supercells of 64 to 1,728 atoms were calculated. Dashed lines
mark the extrapolated formation energies.

using PBE exchange-correlation treatment, the accuracy ofthe least-square fits is≤ 0.05 eV for
the extrapolated values of the formation energies in the dilute limit.

The first-order Makov-Payne correction using the experimental value for the static dielectric
constant of MgO (ǫ = 9.8 [159]) improves the convergence, but still the computations forlarge
cells are unavoidable to obtain converged results. By comparing the fitting parameters from the
extrapolation procedure to the Makov-Payne formula, the static dielectric constant of MgO can
be estimated. For DFT-PBE it is 10.70 with electronic and lattice components of 4.88 and 5.82.
The corresponding experimental values are 9.34, 3.01, and 6.33 [160]. The PBE self-interaction
error leads to a stronger deviation for the electronic component.

For charged surface defects, modeled using the VCA, the extrapolation is slightly different
due to the broken symmetry at the surface. While for bulk supercells, the formation energies
were fit to Eq.4.28, where a term proportional to1L2 is zero due to symmetry, for the surface
defects this term has to be included. The fitting function used is therefore

GVCA,q
f (L,ǫF , µO) = GVCA,q

f (L → ∞, ǫF , µO) +
aq1
L

+
aq2
L2

+
aq3
L3

. (4.29)

The periodicity of the surface calculations performed in this work is three-dimensional. Slabs
are separated by a vacuum region, and this must be chosen large enough to remove undesired
interactions between repeating slabs. In calculations fordifferentL, only the lateral dimensions
of the cell are changed, while the vacuum layer thickness is fixed. Since FHI-aims uses local-
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4.2. Stability of interacting surface defects in doped material

ized basis functions, there is no extra computational cost when the vacuum region is large. The
smallest distance between a defect and its closest atom fromthe slab image inz-direction, per-
pendicular to the surface, was chosen as 200 Å in this work. Using a slab to model a defect in the
dilute limit in a semi-infinite system, is only meaningful ifconvergence of the desired property
can be reached with respect to the number of layersNL in the slab. The formation energies for
an isolatedF2+

s center at the MgO (100) surface, extrapolated to the dilute limit, as obtained for
4-, 5-, and 6-layer slabs, are shown in Fig.4.3. Full relaxation has been performed for all slab
systems (using PBE), since also the convergence of geometric relaxation and lattice polarizabil-
ity may vary withNL. While a 4-layer slab is not sufficient to obtain an accurate result for the
extrapolated formation energy in the dilute limit, where 1/L → 0, the 5-layer and 6-layer slab
models yield the same value within 0.05 eV.

Figure 4.3.: Extrapolation of theF2+
s formation energiesGVCA,q

f (L), calculated with PBE ac-
cording to Eq.4.1 (vibrations neglected) for different lateral sizes of supercells and different
numbers of layers in the slab, to infinite supercell sizeL → ∞, using Eq.4.29. The Fermi level
is at the VBM and the chemical potential of oxygen isµO = 1/2Etot

O2
.

Although computationally demanding, using the virtual-crystal approximation in combina-
tion with extrapolation is the most reliable method for calculating formation energies of charged
bulk and surface defects in the dilute limit. The extrapolation procedure correctly incorporates
polarization and geometric relaxation effects and can be applied to both bulk and surface sys-
tems.

4.2. Stability of interacting surface defects in doped material

It is not always realistic to assume that the defect concentration is small enough for the inter-
action between the defects to be neglected. In particular, charged defects and compensating
electrons (or holes) cannot be considered non-interactingeven at very low concentrations, be-
cause of the long-range nature of Coulomb interaction.

It is well known that charge transfer at dielectric materials interfaces can lead to spacially
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4.2. Stability of interacting surface defects in doped material

confined depletion and accumulation of mobile charge carriers, so that a space-charge region is
built up. The space-charge region is overall charge neutral, since the two oppositely charged
material layers compensate each other. The effect is for example utilized inp-n junctions. In
a similar way, charge transfer between surface defects and the host material can cause space-
charge effects. These, in turn, have an influence on the charge state and stability of surface
defects, affecting the defect formation energies and concentrations. For different reasons, the
effect of space-charge layer formation on the energetics ofdefects (or adsorbates) at surfaces
or interfaces has been disregarded in the literature. Firstof all, space-charge layer formation
due to charge transfer between surface defects and the host material can only take place, if
mobile charge carriers are present. In theoretical studiestypically intrinsic material is considered
instead of the more realistic situation, where the host material is intentionally or unintentionally
doped. The technical problem, that in DFT calculations no reliable way of modelling charged
surface defects in doped material existed, has certainly contributed to this restriction. Therefore,
previous theoretical studies often only aimed at a description of neutral defects and excluded
the possibility of defect charging, or else charged surfacedefects were calculated in the dilute
limit using embedded cluster models, where space-charge effects were neglected. Yet another
important aspect explored and accounted for in the following is, that the spacial extent of a space
charge layer due to charged surface defects typically covers many more layers than the number
of layers in a DFT surface slab model.

In a realistic situation, surface defects are charged by accommodating charge carriers from
dopants in the subsurface layers. This results in depletionof the charge carriers and creation of
a space-charge layer in the subsurface region. The resulting electrostatic potential causes band
bending and increases the energy cost per defect. As a result, there are two leading electrostatic
contributions to the formation energy of charged defects: attraction to the compensating charge
and band bending. In the following, it is shown how the standard methodology for calculating
defect formation energies can be extended to include the twoelectrostatic types of defect-defect
interaction. Equilibrium surface defect concentrations are obtained by minimizing the free en-
ergy of the system with respect to the concentrations of surface oxygen vacancies in all possible
charge states. Thereby, it is considered that the concentration of oxygen vacancies in a particular
charge state depends on the concentrations of vacancies in all other charge states, on the bulk
dopant concentration, on the position of the Fermi level, ontemperature, and on partial oxygen
pressure of the surrounding atmosphere.

4.2.1. Space-charge effects due to surface defects

The formation of a space-charge region due to charged surface defects will be explained qual-
itatively on the example of positively charged surface oxygen vacancies inp-type MgO with
surface termination (100). First, consider the intrinsic material (Fig.4.4, left panel), where oxy-
gen vacancies have been introduced at the surface. They exhibit defect donor states deep in the
bandgap that are each occupied by two defect electrons. The defects are neutral. Next,p-type
dopants with a concentrationND are introduced, but the system is not equilibrated (Fig.4.4,
middlepanel). Empty acceptor levels pin the bulk Fermi level to theVBM, meaning that small
variations in dopant concentration have a minor effect on the Fermi level position. In thermody-
namic equilibrium (Fig.4.4, right panel), charge carriers (holes) from the bulk have transferred
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4.2. Stability of interacting surface defects in doped material

Figure 4.4.: Illustration of space-charge formation and band bending due to surface defects in
p-type MgO.Left: Intrinsic material with a neutral surface defect.Middle: p-type dopants were
introduced. The system is out of equilibrium.Right: In equilibrium, an electric field due to
depletion of electrons at the surface and accumulation of compensating charge within a space-
charge region0 < z < zSC causes band bending and limits the formation of charged surface
defects. The calculated values (see text for details) are shown for a dopant concentration of
ND = 1018 cm−3 and surface charge density ofσ = 2.2 · 1012 e/cm2.

to the surface defects. A surface charge densityσ due to the positively charged vacancies builds
up (represented by the arrow), and is compensated by a macroscopically extended, yet local-
ized negative charge density within a bulk space-charge region of thicknesszSC. The thickness
depends on the doping profile, and may be limited by the thickness of the material. Assuming
a uniform dopant distribution and semi-infinite bulk, the extent of the space-charge region is
proportional to the space-charge density,

zSC =
σ

eND
, (4.30)

wheree is the absolute value of the electron charge. Surface chargeand space charge lead to an
electrostatic potential that causes band bending within the space-charge layer. The correspond-
ing electric field along the surface normalez is

Ez =
σ

ǫrǫ0

(

1− z

zSC

)

ez. (4.31)

The potential difference∆φ due to band bending,

∆φ = − σ

2ǫrǫ0
zSC, (4.32)
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4.2. Stability of interacting surface defects in doped material

can be calculated by integrating Eq.4.31.
The energyσESC(σ,zSC) required to take electrons from the surface and distribute them

uniformly over the thicknesszSC, increases with the surface charge density:

σESC(σ,zSC) =
1

2

∫ zSC

0
E2

zdz = σ
σ

6ǫrǫ0
zSC. (4.33)

The temperature dependence ofzSC andESC(σ,zSC) at fixedσ is neglected. The more charged
defects are formed, the higher becomes the energy cost per defect, since the energy gain due to
charge transfer is reduced. In Fig.4.4 this is reflected in the reduced energy difference between
defect level and Fermi level.

In periodic calculations, the extent of the space-charge layer is usually artificially restricted
to the slab thickness. In Fig.4.4 (right panel) a slab thickness of 5 MgO layers is indicated
for comparison. Therefore, when formation energies for interacting defects are calculated, the
energy contribution due to band bending constrained to the thin thickness of the slab should be
replaced by the energy contribution due to the correct band bending in the semi-infinite material.

In addition to band bending, the second important effect is electrostatic attraction between the
localized defect charge and the compensating charge density. The two electrostatic contributions
have opposite effects on the formation of charged surface defects. The band bending effect
limits the concentration of charged surface defects, increasing their formation energies, while
the electrostatic attraction facilitates charged defect formation, decreasing the formation energy.
Both effects must be accounted for in order to calculate formation energies for interacting surface
defects in metal oxides.

In analogy to the space-charge effects inp-type material with positively charged surface de-
fects discussed above, band bending occurs inn-type systems with negatively charged surface
defects. Furthermore, depending on the surface termination and the particular type of mate-
rial, surface states can be situated in the bandgap, so that aspace-charge layer due to surface
states is formed. In this case, the Fermi level may be pinned to the surface band energy. For
example, while the MgO (100) surface does not exhibit surface states in the bandgap, the MgO
(111) oxygen octopolar termination is characterized by occupied states approx. 0.5 eV above the
VBM (calculated with PBE). Therefore, for ap-type doped MgO (111) system a space-charge
layer due to surface states will form and influence surface defect concentration (see also outlook
in Chapter10). The space-charge and band-bending effects due to surface-induced states are
well-known in semiconductor physics. Yet, accounting for these effects in the context of oxide
surface defect stability has so far been disregarded.

4.2.2. Concentration and formation energy of interacting defects

To obtain equilibrium concentrations for interacting surface defects, as a first step, formation
energies of charged defects as a function of surface charge densityσ are calculated. In Sec.4.1.3
formation energies for isolated charged defects were extrapolated to the dilute limit and in this
context the formation energy of one type of defect was calculated for decreasing concentrations
of this defect (Fig.4.3). The corresponding fitting function (Eq.4.29) can be generalized to the
case when defects in different charge states (for simplicity, these are assumed to be 1+ or 2+)
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4.2. Stability of interacting surface defects in doped material

coexist at the surface. Eq.4.29 is rewritten in terms of surface charge densityσq for q = 1, 2
usingσq = qe/L2:

GVCA,q
f (σq,d) = GVCA,q

f (σq → 0) + aq1

(
σq
qe

) 1

2

+ aq2(d)

(
σq
qe

)

+ aq3(d)

(
σq
qe

)3

2

. (4.34)

When defects in both charge states are present at the surfacesimultaneously, the surface charge
density isσ = σ1 + σ2. Since the nature of the second and third term is purely electrostatic, a
mean-field approximation is applied andσq is replaced withσ in these terms. The fourth term
is more complicated, since in addition to higher-order electrostatic effects it also includes geo-
metric relaxation effects. However, also in this termσq is replaced withσ. This corresponds to
averaging the relaxation effects over different defect charge states. This averaging may give a
noticeable error only in the specific case of comparable and at the same time not small concen-
trations of defects in charge sates 1+ and 2+ (> 3% for F centers in MgO). Thus, the dependence
of the formation energies on the overall surface charge density σ is given by:

GVCA,q
f (σ,d, ǫF , µO) = GVCA,q

f (σ → 0,ǫF , µO)+aq1

(
σ

qe

) 1

2

+aq2(d)

(
σ

qe

)

+aq3(d)

(
σ

qe

) 3

2

.

(4.35)
Note, thatGVCA,q

f (σ,d, ǫF , µO) still depends on the slab thicknessd. The electrostatic energy
that causes the formation energy of charged defects to increase with slab thicknessd is the band
bending. According to Eq.4.33, this contribution is

qESC =
q2e

6εrε0

d

L2
. (4.36)

SubtractingqESC from the formation energies at every cell sizeGVCA,q
f (L), removes the term

∝ 1/L2 in the finite-size scaling curve for each slab thickness. This is shown for the example of
the F2+s center (q = 2) at the MgO (100) terrace in Fig.4.5.

The term∝ 1/L3 plays a role only for smallL, so that the remaining linear dependence co-
incides for slabs with a number of layersNL = 4,5,6 and 7 for all calculated surface charge
densitiesσ = 2e/L2. The solid black line shows a linear fit, incorporating all calculated forma-
tion energies. This linear fit yields the same value for the formation energy of the isolated defect
as obtained before for the 5- 6-, and 7-layer slabs using Eq.4.29. The linear term is present due
to the electrostatic attraction between the defects and thecompensating charge.

Thus, formation energies of charged defects as a function ofsurface charge density
GVCA,q

f (σ,zSC(σ)) for an arbitrary space-charge thicknesszSC can be obtained by calculating

GVCA,q
f (σ,d), subtracting the band bending in the slab,qESC(σ,d), and adding the band bending

qESC(σ,zSC):

GVCA,q
f (σ,zSC(σ)) = GVCA,q

f (σ,d) − qESC(σ,d) + qESC(σ,zSC). (4.37)

Next, the change in Gibbs free energy per unit area upon defect formation can be expressed
as

G(η0,η1,η2,T,pO2
,ND) = η0G

0
f +

2∑

q=1

ηqG
VCA,q
f (σ,zSC(σ,ND))− T

2∑

q=0

sqconf(η0,η1,η2),

(4.38)
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4.2. Stability of interacting surface defects in doped material

Figure 4.5.:Extrapolation of theF2+
s formation energiesGVCA,q

f (L) (filled symbols, vibrations
neglected), calculated with PBE according to Eq.4.1 for different sizes of supercells, to infinite
supercell sizeL → ∞, using Eq.4.29. The Fermi level is at the VBM and the chemical potential
of oxygen isµO = 1/2Etot

O2
. Open symbols and linear fit (black line) are obtained by subtracting

the band bending contribution (Eq.4.36).

whereη0, η1, andη2 are concentrations of surface defects in charge state 0, 1+,and 2+, respec-
tively. The total surface charge density is determined by the concentrations of charged defects
σ = eη1 + 2eη2. The configurational entropy per unit areasqconf(η0,η1,η2) accounts for ener-
getically degenerate surface defect arrangements. Due to the screening of the charged defects
by the compensating charge, the number of defect arrangements that have significantly different
energy relative to the total number of possible arrangements at the surface for fixedη0, η1, and
η2 is expected to be small, and is vanishing for small defect concentrations. In analogy with
Eq.4.5, the configurational entropy for each type of defect can therefore be expressed as:

sqconf = kB
(
ηsitesq ln ηsitesq − ηq ln ηq − (ηsitesq − ηq) ln(η

sites
q − ηq)

)
, (4.39)

whereηsitesq is the surface density of available sites for the given type of defect:

ηsitesq = ηsites −
∑

i 6=q

ηi. (4.40)

For example, at the MgO (100) surface, the surface density ofoxygen atoms isηsites = 0.11 ·
1016 cm−2.

Finally, equilibrium defect concentrationsη0, η1, andη2 can be found by minimizingG with
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respect to these concentrations:

∂G

∂ηq
= Gq

f (σ,T,pO2
,ND,ǫF)− T

∂
2∑

r=0
srconf(η0,η1,η2)

∂ηq
= 0. (4.41)

Here,

Gq
f (σ,T,pO2

,ND,ǫF) =
∂

∂ηq

2∑

r=0

ηrG
VCA,r
f (σ,T,pO2

,ND,ǫF) (4.42)

is the formation energy of a defect in charge state q in the presence of other defects. The
formation energy of an isolated charged defect (q 6= 0), as introduced in Sec.4.1, is a limiting
case of the formation energy of an interacting charged defect, approached when defect and
dopant concentrations are vanishingly small. Since for a neutral defect (q = 0) there is no
electrostatic interaction, its formation energy is close to the formation energy of the isolated
defect also for larger defect concentrations. Disregarding the global electrostatic effects due to
charge transfer between surface and bulk can result in an error of several orders of magnitude in
defect concentration, as shown for F centers at the MgO (100)surface in the second part of this
work.

4.3. Experiments on point defect stabilities

Different experimental techniques for measuring defect concentrations are known, but each of
them is only applicable to a specific class of defects and materials.

A straightforward way to obtain point defect concentrations experimentally is to use the dif-
ferential thermal expansion method as introduced by Simmons and Balluffi in 1960 [161]. It
is assumed that for each vacancy in the crystal an atom is added at the surface, increasing its
volume. The change in volume of a crystal sample as a functionof temperature is then due to
regular thermal expansion of the lattice as well as the dimensional change from point defects,
especially vacancies. The temperature-dependent change in microscopicaverage lattice constant
∆a
a0

, as determined in x-ray lattice parameter measurements, with respect to the lattice constant

a0 when the material is defect-free, and the change in ”macroscopic“ linear dilatation∆L
L0

of a
crystal, also with respect to the lengthL0 for the defect-free system, can be measured simulta-
neously. The vacancy concentration is then obtained from the difference between the two. In
general, unambiguous measurements for application of the thermal-expansion method can only
be performed, if only one type of defect is present that changes the volume of the crystal sam-
ple. However, even if this is the case, some atoms that were originally occupying the vacancy
site, may have taken up interstitial sites in the lattice andtherefore no volume is added to the
crystal. In particular, Frenkel defects in ionic crystals,consisting of a vacancy and an intersti-
tial, cannot be measured by this method. Also, for metals it is usually a valid assumption that
desorption of metal atoms into gas phase is energetically unfavorable. For oxygen vacancy for-
mation in metal oxides on the other hand it is well possible that oxygen atoms at the surface
react with atoms or molecules from the surrounding gas phaseand leave the crystal sample. To
limit oxygen fugacity, strongly oxidizing conditions haveto be provided, but then also the oxy-
gen vacancy concentration in the metal oxide will be very small. Furthermore, in ionic crystals
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it is much harder to insure thermal equilibrium at each temperature measuring point. Since the
defect concentration is small, but obtained from the difference of two large quantities∆a

a0
and

∆L
L0

that are sensitive to small temperature changes, high accuracy in measuring∆a
a0

and ∆L
L0

must be reached. Then, the thermal expansion method is in principle also applicable for oxygen
vacancies in MgO [162]. For metals as for example lead, aluminum, and silver many successful
measurements using the thermal expansion method of defect concentrations have been reported
(see review by Seeger and references therein [163]).

Another possibility to measure the concentrations of vacancies is via the time constant for
positron annihilation as a function of temperature [163,164]. This method allows for measure-
ments of even very small concentrations of the order of10−7 vacancies per possible occupation
site. Positrons can be generated by radioactive decay events, emitting astart radiation signal.
They are shot into the sample, and after a certain lifetime annihilate with electrons, again emit-
ting a certain type of radiation, providing astop signal. Detecting these radiations the mean
lifetime of the positrons can be determined, and from this the average electron concentration
available for annihilation can be deduced. Many types of vacancies are able to trap the positrons.
Therefore, the concentration of vacancies is related to theamount of positrons being trapped
which is related to the measured mean lifetime. If the trapping probability, or the cross-section
for positron capture, is known, the vacancy concentration can be determined. The positron an-
nihilation method was for example applied to study vacancy formation in Cu and Si [165,166].
Applications to MgO also exist, but are of minor relevance for this work, since only neutral and
negatively charged magnesium vacancies readily trap the positrons. Also, the systems were not
studied under thermal equilibrium conditions [167,168].

An indirect method to measure defect concentrations is via optical absorption spectra, if these
are accessible. This is also the method used in the only published experiment measuring the
formation energy of a (neutral) F center in MgO bulk, that wasperformed by Kapperset al. in
1970 [26]. The experiment is discussed in detail in the context of thetheoretical analysis of the
F0 defect in Sec.6.1.

Other methods, that can in principle be used to study the formation of point defects in ionic
crystals, are measuring the resistivity, if ionic conductivity is mediated by point defects, or,
specifically for surface defects, the crystal sample can be exposed to atoms or molecules that
adsorb preferentially at the defect sites and can be readilydetected. It has also been suggested
to obtain a surface vacancy concentration by simply counting the defects visualized in atomic
resolution STM images [169]. However, for small defect concentrations the error in this method
is rather large, and the conditions are usually far from realistic.

In summary, all of the methods mentioned are based on one or more assumptions critically
important for the reliability of the deduced value of the formation energy. The general, main
challenge for the temperature-dependent measurement of equilibrium defect concentrations or
formation energies in ionic crystals is to establish precisely this thermodynamic equilibrium at
each temperature.
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4.4. Summary

In this chapter, the standard approach of calculating formation energies and concentrations of
neutral and charged F centers, assuming non-interacting, isolated defects, has been reviewed,
and an extension to describe interacting surface defects has been introduced. In general, the
concentration of one type of defect depends on the concentrations of all other types of defects.
This has been taken into account by introducing concentration-dependent formation energies
and minimizing the free energy of the system with respect to all surface-defect concentrations.
In particular, global electrostatic effects due to defect-compensating charge interaction – effects
that have so far been disregarded – have been considered. Charge transfer between surface
defects and dopants in the bulk leads to formation of a space-charge region, band bending and
an electric field. This limits the concentration of charged surface defects, competing with the
second important electrostatic effect, attraction between surface defects and the compensating
charge, which facilitates formation of charged F centers. Following the methodology suggested
in this chapter, equilibrium concentrations of interacting surface defects for given temperature,
pressure, Fermi level position, and dopant concentration can be calculated.
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Part II.

