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Abstract

Metal oxides exhibit versatile chemical and physical props. For example, they are used in
gas-sensor technology, for solar cells, transparent aiodi) and in catalysis. Oxygen vacan-
cies, also termed F centers, change the electronic and geosteucture of the oxide and can
appear in different charge states. F centers may enhanpeittfeemance of the material, or they
may be undesirable. In both cases, a fundamental knowlddhese defects is essential.

Realistic metal oxides are typically doped, either intemaily or unintentionally, and this
can affect defect concentrations and charge stdtesal and global effects of doping can be
distinguished. Global effects of doping include creatidrad-ermi level, i.e., the chemical
potential for electrons, formation of a space-charge regamd band bending at the surface.
Local effects occur due to defect-induced localization ludirge carriers at the dopant, and a
local change in electronic structure and lattice relaxatimund the dopant. Depending on the
system specifics, either local or global or both doping ¢ffean play an important role for the
formation of F centers.

Experiments measuring defect concentrationsitu are extremely challenging and therefore
scarce. Previous theoretical approaches to defect caatiens and formation energies have
aimed at a description of isolated, non-interacting defedh this work, bulk and surface F
centers in metal oxides are studied using the example of Mdp@h is widely used as a catalyst
or catalyst support. It has been shown, that intentignglpe doping enhances the catalytic
performance of MgO, and oxygen vacancies can play a deaigigen this context. However,
charge states and concentration of these defects undesticealorking conditions have so far
not been analyzed.

In the present work, the standard methodology for calawatiefect formation energies is
extended to include defect-defect interaction, accognfor realistic temperature, pressure,
electron chemical potential, and bulk doping concentratio It is demonstrated how defect
formation energies can be determined systematically aodrately, usingab initio atomistic
thermodynamics in combination with hybrid density-funotl theory (DFT) with parameters
of the exchange-correlation functional optimized acaugdo a consistency requirement on DFT
andG W ionization energies. Formation energies for neutral defae validated by coupled-
cluster calculations using embedded cluster models. Tiealicrystal approximation is used
for a realistic modeling of doping to describe charged vaeanat the surface.

It is found that at catalytically relevant temperatures~gf00-1,000 K and oxygen partial
pressures- 0.1 atm the concentration of charged F centers at surfaces efidmydes is largely
determined by two electrostatic effects, so far disreghidditerature: (i) charge transfer be-
tween surface defects and bulk dopants, leading to formatfca macroscopically extended
space-charge region, bending of electronic bands, andeatrielfield that limits the formation
of charged surface defects, and (ii) attraction betweefaseirdefects and the compensating
charge, facilitating oxygen vacancy formation. The higiherconcentration of charged defects,
the larger are band bending and defect formation energyeritesless, the concentrationlef*
centers at the (100) terracegfype MgO can be as high as 1% at realistic conditions, wiiile
andF? concentrations are negligible.



Zusammenfassung

So vielfaltig wie ihre physikalischen und chemischen Eggmaften sind auch die Anwen-
dungsgebiete von Metalloxiden. Sie kommen z.B. als GaesemsSolarzellen, transparente,
elektrische Leiter oder Katalysatoren zum Einsatz. Dabkeiinsachen Sauerstoff-Fehlstellen,
die auch als F-Zentren bezeichnet werden, Veranderungeeleldronischen und atomaren
Struktur, die fur den technischen Einsatz des Materials teierwiinscht, oft aber auch von
essentieller Bedeutung sind. Ein Verstandnis der Stabwion F-Zentren unter realistischen
auRReren Bedingungen ist in beiden Fallen unerlasslich.ie@ot des Oxids, durch gezieltes
Einbringen von Fremdatomen oder unbeabsichtigte Venigaig, kann die Konzentration der
Fehlstellen beeinflussen. Man kann dabei zwisajlebalenund lokalen Dotierungseffekten
unterscheiden. Global wirkt sich die Dotierung auf das Fdfiveau aus und kann zu einer
Raumladungszone und Krimmung der elektronischen Bandgeraristalloberflache fiihren.
Lokale Effekte ergeben sich durch Anderungen der elekdobrein Struktur und Gittergeome-
trie in unmittelbarer Umgebung der Fremdatome. Nur wenigeeementelle Studien wurden
bisher zu Gleichgewichtskonzentrationen von F-Zentrentdyefthrt, und theoretische Studien
behandeln meist den Grenzfall nicht-wechselwirkenderektef

Die vorliegende Arbeit befasst sich mit der Berechnung vefektren in Metalloxiden am
Beispiel von Magnesiumoxid (MgO), das als Katalysator \erdet wird. Obwohl gezielte
p-Dotierung die katalytischen Eigenschaften von MgO vesbaaund Sauerstoff-Fehlstellen in
diesem Zusammenhang eine entscheidende Rolle spieleakémarden deren Ladungszustande
und Konzentrationen in MgO bisher nicht unter realistiscBedingungen analysiert. In dieser
Arbeit wird das bestehende theoretische Modell zur Bengatprivon Formationsenergien unter
Beruicksichtigung von Wechselwirkungen zwischen Defeldéenmeitert, so dass als thermo-
dynamische Parameter Temperatur, Druck, Fermi-Niveauawuh Dotierungskonzentration
eingehen. Formationsenergien werden mit Hilfe w&minitio Thermodynamik und Dichte-
funktionaltheorie (DFT) systematich und prazise berethbazu werden Hybrid-Funktional-
Parameter, die das Austausch-Korrelations-Potentidinbegn, optimiert, so dass DFT- und
GoWy-lonisationsenergien Ubereinstimmen. Formationseeerfjir neutrale Sauerstoff-Fehl-
stellen werden durch coupled-cluster-Berechnungen vogebketteten Cluster-Geometrien va-
lidiert. Fur eine realistische Beschreibung geladenerrfimhen-Fehlstellen wird das dotierte
Material als fiktiver Kristall ¢irtual crystal) behandelt.

Die Konzentrationen von geladenen Oberflachen-Fehlstélle-dotierten Oxiden unter kat-
alytisch relevanten Bedingungen, Temperaturen von 40B-KOund Sauerstoff-Partialdrucken
>0.1 atm, werden von zwei elektrostatischen Effekten bemsti Ladungstransfer zwischen
Oberflachen-Defekten und tiefer liegenden Dotierungsweio flhrt zur Ausbildung einer Raum-
ladungszone, Verbiegung der elektronischen Bander urahregiektrischen Feld, wodurch die
Konzentration von F-Zentren an der Oberflache nach oberebegwird. Andererseits erleich-
tert elektrostatische Anziehung zwischen geladenen Globdgh-Defekten und Kompensation-
sladung das Entstehen von F-Zentren. Die Konzentrationzvwaifach positiv geladenen F-
Zentren an der (100)-Oberflache vprotiertem MgO betragt ca. 1 %, wahrend Konzentratio-
nen von neutralen und einfach positiv geladenen F-Zeneemachlassigbar klein sind.
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1. Introduction

Due to their manifold, often tailorable chemical and phgkjgroperties, metal oxides are suit-
able for a wide range of applications. Gas sensors, for eb@afapcarbon monoxide detection,
are often tin oxide based], while doped aluminum oxide in its mineral form is also knoes
sapphire or ruby, utilized to make jewellery but also foelagchnology 2]. Furthermore, metal
oxides are used in paints, in wallboards, for sunscreereeaironic devices like capacitors, or
for heat insulating material in mobile phones-§]. While all these areas may still be somehow
specific, there is one class of metal-oxide applicationsishaf great general economic and eco-
logic interest: Metal-oxide catalysts can help us prodwsaroodity chemicals like ethylene, as
well as fuels and electricity in an efficient and economicaywTwo prominent examples are
titanium dioxide and magnesium oxide. Exploring the cdialgroperties of titanium dioxide
has led to valuable insights in the context of photocatalytater splitting f—10], which may
make hydrogen available as an environmentally friendly. fA@d magnesium oxide (MgO) is
a base material for promising methane conversion catdly&£1]. All applications mentioned
above require very specific material properties. Pointatsféke vacancies, where an atom is
missing from the regular crystal lattice, or dopants, whare atom has been substituted by a
different species, induce unique features in the elearand geometric structure of a metal
oxide. While sometimes oxides of high purity are neededyroftefects are indeed desirable. In
some cases, oxygen vacancies, also termed F centers, caateroertain surface reactions or
inhibit others and thus influence the selectivity of a catalyror example, Wu and van de Krol
recently found a positive influence of oxygen vacancies erstiective photoreduction of nitric
oxide to nitrogen over a TiQphotocatalyst22]. Furthermore, dopants may be used to control
electrical conductivity by providing free charge carrieBy doping, also the chemical potential
for electrons, the Fermi level, can be fixed, which is impatrfar charge transfer processes in
the metal-oxide bulk or at interfaces with vacuum or othetemal. Understanding the defect
physics of a metal oxide is a key to achieve an optimal perdmce in application. However,
even the very first step is complex. Defect type, conceninatind charge state typically depend
on outer conditions such as temperature and pressure, ghdrfuore, defects usually interact
with each other in different ways that are sometimes not idiately obvious. Experiments on
point-defect stabilities are challenging, since it is hréstablish thermodynamic equilibrium.
In theoretical studies often only the limiting case of nateracting defects is considered. For
charged surface defects under realistic ambient condigéeen a reliable theoretical framework
has so far been lacking.

This work addresses the very basic and nevertheless veltgraffiag question how stabilities
of oxygen vacancies in different charge states at metalkosiafaces can be described quanti-
tatively within a self-containedirst-principlestheoretical approach. The goal is to understand
how defect concentrations and charge states depend onrssomee pressure, electron reservoir
(Fermi level) and doping concentration on the example df bad surface F centers in MgO.

Several distinct aspects need to be considered. Two diffsteucture models are commonly



used to describe point defects within an electronic-stinecapproach. An embedded cluster
model is a piece of material cut from the crystal lattice amdainded by potentials that mimic
the extended system. A periodic supercell model also usésca pf material of the extended
system, but repeats it periodically. In this work, the aiphiis to survey advantages and disad-
vantages of both models, so that ideally the specific adgastaf each model can be exploited
for the system of interest.