Oxygen vacancies in MgO
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5. MgO as a catalyst for methane oxidation

Today, high-value commodity chemicals used in industry arefor the most part produced in a
cost-intensive and environmentally unfriendly way from fossil resources by cracking and re-
forming. On the way to more sustainable energy conversion, as long as renewable feedstocks
can not be utilized on a sufficiently large scale, efficient catalytic processes for production of
base chemicals and fuels from methane are highly desirable.Methane (CH4) is the main com-
ponent of natural gas, and can also be produced from biomass.At present, methane is often
used to generate electric power or heating by full combustion with emission of carbon diox-
ide. Methane conversion in the presence of oxygen is known asoxidative coupling of methane
(OCM), where methane can react with oxygen to produce ethane(C2H6) and ethylene (C2H4),

2CH4 + 1/2O2 → C2H6 +H2O

C2H6 + 1/2O2 → C2H4 +H2O.

However, to direct the reaction towards C2 hydrocarbons rather than carbon monoxide or carbon
dioxide, a suitable catalyst is needed. Already in 1982 different oxides, among them magnesium
oxide (MgO), were tested for their activity as OCM catalysts[170]. In 1985 lithium-doped
MgO was studied by Ito and Lunsford and found to effectively convert methane to ethane and
ethylene at approx. 700◦C [11, 12, 171]. It was shown by Myrach et al. in 2010 [172] that
lithium-doped MgO is not a stable catalyst due to segregation of lithium to the surface. Still,
there are experimental indications thatp-type conductivity and presence of oxygen vacancies
are important features for MgO to exhibit catalytic activity for OCM: Dubois and Cameron
analyzed the properties of oxide catalysts for OCM and identified p-type conductivity as a key
factor for good performance [31]. Balint and Aika studied defect sites formed when MgO was
doped with lithium or titanium. Pure MgO and lithium-doped MgO always exhibitedp-type
conductivity, whereas titanium-doped MgO was found to ben-type conducting. Doping with
lithium favored formation of oxygen vacancies, while doping with titanium had the opposite
effect [32]. Furthermore, the pristine MgO (100) surface, which is themost stable termination
under a wide range of ambient conditions, is chemically inert. In particular, Trevethanet al.
argue that methane molecules only weakly physisorb on the flat terraces [173]. There is still
insufficient knowledge on the stability of oxygen vacanciesin MgO under realistic ambient
conditions. The only experiment on the stability of the charge-neutral oxygen vacancy in MgO
bulk conducted by Kapperset al. in 1970 [26] is in disagreement with theoretical work from the
90ies by Kantorovichet al., Scorzaet al., Orlandoet al., and Pacchioniet al. [27,30,174,175].
Due to their electronic structure, also charged oxygen vacancies in MgO are conceivable, but
their stability has hardly been studied [112,176].

In the following, the methodology presented in the first partof this work is applied, aiming at a
realistic, accurate description of oxygen vacancies at theMgO (100) surface. In this context also
bulk defects are analyzed. The focus is on the global effect of doping on oxygen vacancies,i.e.,
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doping is considered as means of creating a reservoir for electrons and holes, characterized by a
chemical potential (Fermi level). But also lithium as a prototype dopant in MgO is considered,
where defect complex formation can be favored due to local interaction between defects and
close-by dopants.
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6. F centers in bulk MgO

MgO crystallizes in the rock-salt structure, where each atom is six-fold coordinated in the bulk
(Fig.6.1). The experimentally determined lattice constant for MgO is 4.207 Å atT = 0K [177].
When the effects of zero-point vibrations are removed, the lattice constant is 4.186 Å [178]. The
bonding type in MgO is strongly ionic, with formal ion charges of magnesium and oxygen 2+
and 2-, respectively. Although the experimental bandgap ofMgO is 7.78 eV, as measured by
reflectance spectroscopy [179], realistic samples are typically neither clear transparent nor in-
sulating. Defects such as intrinsic point defects, impurities and defect complexes are not only
responsible for the color of the samples, but can also give rise to electron or hole conductiv-
ity [32,180,181].

Figure 6.1.: Simple cubic unit cell of MgO.

Oxygen vacancies are typically studied in the context of their influence on the oxide proper-
ties. These point defects are also called color centers or F centers, referring to the German word
Farbzentrum, due to their effect on the optical properties. Despite numerous studies, the ac-
tual abundance of oxygen vacancies at realistic conditionsremains undetermined. Even for the
simplest type of oxygen vacancy, the neutral F0 center in MgO bulk, the challenge to obtain an
accurate estimate for point defect formation energies in experiment and theory becomes evident,
since reported experimental and theoretical results disagree severely. In the following, electronic
and geometric structure of bulk F centers in MgO are studied,and formation energies as well
as electronic levels are tested for their dependence on DFT exchange-correlation treatment. The
goal is to find a reliable exchange-correlation functional for the analysis of neutral and charged
F centers in MgO.

6.1. Neutral oxygen vacancy in bulk MgO

The formation energy of the neutral oxygen vacancy in bulk MgO was measured by Kapperset
al. in 1970 [26]. A deviation of 2 eV between theoretical results reported in literature and
the experimental value has been a long-standing discrepancy. This issue is approached in the
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6.1. Neutral oxygen vacancy in bulk MgO

following paragraphs, using periodic and embedded clustermodels and comparing DFT and
hybrid DFT results to high level coupled-cluster theory values.

Experimentally measured formation energy

In Kappers’ experiment the bulk oxygen vacancies are created by additive coloring [26]. Single
crystals of MgO are heated in magnesium vapor at temperatures from 1,870 K to 2,100 K under
pressures up to 5.3 atm. The high magnesium chemical potential lowers the formation energy
of the bulk F centers (compare Eq.4.1 and Eq.4.11) and allows for them to form in detectable
concentration. Optical absorption experiments are then performed, and from the maximum in-
tensityumax and width at half-maximumU of the absorption peak the density of F0 centersnF0

can be obtained. For this, the Gaussian form of the Smakula formula [182] is used, depending
also on oscillator strengthfos (a measure of the transition strength) and the index of refraction
k:

nF0 ∝ k

(k2 + 2)2
1

fos
umaxU. (6.1)

The ratio between F0 center density and the density of atoms in the magnesium vapor is
shown in Fig.6.2 (left) for several crystals colored at 2,086 K and 1,885 K. In thermodynamic
equilibrium, the increase in free energy if one atom is removed from the magnesium vapor is
equal to the increase in free energy if one magnesium atom is added to the crystal and a bulk F
center is formed. This relates the ratio of the density of F0 centers and the magnesium atoms in
the vapor to the defect formation enthalpy∆Hf atT = 0K with respect to cohesive energy of
the MgO crystal via

nF0/nMg = C · e−
∆Hf

kBT . (6.2)

∆Hf is the enthalpy change upon removal of a neutral oxygen atom from MgO bulk and placing
it into the gas phase. The cohesive energy is defined as the energy cost of separating an MgO
crystal into free magnesium and oxygen atoms, per Mg-O pair.The dependence of C on tem-
perature is weak, and is therefore neglected. From the density ratio, measured as a function of
temperature,∆Hf can thus be obtained by a fit to Eq.6.2, as shown in Fig.6.2(right).

The experimental value for the F0 formation enthalpy estimate atT = 0K is 1.53 eV above
the cohesive energy with respect to oxygen atom (µO = EO), and -1.06 eV with respect to O2
molecule (µO = 1/2EO2

). Adding the experimental cohesive energy of 10.35 eV [183] results
in a formation enthalpy of 11.88 eV with respect to oxygen atom, or 9.29 eV with respect to O2
molecule.

As also mentioned by Kappers [26], it is hard to ensure that thermal equilibrium is reached
when the crystals are colored. Additional uncertainty enters through assumptions made to de-
rive Eq.6.1, which may be problematic for ionic solids, as pointed out byDexter [182]. Also
specifics of the estimate made for the oscillator strength are not documented. Therefore, com-
parison with different experiments would be desirable.
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6.1. Neutral oxygen vacancy in bulk MgO

Figure 6.2.:Left: Equilibrium density of F0 centersnF0 as a function of the density of atoms in
the magnesium vapornMg Right: Ratio of the density of F0 centers to the density of atoms in the
vapor as a function of the reciprocal temperature. Each filled point, except for the one measured
at an intermediate temperature, corresponds to one data point in the graph on the left. The two
open points in the right graph correspond to the two linear fits in the graph on the left. Graphs
are taken from Ref. [26], labels have been adjusted to match denotations in the text. (Copyright
(1970) by The American Physical Society.)

Theoretical results

The formation energy for the F0 center has been calculated and reported in literature usingdif-
ferent methods and models [27–30]. Fig. 6.3 summarizes these results, comparing formation
energiesG0

f (T = 0, p0) according to Eq.4.1 in the oxygen-rich limit (µO = 1/2Etot
O2

). The
zero-point vibrational energy contribution to the formation energy, estimated using the finite-
displacement method for a2× 2× 2 MgO bulk unit cell, is -0.12 eV. Vibrational energy contri-
butions are neglected in the following. It becomes evident that the experimental estimate for the
F0 center formation energy of 9.29 eV is in disagreement with the results reported in literature
and with the formation energies calculated within this work(red symbols in Fig.6.3). Forma-
tion energies calculated with LDA are surprisingly closestto the experimental estimate. LDA
is known to systematically overestimate the binding between atoms in crystals [184], hence a
higher formation energy is obtained than for the other methods used. Compared to the experi-
mental MgO lattice constant of 4.186Å [177,178] (extrapolated toT = 0K), the lattice constant
optimized with LDA underestimates (4.165 Å), while PBE (4.258 Å), HSE06 (4.218 Å) and
PBE0 (4.212 Å) optimized lattice constants overestimate. For details on lattice parameter op-
timization see appendixA.3. Geometric relaxation effects play a minor role for formation of
F0 centers. The relaxation energy due to the removal of oxygen is 0.1 eV at PBE level, and
therefore only makes up for 1.4% of the formation energy (7.09 eV). Already for a2 × 2 × 2
supercell, containing 64 atoms, the formation energy of theneutral oxygen vacancy is converged
with respect to the supercell size. The two defect electronsremain localized at the vacancy site.
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6.1. Neutral oxygen vacancy in bulk MgO

They occupy a defect level in the middle of the bandgap, and are therefore higher in energy than
the electrons associated with the regular ionic bonding in the MgO lattice (see also Fig.6.10).
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Figure 6.3.: F0 center formation energy in the oxygen-rich limit (µO = 1/2Etot
O2

). Literature
results forµO = Etot

O were recalculated forµO = 1/2Etot
O2

using the experimental O2 binding
energy. Different types of exchange-correlation treatment and periodic (circles) or embedded
cluster (triangles) models were used. Red circles show results obtained within this work, orange
triangles were calculated in a collaboration by S. Sicolo [185]. From literature, periodic DFT
calculations at LDA level (blue circle, [27]; green circle [28]) and GGA level (green circle,
PBE [28]; gray circle, PW91 [29]), as well as embedded cluster calculations applying HF and
HF+MP2 (black triangles [30]) are shown for comparison.

The results calculated with periodic models using the HSE family of functionals, including
PBE and PBE0, agree within 0.15 eV, if the O2 binding energy is corrected, but are≈ 2 eV lower
than the experimental result. The experimental estimate was originally obtained with respect to
cohesive energy. Therefore, to compare directly with the measured quantity,G0

f is calculated
with respect to cohesive energy

Ecoh
MgO = Ebulk

MgO − Etot
Mg − 1/2Etot

O2
, (6.3)

whereEbulk
MgO is the total energy of bulk MgO per MgO unit,Etot

Mg is the total energy of a Mg
atom, and the total energy of oxygenEtot

O2
is obtained using the experimental binding energy, as

described in Sec.4.1.2, for different parameter sets (α, ω) (Fig. 6.4). However, the discrepancy
between experiment and theory is still mainly due to the formation energy, not the cohesive
energy.

It was demonstrated by Ramprasadet al. in 2012 that there is a near-linear correlation between
the formation energies of neutral point defects in bulk Si, Ge, ZnO, and ZrO2 and the corre-
sponding valence bandwidth (VBW) of the defect-free parentmaterial, when both are computed
as a function of the HSE parameters [186]. The deviations from linearity increase when the
bandgap is used instead of the VBW. The bandgap was already pointed out to be an unreliable
descriptor for defect formation energies by Lany and Zungerin 2010 [187]. The prescription for
finding reliable formation energies for neutral point defects suggested by Ramprasadet al. is to
find a DFT functional that gives the experimental VBW for the given material – which requires
only pristine bulk calculations –, and use the corresponding exchange-correlation functional to
compute the accurate defect formation energies.
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6.1. Neutral oxygen vacancy in bulk MgO

Figure 6.4.:F0 center formation energy with respect to cohesive energy (Eq. 6.3) in the oxygen-
rich limit 1, calculated for different parameter sets (α, ω) of the HSE hybrid-functional family.
Formation energies are shown as a function of oxygen 2p bandwidth, the solid red line indicates
the experimental value [26].

For MgO, the bulk neutral F center formation energyG0
f only weakly depends on the exchange

and screening parameters of HSE. Still, a near-linear correlation with small but finite slope is
found for G0

f as a function of oxygen 2p bandwidth (Fig.6.5). However, the methodology
suggested in Ref. [186] cannot be applied to MgO, because of a large uncertainty in experimental
oxygen 2p bandwidth [188–191].

Figure 6.5.: F0 center formation energy, calculated for different parameter sets of HSE(α, ω)
(black symbols), shown as a function of oxygen 2p bandwidth (black line shows linear fit). The
red line indicates the experimentally measured formation energy [26]. The blue lines depict ex-
perimental values for the MgO oxygen 2p bandwidth, measured using electron momentum spec-
troscopy (EMS) [191], angle-resolved ultraviolet photoelectron spectroscopy (APRES) [190],
x-ray photoelectron spectroscopy (XPS) [189] and x-ray emission spectroscopy (XES) [188].

Another approach is to benchmark HSE functionals against higher-levelab initio methods,

1In this work, the oxygen-rich limit is always calculated using the experimental O2 binding energy as described in
Sec.4.1.2
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6.1. Neutral oxygen vacancy in bulk MgO

Figure 6.6.: Formation energy of the neutral oxygen vacancy at the centerof a) an unembed-
ded Mg6O1 (with a charge +10) and b) an unembedded Mg14O13 (with a charge +2) cluster
model, calculated at different levels of electronic structure theory using NWChem (red squares)
with basis sets up to cc-pVTZ, and FHI-aims (blue triangles)with basis sets up totight, tier 4.
Formation energies have been corrected for the basis set superposition error using the counter-
poise correction method (see AppendixA.4 for details). In the NWChem calculations for the
Mg14O13 cluster, only the cc-pVDZ basis set could be used for the∆MP2 and∆CCSD cor-
rections [192–195], since employing a higher-level basis set (cc-pVTZ) usingthese methods in
the available implementation was computationally not feasible due to extremely high memory
consumption.

such as coupled-cluster theory with single and double excitations (CCSD), CCSD plus triple
excitations by perturbation theory (CCSD(T)), RPA orGW . This can be performed efficiently
using cluster models. First, two MgO clusters are calculated: a six-coordinated oxygen atom
(Mg6O1), and a 27-atom MgO cube (Mg14O13) (see Fig.6.6). The clusters were constructed
using the PBE optimized lattice constant of bulk systems. Inboth clusters there are more mag-
nesium atoms than oxygen atoms. The clusters are therefore charged by removing all magnesium
valence electrons that cannot be accommodated by oxygen atoms (counting two electrons per
oxygen atom). This corresponds to a charge +10 for Mg6O1 and a charge +2 for Mg14O13.
The oxygen removal energies for these two (unrelaxed) systems are calculated at different levels
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6.1. Neutral oxygen vacancy in bulk MgO

of electronic structure theory, where possible using two different all-electron codes, FHI-aims
and NWChem. Since the cluster models are not embedded, the oxygen removal energies are
not quantitatively comparable to those of the F0 center in extended material. However, for each
cluster model, the formation energy of the neutral F center calculated with CCSD is close to the
results obtained with PBE (α = 0, ω = arbitrary) and PBE0 (α = 0.25, ω = 0). The formation
energies obtained with CCSD are much closer to the HSE results than to the experimental value.

This result has been corroborated in a cooperation with Prof. Sauer’s theoretical chemistry
group of the Humboldt-Universität zu Berlin. Embedded cluster calculations at PBE, PBE0 and
B3LYP level and with the CCSD(T) coupled-cluster method were performed using the TURBO-
MOLE code [96]. For the DFT TURBOMOLE calculations on embedded clusters,[5s3p2d1f ] /
[5s4p3d] triple-zeta valence plus polarization basis sets were used [196]. For the CCSD(T) com-
putations also electrons in the magnesium 2s and 2p shells were correlated using core-valence
correlation consistent basis sets, cc-pCVXZ (X = D, T, Q) formagnesium, whereas on the O2−

ions the aug-cc-pVXZ basis sets were used [197]. For consistency between FHI-aims and TUR-
BOMOLE, embedded cluster calculations at PBE, PBE0 and B3LYP level were also performed
with FHI-aims using the same cluster models. In both CCSD(T)and DFT calculations, the
basis set superposition error (BSSE) was evaluated following the Boys-Bernardi counterpoise
correction [198]. The MgO clusters are embedded in a periodic point charge array using the pe-
riodic electrostatic embedded cluster model [199] in TURBOMOLE, and a converged finite set
of point charges in FHI-aims. To minimize non-physical polarization of peripheral oxygen an-
ions by the embedding point charges, pseudopotentials are added to the first shell of embedding
Mg2+ cations (all-electron Hay&Wadt effective core potentials(ECPs) [200] in TURBOMOLE,
and Troullier-Martins-type norm-conserving non-local pseudopotentials [201,202] in FHI-aims
calculations). The PBE lattice constant is used for the embedded clusters. Apart from the outer-
most frozen shell of atoms, full relaxation is allowed in theDFT calculations for larger clusters
(Mg14O19). For the CCSD(T) calculations and respective DFT values obtained for smaller clus-
ters (Mg6O9), formation energies of neutral, unrelaxed F centers are compared.
G0

f is calculated at very high accuracy with CCSD(T) for the embedded Mg6O9 cluster
(Fig. 6.7), the largest model that is still computationally feasible, due to high memory con-
sumption. The CCSD(T) value is compared to the formation energies calculated for the same
system with various DFT functionals, yielding a correctionterm∆CCSD(T) for each DFT func-
tional. The correction term is finally added to the DFT formation energies calculated for a larger
cluster Mg14O19 that is converged also with respect to geometric relaxation.

Table6.1 summarizes the formation energies for a neutral F0 center in MgO bulk calculated
with the Mg6O9 model, and formation energies including geometric relaxation as obtained with
an Mg14O19 embedded cluster. For consistency, formation energies calculated with FHI-aims
for the same cluster models using atight, tier 3 basis, and for periodic models using atight,
tier 2 basis are also shown. Obviously, the formation energyof the unrelaxed defect is already
converged within 0.1 eV with respect to cluster size.

The corrections∆CCSD(T) for the DFT formation energies are−0.09 eV for PBE,0.07 eV
for PBE0, and−0.28 eV for B3LYP. Adding these corrections to the DFT formation energies
obtained with a converged cluster size Mg14O19 (with charge -10), yields DFT+∆CCSD(T)
results of 6.85 eV, 6.88 eV, and 6.89 eV, respectively.

From this it is concluded that the formation energies for neutral F centers can be calculated

62



6.1. Neutral oxygen vacancy in bulk MgO

Figure 6.7.: Mg6O9 cluster model (with charge -6), embedded by magnesium core potentials.
Embedding point charges (see text) are not shown. CCSD(T) calculations were performed using
this model at unrelaxed bulk F0 geometry, where the central oxygen atom in the cluster was
removed.

Table 6.1.:Formation energies,G0
f , calculated for unrelaxed (unrel.) and relaxed (rel.) atomic

coordinates for a bulk F0 center, as obtained from embedded cluster DFT and CCSD(T) calcu-
lations employing FHI-aims (AIMS) and the TURBOMOLE (TURB.) code.

Structure model PBE HSE06 PBE0 B3LYP RPA rPT2 CCSD CCSD(T)
@PBE @PBE

Mg6O9 (unrel.,TURB.) 7.18 – 7.02 7.37 – – 7.05 7.09
Mg6O9 (unrel.,AIMS) 7.11 7.03 6.99 7.35 7.13 7.45 – –
Mg14O19(unrel.,TURB.) 7.06 – – – – – – –
Mg14O19 (rel.,TURB.) 6.94 – 6.81 7.17 – – – –
Mg14O19 (rel.,AIMS) – 7.05 – – – – – –
periodic (rel.,AIMS) 7.09 7.04 7.07 – – – – –

accurately to within 0.2 eV even at PBE level. In particular,the DFT+∆CCSD(T) formation en-
ergy values are in good agreement with the HSE06 F0 formation energies 7.04 eV and 7.05 eV,
obtained from the Mg14O19 embedded cluster and periodic calculations, respectively, using FHI-
aims. It is concluded that the experimental value for the bulk F0 center formation enthalpy in
MgO [26] is a significant overestimate. The most likely reason is that thermodynamic equilib-
rium was not reached in the experiment.

Based on the accurate value of the formation energy, the reasons for the failure of certain
electronic structure methods to accurately describe the removal of a neutral oxygen atom from
MgO bulk can be deduced (see Fig.6.3 and Fig.6.6): using the local density approximation
leads to overestimated formation energies, while not including electron correlation yields un-
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6.2. Charged defects in bulk MgO

derestimated formation energies. It is also interesting that the formation energy calculated with
the many-body perturbation theory method RPA is in good agreement with the CCSD(T) result,
while renormalized second-order perturbation theory rPT2[72, 203, 204], which goes beyond
RPA by including second-order screened exchange (SOSEX) and renormalized single excita-
tions (rSE), rpT2=RPA+SOSEX+rSE, overestimates the F0 center formation energy (Table6.1).
CCSD, which yields a slightly underestimated formation energy of 7.05 eV, is connected to rPT2
in so far that the Goldstone diagrammatic expression for CCD(where only double, but not sin-
gle excitations are accounted for) equals that of RPA+SOSEX[204]. RPA+SOSEX yields an
overestimated formation energy of 7.40 eV. Obviously, for the considered MgO system, there is
no advantageous error cancellation when adding SOSEX and rSE to RPA.

6.2. Charged defects in bulk MgO

In contrast to the neutral defect discussed above, the calculated energy levels and total energies
of charged oxygen vacancies in MgO are found to depend strongly on the employed treatment of
exchange and correlation of the many-electron system. A systematic approach is taken to explore
this dependence using the whole parameter range of the HSE functional family. An optimalopt-
HSE functional that correctly describes the charge excitationfor the defects is identified by
requesting that the ionization potentials obtained with the opt-HSE functional should agree with
the results of aG0W0@opt-HSE calculation.

6.2.1. Geometric relaxation

Atomic relaxation, which can make a large contribution to the formation energy, especially for
charged defects, is calculated using the semilocal exchange-correlation functional PBE for all
periodic models including all atoms in a supercell. HSE calculations are performed at these
geometries, since changes in the calculated formation energies when scaled to optimized HSE
lattice parameters are found to be negligible. (The absolute error is <0.03 eV for the most severe
case, the F2+ center, calculated with HSE06 for a bulk defect in a 64-atom supercell and for a
surface defect in an 80-atom supercell.)

When an oxygen atom is removed from the MgO lattice, the arrangement of atoms in the
vicinity of the defect will adjust to lower the energy of the system. For the neutral F center,
where two electrons remain at the defect site, the displacement of atoms is not very pronounced,
since the defect electron distribution resembles the electron distribution around an O2− anion.
Removing one or both of the defect electrons leads to a more distinct geometric relaxation. The
Mg2+ ions close to the positively charged oxygen vacancy are repelled, while the O2− lattice
ions feel an attraction. For the neutral F0 center, only the nearest neighboring atoms are in-
volved in the geometric relaxation. For charged defects, also next-nearest neighbors contribute
to the geometric relaxation around the oxygen vacancy. There is no symmetry-breaking in either
case, which was also tested by starting the relaxation from ageometry with broken symmetry
using PBE and HSE06 exchange-correlation functionals. Thegeometric relaxation for all rel-
evant charge states are quantified in Table6.2. The equilibrium PBE bulk distances between
magnesium and oxygen atoms and the oxygen vacancy site are listed together with the relaxed
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6.2. Charged defects in bulk MgO

distances for the F0, F+, and F2+ center. The relaxations are given in % with respect to the equi-
librium bulk distances. There is an outward relaxation of nearest-neighbor magnesium atoms
and an inward relaxation of nearest-neighbor oxygen atoms for F2+ and F+ centers, while for
the F0 center a weak outward relaxation of both nearest-neighboring magnesium and oxygen
atoms takes place.

Atom Eq. distance to Relaxation (%) Relaxation (%) Relaxation (%)
vacancy site (Å) F0 F+ F2+

Mg (1) 2.129 0.6 5.0 9.3
O (1) 3.011 0.3 -1.1 -2.6
Mg (2) 3.688 0.0 0.1 0.1
O (2) 4.258 0.0 0.5 1.2
Mg (3) 4.761 0.0 0.5 0.9
O (3) 5.215 0.0 -0.2 -0.4
O (4) 6.022 0.0 -0.1 -0.3
Mg (4) 6.388 0.0 0.1 0.1
O (5) 7.375 0.0 -0.1 -0.1

Table 6.2.:Outward (positive) and inward (negative) relaxation in % with respect to the equi-
librium bulk distances between close-by atoms and vacancy site. The model shown is a cut out
of a periodic 1,000-atom relaxed supercell with an F2+ center.

The more distinct the geometric changes due to the defect are, the larger is the supercell size
needed to obtain the respective relaxed structure without geometry-related interaction between
defects. This is evident from the supercell size dependenceof the relaxation energy, which is
defined as the total energy difference between the relaxed and unrelaxed system with a defect,
shown in Fig.6.8. In fact, this energy difference also incorporates size-dependent changes in
electronic polarizability, which cannot be rigorously separated from the geometric relaxation
effects. The converged relaxation energy increases drastically with defect charge, it is< 0.1 eV
for the neutral oxygen vacancy, 0.9 eV for the F+ center, and 3.0 eV for the F2+ center. A

65



6.2. Charged defects in bulk MgO

2 × 2 × 2 supercell is sufficient to obtain a relaxation energy converged within 0.01 eV for the
neutral oxygen vacancy. However, the defect-defect distance must be >12Å for the F+ center
and >16Å for the F2+ center to reach converged relaxation energies within 0.1 eV.

Figure 6.8.:Convergence of relaxation energies with supercell size forthe bulk F0, F+, and F2+

centers.2L is the supercell lattice constant. The PBE exchange-correlation functional was used.

6.2.2. Electronic structure

The most prominent feature in the electronic structure of F centers in MgO is a highly localized
defect state. For the neutral defect, this state is occupiedby two electrons. By removing one or
two electrons from the defect level, singly- or doubly-charged oxygen vacancies can be created.
As a measure for spatial localization, the spin density for the F+ center is shown in Fig.6.9,
as calculated with PBE and HSE06. The stronger localizationof the defect electrons obtained
with HSE06 is due to the reduced self-interaction error. However, in case of F centers in MgO,
there is noqualitativedifference between the PBE and HSE06 results. The strong localization
of the s-shaped defect wave function is responsible for several unique properties of F centers.
The charge density due to the two defect electrons of the F0 center resemble the missing O2−

ion so closely that the crystal lattice is hardly disturbed by the presence of the defect.
The band structures for bulk F centers show the defect level as a flat energy band close to

midgap (Fig.6.10). The absence of dispersion is a consequence of the high degree of defect-
state localization. The defect charge has only a weak influence on the position of the defect state
with respect to VBM. For the F+ center, the two spin channels are considered separately, since
the two defect spin states are no longer degenerate. Projecting the density of states (DOS) on
the basis functions of individual atoms in the system, it is shown that the defect level is mainly
due to magnesium 3s states, while the VBM is dominated by oxygen 2p states.

2If not explicitly mentioned, FHI-aimstight, tier 2 basis settings were used for periodic defect calculations for MgO
in this work. (For convergence tests see AppendixA.2.)
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6.2. Charged defects in bulk MgO

Figure 6.9.: Spin density (in Å−3) for F+, calculated with PBE (a) and HSE06 (b) using a 64-
atom supercell. Shown is a cut along the (100) plane with the defect in the center. Contour levels
are drawn in steps of 0.02 Å−3.

The positions of defect level and CBm with respect to VBM as a function of supercell size for
F centers in different charge states is shown in Fig.6.11Again, the supercell size needed to con-
verge the electronic structure increases with defect charge. Geometric relaxation is responsible
for a deviation from monotonic behavior for the 64-atom cell. Still, the position of the defect
level can be estimated within 0.1 eV from the converged result already for this smallest cell
size for all three charge states. The defect level positionswith respect to VBM, calculated with
HSE06 for a 64-atom supercell are 3.10 eV for F0, 2.30 eV for the occupied and 4.52 eV for the
unoccupied spin state for F+, and 3.77 eV for F2+. The KS bandgap calculated with HSE06 in
pristine MgO is 6.5 eV, while the experimental bandgap, measured by reflectance spectroscopy,
is 7.78 eV [179].
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6.2. Charged defects in bulk MgO

Figure 6.10.:Band structures, total density of states (DOS) (black) and species projected DOS
(magnesium blue, oxygen red) for the pristine MgO crystal and the bulk F0, F+, and F2+ centers,
calculated for a 64-atom supercell using HSE06. Defect-level occupations are marked by gray
arrows.
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6.2. Charged defects in bulk MgO

Figure 6.11.: Defect levels and CBm with respect to VBM for increasing supercell size, cal-
culated with PBE. 1/L is the reciprocal supercell lattice constant. For each supercell size, the
geometry is fully relaxed.
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6.2. Charged defects in bulk MgO

6.2.3. Opt-HSE for charge-transition levels and formationenergies

In the following, the dependence of calculated total energies on the exchange-correlation treat-
ment is analyzed by determining the formation energies for the F0, F+, and F2+ centers in the
dilute limit (i.e., for isolated defects) for different HSE functionals. To follow the extrapola-
tion procedure outlined in Sec.4.1.3, formation energies for increasing supercell sizes have to
be calculated with each functional. First, the full extrapolation curve for the charged defects is
calculated with PBE. For members of the HSE(α,ω) family that incorporate a fraction of exact
exchange, which corresponds to all cases whereα 6= 0 andω is finite, this is not a trivial task.
Hybrid functional calculations for unit cells of more than 300 atoms are currently unfeasible,
since hybrid calculations are far more time-consuming thanPBE calculations.

Figure 6.12.:Finite-size scaling for the F2+ center formation energy (ǫF=VBM, µO = 1/2EO2
).

Solid lines show least-squares fits to Eq.4.28for LDA and PBE formation energies. Formation
energies obtained with HSE06 lie on the shifted PBE curve. Accordingly, PBE coefficientsa21
anda23 are used to extrapolate to isolated defects for all members of the HSE(α,ω) functional
family.

However, it is found that the HSE06 formation energies for the two smallest supercells (64-
and 216-atom cells), lie on the same fitting curve as the PBE formation energies, but shifted by
a constant value, as shown in Fig.6.12 for the F2+ center. Therefore, formation energies for
all HSE functionals are calculated for the smallest supercell, and then extrapolated to the dilute
limit (1/L → 0) using a shifted PBE fitting function. The calculated valuesof the dilute limit
Gbulk,q

f (1/L → 0) and the coefficientsaq1 andaq3 as obtained by extrapolation, are summarized
in Table6.3. Vibrational contributions to the formation energies are discussed in Sec.6.2.4.

There is a strong dependence of the formation energies of thecharged defects on the pa-
rameters of the HSE functional family, when the Fermi level is at the VBM (see Fig.6.12).
The question arises which HSE parameter set (α, ω) should be used to describe the stability of
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6.2. Charged defects in bulk MgO

Table 6.3.: Gbulk,q
f (1/L → 0) and coefficientsaq1 and aq3 as obtained with LDA and PBE

exchange-correlation (xc) functionals forǫF=VBM andµO = 1/2Etot
O2

.

xc functional q Gbulk,q
f (1/L → 0)(eV) aq1(eVÅ) aq3(eVÅ

3
)

LDA 0 8.62 0 0
1 6.03 -2.17 20.94
2 4.21 -8.82 162.49

PBE 0 7.09 0 0
1 4.54 -1.91 20.77
2 2.82 -7.96 167.27

charged F centers in MgO correctly. To address this issue, the dependence of formation energies
and of charge-transition levels on the exchange-correlation treatment is further explored.

The charge-transition level(q + 1/q) corresponds to the Fermi level position where point
defects in charge statesq + 1 andq are in thermodynamic equilibrium with each other, so that
their formation energies coincide. The charge-transitionlevel between the singly charged and
the charge-neutral F centers is therefore given by the equilibrium conditionG1

f = G0
f , which can

be written in terms of total energies and chemical potentials as

E+
vac − E+

host + µO + ǫF = E0
vac − E0

host + µO. (6.4)

The charge-transition level follows as

(+/0) = E0
vac − E0

host −
(
E+

vac − E+
host

)
. (6.5)

In analogy, the charge transition level between the doubly charged and the singly charged F
centers is

(2 + /+) = E+
vac − E+

host −
(
E2+

vac − E2+
host

)
. (6.6)

When the neutralizing background method is applied for charge compensation, the host system
for both defect states are identically given by the neutral,pristine MgO bulk system and the
expression reduces to

(+/0) = E0
vac − E+

vac. (6.7)

In analogy, the charge-transition level between F2+ and F+ centers can be expressed as

(2 + /+) = E+
vac − E2+

vac. (6.8)

To see how the charge-transition levels and formation energies depend on (α,ω), the extrap-
olated formation energiesGbulk,q

f for F0, F+, and F2+ centers in the dilute limit are computed
for varying HSE parameter sets as a function of Fermi energy.The respective charge-transition
levels(2 + /+) and(+/0) can then be obtained at the formation energy intersections,as shown
for the example of HSE06 in Fig.6.13a. Here, oxygen-rich conditions are considered. Changing
the oxygen chemical potential results in a constant shift information energies (see Eq.4.1). For
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6.2. Charged defects in bulk MgO

example, at a chemical potential of -0.5 eV below the oxygen-rich limit, all formation energies
in Fig. 6.13a are shifted down by -0.5 eV.

Bothp-type MgO, where the Fermi level is close to VBM, andn-type MgO, where the Fermi
level is close to CBm, are covered in Fig.6.13a. In p-type MgO,q = 2 is the most stable
charge state of the bulk F center. Inn-type MgO, F0 is the most stable defect, but its formation
energy is very high. In the following, the focus is onp-type material, because of its intriguing
catalytic properties that have been outlined in the introduction (Sec.1). Only in p-type MgO the
concentration of oxygen vacancies, namely F2+ centers, in thermodynamic equilibrium can be
significant.

Figure 6.13.: a) Formation energies of oxygen vacancies in bulk MgO,Gbulk,q
f , in the dilute

limit, calculated with HSE06 using (Eq.4.1) as a function of Fermi energy, in the oxygen-rich
limit. The energy zero ofǫF is at the VBM. Charge-transition levels (2+/+) and (+/0) aremarked
by arrows. b) VBM, CBm, and charge-transition levels (Eq.6.5- 6.6) for different functionals of
the HSE family. The energy zero is at the vacuum level.

The fact that, compared to the neutral F center, the formation energies of charged defects
depend much stronger on the exchange-correlation functional, hints at a dependence of the
VBM energy level (the Fermi level in this system) on exchange-correlation treatment, since
only for charged defects the formation energy depends on theFermi energy (Eq.4.1, see also
Ref. [205]). To investigate the dependence further, the electronic structure, including VBM,
CBm, and charge-transition levels, is considered for each functional and aligned at the energy
level in vacuum. Setting the energy zero to the vacuum level corresponds to calculating forma-
tion energies and charge-transition levels for a situation, where the Fermi level is the vacuum
level. This is only considered to gain a better understanding, why for the realistic situation,
whereǫF = VBM, the formation energies depend on the exchange-correlation functional. The
vacuum level is a well-defined reference energy, which is easily accessible in cluster calculations
and can also be determined for a periodic bulk model by performing a calculation for a periodic
slab of the pristine MgO (100) surface. A vacuum region of≈ 200 Å separates repeating 5-layer
MgO slabs, where the potential in the middle of this vacuum region is the vacuum levelESurf

VAC

for the surface calculation. To obtain the energy difference between VBM and vacuum level
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6.2. Charged defects in bulk MgO

for the bulk system VBMBulk
VAC, the difference betweenESurf

VAC and the 1s core level of magne-
siumESurf

core in the middle, bulk-like layer of the slab is determined. This difference is added to
the magnesium 1s core level in the bulk systemEBulk

core , and the resulting bulk vacuum level is
subtracted from the bulk VBMEBulk

VBM obtained in the periodic bulk calculation

VBMBulk
VAC = EBulk

VBM −
(

EBulk
core + (ESurf

VAC − ESurf
core )

)

. (6.9)

VBMBulk
VAC is converged with respect to slab separation and slab thickness. The calculated values

for VBMBulk
VAC are−5.7 eV for PBE,−6.8 eV for HSE06, and−7.2 eV for PBE0.

Table 6.4.: Gbulk,q
f , (+/0), and (2+/+) in eV for F0, F+, and F2+ centers in MgO bulk in the

dilute limit, calculated with different exchange-correlation functionals using periodic boundary
conditions (pbc), employing FHI-aims. The Fermi level is the vacuum level, the numbers in
parentheses correspond to the Fermi level at VBM,µO is 1/2Etot

O2
. HSE06 provides the best

accuracy within the HSE family of functionals for the formation energy of F centers in MgO
(discussed below), and the corresponding numbers are therefore highlighted. The calculations
in Ref. [30] were performed using embedded clusters (ecm).

Method F0 F+ F2+ (+/0) (2+/+)

PBE-pbc 7.09 10.24 (4.54) 14.22 (2.82) -3.15 (2.55) -3.98 (1.72)
HSE06-pbc 7.04 10.20 (3.40) 14.16 (0.56) -3.16 (3.64)-3.96 (2.84)
PBE0-pbc 7.07 10.15 (2.95) 14.24 (-0.16) -3.08 (4.12) -4.09(3.11)

HF+MP2-ecm [30] 7.35 9.98 13.88 -2.63 -3.90

VBM, CBm, and charge-transition levels are shown in Fig.6.13b for different functionals of
the HSE family, when the Fermi level is the energy level in vacuum. In agreement with related
work on ZnO and ZrO2 by Ramprasadet al. [186], the charge-transition levels (2+/+) and (+/0)
for F centers in bulk MgO are almost independent on the exchange-correlation functional within
the HSE family, when the Fermi level is the vacuum level. Indeed, in MgO this is even true
for the corresponding formation energiesGbulk,q

f . Bulk F center formation energies and charge-
transition levels forǫF at the vacuum energy level andǫF = VBM (in parenthesis), calculated
with different exchange-correlation functionals, are summarized in Table6.4.

WhenǫF is at the vacuum level, formation energies calculated usingperiodic boundary condi-
tions and the PBE, HSE06, and PBE0 functionals as representative HSE members, agree within
0.05 eV for F0, 0.09 eV for F+, and 0.08 eV for F2+. The respective deviations for the charge-
transition levels are≤ 0.13 eV.

For the more relevant case, whenǫF is at the VBM, the formation energies depend almost
linearly on the exchange parameterα, as shown forω = 0.11 bohr−1 andω = 0.3 bohr−1 in
Fig. 6.14. This is mainly due to a linear dependence of the VBM with respect to vacuum on the
exchange parameter, since the charge-transition levels’ positions depend weakly onα whenǫF
is the energy in vacuum. Accordingly, the near-linear dependence of the formation energy onα
is approximately twice as strong for F2+ as for F+.
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6.2. Charged defects in bulk MgO

Figure 6.14.:Defect formation energiesGbulk,q
f in the dilute limit as a function of HSE exchange

parameterα for two choices of the range-separation parameter. Crossesmark the results for
HSE06. The Fermi level is at the VBM, and the chemical potential of oxygenµO = 1/2EO2

.

Next, an optimal DFT exchange-correlation functional to describe the formation energies of
F centers in MgO is identified, according to a condition on DFTionization energies. The term
ionization energyoriginally refers to the energy required to remove an electron from a system
and put it to the vacuum. This concept is used in a wider sense,referring to ionization energy
as the energy required to remove one electron from the systemand put it to the Fermi level.
For an F center in charge stateq, the ionization energy at fixed geometry describes the charging
of the defectq → q + 1. The charge transition level(q + 1/q), where the energy zero is
at the VBM (compare Fig.6.13) can be interpreted as theadiabatic ionization energy, where
geometric relaxation due to the change in charge state is accounted for and the removed electron
has been brought to the VBM. Since it is found that atomic relaxation around F centers in MgO
is described accurately already by the PBE functional, it remains to find HSE parameters that
give correct ionization energies at fixed geometry.

TheGW approach allows to accurately calculate single-particle excitation energies, which
includes the ionization potential. In practice,GW ionization energies are usually calculated
as a perturbative correction to the Kohn-Sham levels. To distinguish this approach from the
non-perturbative, fully self-consistentGW , it is usually termedG0W0@XCA, where XCA de-
notes the employed exchange-correlation approximation and is replaced by the name of the
DFT functional used as an input. The following approach is inspired by the Xα concept by
Slater [206, 207]: Such parameters of the HSE functional are found that the∆SCF ionization
energy, calculated with the corresponding functional opt-HSE, coincides with theG0W0@opt-
HSE ionization energies.

The ionization potential at a fixed defect geometry for a given functional HSE(α, ω) is

Iq→q+1
∆SCF = Eq+1

vac + ǫF −Eq
vac, (6.10)

where bothEq
vac andEq+1

vac are extrapolated to the dilute limit. ForǫF =VBM, Iq→q+1
∆SCF depends
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6.2. Charged defects in bulk MgO

on (α, ω). The requirement thatGW and HSE ionization energies agree defines the opt-HSE
functional that correctly describes the charge excitationof the defect

Iq→q+1
G0W0

= ǫF − ǫG0W0

HOMO
!
= Iq→q+1

∆SCF,opt−HSE. (6.11)

Here the HOMO level is calculated byG0W0@opt-HSE. An embedded cluster model can be
used to efficiently perform this validation step. The ionization energiesI0→+ andI+→2+ for
ω = 0.11 bohr−1 as a function ofα are calculated forǫF at VBM at F0 geometry for the em-
bedded Mg6O9 cluster model (Fig.6.7) using FHI-aims. The Fermi levelǫF is obtained as
VBM = E+1

host − Ehost using HSE functionals, and from the HOMO of the host system inthe
correspondingG0W0@HSE calculations. The ionization potentials show a near-linear depen-
dence on the exchange parameterα for both∆SCF andG0W0 methods (Fig.6.15). The starting
point dependence of theG0W0 ionization energies is weak for this system. The intersection
of the linear fits are atα=0.27 for I0→+ andα=0.26 for I+→2+, very close toα in HSE06
(α=0.25). The same result is obtained, when the HSE ionizationenergies are determined from
the highest occupied Kohn-Sham level at half occupation [45,47]. Therefore, HSE06 is used as
an opt-HSE functional that correctly describes the charge excitation of the defect. The difference
in formation energies withα=0.25 instead ofα=0.27 is negligible for F0, less than 0.1 eV for
F+, and less than 0.2 eV for F2+.