In general, periodic models are more suitable to obtainrim&tion on the electronic energy
bands of a solid, which is important specifically for chargedects. The challenge in periodic
calculations of charged surface defects is to choose egiitaethod of charge compensation.
Due to the periodic repetition, the electrostatic poténtiahe calculation diverges, if it is not
compensated. This reflects the physical fact that thereigndisant energy associated with the
long-range Coulomb interaction, which therefore must bstiy@ancelled in realistic systems.
The standard approach to overcome this issue is to applyfarony distributed background
charge to the systen28]. However, this approach is somehow artificial and in a swrfeal-
culation, where two-dimensional slabs of host materialsggarated by vacuum, it is without
doubt unphysical. Therefore, one necessary requiremetitda@omputations of charged surface
defects in this work and for future studies of similar systémto find a physically meaningful
way of charge compensation in supercell calculations.

To bridge the gap between microscopic and macroscopicteffie energy gain or loss upon
defect formation and resulting defect concentrations @oabculated using density-functional
theory in combination witkab initio atomistic thermodynamic24, 25]. This approach is com-
monly used for studies of bulk defects in semiconductors @fides, accounting in the case
of oxygen vacancies for three thermodynamic variables: pegature, partial pressure of the
surrounding oxygen atmosphere, and Fermi level. So fagrétieal approaches have been
concerned to describe isolated, non-interacting defgctedse means. This is justified for van-
ishing defect concentrations. However, usually intececietween defects can not be neglected.
Specifically, this is true for charged defects, where ebtstatic attraction or repulsion decays
slowly with distance between charges. Furthermore, t&alisetal oxides are typically doped,
either with or without intent. It is important to identify drunderstand the electrostatic inter-
actions that influence the stability and charge state of enygacancies in metal oxides. And
consequently, the existing thermodynamic framework féecwdating defect concentrations and
in particular the set of considered thermodynamic varghkes to be extended, accordingly.

The quantity that determines the defect concentrationeisiibs free energy needed to cre-
ate the defect. When calculated with density-functionabtli methods, the values of defect
energy levels and total energies need to be tested carédultiieir sensitivity to the employed
approximate treatment of exchange and correlation of theyretectron system. All system
characteristics that are important for the defect fornmatieed to be identified. It must then be
insured in a robust, self-contained theoretical approhahthese characteristics are reproduced
accurately by the optimal exchange-correlation functiona

Furthermore, there are specific challenges concerningesxygcancies in MgO. A long-
standing discrepancy exists between the stability of arakbulk F center as measured in an
optical-absorption experimen2§] and different published values of the formation energy cal
culated with electronic-structure metho®y430]. With regard to the application of MgO in
catalysis, it has been shown thatype doping is a requirement for high selectivity of casidy



for methane activatior3[l] and thatp-type doping promotes the formation of oxygen vacancies
in MgO [32]. Doping can affect defect formation in a local way, causihgnges in electronic
and geometric structure in the vicinity of a defect, and inabgl way, determining the Fermi
level position. Therefore, the aim is to acquire a detailedenstanding of local and global ef-
fects ofp-type doping on oxygen vacancy formation in MgO and to prewdtimates for the
equilibrium concentrations of surface oxygen vacancieduting these effects.

The thesis is structured in two parts, starting with a disiturs of concepts to characterize
charged point defects in oxides in general. For this purpiirse the theoretical background of
electronic-structure calculations used in this work is swarized (ChapteR). In the follow-
ing, embedded cluster and periodic supercell models aceisisd with an emphasis on charge
compensation in periodic models of charged systems (Chaptblext, it is explained how sta-
bilities for isolated defects can be calculated, and a tbegmamic model for interacting surface
oxygen vacancies is introduced that allows to calculatsm#&bion energies and concentrations
of these defects taking into account their dependence ocaheentrations of all other defects
and dopants in the system (Chapter Also, experimental methods are briefly sketched. In the
second part of the thesis the outlined concepts are applipdint defects in MgO. The role of
MgO in the context of methane activation is reviewed (Chapjeand the analysis of oxygen
vacancies starts with defects in the bulk (Cha@jerGeometric and electronic relaxation and
charge transfer are examined and an optimal hybrid DFT immat is identified to be used for
the calculations of neutral and charged F centers in MgOn;Thearface F centers in different
charge states in doped MgO are investigated (ChaftekVhile the focus of this work is on
global doping effects, finally also short-range effects @pidg are studied, considering defect
complexes formed in lithium-doped MgO (Chap8&r At the end, the results of this work are
summarized in the context of existing knowledge (Chap)eand an outlook on subsequent
questions interesting with respect to future researchvisngiChapted.0).



Part I.

Concepts to characterize charged point defects
In oxides



2. Abinitio methods for electronic-structure calculations

The purpose of this work is to learn about the influence thattzfects have on the electronic
and geometric structure of a material and what this meanth@®properties of the solid. In
the following, all non-adiabatic effects are neglected alettrons are considered as moving in
a potential created by frozen nuclei. At atomic scale theesmonding electronic many-body
problem is expressed by the electronic Schrodinger equafithe numerical cost for solving
it scales exponentially with the number of electrons, mgkirimpossible to compute the full
solution for systems other than very small molecules. Hanawbust methods exist that allow
for approximate solutions, in particular for ground-stpteperties. On the one hand there are
techniques that make assumptions on the wave functionslpatartree-Fock (HF) theory and
methods that are based on HF, such as Mgller-Plesset paituritheory, configuration interac-
tion (CI), and coupled-cluster (CC). By construction, #hesethods allow to increase accuracy
systematically, but this is at the cost of increasing comafiartal effort. For example, high accu-
racy CC theory (in particular CCSD(T)) is still affordablaly for molecules or small clusters,
typically with less than 20 atoms. The most successful nekfbo treating bulk and surface
systems of up to several thousands of atoms, such that algerdmge effects may be taken
into account, is density-functional theory (DFT). Withimg theory all uncertainty is folded into
a density-dependent exchange-correlation potentialghwisi subsequently approximated. It is
also possible to combine wave function and density-basprbaphes. Mixing a certain amount
of HF non-local exchange, often called exact exchange am&T local exchange potential, one
can form a non-local hybrid functional. The underlying thetiwal framework of the methods
used in this work to solve the Schrédinger equation is regteim the following paragraphs.

2.1. The many-body problem

The key problem of finding the ground-state energy of an at@ystem with electrons &t and
nuclei atR; is to solve the time-independent Schrédinger equationchvhas the form of an
eigenvalue problem )

7‘[|<I)(R1,...,’I"1,...)> = g|<I)(R1,...,’I"1,...)>. (21)

# is the Hamilton operator anfl(R;,...,r1,...) is the many-particle wave function and an ele-
ment of the Hilbert space. Specifically, a variational piplecan be written for the ground-state
eigenvalueg, and eigenvecto® of the Hamiltonian operator

Eo = (| H| Do) < (B|H|D), (2.2)

where® is an arbitrary element of the Hilbert space. The grountestaergy is for example

needed to determine the system’s ground-state geometsctigie. Furthermore, by analyzing
ground-state energy differences, observables like atisorpnergies or defect formation ener-
gies may be estimated characterizing the system or prot@siest.



2.1. The many-body problem

Electrons and nuclei each carry charge which is responfibléoulomb interaction between
them. Neglecting relativistic effects, as for example spibit coupling, the Hamiltonian oper-
ator for a system oV, nuclei with atomic numbers,Zlocated atR;, and N, electrons at;,
is

7:[ - Tn + Te + Vn—n + ‘/e—e + ‘/e—n- (23)

The different contributions are (atomic units are usedXkihetic energy of the nuclei

- 1
T, = — —A 2.4

whereM,, is the ratio of the mass of nucleéso the mass of an electron, the kinetic energy of

the electrons
Nel

Nel

A 1 .

T. = — E §A” = E ts, (2.5)
=1 =1

the nuclear-nuclear interaction

N,
nuc Zka,
Vaen = _— 2.6
n—n Z ‘Rk o Rk/‘ ( )
k k=1
k£k'
the electron-electron interaction
Nel
1
Vere = _ 2.7
o= D ] &)
i,1'=1
i

and the electron-nuclear interaction

Nel Nnuc

Vew=-3 > 2 :NZ (2.8)
o Ry 2 |

i=1 k=1

Except for the two lightest elements, the mass of the nusléDi-10° times larger than the
mass of the electrons, so that their motions are typicallyaed to take place on different time
scales, where the electrons adjust to the nuclear positilbngst instantaneously. This means
that the electronic energies can be approximated as ordyrrically dependent on the nuclear
coordinates, describing a potential energy surface fomb&on of the nuclei. The assump-
tion to neglect non-adiabatic coupling of the electronid anclear subsystems is known as the
Born-Oppenheimer or adiabatic approximati@8][ The total electron-nuclear wave function is
approximated by a product of the electronic and the nucleaeviunctiong®) = |¥)|y). This
is valid for systems with well-separated adiabatic elggtrgtates, in which electronic transition
due to nuclear motion is not to be expected. The electroriblem for a set of nuclear posi-
tions R = [R;,...Ry,,.] With electrons at = [ry,...rx, ] is then described by the electronic
eigenvalue problem X

H[Y(Rr)) = E(R)|¥(R,)), (2.9)



2.1. The many-body problem

whereH = T, + Voo + Vo, is the many-electron Hamiltonian. The nuclear motion fefo
from the nuclear Schrédinger equation

HyuelX(R)) = [Ty + Van + E(R)]|X(R)) = Epolx(R)), (2.10)

where the total energ¥.. (R) = V., + E(R) provides a potential energy surface for the mo-
tion of the nuclei.&po, including electronic, vibrational and translational trdsutions, is the
Born-Oppenheimer approximation to the enefggf the full coupled system in EQ.1 Alter-
natively, the nuclear motion may be obtained from the ota®quation of motion, neglecting
guantum effects. According to the Hellmann-Feynman thaoj@4], forces on a nucleug,
F;.(R), are given as