Figure 6.15.: Ionization potentialsIq→q+1 at F0 geometry calculated for an Mg6O9 embedded
cluster using the∆SCF method with HSE functionals (black circles) and from theHOMO of a
G0W0@HSE calculation (blue squares). The screening parameter is ω = 0.11 bohr−1. Solid
and dashed lines show linear fits toI0→+ andI+→2+ as a function of exchange parameterα.
Red crosses show the Kohn-Sham eigenvalues at half occupation.

Furthermore, it has been found in Sec.6.1 that DFT+∆CCSD(T) results of the F0 formation
energy are in good agreement with the HSE06 F0 formation energy. Thus, HSE06 is the opt-
HSE functional in accordance withGW as well as coupled-cluster results, and can be used to
accurately calculate F0, F+, and F2+ center formation energies and related properties in MgO.
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6.2. Charged defects in bulk MgO

6.2.4. Changes in lattice vibrations due to defect formation

Vibrational contributions to defect formation energies become important, if there is a consider-
able change in phonon modes and therefore in the vibrationalfree energy between host system
and system with a defect. The following vibrational free energy estimates are based on DFT
calculations of 64-atom bulk cells at PBE level, and were obtained as described in Sec.4.1.2.
In fact, neither for the neutral nor for the charged bulk defects the vibrational energy differs
severely from that of the pristine MgO bulk system at technologically relevant temperatures. In
Fig. 6.16the vibrational energy contributions

∆Fvib(T ) = F def
vib − F perf

vib (6.12)

to the formation energiesGq
f for the F0, F+, and F2+ centers are shown as a function of tem-

perature. For temperatures between 0 and 1,200 K the absolute value of∆Fvib does not exceed
0.13 eV for any of the defects.

Two aspects are important for the change in vibrational energies between the system with
and without an oxygen vacancy. On the one hand, one atom is removed, and consequently in
the system with a defect there is one nucleus less than in the pristine system that contributes to
the phonon energy. This effect dominates in the whole temperature range shown for the neutral
oxygen vacancy. On the other hand, for an F2+ center atT ≥ 800K and for an F+ center at
T ≥ 1,000K the gained spatial freedom of the nuclei next to the vacancy becomes important,
so that the vibrational energy is actuallyhigher than in the pristine system.

Figure 6.16.:Vibrational free energy contributions to the formation energies of the bulk F0, F+

and F2+ centers as a function of temperature (based on PBE).

6.2.5. vdW effects on defect formation energies

HSE exchange-correlation functionals do not comprise non-local correlation. Therefore, the
long-range contribution of the van der Waals (dispersion) interaction is not captured by the HSE
functional family and has to be computed separately. The two-body van der Waals energy is due
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6.2. Charged defects in bulk MgO

to the electrostatic interaction between fluctuating dipoles. For atoms in a solid, not only short-
range effects due to the local environment but also long-range effects play a role. The long-range
interactions arise, since fluctuating dipoles interact electrostatically with more distant fluctuating
dipoles, creating a correlated, dynamic electric field. This dynamic field in turn has a local
influence on the environment of each dipole. Therefore, van der Waals dispersion interactions
arise on the one hand due to short-range and on the other hand due to long-range interactions,
which both cause local variations in the electron density and influence the polarizability of the
atoms in the system.

In pristine MgO the long-range interactions between fluctuating dipoles cancel due to the
cubic symmetry of the lattice. However, removal of an oxygenatom breaks the symmetry and
leads to a change in van der Waals contribution to the total energy of the system.

The long-range effects that are missing in HSE can be taken into account by solving the
self-consistent screening equation of classical electrodynamics as suggested by Tkatchenkoet
al. [208], using TDDFT-based atom-in-solid reference polarizabilities as discussed by Zhanget
al. [209]. Applying this methodology to F centers in MgO, DFT calculations of 64-atom bulk
cells at PBE level are performed, partitioning the electrondensity using the Hirshfeld partition-
ing method [114]. The frequency-dependent dielectric constant of MgO, from which the polariz-
ability is obtained, has been calculated In Ref. [209], applying time-dependent DFT using HSE
exchange-correlation treatment, coupled with the Nanoquanta non-local exchange-correlation
kernel, which includes excitonic effects. The Hirshfeld weights from the PBE DFT calculation
are used here to partition this polarizability. Solving theself-consistent screening equation

αSCS(r, iω) = αTDDFT(r, iω) + αSCS(r, iω)

∫

dr′T (r − r′)αSCS(r′, iω), (6.13)

whereT (r − r′) is the dipole-dipole interaction tensor, results in the atomic screened polariz-
ability tensorsαSCS

at . The C6 coefficient to the pairwise interatomic C6/r6 term follows from the
Casimir-Polder integral [210,211]. The van der Waals energy can then be computed according
to

EvdW = −1

2

∑

A,B

fd(RAB,R
0
A,R

0
B)C

AB
6 R−6

AB, (6.14)

summing over all pairs of atoms A and B. The van der Waals radiiR0
i were originally defined

as half the distance at which the Pauli repulsion balances the London dispersion attraction. In
a solid this is defined such that it depends on the corresponding partitioned polarizability [209].
fd(RAB,R

0
A,R

0
B) is a damping function that removes the singularity ofR−6

AB at small distances.
Obviously, the van der Waals contribution to the total energy of the pristine MgO host system

and each system with a defect is negative. It is found that thecorrection is larger for the pristine
systems. This results in a positive correction to the formation energy of the defect

∆EvdW = ED
total,vdW − Ehost

total,vdW. (6.15)

The calculations show that the contribution of the van der Waals interaction tails increases the
defect formation energy only slightly for the neutral oxygen vacancy (0.13 eV). However, for the
charged defects it becomes more important. It contributes 0.23 eV to the defect formation energy
of the singly charged defect, and 0.32 eV for the F2+ center. The van der Waals correction to
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the formation energy increases with the charge state of the defect. This can be understood
qualitatively from the electronic structure of the defects. The electronic configuration for the
neutral F center is very similar to that of the pristine system, due to the two defect electrons being
localized at the defect site resembling the O2− ion that held this position before. Removing
one or two of these defect electrons changes the polarizability of the electronic structure in
the vicinity of the defect more drastically. This leads to a larger change in C6 coefficient and
consequently to a larger contribution of van der Waals interaction to the formation energies for
the charged defects than for the neutral F center.

6.3. Summary

In this chapter F centers in bulk MgO have been analyzed. It has been shown that formation en-
ergies of charged F centers in MgO bulk exhibit a near-lineardependence on the HSE exchange
parameterα for a fixed screening parameterω, due to a variation in VBM with respect to vacuum
level withα. To find a reliable exchange-correlation description, it has been requested that the
opt-HSE vertical ionization energy, defined as the energy required to remove an electron from
the system and put it to a Fermi level, calculated using the∆-SCF method or Kohn-Sham level
at half occupation, should agree with the respectiveG0W0@opt-HSE value, obtained from the
HOMO of the same system. It is found that HSE06 qualifies as an opt-HSE functional for the de-
scription of F centers in MgO. This has been confirmed by CCSD(T) calculations of the neutral
F center formation energy. The only available experimentalestimate for the formation energy
of the F0 center in MgO [26] is a significant overestimate, most likely since thermodynamic
equilibrium was not reached in the experiment.
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7. F centers at the MgO (100) surface

Understanding and quantitative characterization of the stability of defects at oxide surfaces is
of great value for heterogeneous catalysis. In the first partof this work, anab initio method
to calculate interacting defects’ concentrations at realistic conditions has been developed. A
reliable functional to be used for the respective DFT calculations of F centers in MgO has been
identified. In the following, properties of charged F centers at doped MgO surfaces are analyzed
applying the VCA to model charged surface systems, using theHSE06 exchange-correlation
functional for quantitatively accurate total-energy differences and energy levels, and calculating
formation energies and concentrations at realistic ambient conditions, including defect-defect
interactions and space-charge effects.

The focus of this chapter and at the same time the highlight ofthe applications part of this
thesis is the analysis ofFs centers in different charge states at the MgO (100) terrace.Electronic
and geometric relaxation effects are discussed, and charge-transition levels, formation energies,
and defect concentrations are calculated for realisticp-type dopant concentrations.

If not stated otherwise, surface systems are calculated using 5-layer slabs separated by a vac-
uum region of 200 Å. The two lattice vectors along the surfaceplane are orthogonal and have
equal length. The defect is created on one side of the slab. Basis and grid settings are the same
as for the bulk calculations (for convergence tests see appendix). Relaxed atomic coordinates
for all atoms in the system were calculated using the PBE exchange-correlation functional, and
single-point calculations at the relaxed coordinates wereperformed with HSE functionals.

7.1. Geometric relaxation

First, the pristine MgO surface (without defects) is considered. The (100) termination reduces
the coordination of surface atoms with respect to their bulkcounterparts. The interatomic dis-
tance between a surface oxygen atom and its nearest-neighboring subsurface magnesium atom
increases by 1.1 %, while surface magnesium atoms relax inwards by -0.7 %, where relaxed
coordinates were obtained using PBE exchange-correlationtreatment. This outward/inward re-
laxation is due to different polarizabilities of the magnesium cations and oxygen anions at the
pristine surface and is often referred to as surface rumpling [212, 213]. The displacements of
subsurface atoms from bulk positions is below 0.1 %.

Compared to the bulk F centers, the atoms neighboring anFs center at the surface are less con-
fined. As for the bulk defects, for the surfaceFs centers geometric relaxation depends strongly
on the charge state of the defect. In Table7.1the equilibrium distances between an oxygen atom
at the surface and close-by atoms are listed and the change inthese distances due to relaxation
for anF0

s , F
+
s , andF2+

s center are reported. For the neutralF0
s center, all nearest-neighbor atoms

relax slightly outward from the vacancy, as for the neutral bulk F0 center. For the singly- and
doubly-charged surface defects, there is a strong outward relaxation of nearest-neighbor mag-
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7.1. Geometric relaxation

Atom Eq. distance to Relaxation (%) Relaxation (%) Relaxation (%)
vacancy site (Å) F0 F+ F2+

Mg (1) 2.130 3.1 7.4 11.8
Mg (2) 2.153 1.4 5.2 10.6
Mg (3) 2.153 0.0 0.6 1.6
O (1) 3.011 0.7 -1.8 -5.9
O (2) 3.034 -0.7 -1.7 -6.7
O (3) 4.258 0.6 1.0 1.9
O (4) 4.288 -0.2 0.2 1.2
Mg (4) 4.761 0.5 1.0 1.8
Mg (5) 4.788 -0.1 0.4 1.3
O (5) 6.022 0.3 -0.2 -0.7
O (6) 6.044 -0.1 -0.3 -1.0

Table 7.1.:Outward (positive) and inward (negative) relaxation in % with respect to the equi-
librium distances at the pristine surface between close-byatoms and vacancy site. The model
shown in side view (a) and top view (b) is a cut out of a periodic1,620-atom relaxed MgO (100)
surface slab with anF2+

s center. The PBE exchange-correlation functional was used.

nesium and a less pronounced inward relaxation of nearest-neighbor oxygen atoms. Similar to
charged F centers in the bulk, removing defect electrons destabilizes the ionic lattice: Relative
to the original site there is a net positive charge in the vacancy, so that Mg2+ cations are repelled
and O2− anions are attracted to the vacancy, and the deformation of the lattice increases with
the positive charge of the vacancy fromF+

s toF2+
s (Tab.7.1). In Fig.7.1the relaxation energies

as a function of supercell lattice constantL are shown for the surface defects, calculated using 5
layers in the slab, and for comparison also for the bulk defects. In accordance with the stronger
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7.1. Geometric relaxation

Figure 7.1.: Convergence of relaxation energies with supercell size forthe surfaceF0
s , F

+
s , and

F2+
s centers (filled symbols and solid lines) and for the bulk F0, F+, and F2+ centers (open

symbols, dashed lines).L is the supercell lattice constant, whereL = Lx = Ly parallel to the
surface for the surface defects andLz is kept fixed, so that the extent of the vacuum region is
200 Å. The slab thickness is 5 layers. The PBE exchange-correlation functional was used.

deformation of the crystal lattice around the charged defects for the surface, the relaxation en-
ergy is larger for the surface than for the bulk defects. The energy of the system is lowered
due to geometric relaxation by 0.11 eV, 1.21 eV, and 3.23 eV for F0

s , F+
s , andF2+

s , respectively.
Supercells with a separation between the point defect and its nearest image of at least 4 lattice
constants (for PBE this corresponds to 17.035 Å) have to be used to obtain the relaxation energy,
converged within 0.1 eV forF2+

s . At this lateral cell size, 4, 5 and 6 layer slabs yield the same
relaxation energy within 0.05 eV (Fig.7.2).
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Figure 7.2.: Convergence of relaxation energies, calculated using PBE,for the F2+s center with
the number of MgO layers in the slab. The supercell lattice parameters parallel to the surface are
kept fixed toLx = Ly = 17.035 Å.

The results presented here for the F center relaxation energies show that typical sizes of super-
cells (64 atom bulk cell,L < 8.5 Å [214]) and embedded cluster models (≤ 33 atoms in a bulk
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7.2. Electronic structure

and a surface model, embedded with effective core potentials and point charges [30]) that have
been used in the literature to calculate charged F centers inMgO, are not sufficient to obtain
relaxation energies converged within 0.1 eV.

7.2. Electronic structure

Also the electronic relaxation forFs centers at the surface is less confined than for the bulk
defects. As an example, the defect level wave function is shown in Fig.7.3 for theF2+

s center.
Note that the defect level is unoccupied in this case. The defect state spills out only weakly
at the surface, it is still clearly localized in ans-orbital shape in the vacancy, withp-shaped
contributions mainly on the nearest-neighboring oxygen atoms in the top layer. This is similar
to the strongly confined defect states of the bulk oxygen vacancies. The defect state localization
at the surface is an important aspect when considering for instance adsorption of molecules like
hydrogen or water at surface F centers.

Figure 7.3.: Side view (a) and top view (b) of the defect level wave function (in Å− 3

2 ) of the
MgO (100) surface with anF2+

s center at (0,0), calculated with HSE06 using a6 × 6× 5 atom
slab. Contour levels are drawn in steps of 0.05 Å− 3

2 .

The MgO (100) surface introduces surface bands in the bandgap, close to the CBm and at
the VBM. Fig.7.4a shows the surface band structure, computed using a 9-layerslab, and total
density of states (DOS) with projected bulk energy bands andDOS. All DOS shown in Fig7.4
have been normalized by dividing by the number of electrons in each system. The energy zero is
at the VBM. The calculations were performed using the HSE06 functional. The projected DOS
for the middle layer of the slab agrees well with the DOS obtained from the bulk calculation,
when slabs with≥5 layers are used, showing that the atoms in the central layerof the slab
have bulk character (Fig.7.4b). Also for the DOS projected on the surface layer there are only
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7.3. Formation energy of the neutral oxygen vacancy at MgO (100)

small quantitative changes when the slab thickness in the calculation is increased from 5 to 9
layers. However, a 3 layer slab is clearly not sufficient to describe the electronic structure of the
semi-infinite MgO (100) system.

The HSE06 bandgap for the surface system is smaller than for MgO bulk, since compared to
the bulk, the 3s states of the magnesium atoms in the surface layer, which determine the CBm,
are shifted by 1.2 eV to lower energies (Fig.7.4a).

Figure 7.4.:a) Band structure and total density of states (DOS, normalized to DOS per electron)
for the pristine MgO (100) surface (black) with the total bulk band structure and normalized
DOS projected onto the surface (gray shaded), calculated with HSE06. The primitive simple
cubic unit cell (2x2x2 atoms) for the bulk and a 9-layer slab (2x2x9 atoms) for the surface was
used. The projected DOS per electron for the atoms in the middle layer of the slab is shown for
comparison to the bulk DOS obtained with the bulk model. b) Projected DOS per electron for
the middle layer (blue) and the surface layer (red) of 3, 5, 7,and 9 layer slabs, and bulk DOS per
electron (gray), calculated with HSE06.

The surfaceFs center defect levels are deep in the bandgap – as their bulk counterparts. For
an estimate of the charged Fs center defect level positions, slabs of at least 6x6x5 atomsshould
be used for an accuracy of≤ 0.2 eV (tested for PBE). Calculated with HSE06, the defect level
position for theF2+

s center is 3.4 eV above the VBM, while the bandgap is 5.1 eV.

7.3. Formation energy of the neutral oxygen vacancy at MgO (100)

The published formation energies of the neutralF0
s center calculated at different levels of the-

ory are summarized in Fig.7.5. Vibrational contributions to the formation energy are discussed
in Sec.7.6. For the neutral defect already small cell sizes (L=8.2 Å, compare Fig.7.1) are
sufficient to obtain converged, relaxed coordinates. In most of the cluster models used for calcu-
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7.3. Formation energy of the neutral oxygen vacancy at MgO (100)

lations shown in Fig.7.5, only nearest-neighbor atoms were relaxed around the vacancy and the
cluster size was not tested with regard to relaxation energyconvergence. However, the error in
formation energies due to models too small to fully include geometric relaxation, is≤0.11 eV,
which corresponds to the converged relaxation energy of theF0

s center. The trends observed for
the neutral bulk F0 center are also valid for the surface defect: Using LDA as an approximation
to the exchange-correlation energy leads to larger formation energies, while not including elec-
tron correlation (HF) yields lower formation energies compared to the results obtained with HSE
functionals. Formation energies calculated with PBE, HSE06, and PBE0 agree within0.1 eV.

Figure 7.5.:F0
s center formation energy forµO = 1/2Etot

O2
(literature results were recalculated

using the experimental O2 binding energy) for different types of exchange-correlation treat-
ment. Red circles show results obtained within this work, orange triangles were calculated in a
collaboration with S. Sicolo and J. Sauer [185]. From literature, periodic DFT calculations at
LDA level (blue circle, [27]), GGA level (purple circle, PBE [215]), and using HF (green cir-
cle, [174]), as well as embedded cluster calculations applying B3LYP(yellow triangle, [112]),
HF (blue triangle [216] and black triangle [30]), and HF+MP2 (black triangle [30]) are shown
for comparison.

The formation energy for the F0s center, calculated with an unrelaxed Mg5O5 embedded clus-
ter model with the CCSD(T) method, yields corrections∆CCSD(T) for the DFT formation
energies of -0.26 eV for PBE, -0.01 eV for PBE0, and -0.28 eV for B3LYP. From the corrected,
converged DFT+∆CCSD(T) and from the embedded cluster and periodic HSE06 results, a for-
mation energy with a reliable error bar of6.28 ± 0.05 eV is obtained for the F0s center. For
comparison, the corresponding bulk defect formation energy is 6.95 ± 0.10 eV. The calculated
formation energy values that were used to obtain these results are shown in Table7.2.
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7.4. Charge-transition levels and formation energies in the dilute limit

Table 7.2.: Most reliable values of the formation energiesG0
f in eV for the F0 center in MgO

bulk and for theF0
s center at the MgO (100) terrace, calculated using embedded cluster models

(ecm) and periodic boundary conditions (pbc). Embedded clusters Mg14O19 for the bulk and
Mg50O50 for the surface were used for the DFT formation energies at relaxed geometric coordi-
nates around the defect. The CCSD(T) corrections for each functional were obtained using bulk
Mg6O9 and surface Mg5O5 embedded clusters. The MgO supercells in the periodic calculations
include 64 atoms for the bulk and 80 atoms for the slab, where all coordinates are fully relaxed.
The chemical potential of oxygenµO 1/2EtotO2

. The final resultsG0
f = 6.95 ± 0.10 eV for the F0

center andG0
f = 6.28 ± 0.05 eV for theF0

s center are calculated by taking the average of the
values listed in this table for the bulk and the surface defect, respectively.

Method F0 F0
s

HSE06-pbc∗ 7.04 6.34
HSE06-ecm∗ 7.05 -

PBE [∆CCSD(T)]-ecm† 6.94 [-0.09] 6.49 [-0.26]
PBE0 [∆CCSD(T)]-ecm† 6.81 [+0.07] 6.26 [-0.01]

B3LYP [∆CCSD(T)]-ecm† 7.17 [-0.28] 6.61 [-0.28]

∗calculated using FHI-AIMS

†calculated using TURBOMOLE in collaboration with Prof. Sauer’s Theoretical Chemistry Group, HU Berlin

7.4. Charge-transition levels and formation energies in the dilute
limit

The formation energies for the charged surface vacancies are first calculated using the PBE
exchange-correlation functional for increasing lateral supercell parameters. As discussed in
Sec.4, the formation energy as a function of defect concentrations can be extrapolated to the
dilute limit of a vanishing defect concentration and the coefficients, obtained from fitting the
calculated values to Eq.4.29, can be used to obtain the dependence of the surface defect for-
mation energies on the surface charge. This information is used in the thermodynamic model to
describe the concentrations of interacting surface defects (Eq.4.42). As for the bulk (Fig.6.12),
it is found that the surface F center formation energies calculated using HSE for the two smallest
cells (4× 4× 5 and6× 6× 6 atom slabs) lie on the PBE fitting curve, but shifted by a constant
value. Therefore, the HSE fitting parametersaqi in Eq. 4.29can safely be approximated by the
PBE coefficients, when the formation energy as a function of defect concentration is calculated.
It has been shown that HSE06 is the opt-HSE functional to describe F centers in MgO. Still, for
completeness, formation energies in the dilute limit (neglecting contributions due to phonons)
and charge-transition levels calculated for different exchange-correlation functionals are listed
in Table7.3.