Fi(R) = —VRr,E(R) = (V(R,r)|VR H|¥(R,r)). (2.11)

The kinetic energy of the nuclei is usuallp—2 — 10~3 times smaller than the kinetic energy of
the electrons. Within the Born-Oppenheimer approximati@ncontribution of nuclear-nuclear
interaction to the total energy of the system depends onth@muclei positions. What remains
to be solved is the electronic many-particle problem (E§). One step that most methods for
an approximate solution of the Schrodmger equation haveoimmon is to first separate the
interacting many-electron Hamiltonidt into a mean-field, non-interacting Hamiltoni&f*¥
and a remaining interaction Hamiltonidf,

H=HMF + 7. (2.12)

The mean-field Hamiltonian can be written as a sum of effectingle-particle Hamiltonians
hM¥ "according to
Nel Nel
HME =0 = (1 + o 4 0T (2.13)
i=1 i=1
with a corresponding set of effective single-particle $dimger equations

WMF o) = eler), (2.14)

where p; are single-particle wave functions aaddenote single-particle eigen energies. The
mean-field ground state energy'™ is

B = (¥ T ), (2.15)

whereU)M is the mean-field ground state wave function. For examplelairiree theory )™

is a product of single-particle wave functions, and in HeetFock theory#}'F is a single Slater
determinant constructed of single-particle wave fundionhis is discussed in more detail be-
low. In different mean-field approachesy! and UM are either used directly to approximate
the energy of the full electronic Hamiltonian or they ares#was a reference, e.g. when pertur-
bation theory is subsequently applied.



2.2. Hartree-Fock theory

2.2. Hartree-Fock theory

In order to reduce the complexity of thévd-dimensional electronic problem, different approx-
imations have been suggested. Approaches based on thenmkmany-particle wave function
are for example the Hartree and Hartree-Fock approximatibat were developed in the late
1920s B5).

Within the Hartree approximation each electron is movinghm average potential, or mean
field, of all other electrons. The wave function is thus writtas a product of single particle
wave functions. Since the effective potential depends erstilution of the Hartree equation,
this leads to the self-consistent field approach. An effectiotential is guessed and used to
obtain the solution of the equation that is subsequentlyg tsduild a new effective potential,
and the procedure is repeated until self-consistency &hesh This concept is restored also in
the practical implementations of density-functional ttyeo

Building up on the Hartree theory, the Hartree-Fock appnation additionally takes into
account the fermionic character of the electrons. The ne@gtron ground-state wave function
U, is approximated by a single Slater determin@t” of N, spin orbitalsy; that is antisym-
metric upon interchanging the coordinates of two electentsthus fulfills the Pauli principle

e1(ri,o1) 0 o (r1,01)

1
pHF — : : . (2.16)
NeI! . .

901 (rNel’a-Nel) e SDNel (rNel’O-Nel)

v;i(r;,0;) denotes the single-particle wave function of ke electron, located at; and with
sping; (spin up or spin down) in state(comprising orbital and spin quantum numbers).

Applying the Rayleigh-Ritz variational principl&§], the expectation value of the electronic
Hamiltonian H evaluated at any state is always larger or equal to the exashd-state energy
Ey. Considering the wave functions; (r) andp;(r) as independentiZi't can be minimized
with respect to the choice of spin-orbitals under the camnstiof normalization introduced with
Lagrange multipliers;. This results in the Hartree-Fock equations

(=58 v lr) + ou(}ei(r) + [ Erenlraoilr) = i), @47)

The Hartree potentialy(r) is defined as

/
va(r) = / PO (2.18)
=]
where
Nel
n(r) = lei(r)] (2.19)
=1
is the electron density. The non-local, exact exchangenfiates
Nei * [ pa]
n_ pi(r)e; (r')
’UXX(’I",’I" ) = —Z W (220)



2.3. Density-functional theory

Comparing the Hartree-Fock equations with Ed.3and Eq.2.14, the exact exchange potential
together with the Hartree potential can be identified with Hartree-Fock mean-field poten-
tial vMF. In general, the Hartree-Fock equations need to be solvetenically. Since the
solutions;(r) have to be known already to solve the equations, a selfst@msi scheme is
applied, where the effective single-particle Hamiltoniarfirst obtained from an initial guess
of the p;(r). Solving the Hartree-Fock equations for this approximatenittonian leads to a
new set of solutions, that are compared to the previous diiesse steps are repeated until self-
consistency is reached. The Hartree-Fock ground-state fumction Ui is then the Slater
determinant of theV,, single-particle orbitals with lowest energies

Accordingly, the Hartree-Fock total energg}'" is

EIF _ gl ) Z / Pt (r ( LA+ vl >> a(r)  (2.20)

+ _Zel/d?, & ) opi(r 7),‘_’907]‘(’ )’

b,j=1
1 Zel/d?’ 0 £ )Ei () (r)e;(r)
b,j=1 fr =]

The second term in EQ.21is the Hartree energi!, the last term is the HF exchange energy
E. that does not appear in the Hartree theory. The Hartree-thetky is self-interaction free,
since the diagonal term$ = j) of the HF exchange energy cancel exactly the self-interacti
terms in the Hartree energy. The energy contributions tteahat covered by the Hartree-Fock
theory are called correlation energy. The correlation gneffects account for deviations from
the mean-field (dynamic correlation) and the single-deitgant (non-dynamic correlation) ap-
proximations. Determining very accurately the missingeation energy, that typically makes
up a small but still important=1% contribution, is the subject of quantum-chemistry mdsho
which are briefly discussed in Sez4. Density-functional theory, on the other hand, takes a
different approach, reformulating the problem such thattkplicit functional form of exchange
and correlation energy with respect to electron densityaiasito be determined.

2.3. Density-functional theory

Both Hartree and Hartree-Fock theory result in effectimgla particle equations which are then
solved numerically within the self-consistent field scheniéis also holds true for density-
functional theory, reusing the techniques that were d@esidefore. In contrast to the wave
function based approaches, DFT focusses on the electraityemhich was pointed out by
Hohenberg and Kohn in 1964 to uniquely determine the phlygpicgerties of a systen3J].
Even shortly before the Hartree theory became known, trarete density had already taken
up an important role in the Thomas-Fermi theory (1927) thggested an approximation of the
kinetic energy of an atom as a functional of the electron it 38, 39).



2.3. Density-functional theory

2.3.1. Hohenberg-Kohn theorem

The first part of the Hohenberg-Kohn theorem states that $gstem of electrons in an external
potential, as the one due to electron-nuclear interactlog,potential is a unique functional of
the ground-state electron densityr), which is related to the number of electrons in the system
via the normalization

Ng = /d?’r n(r). (2.22)

The external potential determines the electronic Hamittperator (Eg2.9) which on the other

hand leads to the electronic states holding the completsigddyinformation on the system.
Consequently, any ground-state physical property, inqdar energy, can formally be written
as a functional of the density

Eo = (Wo|H| W) = Eg[n(r)]. (2.23)

In its original form the Hohenberg-Kohn theorem can be pnovia reductio ad absurdun(see
for example Ref.40]). An extension to also non-degenerate ground states wasrted by
Levy in 1979 A1].

While the energy contribution of the external electronieac potential is straightforward to
express as a functional of the density usingZ£8§and2.19 the more challenging part is to deal
with the functional dependence of

Fln(r)] = (Vo|Te + Vee|¥o), (2.24)

whose explicit form as a closed expression in terms of theiteis unknown. F'[n(r)] is also
referred to as the Hohenberg-Kohn functional.

The second part of the Hohenberg-Kohn theorem offers a wiaprtictical calculations of
the ground state energy. It states that the density thatmides the total energy is the exact
ground-state density. Any trial density, for whigha!(r) £ 0 and [ n'riel(r)d3r = N, yields
an energy greater or equal to the ground-state energy of/tens E[n'?!(r)] > E;, so that
Ey can be approached applying a variational principle. IntaHfiee DFT one calculates the
energy for a certain trial density and improves it iterdtivie analogy with the self-consistent
field method known from the Hartree theory. But a succesgipi@imation to2.24, especially
for the kinetic energy functional, is rather difficult to find herefore, the approach that was
undertaken by Kohn and Sham in 1965 achieved great app#®jal [

2.3.2. The Kohn-Sham equations

Kohn and Sham suggested to choose a non-interacting reéesystem with the same electron
density as the true interacting system. The respective alared single-particle statés;) (an
index KS for the single-particle orbitals is not introduded simplicity) are often referred to as
Kohn-Sham orbitals. The single-particle orbitals are usambnstruct a Slater determinabts
which corresponds to the many-electron wave function feiféinmionic system, in analogy with
the proceeding in Hartree-Fock theory (Egl6). The electron density of the true systerr)

10



2.3. Density-functional theory

can then be expressed as that of the fictitious referencersyst> () according to

Nej
n(r) =n"S(r) = Z s ()2 (2.25)

In contrast to the kinetic energy functional of the inteiregtsystem, that of the non-interacting
reference system is explicitly known as

Nel
1 *
ERS = -3 Z / dBroi(r)V23e;(r). (2.26)
i=1

To simplify the unknown full electron-electron interactiterm, it is split into the classical elec-
trostatic energy of an electron gas with density ), the Hartree energiZy; (compare Eq2.21),

Enln(r)] = % / &r d%’i”'f)_”fj'/ ) (2.27)

and an unknown remaining terfi._.[n(r)] — Ex[n(r)]. The Hohenberg-Kohn functional may
then be written in terms of the energy quantities for the imw@racting reference system as

Fin(r)] = EES + Eq[n(r)] + Exn — EXS + E._c[n(r)] — Eu[n(r)]. (2.28)

kin n

Exc [”(7")]

The unknown energy contributions for the true interactipstam are thus substituted by those
of the non-interacting reference system plus the theregleoted terms which are summarized
in the exchange-correlation energy functiofial. [n(r)]. Solving the variational problem under
the constrainR.22 wheree; enter as Lagrange parameters,

Nel

Ogr | Buln(r)] — Zej(/ Bripj(r)>—1) | =0, (2.29)