The work function for a pristine MgO slab is the energy at the VBM with respect to the
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7.4. Charge-transition levels and formation energies in the dilute limit

Table 7.3.: GVCA,q
f , (+/0), and (2+/+) in eV for theF0

s , F
+
s , andF2+

s centers at the MgO
(100) terrace in the dilute limit, calculated with different exchange-correlation functionals using
periodic boundary conditions (pbc) and embedded cluster models (ecm). The Fermi level is the
vacuum level. The numbers in parentheses are calculated forthe Fermi level at VBM.µO is
1/2EtotO2

. Values taken from literature have been converted to the molecular oxygen reference
using the experimental O2 binding energy. Formation energies calculated with HSE06 promise
the best accuracy within the HSE functionals and are therefore highlighted.

Method F0
s F+

s F2+
s (+/0) (2+/+)

PBE-pbc∗ 6.48 9.48 (4.18) 13.28 (2.68) -3.00 (2.30) -3.80 (1.50)
HSE06-pbc∗ 6.34 9.06 (2.76) 13.15 (0.55) -2.72 (3.58) -4.09 (2.21)
PBE0-pbc∗ 6.33 9.26 (2.56) 13.55 (0.12) -2.93 (3.77) -4.26 (2.44)

B3LYP-ecm [112] 6.46 8.96 13.46 -2.50 -4.50
HF+MP2-ecm [30] 6.74 8.17 11.46 -1.43 -3.29

∗calculated using FHI-AIMS

†calculated using TURBOMOLE in collaboration with Prof. Sauer’s Theoretical Chemistry Group, HU Berlin

energy in vacuum VBMVAC. Calculated with PBE, HSE06, and PBE0 VBMVAC is -5.3 eV,
-6.3 eV, and -6.7 eV, respectively. The work function corresponds to the ionization energy for
the pristine surface that has been estimated as -6.7 eV usingthe B3LYP functional by Sushkoet
al. [112], and was determined experimentally as -6.7± 0.4 eV from metastable impact electron
spectra (MIES) on different MgO samples by Kantorovichet al. [217]. The reason for the rather
large error bar in the experimentally determined value is not explicitly given in Ref. [217]. Most
likely it is due to averaging over results obtained with different samples and the peak width in
the MIES spectra. Using MIES, excited (metastable) He* atoms are brought close to the sample
surface and interact with the surface atomic layer. In the case of MgO (100), electrons from
the 2p states of surface oxygen atoms tunnel into 1s states of the He* atoms which leads to
simultaneous release of 2s electrons from helium. The energy of these released electrons is
measured and used to determine the ionization energy for thesample surface. The advantage of
using MIES for these measurements is that it is a surface-sensitive technique, where electrons
only from the surface top layer can be removed and probed without spurious effects from deeper
layers. (For more details see Ref. [112,217].) The experimental value for the ionization energy
of the pristine MgO (100) surface agrees with the B3LYP result reported in Ref. [112], and with
the HSE06 and PBE0 periodic calculations in this work.

As for the bulk defects, formation energies and charge-transition levels in the dilute limit agree
between different exchange-correlation treatments, if the Fermi level is the vacuum level. IfǫF
is at the VBM, as in the case ofp-type MgO, total energy differences and energy levels depend
strongly on the functional. For all functionals, the order of stability for the Fs center charge state
is F2+s > F+

s > F0
s , as for the bulk defects. The formation energies obtained with the optimal

functional, HSE06, differ by more than 2 eV between different charge states. Although this
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7.5. Concentrations and formation energies of interactingFs centers

is still under the assumption of very low defect concentrations, this indicates that F2+s centers
should be the most abundant defects at the (100) surface ofp-type MgO in thermodynamic
equilibrium.

7.5. Concentrations and formation energies of interactingFs

centers

To obtain equilibrium concentrations of interacting defects, the formation energies as a function
of surface charge densityσ, for a slab thicknessd corresponding to 5 MgO layers, are calculated
for theF+

s andF2+
s centers according to

GVCA,q
f (σ,d, ǫF , µO) = GVCA,q

f (σ → 0,ǫF , µO)+aq1

(
σ

qe

) 1

2

+aq2(d)

(
σ

qe

)

+aq3(d)

(
σ

qe

) 3

2

.

(7.1)
The extrapolation curve for theF2+

s center, using Eq.7.1, has already been shown in Fig.4.5
in Sec.4.2.2, where the methodology was discussed. The calculated values of the dilute limit
GVCA,q

f (σ → 0) and the coefficientsaqi , i = 1-3, as obtained by extrapolation, are summarized
in Table7.4.

Table 7.4.:GVCA,q
f (σ → 0) as obtained with the HSE06 functional, and coefficientsaqi , i = 1-3

for a 5-layer surface slab system (ǫF=VBM, µO = 1/2Etot
O2

).

q GVCA,q
f (σ → 0)(eV) aq1(eVÅ) aq2(eVÅ

2
) aq3(eVÅ

3
)

0 6.34 0 0 0
1 2.76 -4.93 24.76 42.29
2 0.55 -17.49 80.86 258.11

Next, the artificial restriction to the width of the slab is removed by subtracting the energy due
to formation of the space-charge region in the slab,

qESC =
q2e

6ǫrǫ0

d

L2
=

q2ed

6ǫrǫ0

(
σ

qe

)

. (7.2)

For consistency, the extrapolation is performed again, this time using the analytic expression for
the coefficientaq2,

aq2 =
q2e

6ǫrǫ0
d, (7.3)

as determined by comparing Eq.7.2with Eq.7.1. The formation energy in the dilute limit and
the coefficientsaqi , i = 1-3 as obtained from this second extrapolation procedure arelisted in
Table 7.5. GVCA,q

f (σ → 0) andaq1 agree well with the values obtained only from the DFT
data points.aq1 characterizes the dependence of the electrostatic interaction between surface
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7.5. Concentrations and formation energies of interactingFs centers

charge and compensating charge within the space-charge region zSC. As discussed and shown
in Sec.4.2.2(see also Fig.4.5) the coefficientaq3 only becomes important for smallL, corre-
sponding to surface defect concentrations >10%.

Table 7.5.:GVCA,q
f (σ → 0) as obtained with HSE06 and coefficientsaqi , i = 1-3 for the 5-layer

slab (ǫF=VBM, µO = 1/2Etot
O2

), whereaq2 was obtained from Eq.7.3.

q GVCA,q
f (σ → 0)(eV) aq1(eVÅ) aq2(eVÅ

2
) aq3(eVÅ

3
)

0 6.34 0 0 0
1 2.77 -5.30 30.69 14.35
2 0.60 -20.13 122.78 62.93

Now the formation energy as a function of the surface charge densityσ for a uniform distri-
bution of dopantsND in the semi-infinite crystal is known, according to

GVCA,q
f (σ) = GVCA,q

f (σ,d)− qESC(σ,d) + qESC(σ,zSC), (7.4)

where the surface charge densityσ = eη1 + 2eη2 is determined by the concentrationsη1 andη2
of the charged defects F+s and F2+s . The formation energyGVCA,q

f (σ) can be understood as the
energyper defectneeded to createat oncea certain defect concentration, corresponding to a sur-
face charge densityσ. When defects are not created at once butone by one, each of them causes
an infinitesimal change in Gibbs free energy of the system. Minimizing the Gibbs free energy of
the system using Eq.4.41– including electrostatic interaction terms and configurational entropy
of the defects – can be interpreted as starting from an initial arbitrary concentration and creating
and annihilating defects one by one until this is no more energetically favorable. This results
in the equilibrium concentration of oxygen vacancies at thep-doped MgO (100) surface and
the formation energyGq

f (σ,T,pO2
,ND,ǫF) (Eq. 4.42) that corresponds to the energy needed to

create a surface oxygen vacancy at the given temperatureT , oxygen partial pressurepO2
, dopant

concentrationND and equilibrium surface charge densityσ.
For oxygen vacancies at thep-doped MgO (100) surface the concentrations of F0

s and F+s
centers are found to be negligible at realistic conditions.The F2+s concentrationη2 as a function
of ND is shown in Fig.7.6, left panel, for catalytically relevant temperatures and typical pressure
(pO2

= 1 atm). The corresponding width of the space-charge layerzSC is shown in Fig.7.6,
right panel. Although the F2+s Gibbs free energy of formation atσ → 0 is small or even
negative at elevated temperatures, the equilibrium defectconcentration does not exceed∼ 1%
at ND ≤ 1018 cm−3. The space-charge layer formation and resulting band-bending effects
that limit the surface defect concentration dominate over the electrostatic attraction between
defect-induced surface charge and compensating charge. This means that space-charge layer
formation can be a mechanism by which wide-bandgap semiconductor surfaces remain stable
at high temperatures. The space-charge layer depth is∼ 10 − 100 nm for realistic dopant
concentrations.

For high dopant concentrations also the vacancy concentration increases and the difference
between the defect concentrations atT = 400 K andT = 1,000 K becomes negligible. The
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7.5. Concentrations and formation energies of interactingFs centers

Figure 7.6.: Left: F2+
s center concentration as a function of dopant concentrationND for two

different temperatures, oxygen partial pressure of 1 atm,ǫF = VBM, andµO = 1/2Etot
O2

.
Right: Dependence of the space-charge depthzSC onND.

Figure 7.7.: Gibbs free energies of formation of theF2+
s centerG2

f (black), and the individual
energy contributions due to electrostatic attraction between defect-induced surface charge and
compensating charge (red) as well as due to band bending (orange) as a function of dopant
concentration for the F2+s center at thep-doped MgO (100) surface forT = 400 K (left) and
T = 1,000 K (right) at a partial pressure of oxygenpO2

=1 atm andǫF=VBM. For comparison
also the formation energy of theF2+

s center in the dilute limitσ → 0 is shown (blue).

reason for this can be understood by considering the different energy contributions to the for-
mation energy of theF2+

s center. In Fig.7.7 the formation energyG2
f is shown as a function

of dopant concentration together with the individual electrostatic terms – due to attraction be-
tween surface charge and compensating charge, and due to band bending. It can be seen that
these electrostatic terms become dominant at high dopant concentrations, so that temperature
effects are suppressed. For comparison also theF2+

s center formation energy in the dilute limit
G2

f (σ → 0) is shown. ForT = 1,000 K and a realistic dopant concentration ofND = 1018cm−3

the formation energy of the interacting defect is≈1 eV higher than the formation energy in the
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dilute limit. At these conditions the electrostatic attraction term is -0.31 eV and the band bending
term is 1.27 eV. The formation energies for the interacting surface F centers in all three charge

Figure 7.8.: a) Gibbs free energies of formationGq
f of F centers at the MgO (100) surface

for T = 1,000 K and partial pressure of oxygenpO2
=1 atm, as a function of Fermi energy,

ǫF, where the energy zero is at the VBM. Realistic dopant concentration ND=1018 cm−3 and
surface chargeσ = 2.6 · 1012 e

cm2 (solid lines) and the dilute limitσ → 0 (dashed lines) are
shown. b) Inp-type MgO (ǫF=VBM) under realistic conditions, band bending, due to formation
of a space-charge region, limits the formation of surface F2+

s centers.

states at these conditions, and the corresponding band bending profile, are shown in Fig.7.8.
Also here it can be seen that the band bending energy dominates over the contribution due to
attraction between defects and compensating charge density, raising the formation energies of
the charged oxygen vacanciesF+

s andF2+
s at the surface (Fig.7.8a). The amount by which the

formation energy of the interacting defects is raised in comparison with the formation energies
in the dilute limit, is larger for theF2+

s center than for theF+
s center. This implies that if two

charge states of a defect in a metal oxide are close in stability, comparing formation energies
only in the dilute limit can even predict a wrong hierarchy indefect stabilities for the interact-
ing system. Forp-type MgO, both the dilute-limit estimate and the full treatment of interacting
defects yield a stability order ofF2+

s > F+
s > F0

s , where the concentrations ofF+
s andF0

s cen-
ters are negligible. However, the space-charge effects on the defect formation energies are still
severe. For the conditions shown in Fig.7.8a, if the band bending was not taken into account,
the (100) surface ofp-doped MgO would be predicted to be unstable. The band bending profile
(Fig. 7.8b) shows that in a realistic situation this does not happen, because the bulk bands bend
downwards by 0.6 eV, and the (2+/+) charge-transition levelis lowered from 2.2 eV to 1.7 eV
above the Fermi level. This makes it energetically less favorable for charged defects to form,
and limits their concentrations.

Note, that also in the bulk, the hierarchy of defect stabilities inp-type MgO isF2+ > F+ >
F0. In fact, for the conditions discussed above for the surfaceoxygen vacancies,T = 1,000 K,
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7.6. Lattice-vibration effects on surface-defects energetics

pO2
= 1 atm, andǫF=VBM, the formation energy in the dilute limit for the F2+ center in MgO

bulk is -0.54 eV, implying that F2+ centers can readily form in the bulk as far as compensating
dopants are available. If all free charge carriers due top-type dopants transfered to oxygen va-
cancies, it would mean that the material would no longer exhibit p-type conductivity. However,
in experiment it has been shown that MgO, which has been dopedwith electron acceptors, as
for example lithium-doped MgO, is indeedp-type conducting [32]. Reasons for hindered for-
mation of bulk defects can for example be kinetic limitations, where diffusion mechanisms of
dopants and vacancies play a role. Furthermore, hydrogen isusually present in experiment and
can change the defect properties.

7.6. Lattice-vibration effects on surface-defects energetics

Vibrational energy contributions for the surface defect formation energies can be calculated in
the same way as for bulk defects, as described in Sec.6.2.4, using the PBE exchange-correlation
functional and the finite displacement method for a 5-layer slab model containing 80 atoms per
unit cell. For the neutral F0s center, the vibrational free energy contribution to the Gibbs free
energy of formation is 0.01 eV, and is therefore negligible,while for temperatures≥ 500 K its
contribution is≥ 0.15 eV.

For charged surface defects charge compensation is provided via the VCA, altering the nu-
clear charges of the magnesium atoms in the system, and this has consequences for the calculated
vibrational energy. Consider the F2+ center in the bulk, where the vibrational free energy con-
tribution to the formation energy as a function of temperature can be calculated with both the
neutralizing background method (red, solid line in Fig.7.9) and the VCA (red, dashed-dotted
line).

The reference vibrational energy is in both cases that of thepristine system with natural
nuclear charges. Applying the VCA and therefore reducing the magnesium nuclear charge
by δq leads to a decreased repulsion between the Mg2+ cations in the crystal, according to
(qVCA

Mg )2 = (2− δq)(2− δq) ≈ 4− 4 δq, as well as to a decreased attraction between O2− ions
and Mg2+ cations, proportional toqVCA

Mg qO = (2− δq)(−2) = −4 + 2δq. Since the first effect
is stronger (by a factor of 2), the potential energy surface becomes stiffer. The phonon frequen-
cies are higher and consequently the vibrational free energy estimate is at a higher energy than
that obtained based on the neutralizing background method.By increasing the nuclear mass of
atoms in the system, the VCA vibrational energy curve can be adjusted to the background-based
result. For F2+ in the 64-atom unit cell, changing the nuclear masses of all atoms in the unit cell
by 1% makes the VCA curve agree within 0.01 eV with the neutralizing background method
(red, dotted line in Fig.8.3). (Note, thatδq and therefore also the scaling factor depend on the
size of the supercell.) The correction to nuclear masses derived from the bulk calculations can
then be used to determine the corrections for surface defects, to which only the VCA approach
is applicable.

Estimates of the vibrational energies of charged surface defects using models of 5-layer slabs
with 4× 4 or 6× 6 atoms per layer or an 11-layer slab with4× 4 atoms per layer with the finite-
displacement method show that these supercell sizes are insufficient to yield converged results.
To obtain accurate estimates for the vibrational energy contributions to the surface defect for-

91



7.7. Van der Walls effects on surface defect formation energies

Figure 7.9.: Vibrational free energy contributions to the formation energies of the bulk F0, F+,
and F2+ centers, and the F0s center at the (100) terrace

mation energies, an even larger number of layers in the slab is necessary, since localized surface
modes may exhibit large vibrational amplitudes. Explicitly including several tens of layers in the
finite displacement method and calculating the respective force constants with DFT is computa-
tionally too expensive. It has been suggested in literatureto apply slab-filling techniques, where
force constants of inner layers of a slab are taken for example from less expensive bulk calcula-
tions [218, 219]. A crude estimate for the F0s center (see Fig.7.9, black dashed line), obtained
with a 5-layer slab and6× 6 atoms per layer, assuming that the vibrational contributions to the
formation energies do not vary severely with the charge state, as is the case for bulk defects,
shows that vibrational effects very likely do not change theorder of surface vacancy stability,
but might slightly lower the surface defect concentrations.

For F centers in MgO bulk the vibrational energy is lower thanin the pristine system in the
whole temperature range shown here. As discussed in Sec.6.2.4, for the bulk defects the fact
that one nucleus less than in the pristine system contributes to the phonon energy dominates over
the gained spatial freedom of the nuclei next to the vacancy.For the estimated vibrational free
energy of the surface defect systems the opposite is true. The atoms close to the vacancy at the
surface have one more degree of freedom available than theirbulk counterparts and increase the
vibrational free energy with respect to the system without defect.

7.7. Van der Walls effects on surface defect formation energies

Long-range dispersion interaction contributions on the surface defect formation energies can
be determined in analogy with the bulk defects as discussed in Sec.6.2.5. However, similar
to the vibrational contributions, the computed van der Waals energies depend on the applied
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charge-compensation method. For the bulk F centers, where both VCA and constant back-
ground method are applicable for charged defects, the van der Waals corrections to the forma-
tion energies are shown in Fig.7.10for both types of charge compensation. The van der Waals
contributions to the formation energies

∆EvdW = ED
total,vdW − Ehost

total,vdW (7.5)

of charged defects are lower when obtained with the VCA than those obtained with the back-
ground method. The differences are 0.04 eV for the F+ center and 0.08 eV for the F2+ center.
This can be explained by considering the ratio of electronicover nuclear charge for the host
system and for the system with a defect and comparing these between VCA and background
method. Decreasing the number of electrons in the system leads to a lower polarizability, while
decreasing the nuclear charge means that electrons are lessstrongly bound and the polarizability
is increased. In the pristine system without dopants the ratio of electronic over nuclear charge
is 1. This is also true for the doped pristine system calculated with the VCA. The difference
between the van der Waals correctionsEhost

total,vdW for the doped pristine system and the pure
host system is≤ 0.01. So here the increase in polarizability due to reduced nuclear charge can-
cels with the decrease in polarizability due to reduction innumber of electrons for the virtual
crystal. For the systems with charged defects, on the other hand, the ratio of electronic over
nuclear charge is 1 when the VCA is used, and <1 when the background approach is applied.
The number of electrons is the same in both cases, but using the VCA the nuclear charge is de-
creased compared to the case where the background method is used. Consequently, the electron
density in the virtual crystal is more polarizable and the van der Waals interaction has a more
pronounced effect on the total energy of the virtual crystalsystem than it is the case for the
system treated with the constant background method. Takingthe difference between the van der
Waals energy of the system with a defect and the undisturbed host system thus leads to a van der
Waals contribution to the defect formation energy that is lower when the VCA is applied than
the one obtained with the background method. The VCA models all have a realistic balance of
electronic over nuclear charge, while this is not the case for systems, where the constant back-
ground method is applied. For this reason the van der Waals contributions calculated with the
VCA, modeling a random distribution of dopants, can be considered more realistic than those
obtained with the constant background method.

For the surface, only the van der Waals correction based on the VCA is applicable. From
Fig. 7.10 it can be seen that the contribution of van der Waals interaction to Gq

f is smaller by
≈0.1 eV for the surface than for the bulk defects. For all surface defect charge states the van der
Waals correction to the formation energies is below 0.16 eV.Similar to the bulk defects, the van
der Waals correction to the formation energy increases withthe charge state also for the surface
defects (Fig.7.10). As mentioned in Sec.6.2.5, this is because the electronic structure close to
a neutral F center is very similar to that of the host system. Increasing the defect charge state by
removal of defect electrons introduces more severe changesto the polarizability of the electronic
structure in the vicinity of the defect, higher long-range van der Waals energy contributions to
the vacancy formation energies for increasing charge states.
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7.8. Summary

Figure 7.10.:van der Waals corrections to the formation energies of F centers in MgO bulk and
at the MgO (100) terrace. For bulk both neutralizing background and VCA charge compensation
are shown.

7.8. Summary

The VCA has been used to model charged surface F centers at theMgO (100) surface. To obtain
accurate formation energies and equilibrium concentrations for interacting oxygen vacancies
the opt-HSE functional for F centers in MgO, HSE06, has been employed. Comparing bulk
and surface F centers in MgO reveals many similarities, namely strong localization of the defect
level, confined geometric relaxation, and a hierarchy F2+

s >F+
s >F0

s of the stabilities of F centers
in different charge states. It has been found that the concentration of surface F2+s centers can
be as high as∼1 atomic percent, while F+s and F0s concentrations are negligible, at realistic
temperature and pressure conditions relevant for catalytic applications of MgO. For the charged
defects space-charge effects play an important role. Electrostatic attraction between surface
charge due to charged defects and compensating charge within the space-charge region facilitates
surface defect formation, while band bending effects limitthe surface defect concentration. For
realistic conditions these electrostatic contributions to the formation energy of interacting F2+

s

defects are of the order of 1 eV. Downward band bending lowersthe charge-transition levels with
respect to Fermi level at the surface. This raises the vacancy formation energy by up to 1 eV
and, therefore, limits the defect concentration.
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8. Defect complexes in lithium-doped MgO

MgO has been studied extensively in heterogeneous catalysis as a catalytically active mate-
rial and as a catalyst support. Its functionality as an active catalyst can be enhanced when its
electronic and morphological properties are modified in a suitable manner, e.g. by inserting
electrically active defects or dopants. A prominent example is lithium-doping of MgO, which
represents a potential pathway to produce a catalyst material for oxidative coupling of methane.
One aspect to explore in this context is the role of the lithium constituents and their interplay
with oxygen vacancies in the MgO lattice.

The formation of surface oxygen vacancies inp-type MgO, as discussed in Chapter7, depends
on the concentration of mobile holes in the bulk. For simplicity, the concentration of free charge
carriers has been referred to as the dopant concentrationND. Therefore, defect complexes that
may be formed in the bulk have not been considered explicitly, since only the remainingp-type
conductivity was relevant. Lithium dopants in MgO act as monovalent acceptors, and it has
been shown in experiment that lithium-doped MgO is indeedp-type conducting [32]. However,
given the energetically unfavorable nature of lithium defects in MgO [172, 220], the impurity
atoms tend to induce compensating defects especially at thehigh-temperature conditions of a
chemical reaction [221]. Myrach et al. have demonstrated byfirst-principlescalculations that
the formation energies for oxygen vacancies in the MgO (100)surface are significantly reduced
in the presence of nearby Li [172]. Oxygen vacancies can act as an electron source and can thus
annihilate the oxygen 2p hole states and neutralize the effect of the lithium substitutional defect,
transferring charge directly to the neighboring dopant. This means that, if lithium is available,
the formation of neutral or charged defect complexes constituting one or two Li atoms adjacent
to an oxygen vacancy can be favorable. For these defect complexes the global effects ofp-type
doping apply and determine the Fermi level, but also local effects of doping become important:
Charge localization, as well as proximity-induced electronic and geometric relaxation effects,
influence the formation energy of the dopant-vacancy complex.

Similar to the work of Myrachet al. on the influence of lithium close to an oxygen vacancy
in MgO [172], the local and also the global effects of various dopant species with variable
oxidation states on oxygen-vacancy formation have been studied by Li and Metiu for lanthanum
oxide (La2O3) in 2010 [124], and by Hu and Metiu for ceria in 2011 [125]. Also in these cases
it was shown that local effects of doping can lower the formation energies of oxygen vacancies
in the vicinity of dopants substantially.

While in Ref. [124, 125, 172] formation of an oxygen vacancy in doped material is investi-
gated, in the following formation of dopant-vacancy complexes is considered. This means that
in the former case a finite concentration of dopants in the bulk is assumed and the doped sys-
tem is regarded as the host for oxygen defect formation. In the latter case, the formation of
defect complexes is considered for varying availability oflithium, determined by its chemical
potential, while the host system is pure MgO. The intrinsic material is compared to a situation,
where a source of lithium has been provided and lithium has incorporated into MgO, possibly
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8.1. Experimental characterization of lithium-induced defects

under formation of lithium-induced (or lithium-mediated)defect complexes. The objective is to
understand if and what type of lithium-mediated defect complexes can be present under equilib-
rium conditions and to explore electronic and structural properties of these complexes. For this,
a combination of scanning tunnelling microscopy (STM), optical spectroscopy, and electronic
structure calculations performed at the DFT level has been used. The experimental work was
performed by F. Stavale and N. Nilius at the FHI Chemical Physics department. Calculated ther-
modynamic stabilities of defect complexes that can form when lithium dopants are introduced
into MgO are compared to scanning tunneling microscopy and cathodo-luminescence spectra
revealing experimental signatures for the defects. Simulated Fermi level and (T , p) conditions
are chosen in accordance with experimental information. The most relevant experimental ob-
servation is a downshift of the fundamental MgO optical modeupon doping, being indicative
for new electronic states in the bandgap. As has been explained in previous chapters, oxygen
vacancies in MgO generally produce such gap states, but it isnot cleara priori what charge state
and configurations of defect complexes comprising lithium-dopants and an oxygen-vacancy are
relevant. Therefore, formation energies in the dilute limit are calculated for a variety of defect
complex configurations, in order to identify those with lowest formation energy. For complete-
ness, not only complexes of lithium dopants and oxygen defects but also lithium substitutional
and interstitial defects in different charge states without a close-by oxygen vacancy are consid-
ered.

8.1. Experimental characterization of lithium-induced defects

The STM and cathodo-luminescence experiments have been performed in ultrahigh vacuum,
where the STM was operated at liquid nitrogen temperature. The setup is equipped with an
optical readout that enables the collection of photons fromthe tip-sample junction and their de-
tection with a charge-coupled device unit outside the vacuum chamber. By this means, spatially
resolved optical measurements can be carried out in a wavelength window from 200-1,200 nm,
using the STM tip as local electron source. For the cathodo-luminescence measurements, the
MgO optical modes have been excited by injecting electrons with 100-150 eV energy (Vs=100-
150 V) and 5 nA current into a pre-selected sample region [222]. STM topographic images
were taken with Vs=3.5 V. The MgO films used in the experiments were grown by reactive
deposition of magnesium in5 × 10−7 mbar O2 onto a sputtered and annealed Mo (001) single
crystal [223]. The oxide has been crystallized via annealing to 1,000 K, producing a sharp square
pattern in low-energy-electron-diffraction that indicates a (100) termination of rock-salt MgO.
STM measurements revealed an atomically flat oxide surface,exposing a network of mainly
[100]-oriented dislocation lines (Fig.8.1a, inset). The line defects develop spontaneously in the
film in order to compensate the 5.4 % lattice mismatch with theMo (001) surface beneath [224].

Lithium-doped MgO samples with a film thickness of 15 ML were prepared in two different
ways, embedding lithium into the bulk lattice by simultaneous deposition of magnesium and
lithium onto the molybdenum substrate in oxygen atmosphere, and by depositing lithium onto
an MgO sample, and subsequent annealing. MgO films with smalllithium amounts incorporated
into the bulk layers (using the first preparation method) still exhibit the rock salt lattice of the
bare oxide [172]. However, the film crystallinity is reduced, i.e. oxide terraces are smaller and
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8.1. Experimental characterization of lithium-induced defects

Figure 8.1.: STM topographic images of (a) a 15-monolayer (ML) thick MgOLi mixed film on
Mo (001) and (b) a pristine MgO film after exposure to 0.2 ML lithium (200 × 200 nm2). The
insets display a bare MgO film (a) and a close up of a lithium-covered film (b). Both insets are
50× 50 nm2 in size. (Vs = 3.5 V)

defect lines are less straight than in the non-doped case (Fig. 8.1a). This lower film quality can
be related to a mixture of kinetic and thermodynamic effects. First, lithium-doped films cannot
be annealed as thoroughly as pristine ones, as the alkali impurities tend to leave the oxide at
temperatures beyond 800 K. And second, the presence of lithium perturbs the crystallization
process of the rock-salt lattice, e.g. by enriching in the dislocation lines, occupying interstitial
lattice sites and agglomerating into tiny Li-O units.

Adsorbed lithium deposited at 300 K (using the second preparation method), on the other
hand, grows into monolayer islands on the surface (Fig.8.1b), as discussed in detail in earlier
work [172,225]. The formation of 2D lithium islands is not so much the consequence of the Li-
MgO interface interactions, but results from a relatively high barrier for lithium up-step diffusion
that impedes the development of 3D particles [226]. Upon annealing above 600 K, the adsorbed
lithium structures quickly disappear from the surface. While the majority of lithium simply
evaporates into the gas-phase as Li2O [172], a small amount diffuses into the film.

To take STM topographic images and measure the cathodo-luminescence spectra, the samples
were cooled down to liquid nitrogen temperature within≈ 1 hour. In both preparations – lithium
embedding into the bulk lattice and annealing of lithium surface-islands – the presence of lithium
defects in the MgO becomes manifest from distinct changes inthe optical response of the oxide
film (Fig. 8.2). Pristine MgO films of 15-100 ML thickness display a characteristic 400 nm
emission peak in cathodo-luminescence spectra performed in the STM setup [223]. This peak
can be assigned to the radiative recombination of electron-hole pairs excited by the incoming
electrons across the bandgap [227]. These excitonic modes are mobile in the bulk lattice but
get trapped at low-coordinated surface sites, in particular at oxygen corner and kink sites, where
recombination takes place in a second step [228, 229]. The 400 nm emission peak is therefore
representative for exciton recombination at low-coordinated surface sites and can be quenched
by dosing small amounts of metals, e.g. gold, onto the oxide film [230].

The characteristic optical signature of the pristine film changes significantly upon lithium
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Figure 8.2.:Cathodo-luminescence spectra of (a) bare and mixed MgOLi films of 15 ML thick-
ness and (b) bare and lithium-covered MgO films after annealing to 550 K. All spectra were
taken with Vs = 150 V, I = 1 nA and 60s accumulation time. Note the pronouncedred-shift of
the main emission peak when lithium is present in the MgO lattice.

incorporation. Most importantly, the emission maximum in the spectrum undergoes a red-shift
by 100-150 nm and now peaks at around 550 nm (Fig.8.2a,b). Additionally, its full-width-
half-maximum (FWHM) increases from≈ 100 nm in the pristine to more than 150 nm in the
doped films. (These features in the spectra have also been observed for thicker films with up
to 100 layers.) The red-shift suggests the development of new recombination channels for the
excitonic modes in the presence of lithium defects, for instance via new localized states in the
MgO bandgap. The bulk excitons get trapped and recombine already in deeper layers of the
film and do not reach the surface anymore. The possibility that the lithium-induced gap states
are surface states is discarded, as the new optical signature and hence the new recombination
channel is insensitive against adsorption of rest gas molecules, such as water, CO or hydrogen.
Also, surface oxygen defects can disappear via heterolyticwater splitting and formation of OH
groups, as discussed in the next section. Hence, the low-energy emission signature observed
on lithium-doped MgO films may relate to the presence of lithium or oxygen defects or defect
complexes in the volume of the film.

8.2. Theoretical analysis of lithium-induced defect complexes

To identify possible bulk defect complex configurations, stabilities of different defect arrange-
ments are calculated using DFT with simple-cubic MgO bulk supercell models including 64,
216, and 512 atoms. Formation energiesGq

f (T, p) for all defect configurations are computed us-
ing Eq.4.1. The dilute limit is obtained by extrapolation to an isolated defect or defect complex
in extended material as described in Chapter4. Formation energies are computed for a temper-
ature of 600 K and an oxygen pressure of 10−10 atm, as a set of characteristic conditions for the
experiment. Conclusions drawn in the following do not change when ambient conditions are
varied within the relevant experimental temperature and pressure range. The oxygen chemical
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8.2. Theoretical analysis of lithium-induced defect complexes

potential∆µO(600 K, 10−10 atm) = −1.21 eV with respect to1/2EO2
at the temperature and

pressure conditions for which the formation energies are calculated, has been obtained using
Eq. 4.10as described in Sec.4.1.2. The chemical potential of magnesium is deduced from the
condition of thermodynamic stability of bulk MgO. For lithium, different chemical potentials
µLi are considered, ranging between the free energy of the lithium atom and that of lithium
in Li2O. ∆µLi denotes the chemical potential of lithium with respect to that of fully oxidized
lithium. The change in volume∆V of the crystal due to defect complex formation is neglected.
(A contribution of 1 meV to the formation energy would correspond to a huge change in crystal
volume of≈16 µm3 for an oxygen pressure of10−10 atm.)

In the following, a notation for defects is used, that is similar to the Kröger-Vink notation, but
omits the electronic charge of the species relative to the original site, for simplicity. A defect
(MS)

q describes a species M (for instance M=Li) or a vacancy (M=V) occupying the site of
species S (S=Mg, S=O, or S=i for an interstitial). The chargestate of the defect, in case of an
extra or a removed electron, is specified byq.

The contribution of phonons to the defect complex formationenergy is calculated as described
in Chapter4.1for 3×3×3 MgO supercells (216 atoms), using the finite displacement method and
the PBE exchange-correlation functional. For the most stable defect complexes, the vibrational
energy contribution is∆F q

vib < 0.14 eV for temperatures below 1300 K (Fig.8.3). Apparently,

Figure 8.3.: Vibrational free energy contribution∆F q
vib to the formation energyGq

f (T,p) for
two defect complexes as a function of temperature, calculated using the PBE functional for 216-
atom supercells.∆F q

vib(T ) is the difference between the vibrational free energy for the MgO
system with a defect complex and the vibrational free energyfor the pure MgO host system.

the vibrational free energy has no effect on the energy hierarchy of the defects considered here.
In the formation energies reported below, the vibrational contribution is therefore neglected.

For all systems fully relaxed atomic coordinates are calculated using the PBE exchange-
correlation functional at the respective optimized lattice parameter (4.258 Å). The relaxed ge-
ometries for the2×2×2MgO supercell are then scaled to the HSE06 optimized latticeparameter
(4.218 Å) and a HSE06 single-point calculation is performedfor the scaled, relaxed structures.
For neutral defects, convergence tests for increasing cellsizes with fully relaxed coordinates
show that interactions between the defect and its image due to geometric and electronic relax-
ation effects vanish fast with increasing supercell size. The formation energies of these defects
are already converged within 50 meV for cubic supercells of 64 atoms (cell length 8.435 Å).
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8.2. Theoretical analysis of lithium-induced defect complexes

The formation energies for the charged defects are extrapolated to the dilute limit of isolated,
non-interacting defects by calculatingGq

f (L) for 64-, 216-, and 512-atom cubic supercells (with
L=8.517 Å,L=12.775 Å andL=17.034 Å, respectively), using Eq.4.28.

For three defect structures, (LiMgVO)
+, 2LiMgVO, and LiMg (shown in Fig.8.6 and dis-

cussed in detail below), relaxed atomic coordinates have also been calculated with HSE06. The
error made by using the PBE relaxed, scaled to HSE06 lattice constant geometries was found
to be <0.03 eV, and the HSE06 relaxed geometries are practically equivalent to those relaxed
with PBE. This is in particular interesting for the lithium substitutional defect, where symmetry
breaking has been predicted by Lichanotet al. in an unrestricted Hartree-Fock study [231]. Us-
ing the HF method leads to localization of the lithium valence electron on one nearest-neighbor
oxygen atom and as a consequence the distance between the lithium atom and this oxygen atom
is elongated with respect to the equilibrium MgO bulk interatomic distance. Indication (but no
rigorous proof) for this has also been found in electron paramagnetic resonance spectroscopy
(EPR) and electron nuclear double resonance spectroscopy (ENDOR) experiments by Abra-
hamet al. [221,232]. In this work, three different starting geometries have been tested for the
HSE06 geometry relaxation: (i) the relaxed symmetric PBE structure, (ii) a structure where the
lithium atom has approached one of its nearest-neighbor oxygen atoms, according to the equi-
librium structure found in Ref. [231] using HF, and (iii) a structure where the lithium atom is
slightly displaced in all three dimensions. In all three cases, calculating the relaxed atomic co-
ordinates using HSE06 resulted in a symmetric structure, asthe one obtained with PBE. The
total energy difference between the system with starting geometry (ii) and the system with re-
laxed coordinates, calculated using the HSE06 functional,is <0.2 eV. This shows that the relaxed
geometric coordinates correspond to a shallow minimum in the potential energy surface. There-
fore, deviations from the relaxed geometric coordinates, which can for example be caused by
vibrational effects, will only have a minor effect on the formation energy of the defect.

For the extrapolation, coefficientsaq1 andaq2 in Eq.4.28are determined with PBE and used to
extrapolate the formation energy of an isolated defect fromthe HSE06 calculation of the2×2×2
supercell (see also Chapter6). The FHI-aims electronic structure package [233] is employed for
all DFT calculations. The numerical settings are thetight predefined settings.

The electronic structure of F centers in MgO is characterized by a defect level deep in the
bandgap, which is occupied by 2 electrons in the neutral F0 center, by 1 electron in the F+

center and which is empty in the F2+ center (see Chapters6 and7). Lithium dopants introduce
empty states close to the valence band maximum (p-type doping), which enables the electrons
from the F0 and F+ center to lower their energy by transferring into the hole state in the valence
band. An F0 vacancy adjacent to a lithium dopant can transfer one electron to the lithium defect
and turns into an F+ defect, building a defect complex together with the lithiumion. In analogy,
an F0 vacancy adjacent to two lithium substitutional defects evolves to an F2+ defect upon
electron transfer, within a defect complex that comprises two lithium atoms and an oxygen
vacancy. Local geometric and electronic relaxation, whichobviously strongly depends on the
atomic configuration, can further lower the formation energy of the defect complex.

The frequency shift that is observed in the cathodo-luminescence spectra, when comparing
pure MgO to MgO with Li, shows that the preferred decay channel for excitons created in the
experiment changes, when Li is present in the sample. As mentioned above, defect complex
formation comprising Li dopants and oxygen vacancies can provide electronic levels in the gap
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8.2. Theoretical analysis of lithium-induced defect complexes

that can open a new exciton decay channel, where electron-hole recombination can happen via
a defect level in the bandgap. However, the defect level mustbe half-filled or empty, so that an
excited electron at the CBm can transfer to the defect level and finally to the electron reservoirǫF
at the VBM. This means, that defect complexes comprising F+ or F2+-type defects are possible
candidates to be observed in the photon-emission experiments. In contrast, neutral or charged
lithium defect configurations without oxygen vacancy, likelithium substitutional defects, inter-
stitials or a combination of both, cannot open new decay channels, because they do not provide
suitable gap states. However, in the theoretical analysis also these defects are considered.

Lithium is expected to leave the surface in the form of Li2O molecules at temperatures above
800 K. However, at lower temperatures the lithium-mediateddefect complexes with F+- and
F2+-type defects can be formed both at the surface and in the bulk. In fact, the free formation
energy of all considered defect configurations is lower at the surface in a wide range of condi-
tions in the absence of water. However, in the experiment water is present and can interact with
defect complexes at the surface. To test this scenario, the stability of a defect complex compris-
ing an F2+ vacancy adjacent to two lithium substitutional defects2LiMgVO at the corner of a
2-layer3 × 3-atom MgO island on a 4-layer MgO (100) surface slab is calculated (Fig.8.4a).
The formation energy of this defect complex is compared to the formation energy of a configura-

a) b)
O

Mg
Li

H

Figure 8.4.: Models for calculating the stability of a defect complex comprising an F2+-type
oxygen vacancy adjacent to two lithium substitutional defects at the corner. (a)2LiMgVO corner
defect complex. (b) Hydrogenatively annihilated defect complex2LiMg2H.

tion 2LiMg2H after hydrogenative annihilation, where two hydrogen atoms of a water molecule
have formed OH groups with the surface oxygen atoms nearby the lithium dopants, while the
oxygen atom has healed the vacancy Fig.8.4b). The difference in free formation energy between
the two systems is in favor of vacancy healing for temperatures of 600 K and below and water
pressures of 10−14 atm and above (Fig.8.5). In principle, vacancy healing is also possible for
bulk defect complexes in the presence of water due to diffusion of hydrogen or OH into the bulk
(not considered in this study). However, diffusion will be hindered, and the MgO films used in
the STM and cathodo-luminescence experiments described above are rather thick (15 ML), so
that it is unlikely that all defect complexes in the bulk are hydrogenatively annihilated.
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8.2. Theoretical analysis of lithium-induced defect complexes

Figure 8.5.:Hydrogenative annihilation of the2LiMgVO corner defect complex. The difference
in free energy (calculated with HSE06) between the healed system (Fig.8.4b) and the system
with a2LiMgVO defect complex (Fig.8.4a) is shown as a function of H2O pressure for different
temperatures. The2LiMgVO defect complex is thermodynamically unstable for temperatures
and pressures, where the energy difference is negative (shaded in gray).

8.2.1. Hierarchy of defect stabilities

Ball-and-stick models for all relevant defect configurations are shown in Fig.8.6. Their relaxed
coordinates and charge states are given in Table8.1. For defect complexes comprising an oxygen
vacancy there is an outward relaxation of nearest-neighbormagnesium atoms and an inward
relaxation of nearest-neighbor oxygen atoms for F2+

s -type and F+s -type oxygen vacancies, while
for F0

s -type defects this trend is reversed and less pronounced.
Potential candidates for causing the observed change in thephoton emission spectrum are

the F2+-type defects within the defect complexes 2LiMgVO and (LiMgVO)
+ (orange lines in

Fig. 8.7) and the F+-type defects within (2LiMgVO)
− and LiMgVO (blue lines), since these

defects exhibit an empty or half-filled defect level in the bandgap.
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Table 8.1.: Relaxed interatomic distances in Å for defect configurations in different charge states (compare Fig.8.6). Corresponding
distances are also given for pristine MgO for comparison. Distances between adjacent lithium and oxygen atoms Li(i)-O(j), where lithium
has substituted a magnesium atom in the lattice, can be compared to the distance between nearest neighbor magnesium and oxygen in
pure MgO (2.11Å).

pristine MgO 2LiMgVO (2LiMgVO)
− (2LiMgVO)

2− (LiMgVO)
+ LiMgVO (LiMgVO)

− LiMg Li−Mg

F2+-type F+-type F0-type F2+-type F+-type F0-type subst. subst.