=1

leads to a set of effective single-particle Schrédingeaéqus, the Kohn-Sham equations

1
{=5 Vi + o (r) + ve(r) + vexi (M) }pi(r) = €igpi(r)- (2.30)
These describe non-interacting quasi-electrons movirg ieffective, local, potential

OFExc[n(r)]

O (2.31)

Vet (1) = vH(T) + Uxe (7) + Vext (7), Vxe(T) =
where the mean-field potential defined in Rgl3is the sum of the Hartree potential and the
exchange-correlation potential. Reformulating the \temeal problem in terms of wave func-
tions instead of densities partly spoils the beauty of théadiberg-Kohn theorem, but it is
necessary, since they are needed for the kinetic energye afdh-interacting reference system.
Strictly speaking, single-particle eigenstategr) of the KS reference system do not have a

11



2.3. Density-functional theory

physical meaning. Nevertheless, the corresponding eigergiese; are often good approxi-
mations to the electronic single-particle ionization gnes of the true interacting system. In
specific, it can be shown that in exact DFT, the highest oexlipnergy level equals the exact
first vertical ionization enerdy[43,44]. Furthermore, according to the Janak theord# (the
DFT analog of the Koopman theorem of HF theodj]), the exact electron affinity of a system
with N, electrons is
1
ENeH-l — ENe1 = /gl(n)dn, (2.32)
0

wheree;(n) is the DFT eigenvalue for the lowest unoccupied orbital & M, system, and
0 < n < 1 electrons are introduced into this orbital. Approximatthgs integral, for example
in a lowest-order approximation by evaluating it only at thielpointn = % can in practice be
used to calculate electron affinities or ionization enex{i®, 47).

The Kohn-Sham equations must be solved self-consisteasitlge the effective potential de-
pends on the final result for(r). For computational convenience the DFT total energy is typi
cally calculated using the sum over the KS eigen energies

Nel

E(]))FT[TL] = Zei — En[n] + Ex[n] — /dgr Uxe([n(r)],7)n(r). (2.33)
i=1

Since the exchange-correlation functional is not genetatiown, the consecutive step must
be to find an approximate expression fg([n(r)]). Opposed to quantum-chemical methods,
which allow for successive improvement of accuracy, therad obvious systematic way to
do so for the exchange-correlation functional. Still, athg rather crude approximations have
proven to lead to good agreement with experimental obsengand valuable physical insight.

2.3.3. Exchange-correlation approximations and hybrid functionals

A system, for which the exchange-correlation functiondriewn, is the homogeneous electron
gas. For this model system, an analytic expression existhéoexchange energy densitg],
while the correlation energy density can be determined migadly with extremely high preci-
sion [49]. In a jellium approach, the exchange-correlation enesggvialuated locally, at each
point in space, using the exchange-correlation energyitgeri§“ [n(r)] of the homogeneous
electron gas,

Eye[n] = EXPA[p] = / &Brn(r)eECn(r)]. (2.34)

This became known as the local-density approximation (LD#2 49, 50]. Using the local
exchange-correlation energy of the homogeneous electsiaugd therefore neglecting the true
non-locality of Ex.[n] works well for systems with slowly varying electron densig for ex-
ample for metallic solids asp-bonded semiconductorS]]. Still, there are serious deficiencies,

The termvertical ionization energy refers to the energy required to remowealactron from the system, where
possible changes in geometry that may result from the itinizaare neglected. In a configuration coordinate
diagram, which shows the total energy of a system as a funofioonfiguration coordinate, this corresponds to the
vertical distance between the energy minimum of the curvéVie electrons and the curve fd¥.; — 1 electrons.

12



2.3. Density-functional theory

as LDA in general tends to an overbinding, which leads fonga to overestimated cohesive
energies. Especially for atoms and small molecules, witlnaang variation of electron density
in space, this is a severe drawback. Also, the local-deagijpyoximation introduces an electron
self-interaction error, which means that Kohn-Sham olbithat are highly localized may be
destabilized.

An improvement in some points was achieved by semi-loca¢ggized gradient approxima-
tions (GGA), which additionally take into account the degrmce of the exchange-correlation
energy on the gradient of the electron density

Eyc[n] =~ E&GA[nJVnH = /dgr n(r)e)iGA[nJVnH. (2.35)

The exchange-correlation energy densfty* [n,|Vn|] can be separated into exchange and cor-
relation contribution. The exchange energy density is &sg®d as that of the homogeneous
electron gas multiplied with an enhancement fadtopm,|Vn|],

ESGA[n,\VnH = GEEG[n]FX[n,]VnH. (2.36)

In the proximity of an electron the probability of finding d@her electron is reduced. This de-
pletion of electrons (also called exchange-correlatiole)ollows the electron density gradient
and the result is an increased exchange energy density.nhia@eement factafy [n,|Vn|] > 0
accounts for this effect. In the limit of a homogeneous systerhere|Vn| — 0, the local
density approximation is recovered. However, it is not obigihow the exact functional form
of Fy[n,|Vn|] should be chosen. Different GGA flavors have been suggedéelimining the
enhancement factor in accordance with certain physicaltcaints or using parameters obtained
by fitting certain properties of a class of systems to expenita results. The very successful
Perdew-Burke-Ernzerhof (PBE) GGA, that was published i@861%2], obtains the exchange
enhancement factdry[n(r)] by using the form

Fu(s) = 14 kp — —F__ (2.37)
1+ 4
where the reduced density gradiaris defined as
[Vn(r)|
=—_— 2.
* 7 Skp(r)n(r) (2.38)

The functional form ofF(s) and the constants and k- are determined by making the PBE
exchange-correlation enerdsf. 2" reproduce the limit of known linear response for the uniform
electron gas, and by makingLB¥ obey the Lieb-Oxford criterium, which provides an upper
bound forFx(s) [53].

In most cases, GGA functionals improve on bulk propertiesadifis like cohesive energies
and lattice constants, as compared to L34{56]. Considering molecules, atomization ener-
gies can be calculated more accurately using GGA than udd#y while only small improve-
ment is achieved for ionization energies and electron &#mi(for details see Ref5¥] and
references therein).
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2.3. Density-functional theory

Still, a major drawback of the semi-local exchange-cotia@tafunctional is the incomplete
self-interaction cancellation. For systems where loa#ilin plays an important role, e.g. for
defects or surfaces, this deficiency can lead to large sysierrors.

On the contrary, Hartree-Fock theory does not suffer froengélf-interaction error, but it
lacks correlation energy, which leads to large errors indidcription of chemical bonding. In
order to partially cancel the self-interaction error in mmnilocal GGA functional, combining
GGA with HF exchange seems a promising solution. The ideantaxiuced by Becke in 1993
in the following form [B8]:

ER°[n] = a - Exlpiln]] + (1 — ) ES* [n] + EZAn). (2.39)

So a fractionx of the exchange part of the GGA exchange-correlation fanetiis substituted
by HF exchange.f,, differs from the HF exchange energy (E2j21) in so far that it is not
evaluated at the optimal HF Slater determinant as in HF yhdmrt instead at the orbitals of
the non-interacting Kohn-Sham reference system. As a goesee of using the non-local
E., the exchange-correlation approximation is no longerlloddne formal grounds for the
derivation of this type of hybrid functional are within geakzed DFT theory that incorporates
KS-DFT as a special case, using an adiabatic connectionebetthe noninteracting Kohn-
Sham reference system and the fully interacting true systeough a continuum of partially
interacting systems, where all of those systems share a oonui@nsity (see also Sez.4).
While the hybrid exchange-correlation energy expressdeir?2.39meets the expectations on
reducing the self-interaction error and works well for noolles B9, it cannot be considered
satisfying for metals and narrow-bandgap semiconducttus, to the long-range part of the
exchange that should mostly cancel with the exact corcgld80-62]. Since only approximate
correlation is used, remaining terms from the long-range pkthe Hartree-Fock exchange
introduce some error. For this reason it is desirable taigtelonly a short-range part of Hartree-
Fock exchange, and partition the Coulomb operét@f |'r——1r’\ in By (EQ.2.21) accordingly.

The Heyd-Scuseria-Ernzerhof functional H3E][introduces a screening parametethat
partitions the Coulomb potential for exchange into a loagge (LR) and a short-range (SR)
part using the computationally convenient error function

1 erfe(wr) erf(wr)

L n , (2.40)
T T T
—— N —
SR LR

The exchange-correlation approximation then reads
B (aw) = aEZHw) + (1 = a) EPP (w) + EYPPIR () 4+ EgPP. (2.41)

There are two prominent limiting cases B, If w is set to zero, a fraction of the full ex-
change energy is replaced by exact exchange, and fo10.25 the PBEO exchange-correlation
functional is recoveredsfd]. As w approaches infinity or forv = 0, E5F reduces to the pure
GGA functional ELBE. In the HSEO6 version of the functiondd], the exchange parameter is
set toa = 0.25, as optimized for atomization energies of molecules, basegerturbation the-
ory arguments@4]. The range-separation parameter is selected empiriaalf;11 bohr! [65].

The value forw was chosen from the performance of the functional for test et atoms,
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molecules (G3/99 test set of 223 standard enthalpies ofdtiom 88 ionization potentials, and
58 electron affinities), and 29 solids covering insulat@esniconductors and metals. Within
these tests it was shown that variation of the screeningwetea strongly influences bandgaps
of solids, while properties of molecular thermochemistrylaitice constants of solids are not
S0 sensitive to its variation. Apart from the enhancememduaeling solid-systems properties,
HSEOQ6 is also easing the computational effort as compardéuktearlier, not range-separated,
hybrid functionals. The HF exchange interaction decaywlglavith distance in metals and
narrow-bandgap semiconductors, but it only needs to beiated for the short-range part and
therefore computational costs are reduced, in particoldodlk and surface models of extended
systems.