O(1)-Mg(1) 2.11 2.09 2.12 2.15 2.09 2.11 2.15 - -
Mg(1)-Mg(2) 4.22 4.51 4.33 4.10 4.54 4.37 4.19 4.16 4.15

O(1)-O(2) 5.97 5.88 5.96 6.03 5.87 5.95 6.03 - -
Mg(1)-O(5) 2.11 2.05 2.07 2.09 2.04 2.06 2.09 2.11 2.08
Li (1)-O(2) - 2.15 2.15 2.16 2.14 2.15 2.16 2.16 2.17
Li (1)-O(3) - 2.20 2.21 2.22 2.14 2.15 2.16 2.16 2.17
Li (1)-O(4) - 1.90 1.99 2.09 1.89 1.98 2.07 2.16 2.17
Li (1)-O(5) - 2.15 2.15 2.16 2.14 2.15 2.16 2.16 2.17
Li (1)-O(6) - 2.09 2.10 2.11 2.14 2.15 2.16 2.16 2.17
Li (2)-O(6) - 2.09 2.10 2.11 - - - -
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Figure 8.6.: Relaxed structures for (a) (LiMgVO)
+, (b) 2LiMgVO, (c) LiMgLi iVO, (d) LiMg,

and (e) LiMgLi i. The shown structures have been cut out from the relaxed coordinates calculated
using 216-atom supercells for neutral and 512-atom supercells for charged defect configurations.
Relaxed coordinates not given here are listed in Table8.1

Fig. 8.7a shows the defect formation energies for the Fermi level at the VBM as a function of
lithium chemical potential. The Fermi level with respect tothe VBM is denoted as∆ǫF. This
situation corresponds to experiments on thicker MgO films (above 10 ML), where electron tun-
neling from the molybdenum support into the majority of film defects is not possible anymore.
In general, free formation energies of lithium-containingdefect configurations decrease and,
consequently, their concentrations increase with increasing lithium chemical potential. Within
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the whole range of lithium chemical potential, the hierarchy of formation energies for defect
complexes comprising lithium dopants and oxygen vacanciescan be classified in terms of the
charge state of the included oxygen vacancy, F2+-type< F+-type< F0-type. In particular, the
defect complexes with F+- and F0-type defects are so high in formation energy, that their cal-
culated concentrations are negligible. For∆µLi close to lithium in Li2O and the Fermi level at
the VBM, the order in formation energies for defect complexes comprising F2+- and F+-type
defects is (LiMgVO)

+ < 2LiMgVO and LiMgVO < (2LiMgVO)
−, respectively. The lowest for-

mation energy isGf ((LiMgVO)
+)=1.2 eV. Thus, (LiMgVO)

+ will be the most abundant defect
complex at an equilibrium temperature of 600 K and an oxygen pressure of 10−10 atm.

The order is reversed within each charge state whenµLi approaches the energy of a lithium
atom, which would imply that gas phase atoms are the source oflithium during annealing,
a condition that is never fulfilled experimentally. The thermodynamic stability of LiMgLi i,
Gf (LiMgLi i)=-3.1 eV, is then comparable to that of the lowest defect complex 2LiMgVO con-
taining an F2+-type defect,Gf (2LiMgVO)=-2.6 eV, for∆µLi=3 eV and the Fermi level at the
VBM.

In Fig. 8.7b the Fermi level is 1.5 eV above the VBM, a situation that is found in ultrathin
films (1-5 ML), whereǫF is still governed by the Mo (001) support below the film. Again,
the formation energies for the different defect configurations are shown as a function of lithium
chemical potential. The general trend in formation energies of neutral defect complexes, F2+-
type < F+-type < F0-type in terms of the charge state of the oxygen vacancy in thedefect
complex, is not affected by the shift in Fermi level. Only defect configurations carrying a net
chargeq 6= 0 depend onǫF. The formation energy of the defect complex (LiMgVO)

+ (which
contains an F2+-type defect), is therefore shifted up by 1.5 eV, while the formation energy
of (2LiMgVO)

− (comprising an the F+-type defect) is shifted down by 1.5 eV with respect
to Fig. 8.7a, whereǫF=VBM. For ∆µLi=0 eV (oxygen-rich conditions) all defect complexes
with oxygen vacancy defects have formation energies higherthan 2.5 eV. When lithium is not
fully oxidized, its chemical potential is raised and the defect complexes which contain F2+-type
defects can form more easily in thermodynamic equilibrium.However, atǫF = 1.5 eV above
the VBM, the defect complexes (LiMgVO)

+ and (2LiMgVO), which comprise F2+-type defects,
have higher formation energies than LiMg and LiMgLi i.

Fig. 8.7(c) shows the dependence of the formation energies for the different defect configura-
tions on the position of the Fermi level between VBM and CBm. The lithium chemical potential
is fixed at the value derived from the stability condition forLi2O (∆µLi=0 eV). The lowest transi-
tion levels between different defect configurations occur at ǫF=4.0 eV (2LiMgVO/(2LiMgVO)−,
F2+-type to F+-type in terms of the contained oxygen vacancies), and atǫF = 4.8 eV
((2LiMgVO)−/(2LiMgVO)2−, F+-type to F0-type). Among the defects containing an oxygen
vacancy, the structural motif of two lithium substitutional defects adjacent to one oxygen va-
cancy is favored only whenǫF > 2.3 eV, otherwise (LiMgVO)+ defects are easier to form. The
main conclusion of Fig.8.7 is that the most abundant bulk defect complexes that may cause
the observed shift in the photon-emission peak are those comprising F2+-type defects, namely
(LiMgVO)

+ and 2LiMgVO.
The theoretical analysis enables the following interpretation of the experimental data. For

the given film thickness of 15 ML, the metal substrate below the film is an unsuitable electron
source, as tunneling into MgO gap states is blocked by a substantial barrier. This situation is
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8.2. Theoretical analysis of lithium-induced defect complexes

best described by a Fermi level at the VBM. For the lithium chemical potential, as the second
variable in Fig.8.7, lowerµLi can be considered more realistic than higher values, as lithium will
be completely surrounded by oxygen species from the MgO matrix after deposition/annealing.
The most realistic situation is therefore displayed in Fig.8.7(a,c) – left side. Here, (LiMgVO)

+

< 2LiMgVO < LiMgVO is the predicted hierarchy of formation energies for defectcomplexes
containing oxygen vacancy defects and lithium impurities.All the defect complexes have char-
acteristic defect states in the MgO bandgap and can thus explain the shift in the optical spectra
(see Sec.8.2.2). Note, that the lithium defects without oxygen vacancy areoptically inactive and
will therefore diminish the emission response when becoming the dominant species. The visi-
bility of a red-shifted emission peak in lithium-doped MgO therefore proves that the conditions,
at which LiMg and LiMgLi i defect complexes become energetically preferred, are not realized in
the experiment (high Fermi levels, high lithium chemical potentials). The electronic structure of
the defect configurations, which comprise F2+ and F+ defects, is discussed in the following.
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8.2. Theoretical analysis of lithium-induced defect complexes

Figure 8.7.:Formation energies of different lithium-mediated defect configurations at a temper-
ature of 600 K and an oxygen partial pressure of 10−10 atm. (a) and (b) show the formation
energies as a function of the lithium chemical potential, varied between the chemical potential
of lithium in Li2O (∆µLi=0 eV) and the chemical potential of a lithium atom (∆µLi=4.55 eV).
In (a) the Fermi level is at the valence band maximum (∆ǫF=0 eV) and in (b) the Fermi level is
1.5 eV above the valence band maximum (∆ǫF=1.5 eV). In (c) the chemical potential of lithium
is fixed to∆µLi=0 eV and the Fermi level is varied between VBM and CBm. Red lines show
lithium substitutional and interstitial defects without oxygen vacancy, while all other defect con-
figurations consist of one or two lithium impurities adjacent to an oxygen vacancy: Black lines
show defect complexes comprising F0-type defects, blue lines depict defect complexes including
F+-type defects, and orange lines represent defect complexeswhich contain F2+-type defects.
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8.2. Theoretical analysis of lithium-induced defect complexes

8.2.2. Position of defect levels

The HSE06 calculations show that an unoccupied defect levelis indeed present deep in the
bandgap for the two defect complexes that contain F2+-type defects, (LiMgVO)

+ and 2LiMgVO,
opening a new channel for recombination of excitons createdin the cathodo-luminescence ex-
periment. The total and projected density of states (DOS) for the (LiMgVO)

+ defect complex is
shown in Fig.8.8. The VBM is due to oxygen 2p states, while the defect level and the CBm
are dominated by magnesium 3s states (see Chapter6). The HSE06 Kohn-Sham defect-levels
are 4.2 eV above the VBM for (LiMgVO)

+ and 4.4 eV above the VBM for 2LiMgVO. For the
defect complexes which comprise F+-type defects the Kohn-Sham defect levels are 2.7 eV and
2.9 eV above the VBM for LiMgVO and (2LiMgVO)

−, respectively. The overlap of different
recombination channels involving different gap states might be responsible for the substantial
peak broadening in emission spectra of lithium-doped MgO.

Figure 8.8.: Total and projected density of states for (LiMgVO)
+, comprising an F2+-type de-

fect, calculated with HSE06. The defect level is unoccupiedand allows for additional exciton
decay channels.

For the changed optical decay detected in the cathodo-luminescence experiment for lithium-
doped MgO compared to pure MgO, in principle two transitionscome into consideration. De-
excitation of a hot electron in the conduction band involvestwo steps, one from the CBm to
the defect level and the second from the defect level to the VBM. Which transition is dominant
for the photon emission depends on the symmetry of the contributing orbitals (Fig.8.9). For
both defect configurations eigenstates at the CBm and in the defect have comparable symmetry,
dominated by ans-shaped orbital arising from the magnesium 3s states. The state at the VBM,
on the other hand, shows the distinct symmetry of the oxygen 2p states. The dipole selection
rules for an optical transition can therefore only be fulfilled for the defect→ VBM transition,
where the state symmetry changes according to∆l = ±1, wherel is the orbital momentum
quantum number. The CBm-defect transition, in contrast, isdipole-forbidden, as the orbital
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8.2. Theoretical analysis of lithium-induced defect complexes

symmetry remains constant. A comparison of spatial symmetries of the states therefore suggests,
that the peak in the luminescence spectra is mainly due to transitions from the defect levels of
defect complexes comprising F+- and F2+-type defects to the VBM.
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8.2. Theoretical analysis of lithium-induced defect complexes

Figure 8.9.: Highest occupied valence state (top), defect level (middle), and lowest conduction-band
state (bottom), in Å−

3

2 , as a function of spatial coordinates in Å in the (100) plane for (LiMgVO)
+ (a, left

panel), where LiMg is at (0,-2.1) and VO at (0.0) (see Fig.8.6(a) for comparison), and 2LiMgVO (b, right
panel), whereoneof the two LiMg is at (2.1,0) and VO at (0.0) (see Fig.8.6b for comparison).
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8.3. Summary

8.3. Summary

In summary, the observed red-shift of the main optical emission band in lithium-doped as com-
pared to pristine MgO films suggests the opening of new recombination channels for electron-
hole pairs injected in cathodo-luminescence experiments,which are mediated by new electronic
states inside the bandgap of the oxide material. Whereas lithium substitutional defects by them-
selves do not induce suitable gap states, defect complexes that consist of lithium impurities and
compensating oxygen defects are likely candidates to generate the observed emission signature.
While defect complexes containing electron-rich F0-type oxygen vacancies and lithium dopants
can be discarded in this context, as they are unstable, defect configurations comprising electron-
poor F+- and F2+-type oxygen vacancies that have lost electrons to the lithium-induced hole
states in the MgO valence band are compatible with the experimental results. From thermo-
dynamic stability criteria the defect complexes comprising doubly positively charged F2+-type
centers are most likely responsible for the red-shifted emission peak at 550 nm, as they imprint
a suitable defect state in the MgO bandgap for electrons to decay from the conduction to the
valence band. However, also defect complexes that contain F+-type defects with a half-filled
defect level are potential candidates. Given their higher formation energies with respect to dif-
ferent defect configurations that comprise F2+-type oxygen vacancies, their contribution to the
observed optical response of MgOLi films can be considered as small.

It is clearly demonstrated that the majority of lithium-impurities in MgO appears as defect
complexes, comprising lithium dopants and oxygen defects,where charge transfer between the
oxygen vacancy and one or two lithium atoms annihilates the oxygen 2p hole states due to
lithium and therefore neutralizes the effect of the lithiumdopant. (This is one reason, why
formation of Li+O− pairs, as active centers for methane activation, as suggested by Lunsford in
1985 [234] and widely accepted in the literature, as reviewed by Arndtet al. [220] in 2011, is
regarded thermodynamically unfeasible.)
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9. Concluding remarks

Within the presented work a theoretical methodology was developed and tested that can be used
to predict charge states and concentrations of point defects at semiconductor surfaces under
realistic conditions from first-principles. The concept has been applied to F centers in MgO, and
has led to some important insights on charge state and concentrations of these defects.

One important objective was to find a suitable charge-compensation method for supercell
models of charged systems, in particular for surface calculations, where the standard constant-
background approach is not applicable. Inspired by early work of Vegard (1921) [126] and
Scheffler (1987) [127], a variant of the VCA has successfully been tested and applied to resolve
this issue. Within this approach, an adjustable density of states at the Fermi level is introduced by
modifying the electron-nuclear interaction potential within the host material, while keeping the
system charge-neutral. This simulates the realistic situation of a doped material, where defect
states in the bandgap can accommodate charge carriers from shallow dopant levels, providing
a natural charge-compensation mechanism. In an all-electron code the idea is easily realized
by modifying the nuclear charges of the atoms of the host material by a small fraction. The
VCA allows to choose the type of doping (p- or n-type), and the "dopant" concentration and
distribution. The benefits of the VCA for charge compensation are a well-defined Fermi level,
applicability to systems of different dimensions (bulk, surface, wire, or cluster), and widely
variable dopant concentrations.

To ensure a quantitatively accurate description of formation energies of F centers in MgO,
embedded cluster models were employed. For these systems,GW and coupled-cluster methods
are readily applicable.G0W0@HSE was used to identify HSE06 as an opt-HSE functional that
correctly describes the charging of F centers in MgO, in compliance with a condition on the
ionization potential. In a collaboration with Prof. Sauer’s group from the Humboldt University
Berlin, also coupled-cluster calculations of the neutral oxygen vacancy formation energy were
performed, confirming that HSE06 provides reliable exchange-correlation treatment for F cen-
ters in MgO. Embedded cluster and periodic calculations were carefully tested for consistency.
Accurate formation energies with reliable error bars (< 0.15 eV) were calculated for charged
and neutral F centers at varying concentrations by combining advantages of both periodic and
cluster models. As an important result it has been shown thatthe only available measurement
on the neutral bulk F center formation energy in MgO [26] should be revised, most likely since
thermodynamic equilibrium could not be reached in the experiment.

For the last 25 years realistic atomic and electronic chemical potentials, and therefore also
realistic temperature and pressure conditions, have been accounted for in theoretical studies of
defect stabilities in insulators or semiconductors, usingDFT methods by what is now known as
ab initio atomistic thermodynamics. Defects have been calculated ina relaxed geometry, using
an embedded cluster or a supercell of certain size, and from these calculations the formation en-
ergy of the defect in the dilute limit, for vanishing defect concentrations was obtained. Indeed,
the focus was often on how this dilute limit could be obtainedmost accurately and efficiently
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by extrapolation or correction schemes. However, to address a more realistic situation, finite
concentrations of interacting surface vacancies have beenconsidered in this work. As a key
result, it has been shown that the formation of charged surface defects in doped materials can
be largely determined by formation of a space-charge regionwith associated band bending and
electric field. The contribution of the electric field energyto the defect formation energy can be
divided into two parts: the energy need for charging the defects, and the attraction of defects to
the compensating charge. The existing approaches to calculating non-interacting defect forma-
tion energies and concentrations has been extended to interacting defects. This is achieved by
including the interaction energy (the energy of the electric field) into the Gibbs free energy of
the system, and then minimizing the free energy with respectto the concentrations of vacancies
in all possible charge states. For surface defects, the bulkdopant concentration complements the
set of thermodynamic variables (temperature, pressure, and Fermi energy) that the defect sta-
bilities depend on. Also, the configurational entropy of defects in all charge states is accounted
for. This framework has been applied to oxygen vacancies in MgO, and the predominant charge
state and concentration of these defects under realistic conditions have been predicted.

In MgO, the formation of surface F2+s centers can reach approx. 1 % at conditions relevant for
catalytic applications (T = 1,000 K,p = 1 atm,ǫF=VBM , ND = 1018cm−3). The concentration
of F2+

s centers does not exceed 1% due to the build up of the space-charge layer, which raises the
defect formation energy by up to 1 eV relative to the isolateddefect. In other words, starting from
a defect-free surface, first defects are formed spontaneously, but as their concentration grows,
each new defect costs more energy. These results are important for future studies of charged
defects at semiconductor surfaces, since they show that electrostatic space-charge effects are
a type of defect-defect interaction that can not be neglected. The energy of this interaction is
sensitive to the distribution of the compensating charge, which can extend over macroscopic
length scales. This implies that DFT slab calculations mustalways be corrected for the limited
thickness, as described in this work, when they are used to predict properties of single-crystal
surfaces. The same is true for experimental studies, where charged defects at thin films are used
to understand properties of single-crystal semiconductorsurfaces.

Furthermore, defect complexes in bulk lithium-doped MgO were studied. It has been shown
that upon lithium doping, formation of defect complexes incorporating one or two lithium de-
fects and an oxygen vacancy is favored. Also within the complexes with lithium the preferred
charge state of the vacancies is 2+. These results are in accordance with an observed red-shift
of the main optical emission band in cathodo-luminescence spectra that is observed for lithium-
doped MgO when compared to spectra for pristine MgO, measured in Prof. Freund’s group of
the FHI Chemical Physics department. Interestingly, calculations performed within this work
predict that there is a competition between (LiMgVO)

+ and (2LiMgVO) defect complexes. This
has not been addressed in literature despite the large amount of work devoted to lithium-doped
MgO due to its catalytic properties.

In summary, the goal of this work was to take a step forward on the way to understand defect
formation at semiconductor surfaces, motivated in particular by the role of oxygen vacancies in
catalysis. This was achieved by providing an understandingof equilibrium F-center concentra-
tions at metal oxide surfaces, in particular at the MgO (100)surface, and introducing a general
theoretical framework to calculate charged-defect stabilities.

From here on, using the presented model, theoretical estimates of formation energies and
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concentrations of interacting defects can be further improved, for instance by accounting for re-
alistic dopant concentration profiles that can be realized in experiment. Concerning F centers in
MgO, also concentrations of defects in different charge states at low-coordinated sites and sur-
face terminations other than MgO (100) are of interest in general, and in catalysis in particular.
A brief outlook on some very interesting questions arising for F centers at steps and corners, and
at reconstructions of the polar (111) surface of MgO, is given in Chapter10.
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10. Outlook: F centers at low coordinated sites and
polar surfaces

Depending on the environment, the most stable surface terminations of a metal oxide can vary.
Also, realistic surfaces exhibit steps and corners where defects like oxygen vacancies can appear.
It has been shown that while the (100) surface is the most stable termination of pristine MgO,
p-type doping the material, for example with lithium, can lead to roughening or even to a change
in hierarchy of the different surface terminations [172,235].

Myrach et al. have demonstrated in a combined STM and DFT study, that the surface mor-
phology of mixed Li/MgO films changes with temperature such that lithium segregates towards
the surface at approximately 700 K in ultra-high vacuum conditions, and LiMg-rich surface is-
lands are formed. Annealing at higher temperatures leads tothe formation of LixO clusters
at the surface, and their subsequent evaporation, leaving the MgO (100) surface with a char-
acteristic pattern of monolayer-deep rectangular holes inthe MgO surface after annealing at
approximately 1,050 K [172].

Figure 10.1.:The most stable surface termination of MgO nanocrystals changes from (100) to
(111) upon addition of lithium to the precursor [235]. (Figure adapted from Ref. [235], copyright
(2011) by John Wiley & Sons, Inc.)

The effect of doping on the surface structure can even be moreprofound when the morphology
is not restricted (as it is in the case of thin films). Zavyalova et al. found that adding 1 weight %
lithium to the combustion precursor of MgO nanocrystals leads to a morphology change of
MgO nanoparticles from on average 8 nm edge length (100) terminated nanocubes to complex
nanoparticles with polyhedral surfaces of up to 250 nm in diameter, exposing more and more
(111) facets [235] (Fig. 10.1).

No theoretical or experimental studies on F center formation at the MgO (111) surface have
been reported so far. One open question is, for example, how bulk lithium dopants influence
the composition, stability, and electronic structure of the (111) surface termination. If there are
surface states in the bandgap, formation of a space-charge region and associated band bending
is possible.

The MgO (111) surface has an interesting feature: it is polar. Stacking of charged atomic
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10.1. F centers at MgO (100) steps and corners

layers (Mg2+ and O2−) along the surface normal results in uncompensated charge of the bulk-
like surface termination. The surface charge must be compensated to make the polar surface
stable. Stabilities of polar oxide surfaces, considering various stabilization mechanisms, such as
spontaneous metalization of the surface layers, non-stoichiometry, faceting, or adsorption, have
been studied for instance by Noguera [236–240], accounting also for ambient temperature and
partial pressures. It would be interesting to see how dopingaffects composition, stability, and
electronic structure of polar oxide surfaces. One possibility is that charged defects, in particular
oxygen vacancies, can compensate the surface charge. Consequently, understanding F center
formation at these surfaces with regard to charge transfer between surface states, defect states,
and Fermi level is desirable.

Concerning the stability of oxygen vacancies at low-coordinated sites, formation energies of
neutral defects have been reported already 15 years ago (seefor example Ref. [27,112,216] for
MgO). However, as it was demonstrated above, charged F2+ centers in bulk MgO and at the
(100) surface are much more stable. Therefore, also chargeddefects at low-coordinated sites
should be considered.

10.1. F centers at MgO (100) steps and corners

In the following, neutral F centers at low-coordinated sites are briefly discussed as a first step
towards a full description of these defects, considering all possible charge states.