Hybrid functionals are sometimes regarded as not tablynitio, because many of them in-
volve parameters that are obtained by fitting to certain @migs of materials. The B3LYP
(Becke, three-parameter, Lee-Yang-Parr) hybrid funetidor example owes its name to three
parameters which determine, similaktdor the HSE functional, to what amount exact exchange
and LDA as well as PBE exchange and correlation are migéf B3LYP was introduced in
1994, nine years before HSE. The three parameters weraebtiiom fitting to a set of atom-
ization energies, ionization potentials, proton affirstiand total atomic energies, concentrating
on good performance for molecular systems. Therefore, B8h#s been widely and success-
fully used for calculations of molecules for the last 20 wear

Usually the predefined parameter sets have carefully beeseohto perform well at least
for a large class of systems or materials and are therefdraintemded to be changed. Still it
is not uncommon that the parameters are fit to an individustegy. This is assuming that a
parameter set, performing well for a known property, wialield valid predictions for the
property of interest. However, if a hybrid functional’s pareters are chosen to agree with a
known value of property A, is this really the property relevin order to obtain meaningful
results also for property B? And are there ways to check ttaditguof the choice? In this
thesis these questions will be addressed in detail on thmperaof defect formation energies
calculated with HSE(, w).

2.4. Beyond DFT and HF: MP2, RPA,GW, and coupled-cluster

Validation with higher level methods is an option to reliablssess the performance of hybrid
functionals. Therefore, also perturbative methods ard irsthis work to compare ground-state
energy differences calculated with MP2, RPA, and coupladter approaches, and electron-
addition or ionization energies based on tHE” approximation, with hybrid DFT results for
specific MgO systems. Since these calculations are coniqmadly expensive, they are, with the
exception of non-self-consisteaill’, usually applied to finite systems only, and the number of
electrons that can be treated in practice is limited. Thertteeal background of these methods
is briefly reviewed in the following paragraphs.

Starting from the Slater determinant that solves the Hexfiieck equations (E@.17), some
methods aim to improve the model by introducing the missiorgatation between electrons that
is so far neglected. This can be done considering virtuatetkstates, by replacing occupied
states in the Slater determinant with unoccupied statesi@liorbitals). Replacing one, two,
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three,... states means to consider single, double, tripéxcitations.

One of the methods where excitations are introduced pextivdby is the Mgller-Plesset per-
turbation theory §7]. The deviation between the true electronic Hamiltonfdrand the HF
mean-field HamiltoniadZ ¥,

H =H — A", (2.42)

can be expressed as a perturbative contribution to the wmped Hartree-Fock total energy.
EY (Eq.2.21) is already exact to first order, so that, following RayleBthrodinger perturba-
tion theory, the ground-state energy in second-order getion (MP2) is

A ) 2
EUF

By~ Ey" +> i (2.43)

140

Excited Slater determinants are denotéﬁF, and E; are the respective energy eigenvalues.
According to the Brillouin theorem, singly excited HF s&t#o not contribute in EQR.43(see
for example Ref. 8] for derivation). Also, excitations of higher order thanutie excitations
do not contribute, sincél’ is a two-particle operator

Nel 1 Nel
H = —— N iF, 2.44
; 7 — 74 Z; ‘ (2.49)

J i=

Drawbacks of the MP2 method are divergence of the energy ébalsiand often an overestima-
tion of the absolute value of the correlation energy due eéaihncation of the expansion.

A method that overcomes these problems is the random-plpgsexémation (RPA). Orig-
inally it was used as an approximation in the descriptionhef tomogeneous electron gas by
Bohm and Pines in the 195089-71]. In an electron gas of high density the electron density
fluctuates. On the one hand, long-range Coulomb interadtiads to collective oscillations
termed plasma oscillations and screening of the indiviéledtrons. On the other hand, when
looking at a smaller length scale, there is a two-body s@@dboulomb interaction between
individual randomly moving electrons, interpreted as athviidual quasi-particles component
of the electron density fluctuations. Bohm and Pines statethie plasma component and the
individual quasi-particles component of the electron dgrikictuations can be regarded as de-
coupled. This means that random phase shifts in the calteotcillation, which may be caused
by randomly distributed quasi-particles, are assumedecage to zero. In the form it is applied
today, RPA can be derived in different ways, for example viaga-function-based many-body
perturbation theory or in the framework of coupled-clustesory, as reviewed by Reat al.[72)].
The derivation sketched here (details can be found in R&J) ftarts from the adiabatic connec-
tion [73-75], where a mean-field reference system is adiabatically ected to the many-body
interacting system via a coupling strengti< A < 1. Within this framework, an exact expres-
sion for the DFT exchange-correlation energy can be dedudeslmean-field reference system
is then the KS single-particle reference system. The exgdraorrelation energy expression
depends on the exchange-correlation hole which desciiiteefatt that an electron located at
r reduces the probability of another electron being preseitsivicinity at~’. The exchange-
correlation hole can be expressed in terms of density-tensirelations which are formally
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fluctuations of the density operator around its expectatane. According to the fluctuation-
dissipation theorem7fg], the response of a system in thermal equilibrium to a smdéreal
perturbation is equal to its response to a spontaneoushattéuctuation in the absence of a
perturbation. This makes a link between the fluctuationsrasgonse properties of the system,
shifting the challenge of finding a suitable approximatiothte exchange-correlation energy (as
discussed in the context of DFT) to the question of how to@xprate the response functions of
a series of fictitious systems along the adiabatic connegi@h. This is where RPA is applied
— as an approximation to the response functiditr,r’,iw). The exchange-correlation energy
can be written as the sum of exact-exchange engkgyand RPA correlation energyg 4,

C

ERPA :% /dwTr[ln(a(iw)) + (1 = e(iw))]
0
_ % / dTrin(1 — xO(iw)v) + x(iw)o] (2.45)
0

_ _% dw %TT[(XO(M)U)"]-
0 n=2

v is the unscreened Coulomb interactiens the frequency-dependent RPA dielectric constant.
The independent particle response function of the KohmStederence systerg?(r,r’,iw) is
known according to

OcCC unocc

XO(T,T/,Z'W) _ Z Z @f(’l“)(pﬂ_’l“)go; ("i/)%pi("“l) tec. (2.46)
=5 € — iw

€;

with single-particle orbitalsy;(r) and corresponding energiesfrom the mean-field approach
of choice. The same wave functions are also used to calchlate RPA is typically calcu-
lated non-self-consistently. The main improvement of RBfpared to MP2 is that it takes
into account not the bare but the screened Coulomb interactThe RPA correlation energy
comprises the response of the non-perturbed system towalpegion as well as the response of
the response, etc., such that the contributions are sumpmeéal infinite order in the perturba-
tion. This makes it applicable also for zero-bandgap malserFurthermore, the exact-exchange
energy cancels the spurious self-interaction error in thetrde energy, although there is still
an RPA self-correlation error. The fully non-local RPA @ation energy also includes long-
range van der Waals effects. Deficiencies of RPA are a sy$iteomaderestimation of binding
energies T7—79] and insufficient description of short-range correlatié][

The methods discussed so far have been developed to apptexine ground-state energy of
a system. By taking the Hartree-Fock or DFT ground-stateggrdifferences between systems
of N and N + 1 electrons, also electron affinities or ionization energias be calculated.
This is known as theA-SCF method, since it uses the energy difference betweersélio
consistent-field (SCF) calculationS1]. An alternative way to compute excited states is to use
a Green function formalism. The basic theory of Green famstican for example be found
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in Ref. [81,82). The frequency-dependent Green functi@fr,r’; w) for a Hamiltonian with a
time-independent external potential () as introduced in Se@.1 solves the Dyson equation
according to

o+ 50 = ) o) Glrr's) = [ S )Gl ') = ol ). 247

v (r) is the Hartree potential (EQ.18 andX(r,r”;w) is the dynamical, non-local, complex
self-energy, comprising all many-body exchange-coriatagffects. The so-calle@W approx-
imation as introduced by Hedin in 19683 expresses the self-energy as the leading term in an
expansion in powers of the screened Coulomb potential ditigpto

(3

YW (' w) =

/dw'G(r,r’; w + W)W (rr'; e, (2.48)

™

The screened Coulomb potentid can be written as
W(r,';w) = /d?’r"s_l(r,r”; w)o(r"r'), (2.49)

whereu is the bare Coulomb potential aads the dynamical dielectric function. The Hedin and
Dyson equations require to be solved self-consistently,irbpractice the non-self-consistent
GoW, method is often used, where from DFT single particle orbigg)(r) and energies,, a
non-interacting Green functio@(r,r’;w) and an approximat&/, are calculated. The non-
interacting Green function is

Go(’l",’l",;W) _ Z gOn(T)gO;(T/) (250)

w— €, —ivsgn(ep — €,)’
" n g F n

where the Fermi energy is denotedeasandv is a positive infinitesimal Gy and W, are used
in Eq.2.48to obtainx“ "o and from this theZ, W, corrected eigen energies are calculated as

R e G B ) (2:51)

In the correction term, the local DFT reference exchangestaion potential is substituted by
the non-local, energy-depende@@il’ self-energy. The&zW method is very successful in the
description of single-particle excitations in solid[85]. Also total energies and structural
properties can be extracte86-88]. Compared to a self-consiste@fi” calculation, the=,1W
method is computationally much more efficient, but can suffem starting-point dependence
with respect to the DFT method chosen to compute the sirgytiéefe reference states and ener-
gies B9-91]. In this work, the consistency between ionization energialculated withGoW,
and the reference DFT functional is used to identify optiimgbrid-functional parameters for
defect calculations in MgO.