At structural defects like steps and corners, oxygen atoms are four-fold and three-fold coor-
dinated, respectively. The lower the coordination of the site is, the less confined are geometric
and electronic relaxations, and, as a consequence, the formation energy of the neutral oxygen
vacancy is reduced with respect to the defect at the terrace.Formation energiesG0

f for neutral
oxygen vacancies at steps and corners have so far only been calculated using embedded cluster
models at HF and LDA level of theory [27,216]. Sushkoet. al. also reported the formation en-
ergy of the corner defect calculated with B3LYP [112]. Embedded cluster models using PBE0
have been calculated in the present work [185].

Periodic models for low-coordinated defects can be constructed in different ways. For the
monolayer step, a zig-zag structure and a model with monolayer one-dimensional rail structures
on 5-layer (100) surface slabs (see Fig.10.2a-b) have been calculated and compared at PBE level.
Step and rail size, respectively, were increased systematically, until formation energies were
converged within 0.04 eV. The formation energies obtained with the two periodic models are in
very good agreement (within 0.02 eV). To model the corner site, a3× 3× 2-atom island of two-
layer height on a 4-layer (100) slab has been calculated (seeFig. 10.2c). Structures were relaxed
with PBE, and single-point calculations with HSE06 and PBE0were performed for the relaxed
structures, scaled to HSE06 and PBE0 optimized lattice parameters, respectively. The formation
energies are listed in Table10.1. As discussed for F centers in the bulk and at the terrace, thelack
of correlation in HF leads to an underestimation of the formation energies, while including only
local exchange leads to an overestimated formation energy.It has been demonstrated in Sec.6
that the formation energy for neutral F centers in MgO only weakly depends on HSE parameters
and can be estimated using HSE06 or PBE0. The energies calculated with these functionals are
highlighted in the table. The formation of F centers is energetically much more favorable at

116



10.1. F centers at MgO (100) steps and corners

Figure 10.2.:Side view of a) rail and b) zigzag periodic models that were used to calculate an
oxygen vacancy at the MgO (100) monolayer step site. c) Island model used to calculate an
oxygen vacancy at the corner site.

steps and corners than in the bulk or at the terrace. However,the formation energy of the neutral
defect also at these low-coordinated sites is so high that their concentration is still negligible.

The systematic description of the formation energies as a function of defect concentration or
surface charge for charged defects at steps and corners is challenging due to the complicated
geometry. Periodic models can be used, but the structural models have to be chosen and tested
carefully – in particular for the corner models. In additionto F centers also intrinsic intersti-
tials at steps or corners are possible and can be analyzed using the same methodology (for a
discussion of neutral oxygen interstitials in bulk MgO see appendix).

Table 10.1.: Formation energiesG0
f (eV) of the neutral oxygen vacancy at the MgO (100)

surface corner and monolayer step, calculated using embedded cluster (ecm) and periodic
models (pbc). The chemical potential of oxygen correspondsto the oxygen-rich limit where
∆µO = 0 eV.

Method Step Corner
HF-ecm [216] 4.24 3.24
LDA-ecm [27] 6.99 5.45
PBE-ecm [185] 5.68 5.13
PBE0-ecm [185] 5.44 4.89

B3LYP-ecm [185] 5.72 5.07
B3LYP-ecm [112] - 4.63

PBE-pbc 5.79 5.17
HSE06-pbc 5.61 -
PBE0-pbc 5.61 -
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10.2. F centers at the MgO (111) surface

The (111) surface termination of ionic rock-salt metal oxides is polar. Alternating layers of metal
and oxygen ions generate an electrostatic dipole field perpendicular to the surface (Fig.10.3a)).
The calculated surface energy for formally neutral bulk-terminated slabs of increasing thickness
diverges. As discussed by Tasker already in 1979, polar surfaces can be stabilized by rear-
rangement of charge, typically facilitated by substantialsurface reconstruction [241]. In some

Figure 10.3.: a) Side view of the unstable, bulk-terminated, polar MgO (111) surface. Alter-
nating magnesium cations and oxygen anions lead to an electric dipole perpendicular to the
surface. b) Top view of the octopolar O-terminated reconstruction of the MgO (111) surface
with the primitive rectangular unit cell (white lines). Thestructure has been relaxed using PBE.

cases, stabilization can also be achieved merely by electronic charge transfer between layers, as
demonstrated by Wanderet al. for ZnO (0001)-Zn and(0001̄)-O surfaces [242]. The stability,
and structural and electronic properties of 12 models of thepolar undopedMgO (111) surface
were studied in 2008 by Zhang and Tang, applying DFT with a GGAfunctional, andab initio
atomistic thermodynamics [243]. In agreement with an earlier study by Finocchiet. al. (2004),
it was found that under conditions∆µO > −5.6 eV the O-terminated octopolar structure is the
most stable reconstruction of the MgO (111) surface. In the O-terminated octopolar reconstruc-
tion, 3/4 of the ions in the outermost layer and 1/4 of the ionsin the second layer are missing
(Fig. 10.3b). To achieve charge neutrality, half of the negative charge in the surface layer should
be removed, which would correspond to removing 50% of the oxygen atoms in the top layer of
the slab. Instead, in the octopolar reconstruction 75% of the negative charge is removed from the
top layer, but furthermore 25% of the positive charge in the second layer is taken away, so that
in total the desired 50% of negative charge at the surface is eliminated and the surface is charge
neutral.

There is a fundamental difference between the electronic structure of the MgO (100) and the
MgO (111) surface terminations. While the (100) surface bands are at the bulk VBM, the O-
octopolar reconstructed (111) surface termination exhibits surface bands in the bandgap, 0.5 eV
above the VBM (Fig.10.4). They are mainly due to oxygen atoms in the top layer of the sur-
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10.2. F centers at the MgO (111) surface

face, but there is also a contribution from magnesium atoms in the second layer, as shown by
the projected DOS in Fig.10.4b. Note, that these preliminary calculations have been performed
with PBE, and therefore only allow for a qualitative description. For the system without dopants

Figure 10.4.: a) Surface band structure of the O-terminated octopolar reconstruction of MgO
(111) without defects, calculated for a 288-atom cell with PBE. b) MgO bulk DOS (gray) and
surface DOS (black), where both have been normalized by dividing by the number of electrons
in the system. The projected DOS for the top-layer oxygen atoms (red) and second-layer mag-
nesium atoms (blue) are also shown (compare surface model inFig. 10.5).

or defects, the surface bands are fully occupied. Introducing p-type dopants in the bulk leads
to charge transfer between occupied surface bands and acceptor bands at the bulk VBM. This
results in downward band bending and a partial occupation ofthe surface band. An important
step in a study of the doped MgO (111) surface would be to find out how electron transfer and
associated space-charge effects influence the surface stoichiometry and reconstruction. In con-
trast to the (100) surface, band bending at the doped (111) surface will occur without vacancies,
and will contribute to the surface energy.

Here, F-center formation at the O-octopolar reconstructedsurface is briefly analyzed. The
atom that is removed from the surface to create a vacancy is shown in theleft panel of Fig.10.5.
In this picture also the underlying cubic MgO structure can easily be recognized. The position
where the vacancy is created corresponds to the edge of a small 2 × 2 × 2-atom MgO “cube”.
Similar to F centers at MgO (100), geometric relaxation is most pronounced for the F2+s,111 cen-
ter. The next-neighboring atoms below the vacancy try to recover a flat surface. Magnesium
atoms move downwards, deeper into the surface, while oxygenatoms are displaced outwards
and upwards (Fig.10.5, middleandright panel). The surface defects introduce defect levels in
the bandgap, above the surface band, similar to F centers in MgO bulk and at the MgO (100) sur-
face. But since here also the surface band is present, the energy gained by electron transfer from
a surface defect to an empty surface state – at the VBM of the pristine slab, which is a Fermi
level in case it is pinned at the surface of doped MgO – is smaller than for the surfaceFs centers
at the MgO (100) terrace. Therefore, one more question to be answered is if this effect dom-
inates over differences in electronic and geometric relaxation between (100) and (111) surface
oxygen vacancies. Once all aspects mentioned above have been considered, the methodology
introduced in this work can be used to calculate concentrations of interacting surface oxygen
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Figure 10.5.: Relaxation due to F2+s,111 center. Left: O-octopolar reconstruction of the MgO
(111) surface. The oxygen atom that is removed to form an F center is marked by a yellow
circle. Middle, right: Displacement of atoms closest to the F2+

s,111 center, markedMg andO, after
formation of the defect. Relaxation was calculated with PBE.

vacancies at an MgO (111) surface in analogy with the analysis presented for F centers at the
MgO (100) surface.
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A. Appendix

A.1. Oxygen interstitials in MgO bulk

Apart from vacancies, self-interstitials are a common typeof defect in semiconductors and ox-
ides. Magnesium interstitials are harder to form than oxygen interstitials, because they need
more space in the lattice. Here, only the neutral oxygen interstitial will be considered. Since the
neutral oxygen vacancy formation energy can accurately be calculated using the PBE exchange-
correlation functional, it is safe to assume that this is also valid for the neutral oxygen interstitial.

a) b) c)
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Figure A.1.: Relaxed geometries for three oxygen self-interstitial configurations corresponding
to local energy minima: a) face-centered, b) body-centered, and c) dumbbell configuration.
Measurements are in Å. The distance between oxygen and magnesium in pristine MgO is 2.13 Å
(PBE).

To obtain the most favorable oxygen interstitial geometry,the MgO structure is relaxed start-
ing from different geometric configurations. These are a face-centered, body-centered, and edge,
as well as some intermediate positions. The energetically lowest configuration found is a dumb-
bell configuration, where the interstitial oxygen togetherwith a lattice oxygen atom forms a
dumbbell along the [111] direction, centered at the oxygen lattice site. The formation energy
for this configuration is 1.93 eV forµO = 1/2Etot

O2
, calculated with PBE. Two local minima are

given by the configuration, where the oxygen interstitial isface-centered between two oxygen
and two magnesium atoms in the (100) plane as well as by a body-centered configuration. The
relaxed structures are shown in Fig.A.1. Most severe changes compared to the pristine MgO
lattice are obviously introduced by the dumbbell configuration.

Similar to the oxygen vacancy, the oxygen self-interstitials introduce defect levels in the elec-
tronic structure of MgO. Two defect states appear in the bandgap, corresponding to the 2p or-
bitals of the additional oxygen atom, each of them occupied with two electrons. The face cen-
tered oxygen interstitial introduces one defect level deepin the bandgap and the other one close
to the VBM. For a body-centered interstitial and a dumbbell formation centered at an oxygen
site the levels are almost degenerate and close to the VBM. The bandstructure of pristine MgO
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A.1. Oxygen interstitials in MgO bulk

and the bandstructure of the most likely interstitial configuration (dumbbell), both calculated for
a 64-atom unit cell with the PBE exchange-correlation functional, are shown in Fig.A.2. The
oxygen interstitial defect states are due to oxygen 2p states, mainly of the two oxygen atoms that
form the dimer-like interstitial structure.

Figure A.2.: Bandstructure and density of states for pristine MgO (a) andthe dumbbell intersti-
tial configuration (b), obtained with PBE for a 2x2x2 MgO supercell. The energy zero is set to
the VBM. Note the two fully occupied defect levels close to VBM for the dumbbell interstitial
configuration.

Fig. A.3 shows the formation energies for the three interstitial configurations and the neutral
oxygen vacancy atT = 600K as a function of oxygen chemical potential and oxygen pressure.
At this temperature contributions due to phonons are -0.12 eV for F0 and 0.30 eV for the dumb-
bell interstitial configuration. Vibrational effects are not taken into account in the following.
Referenced to the energetically most favorable dumbbell configuration, the face-centered and
body-centered configurations are 1.09 eV and 3.48 eV higher in energy. This is in qualitative
agreement with relative energies of 1.45 eV and 3.57 eV, respectively, calculated with a full-
potential linear-muffin-tin-orbital method using a 16-atom supercell, where only next neighbors
are relaxed [244]. For comparison also the F0 center formation energy is shown. For increasing
oxygen pressure, and therefore for increasing oxygen chemical potential, oxygen interstitials are
more easily introduced into the MgO lattice. Under the conditions shown, the formation of a
neutral oxygen interstitial is preferred over the formation of a neutral oxygen vacancy.
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Figure A.3.: Formation energies for interstitials and oxygen vacancy asa function of oxygen
chemical potential and O2 pressure atT = 600 K. All defects are charge neutral.

A.2. Convergence tests for periodic systems

Formation energies for oxygen vacancies in periodic bulk and surface systems were calculated
in this work with a k-grid of4× 4× 4, tight integration grids, atier 1 basis for magnesium and
tier 2 for oxygen, where convergence within 0.1 eV is reached for all defect charge states. For
the most severe case, the oxygen vacancy in charge state 2+, the convergence tests are shown in
Fig.A.4 for the bulk defect. (The convergence behavior for the surfaceF2+

s center is equivalent.)

Basis functions are constructed in analogy with the following examples.
hydro 2 p 1.8: Hydrogen-like function of 2p type with an effective ionic chargeZ=1.8.
ionic 3 d autofor Mg: 3d function of the Mg2+ ion (always doubly positively charged ion of
corresponding element), where the onset radius of the confinement potential is chosen automat-
ically to equal the one specified for the radial function equation.
For each radial function there are corresponding (2l + 1) angular functions.
Basis functions are grouped into tiers, mostly ordered intosuccessive angular momentum shells,
based on an iterative basis construction process describedin Ref. [99]. Energy convergence with
respect to basis set can be achieved by successively adding tiers or single basis functions.

From light over tight to safe/really tightsettings, parameters controlling the angular momen-
tum expansion of the atom-centered charge density multipole for the electrostatic potential, the
confinement potential for the basis functions, and the grid mesh used for radial and angular inte-
gration are altered for increasing accuracy. For details see Ref. [99] and manual that is distributed
with the code.
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A.2. Convergence tests for periodic systems

Figure A.4.: Convergence of formation energyGbulk,2
f for a bulk F2+ center in a 64-atom su-

percell in the oxygen-rich limit, neglecting vibrational energy contributions, for a) PBE and b)
HSE06 exchange-correlation functional, calculated with FHI-aims. The Fermi level is at VBM.
(i) Convergence with k-points.Tight grids with atier 1 basis for magnesium andtier 2 for oxy-
gen were used. (ii) Convergence with basis sets.Tight integration grids and a4× 4× 4 k-point
mesh were used. (iii) Convergence with integration grid mesh. A 4× 4× 4 k-point mesh and a
tier 1 basis for magnesium andtier 2 for oxygen were used.
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A.2. Convergence tests for periodic systems

Table A.1.: Standard numerical atom-centered orbital basis for hydrogen, lithium, oxygen, and
magnesium, as distributed with FHI-aims [99].

H Li O Mg
Minimal 1s [He]2s [He]2s2p [Ne] 3s

Tier 1 hydro 2 s 2.1 hydro 2 p 1.6 hydro 2 p 1.8 hydro 2 p 1.5
hydro 2 p 3.5 hydro 2 s 2 hydro 3 d 7.6 ionic 3 d auto

hydro 3 d 2.6 hydro 3 s 6.4 hydro 3 s 2.4

Tier 2 hydro 1 s 0.85 hydro 3 p 4.6 hydro 4 f 11.6 hydro 4 f 4.3
hydro 2 p 3.7 hydro 2 p 1.8 hydro 3 p 6.2 hydro 2 p 3.4
hydro 2 s 1.2 hydro 3 s 6.2 hydro 3 d 5.6 hydro 4 s 11.2
hydro 3 d 7 hydro 4 d 4.7 hydro 5 g 17.6 hydro 3 d 6.2

hydro 4 f 4.1 hydro 1 s 0.75

Tier 3 hydro 4 f 11.2 hydro 4 d 0.95 ionic 2 p auto hydro 2 s 0.6
hydro 3 p 4.8 hydro 3 p 6.2 hydro 4 f 10.8 hydro 3 p 4.8
hydro 4 d 9 hydro 3 s 1.7 hydro 4 d 4.7 hydro 4 f 7.4

hydro 3 s 3.2 hydro 2 s 6.8 hydro 5 g 6.6
hydro 2 p 1.6
hydro 3 d 1.8

Tier 4 hydro 3 p 5 hydro 4 p 0.45
hydro 3 s 3.3 hydro 5 g 10.4

hydro 5 g 15.6 hydro 2 s 12.4
hydro 4 f 17.6 hydro 4 d 1.7
hydro 4 d 14
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A.3. MgO lattice-parameter optimization

A.3. MgO lattice-parameter optimization

Optimized lattice parameters for different exchange-correlation functionals were obtained cal-
culating the cohesive energy of MgO using simple cubic unitcells (8 atoms) for varying lattice
parameters and performing a least-squares fit of the energies versus unit cell volume by the
Birch-Murnaghan equation of state [245, 246]. As an example, the fit is shown for HSE06 in
Fig. A.5. Optimized lattice constants for different functionals are summarized in tableA.2.
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Figure A.5.: Cohesive energy of MgO as a function of lattice constant for HSE06, obtained as
a fit by the Birch-Murnaghan equation of state. Total-energycalculations were performed with
FHI-aims, using thetight predefined grids and basis settings.

Table A.2.: Optimized MgO lattice constants (Å) for different exchange-correlation functionals.
Total energy calculations were performed with FHI-aims.

HF PW-LDA PBE HSE06 PBE0 B3LYP
4.185 4.165 4.258 4.217 4.212 4.235

A.4. Convergence tests and BSSE corrections for cluster
calculations

An unrelaxed Mg6O9 embedded cluster model was used to find the opt-HSE functional for cal-
culating F centers in MgO. Embedding pseudopotentials (compare Fig.6.7) and point charges
were employed. For calculations with FHI-aims a finite set ofembedding point charges was
used. To insure convergence with respect to embedding conditions, the formation energy of the
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A.4. Convergence tests and BSSE corrections for cluster calculations

neutral F center (formed in the center of the cluster) was calculated for increasing shells of em-
bedding point charges. This was performed for two differentembedding geometries, spherical
and cubic. Fig.A.6 shows that the formation energy converges fast with respectto the number
of embedding shells and that the formation energy does not depend on the embedding geometry.
The calculations were performed using PBE exchange-correlation treatment.

Figure A.6.: Convergence of formation energyG0
f for F0 in eV with respect to number of point

charge embedding shells, calculated with PBE, basis set superposition error has been removed.
a) cube-shaped embedding , b) spherical embedding

For comparison, the formation energies of the F0 center, as calculated with different methods
using the embedded Mg6O9 cluster, are shown in TableA.3. A tier 3 basis set was used for
all atoms in calculations with FHI-aims, whereG0

f is converged within 0.05 eV for all methods
shown. TURBOMOLE calculations were performed by S. Sicolo (Humboldt University Berlin).
All formation energies were corrected for the basis set superposition error (BSSE) using the
Boys-Bernardi counterpoise correction [198]. The BSSE may arise due to the incompleteness
of the atom centered orbital basis sets used in the calculations [99, 103, 198, 247]. Depending
on the geometric structure and the basis set used, overlap ofbasis functions can improve the
computed total energy of a system. When energy differences between systems with different
numbers of atoms or different atomic arrangements are considered, this may lead to an error,
since the superposition of wave functions is not the same forthe different atomic configurations.
For the defect formation energyG0

f three systems are calculated – the cluster without defect, the
cluster with defect, and a bare oxygen atom. For example, in the full cluster the atoms adjacent
to the central oxygen atom might profit from its basis functions, while this is not the case,
when the central oxygen atom is removed in the cluster with a defect. The BSSE corrections as
obtained with FHI-aims for the vertical formation energiesG0

f for an F0 center, calculated in the
embedded Mg6O9 cluster, are shown in TableA.4. In general, the BSSE for GGA and hybrid
functional ground state energies is small when computed with FHI-aims, due to the construction
of numeric atom-centered basis sets, where the total energyof a free non-spinpolarized atom is
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A.4. Convergence tests and BSSE corrections for cluster calculations

already converged at the minimum basis set level [99]. For explicitly correlated methods also
unoccupied orbitals are needed (see Sec.2), so that the BSSE becomes severe [103]. Using
the counterpoise correction method, the BSSE can be obtained and corrected for (G0

f → G0
f +

∆CP(G0
f )) by computing the system fragments, here the cluster with a defectECP

F0 and the bare
oxygen atom,ECP

Oatom), with the same basis functions that are used in the full system (here the
pristine cluster) [198],

∆CP(G0
f ) = ECP

F0 + ECP
Oatom − (EF0 + EOatom).

Indeed, as shown in TableA.4, the absolute values of the BSSE corrections to the formation
energiesG0

f are negligible (<0.04 eV) for the GGA functional PBE, and thehybrid functionals
HSE06, PBE0, and B3LYP, while for the explicitly correlatedmethods MP2 and RPA they are
as large as 1.71 eV and 2.75 eV, respectively. For all clustercalculations in this work, BSSE-
corrected energies were used for consistency when comparing different methods and formation
energies calculated with different codes. In general, the BSSE also concerns periodic calcu-
lations. Since based on the cluster results its absolute value is assumed to be< 0.04 eV for
the GGA and hybrid DFT defect formation energy calculationsperformed in this work, it was
neglected in these calculations.

Table A.3.: Vertical formation energiesG0
f for F0 in eV, as obtained from embedded Mg6O9

cluster calculations (incl. BSSE corrections).

Code PBE HSE06 PBE0 B3LYP MP2 RPA CCSD(T)
@PBE

TURBO- 7.18 – 7.02 7.37 – – 7.09
MOLE

FHI-aims 7.11 7.03 6.99 7.35 8.05 7.13 –

Table A.4.: Basis set superposition corrections∆CP
G0

f

in eV, as obtained from embedded Mg6O9

cluster calculations with FHI-aims (see text), usingtier 3 basis sets andreally tight/safegrid
settings.

PBE HSE06 PBE0 B3LYP MP2 RPA@PBE
-0.03 -0.03 -0.03 -0.04 -1.71 -2.75
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