The method of choice for high-accuracy calculations of smmallecules and clusters is the
coupled-cluster method. In defect physics this methodinesgractically interesting if a defect
is so localized that it can already be described with a snhadter model. For example, for the
neutral oxygen vacancies in MgO this is the case. The idemthatoupled-cluster theory is
closely related to that of the configuration interaction moelt
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Rather than treating single, double or higher excitatiartupbatively, as for example in MP2,
it is also possible to directly use a modified wave functioiitbtom a linear combination of
configuration state functions. In a configuration intex@ttnodel P2], symmetry-adapted linear
combinations of the Hartree-Fock Slater determinant agd, ushere zero%yr), one @El)) or
two (\IIZ@)) or more spin orbitals have been substituted with virtublitafs (representing different
electron configurations). For example, in case of configumanteraction with single and double
excitations (CISD) the electronic ground state of the systan then be approximated according
° WP = gt 4 Z o). (2.52)

7

The coeffrcrentm(l) and a(2) are varied to find the optimal wave function. This means,rinte
action between dlfferent configurations is taken into aotdo obtain the desired ground-state
wave function. If all possible configuration state funcioare considered, meaning that all
Slater determinants obtained by exciting all possibletsdes to all possible virtual orbitals are
included, full Cl is recovered, which solves exactly thectienic Schrodinger equation within
the space spanned by the orbital basis set. If not only thengrstate Hartree-Fock Slater
determinant but also one or more excited configurations seel @s a reference from which
corresponding configuration state functions are builts thireferred to as multi-reference ClI
(MRCI). In general this should improve the correlation dggon, but the choice of reference
Slater determinants must be made carefully in order to ishdeeglude the dominant configura-
tions. Opposed to Hartree-Fock theory, many-body pertiovéheory, and full Cl, the truncated
Cl and MRCI methods are not size-consistent, which mearsiftebtained with truncated CI
or MRCI, the sum of energies of two separate systems doesgual the energy of a system
where both are included as non-interacting subsystems.

The coupled-cluster method is formally similar to Cl, bufifis size-consistency. It was first
presented in the context of nuclear physics in 19%8) and six years later adapted to be used
as an electronic-structure meth@#J. Instead of including excitations linearly, an exponahti
approach is taken, where excitation operatbf§ in the exponent act on the reference wave
function, which is, as in Cl, typically the Hartree-Fock ®ladeterminant. Again, states con-
taining single, double, triple (...) excitations are getted. The single-excitation operator is
most intuitively expressed in second quantization usimgctieation and annihilation operators

at anda as
7O = Z Ztl ay a;. (2.53)

For7(™ acting directly on the HF Slater determindr{t” |wEF) this means that for each initially
occupied state a set of Slater determinants is created, where the statewapped for one of
the available unoccupied statégs In the same fashion doublg=2), triple (j= 3) and further

excitation operators may be defined, making up the overaitation operatot!’ = ZT

from which the coupled-cluster wave function is constrdaiéth the overall excitation operator
in the exponent, according to )
WOy = T |wih, (2.54)
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2.5. Electronic-structure code of choice: FHI-aims

The coefficientstlf for all included excitations remain to be determined. Ineoreb make this
task feasible, usually only excitation operators genegatip to double or triple excitations are
included. Due to the exponential approach this does not kiggger excitations from contribut-
ing as well, since
7 "
eh =3 — (2.55)

where the summation is restricted by the number of occupieduaoccupied states in the sys-
tem. The coupled-cluster coefficients can be obtained byiphyihg the CC Schrodinger equa-
tion R X

Hel | Wiy = Bl |wilF) (2.56)

by e T (resulting in a similarity transform of the Hamilton opargtand then projecting it to the
set of the excited determinants that correspond to the saagffficients. If all singly-excited
determinants are denoted @sz“), all doubly-excited as¥$®), etc., the CC coefficients are
determined from the following system of equations
(Wl T AeT|O) = B
(UECle T HeT|Wf") = B(wSCle T |wgT)

(U5 le T He |UGT) = BT e el [0gT)

0 (2.57)
0

The highest excitation level is determined by that inTheperator. The first equation yields the
energy of the system after the coefficients have been olot&iom iteratively solving the rest of
them. In analogy with the Cl nomenclature, CCS, CCSD, CCSRY be performed including
the excitation operators up to single, double or triple &ticins, respectively. Because of the
immense computational costs for including double or evipfetexcitations, it is also common to
include for example triple excitations only perturbatiyelenoted as CCSD(T). Again, including
all possible excitations leads to the full Cl solution, Hut tonvergence to this limit with the
highest level of excitation included in the excitation ager is known to be much faster than
in the case of the Cl expansion. In analogy to Cl, also mafénence CC methods exist, but
computationally so demanding that today they can hardlyppéed to systems other than small
molecules.

2.5. Electronic-structure code of choice: FHI-aims

The usual strategy to solve the DFT effective single-plartemjuations is to expand the Kohn-
Sham orbitalsy; (r) into a set of basis functions; ()

pi(r) =D cijdi(r). (2.58)
J
These basis functions are for example plane waves, suiteligperiodic boundary conditions,
or atom-centered localized orbitals. The latter are oftescdbed by Gaussians, as for example
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2.5. Electronic-structure code of choice: FHI-aims

in the electronic-structure package NWChedb][and TURBOMOLE P6] used for reference
calculations in this work, or Slater-like orbitals. Alsaymeric atom-centered orbital (NAO)
basis functions can be used, as utilized in DM®I,[P8] and in the electronic-structure code
employed for most of the calculations presented in this wéiKI-aims P9]. In FHI-aims,
localized NAO basis functions of the form

oi(r) = "y, (0.0) (2.59)
are employed, wher¥;,,,(©, ®) are spherical harmonics angl(r) is the numerically tabulated
and therefore flexible radial part. It is obtained by solvingadial Schrédinger-like equation on
a logarithmic grid using a steep potential to spatially aumfihe basis functions. This makes
a linear scaling with system size possible for large systeBpecies-dependent basis sets are
constructed in a hierarchical manner, such that the acguhae to the used basis set in a calcu-
lation can be systematically increased. The minimal bagigsuilt from the core and valence
functions of spherically symmetric free atoms. This is Wi for the all-electron calcula-
tion, because the oscillatory behavior of the wave funetionthe core-region is sufficiently
accurately taken into account already at this level. A syate& hierarchy of basis sets for each
atomic species is constructed by adding to the respectimimal basis set on the one hand
radial functions of free ions mainly responsible for thealgdion of chemical bonds, and on
the other hand hydrogen-like functions which also imprdwe description of polarization and
diffuse functions. These additional basis functions ararayed into tiers according to the im-
provement they induce for the total energy of a dimer of edement obtained with an LDA
functional (see Refd9] for details on the basis construction process). Each tietains several
basis functions of different angular momenta, such, @sd, f, ... functions.

In FHI-aims the three-dimensional integrations neededHersetup of the Hamiltonian and
overlap matrices are performed on a real-space grid thatdas all points from overlapping
atom-centered grids. For localization of integrationsdeeketo construct the Hamiltonian and
overlap matrices, atom-centered partition functions aegluA Lebedev gridlf0(] of spherical
integration shells around each atom is then employed farrate integral evaluations.

To determine the Hartree potential, first the electrostadiential associated with the initial
superposition of free-atom densities is calculated. Thagnnecontribution of the Hartree po-
tential is accurately interpolated with cubic spline fuos on dense logarithmic grids. It is
therefore convenient in each following scf cycle to only guie the electrostatic potential cor-
responding to the differencAn(r) between current electron density and superposition of free
atoms. An(r) is decomposed into a sum of partitioned, atom-centeredyehaultipoles and,
according to the Green-function solution to the Poissoraggu for multipoles from classical
electrostatics, the respective Hartree potential commuisnare calculated on a dense logarith-
mic grid, then numerically tabulated, and finally evaluatethg cubic spline interpolation. For
periodic boundary conditions, long-range contributiormsf distant unit cells of the difference
density multipole components are accounted for by usindethiald method 101, 102].

Hybrid density-functionals, RPA, MP2 and th8#V method for finite and in the case of hybrid
DFT also for periodic systems, which involve exact-excteagd/or non-local correlation terms,
are implemented in FHI-aims using the resolution of idgriithnique. This is advantageous for
calculating two-electron Coulomb repulsion integrals #émellinear density-response function
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2.5. Electronic-structure code of choice: FHI-aims

(required for RPA and-1V), based on NAQO basis function$(3.

It is important to ensure that convergence with respectémtimeric and basis settings used
to calculate a certain property for a specific system is reécho ease the process of obtaining
converged parameters, FHI-aims provides preconstruaidl parameter options controlling
the basis set (tiers), all integration grids (in particutas location-dependent grid density), and
the accuracy of the Hartree potential (specifying the hsglamgular momentum for the multi-
pole decomposition of the atom-center-partitioned chalgsity) for each species. These are
calledlight, tight, andreally tight (or safd, and allow to systematically increase the accuracy
of a total energy or, more commonly desired, total energigidihces. Within each default nu-
meric parameter set the basis set tiers can orderly be senlear decreased. If not mentioned
otherwise, for the calculations of defect formation eresgierformed in this work theght pre-
defined settings have been used for geometry prerelaxatiaddinal, converged results for the
ground-state structures and energies have been obtaimeptight settings. Convergence tests
for the parameter options used for the calculations in tlikpas well as further computational
details, can be found in the appendix.

Forces are needed in this work for structural relaxation pimonon computations via the
finite displacement method. They are calculated by takimgrtbgative analytic gradient of
the total energy with respect to the nuclear coordinatedimy Hellmann-Feynman forces
due to the embedding of each nucleus into the electrostetit df the electron density and all
other nuclei, as well as a correction term consisting oftedstatic multipole derivatives, and
a further correction term, the Pulay forcd®4l], which is due to the dependence of the chosen
atom-centered basis functions on the atomic coordina@sGEA functionals, the variation of
the density gradient with respect to the atomic coordinhgesto be accounted for in addition
(see also Ref.]J05 and references therein).
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3. Computational models for defect calculations

Different structure models can be employed to calculatetphéfects in the bulk or at the sur-
face of a solid, applying the electronic-structure methdidsussed above. Most common are
the embedded cluster and the supercell model. Also, a cgleigter approachl6] or Green
function methodsJ07-111] can be used, but are today rather scarce in applicationtcdieir
methodological complexity. In the following, embeddedstir and supercell method are de-
scribed and the advantages and challenges of both appsoaoheliscussed. A novel scheme
for charge compensation in supercell calculations is thtoed, since previous approaches are
dissatisfying, in particular for charged surface syste@barge compensation is necessary on
the one hand, from a technical point of view, to avoid divargeof the electrostatic potential
in a periodic calculation. On the other hand, it is shown tkatistic charge compensation can
make the theoretical model of defects in a metal oxide malksti.

3.1. Two well-established approaches: cluster and supeite

For an embedded cluster calculation a part of the crystattsire containing the defect and sur-
rounding atoms is chosen. This set of atoms is treated fulntum-mechanically. The cluster
is embedded in a set of point charges or a potential to acdouling-range electrostatic inter-
actions due to atoms of the crystal lattice outside the etusgion. For example, when modeling
a defect in the strongly ionic material MgO, point char@esfor magnesium ané— for oxygen
ions are placed at the respective lattice positions, mimdckhe further extended crystal lattice
outside the cluster region. In addition to the point chargfes embedding can be improved by
an intermediate region of pseudopotentials. In this woskudopotentials are placed at the first
shell of embedding magnesium atoms of an MgO cluster to nie@imon-physical polarization
of peripheral oxygen anions by the embedding point chardgédt®rnatively, this intermediate
region can be approximated using the shell model, as dondefects at the MgO surface by
Sushkoet al. [112]. Within this model an ion in the intermediate region is teghas a a point
core and shell connected by a spring simulating its dipolarjzability. The positions of the
cores and shells in the intermediate region can be optimizéd respect to the total energy
of the system, in accordance with the relaxed geometric &udrenic structure of the inner
cluster. For materials with a more covalent bonding charguseudopotential and point charge
embedding is also possible. In this case, point chargedaéheuchosen according to the true
ionicity of the crystal, which may not equal the formal ctesgf the atoms in the cluster. Ox-
idation numbers can for instance be determined by a populainalysis of wavefunctions (e.qg.
Mulliken analysis 113) or by partitioning the electron density (e.g. Hirshfelubdysis [L14]).
Another possibility for these materials is to saturate daggoonds with hydrogen atoms or
fractional hydrogen atoms. See for example the work by Rithal. and Stodet al. [115,116]

for a comparison of these techniques for the rutile (110fpser
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3.1. Two well-established approaches: cluster and sulperce

Choosing a suitable set of atoms in the cluster, as well asratecembedding, and at the
same time keeping the cluster size reasonable, is the nbelts the embedded cluster approach.
Preferably, clusters for point-defect calculations stidad geometrically symmetric with respect
to the point defect they host and they should keep the stoiwhiry of the original crystal. Also,
the cluster must be large enough and embedded such thabatscange electrostatic effects are
reproduced. A defect may then be in a state very similar tofectlen real, extended material.
However, depending on the crystal lattice structure andyibe of point defect it is sometimes
impossible to create a cluster that fulfills all these cid@téFig. 3.1). While neutral, localized
defects, such as the neutral oxygen vacancy in MgO bulk ar BtgO surface, are nevertheless
straightforward to calculate, the electronic and lattiodagzabilities around a charged defect
is more difficult to reproduce with a cluster model. Clusterdals have to be tested carefully
for convergence of electronic structure as well as geomettaxation with respect to cluster
size and embedding. This is often difficult to achieve in aesysitic way. On the other hand,

O atom that is removed
to create the vacancy

Figure 3.1.: Cluster models for an oxygen vacancy in bulk Md@ft Mg,qO;s, the cluster is
symmetric with respect to the defect site, but the stoicleimynis not keptRight Mg3,035, the
stoichiometry is as in natural MgO, but the defect can notrbated in the center of the cluster.

the strong advantage of an embedded cluster calculatidmisthie cluster is typically small
with respect to the number of atoms treated quantum-mecainiallowing for the application
of higher-level methods such as coupled-cluster. For sefietalculations that make use of
periodic boundary conditions these methods are today asettfle for the system sizes typically
needed to study defects in oxides.

In this work cluster calculations are employed for validatof hybrid density-functional the-
ory with higher-level GWW and coupled-cluster) methods.

One advantage of using periodic boundary conditions owestet models is that no assump-
tions on the effects of the cluster boundary are needed.ig kispecially important for charged
defects, where the long-range Coulomb interaction canrbegly influenced in a cluster cal-
culation, for example due to different polarization prdjger of atoms at the boundary, or due to
induction of spurious multipole moments. Furthermore,dize of the supercell model used in
a periodic calculation can be much larger than that of aefush general, periodic boundary
conditions offer a much more realistic way of modelling ateexled system. However, care
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3.1. Two well-established approaches: cluster and sulperce
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Figure 3.2.: Supercell models for an oxygen vacancy in MgO bulk and at tg©®N1L00) surface.
The yellow boxes show the boundaries of the unit cell thateisoglically repeated in three
dimensions. Left Model for a bulk defect.Right Model for a surface defect. The vacuum
region between repeating slabs has to be converged, schthaputrious interaction between
slabs is minimal.

has to be taken, when charged systems are calculated wiglignagic approach. The charge is
periodically repeated, so that the corresponding eleetiiosCoulomb energycy, is

A i 45
v i;R [rij + RJ

wherei andj run over all atoms within the supercell aRlis a supercell lattice vector. Since
the potentials of infinitely many image charges have to bensedhup, the electrostatic energy
diverges in the case of periodic systems with non-zero reegehper unit cell. Different ways to
deal with this problem, providing charge compensation éndéll, are discussed in the following
Sec.3.2

Furthermore, in addition to charge compensation, speara must be taken in supercell cal-
culations to avoid errors due to interaction between imaf#ee supercell generated by periodic
boundary conditions. For example, constraints in geomedtaxation by the supercell size, or
remaining electrostatic interactions have to be accouiatedndeed, constraint in atomic relax-
ation is an important issue that occurs in both cluster amibgie calculations. The effects of
the geometric relaxation around a defect on the electrdanictsire and formation energies can
be quite significant, especially in case of charged defe&tsufficiently large number of host
atom layers around the defect should lead to a reliable atax of the lattice. However, for
some cases such as the vacancy in silicon in charge statepdttant changes in the relaxation
behavior will only be visible when going to very large celtes fL17]. Also for charged oxy-
gen vacancies in MgO large cell sizes are needed to obtaireqged geometric relaxation and
reproduce the lattice polarizability correctly.
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3.2. Modeling charged defects with supercell methods

3.2. Modeling charged defects with supercell methods

The main challenge when calculating charged defects iniagiermodel is to find a suitable
technique for charge compensation. The electrostatimpatdor a charged, infinitely repeated
system diverges. Therefore, in a periodic calculation ofhaged system the charge must be
compensated, so that the supercell is kept neutral. Howingiis not a purely technical issue.
In a real system with a non-vanishing concentration of addgfects for example, charge com-
pensation typically occurs via dopants. A defect is chalggdharge transfer between defect
and dopants. The most common approach to address chargemsetipn in bulk calculations
is to apply a uniform constant background charge densithg¢stpercell. However, for surface
systems, where the supercell contains not only atoms instatrhattice but also a vacuum re-
gion, the background method is not readily applicaldled. In the following, the theoretical
approach of the background method is briefly summarized.n@miy to a more realistic de-
scription, introducing dopant atoms is discussed nextalinan alternative method for charge
compensation, a variant of the virtual-crystal approxiora{VCA) is tested and found to be
the best approximation to reality. Opposed to the backgtauethod, applying the VCA has
a physical meaning of modeling doped material and it can e @& both, bulk and surface
systems. All periodic calculations of charged surfaceesystin this work were performed using
the VCA.

3.2.1. Neutralizing background charge density

The electrostatic energy of a charged periodic systemgtgemwhile this divergence is cancelled
for neutral systems. Neglecting the divergent term in agdthiperiodic system, corresponds to
implicitly introducing a constant background charge digmngihich cancels the divergence(1].
This standard approach of adding a neutralizing, unifordidgributed background charge is a
very useful, although somehow artificial, concept for ckdrgpulk systems. However, applied
to a surface, the charge density would also spread throwgbettuum region between repeating
slabs. Confining the background to the slab could partly awee the problem, but it is not
obvious in what form the decay of the background at the slafases should be defined.

Level alignment

Although the neutralizing background removes the divertgenf the electrostatic energy and,
therefore, allows to calculate the total energy of a chagystem, difficulties occur when energy
differences between systems in different charge statagquéred, as it is the case for charged-
defect calculations.

Introducing the background potential not only cancels thierdent term in the Fourier sum
but also introduces an additional arbitrary shift in thelt@nergy of the charged system. The
difference between the valence band maximum (VBM) of thegdth and the neutral system
has to be corrected in order to achieve consistent band edggies. While for cluster cal-
culations the vacuum can always be used as a reference exenmyit is necessary to find a
common reference energy level for the charged and the heédradic system to which the
respective potentials can be aligned. Several ways of peirig this potential alignment have
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3.2. Modeling charged defects with supercell methods

been suggested, e.g. aligning by the average electroptatatial in the whole unit cell, or by
the average difference of the atomic-site electrostatiemqi@ls 119-121], where sometimes
only atoms most distant from a charged defect are taken ttowat [L22], taking the lowest
energy level of the system as a referent2d], aligning to the core levels of most distant atoms,
or correcting by the average core level shift excluding aafose to the defect. However, there
is no generally accepted scheme. This may be due to the ftdirtim different codes that ap-
ply for example pseudopotential versus full-potentialaapts also different quantities are more
easily accessible. In an all-electron approach, as takethéoFHI-aims code, the deep lying
core states are readily available.

3.2.2. Compensating impurities

In a realistic material sample, compensating charges cact@emmodated by impurities. In
fact, metal oxides are often deliberately doped to modigjrthroperties. A first approach to
model this situation in a supercell calculation is to subttia metal atom in the supercell by a
dopant atom and consider this as the host system in whichanegds formed. Doping with
low-valence (acceptor) or high-valence (donor) dopastgossible, depending on the number
of valence electrons of the dopant species with respecttadmber of valence electrons of the
host metal atoms. Low-valence dopants introduce holegasfrarge carriers, which is referred
to asp-type doping, while high-valence dopants provide elecroermed.-type doping. Dop-
ing pins the Fermi level of the system, in casepdf/pe doping close to the VBM, in case of
n-type doping to the CBm. Hence, the charge state of a vacarnayrietal oxide is determined
by the concentration and type of the dopants and therefotbebgvailability of acceptor states
or donator electrons and by the position and occupationemti@nic levels introduced by the
defect (defect levels). For example, oxygen vacanciestiipe MgO can be positively charged
and at the same time have low formation energy, since therdapant states near the valence
band maximum that can accommodate the defect electrons.

On the other hand there are local effects of doping: depgnalinthe atomic species and the
distance between defect and dopant, geometric and electeaxation will be affected by the
dopant. Therefore, these effects are important for folwnadif defect complexes.

When an explicit dopant is introduced in the supercell, twall and global effects of doping
cannot be easily separated due to the limited size of thecelpelt is possible to obtain some
information by studying the influence of a dopant on an oxygem close by in comparison
with an oxygen atom further away from the dopant. For exantpkelocal and global effects of
doping on the formation of oxygen vacancies atQasurfaces and in ceria have been studied
in this way by Li and Metiu 124 and by Hu and Metiu125. However, very large supercells
are needed to model far distances. Also, for surface deitewii typically make a difference,
if the dopants are located at the surface, in the subsurfadeeper in the bulk.

To demonstrate the dependence of the local effect of dopintpe position of dopants with
respect to the defect, MgO with lithium dopants and an oxygeancy in the surface layer were
calculated for two different supercell sizes, a 320-atolay®r slab, and a 500-atom 5-layer slab.
Lithium has one valence electron, while magnesium has tdenea electrons, so lithium is a
low-valence p-type dopant in MgO. As a global effect of lithium doping, @lenic states are
emptied near the VBM where as a consequence the Fermi lepaingd. A neutral oxygen
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Figure 3.3.:a) Local and global effects of low-valence doping on the gyneequired to remove
an oxygen atom from the MgO (100) surface, calculated adogitd Eq.4.1in an oxygen-rich
environment (o = 1/2Eo,) using PBE. The Fermi level is at the VBM. is the supercell
lattice constant. Oxygen vacancies in charge state 1+ an@2-and F+) compensated by
one or two lithium dopants at the surface were calculatedta Paints labeleg-type MgO,
where long-range effects of doping dominate, are showndorgarison. They were calculated
using a virtual-crystal approach, introduced in the follogvSec.3.2.3 Solid lines show the
defect formation energy extrapolated to the dilute limiaasingle defect in extended material
(L~' — 0). The dilute limit, the extrapolation procedure, and firstee correction schemes,
suggested by Makov and Payne, and by Freysetidil,, are discussed in Se4.1.3. b) Two
different configurations were simulated, lithium dopartse by and further away at a distance
of 8.8 A, here shown in the top view of the 320-atom 5-layefaae slab for the doubly charged
oxygen vacancy.

vacancy has two defect electrons occupying a defect leweg de the bandgap. To model a
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3.2. Modeling charged defects with supercell methods

singly positively charged oxygen vacancy, one magnesiam @ substituted by lithium in the
supercell, so that one defect electron can transfer frontdéfect level to the dopant-induced
states near VBM. For a doubly positively charged oxygen negatwo magnesium atoms are
substituted to allow for transfer of two electrons. The ggareeded to remove a surface oxygen
atom (Eqg.4.1) can be used to show the influence of a dopant on the defed.|dtvier when
the lithium dopant is located adjacent to the vacancy, agtdrni when dopants and vacancy
are at a larger distance (Fig.3). This difference is due to different charge separatiorg an
changes in local bonding and local electronic relaxatiantlie different configurations. For
the adjacent dopant arrangements, defect complexes anedpand the local effects of doping
dominate. Since the defect complex is charge neutral, tiamiaf the supercell size hardly has
an effect, even when moderately large cells used. Thisferdiit when the dopant is situated
at a larger distance from the defect. Long-range electiostderaction starts to dominate, and
the Coulomb interaction with the charges in neighboringesegills is comparable in magnitude
with the interaction within one unit cell. Thus, the intefan energy is affected globally by
many unit cells, and the dependence on the supercell sizamt@scnon-trivial. To examine
the local and global effects of lithium doping on oxygen vagas in MgO, dopants at various
distances and in different layers would have to be studagljiring very large supercells at high
computational cost. In general, only unphysically highaapconcentrations can be calculated
using the compensating impurity method.

3.2.3. Doped material as a virtual crystal

Besides explicit introduction of dopant species into thethmaterial, doping can be modeled
using the virtual-crystal approximation (VCA126-130. In this approach, virtual atoms are
constructed that interpolate between the native (A) andndo(B) atoms in the host material
AC. The potential of the virtual atom modeling the doped maké¢A,_,B,)C becomes

VVCA(I') = (1 — X)VA(I‘) + XVB(I‘). (31)

So the real system is mimicked by constructing its poteffitiah fractions of the potentials of
the two different compounds. Pseudoatoms can for instadeoeba used in (embedded) cluster
calculations to provide a realistic saturation of dangliwgds [L31,132.

In all-electron calculations, doping via the VCA is intragl by modifying the nuclear num-
ber of the atoms in the system, which determines the numbaeofrons from the condition of
charge-neutrality. The dopant concentratigp is controlled via the amounk Z by which the
nuclear numbe¥ is changed. Av-type doped metal oxide (MO) with a hole concentration of
Nholes IS modeled by changing the nuclear numgBer of all ny; metal ions with a concentration
of Ny = na /€2, whereQ is the supercell volume, according to

I — Zu + A2y, (3.2)

where
AZn = —Npoles/ Nt (3.3)

In analogy,n-type doping can be modeled by changing the nuclear chafgbg onetal atoms
by AZ = Neectrons/Nm, Where Ngjeetrons 1S the concentration of electrons. Opposed to the
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3.2. Modeling charged defects with supercell methods

compensating impurity method, in this approach also verglisdopant concentrations can be
simulated.

In this work, the concentration gftype dopants in the simulation cell is chosen to allow for
one or two defect electrons to transfer from the defect levéhe VBM. This is obviously only
possible, if a defect exhibits an occupied defect level etiandgap. The nuclear number of all
magnesium atoms in the supercell is changed by

AZ\vg = —q /N, (3.4)

whereq is the desired charge of the oxygen vacancy (+1 or +2),rang is the number of
magnesium atoms in the supercell.

It is important to keep in mind the chemical and physical prtips of a material, when
applying the VCA for defect charge compensation. In prileighe nuclear charges can be
modified in several different ways. One way is to distribuite tharge of the defect among all
nuclei according to their contribution to the overall nacleharge, keeping the system neutral.
Consider again the formation of an oxygen vacancy in MgO.dfoMgO unit cell withny,
magnesium atoms anth oxygen atoms, not including the oxygen atom that is beingoke,
the changes in magnesium and oxygen atom charges are:

AV
Ay = — £ 3.5
Ve 1 nMgZMg + N0Z0 (3:5)
AZo = —q Zo (3.6)

nMgZMg + N0 Z0

However, this corresponds to simultanegusandn-type doping, since the reduction (in case
q > 0) of the cation nuclear charge (Mg) reduces the number ofrelegit can give away, while
the reduction of the anion nuclear charge (O) reduces itibyalai accept electrons. In reality;
type doping of MgO is achieved by substituting magnesiurmatwith atoms of lower valency
like lithium. This situation is modeled by distributing thdefect charge only among the cations.
Thereby, delocalized states are emptied at the top of tle@ealband, which is composed mostly
of oxygen 2p orbitals. As mentioned before, the formatioarobxygen vacancy creates a defect
level occupied by two electrons in the bandgap, and thexefdectrons from this level transfer
to the vacant states at the top of the valence band of theaieudopedmaterial, which results
in the electronic configuration of antFor F** center (Fig3.4). The charge state of the defect
can be tuned by the value by which the nuclear charge was raddifihich is related to the
concentration of the dopants.

The defect charge could also be distributed only among nfaslaway from the defect. This
has the advantage that the immediate surrounding of thetdefsembles the situation in the
undoped material with the charged defect, at the expensenudra significant modification
further away.

Contrary to the neutralizing background method, the refegesystem in the virtual crystal
method should be the doped undefected system, not the perféoped system. Modification
of the nuclear charges results in a large change in the to&abg even if the modification is
very small, due to the strong on-site electron-nuclearautgon. The change in the total energy
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3.2. Modeling charged defects with supercell methods

Pristine system System with O vacancy
Conduction Conduction

band band
~ ~ Defect level
7N\

p-type dopant states (empty) 1 4
L
Valence Valence
band band

Figure 3.4.:F?* center, modeled with the VCA. Schematic band structurelseoptistine doped
system left) and the system with a defectght)

can be written as:

(Zi + AZ)n(r) 4
el nuc Z/ |I'—I'Z| d’r (37)
= e+ 3002 / ,r_r\d‘?’ 3.8)

wheren(r) is the electron density. In fact, since the modification @& tiuclear charges is
inversely proportional to the number of the corresponditama in the supercell, the overall
shift in energy is independent on the supercell size andjtite large:

_ n(r)
E—_q- Z/ . ri|d3r. (3.9)

As a proof of concept, the VCA method is tested for chargelf Butenters in MgO against
the neutralizing background approach. The formation eéegrgeglecting vibrational effects,
for the F* and P+ centers were calculated for five different supercell sizese with the
background method and once using distributed doping @&, where the nuclear charge of all
magnesium atoms in the system was modified. Both methodsaofeltompensation, constant
background and VCA, yield the same total energy differences

It becomes obvious from Fi@.5that periodic models for charged defects can be used to study
the defect concentration dependence for moderate to langeentrations. This is important,
since studying isolated defects, as suitable for a clustatei is not always justified, although
it is a well-defined limiting case.
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3.3. Summary
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Figure 3.5.: Formation energy of £ and P+ centers in MgO bulk, calculated with the neutral-
izing background method (blue and red symbols) and usiny @ (black symbols). The PW-
LDA [50] exchange-correlation functional was used. The oxygemated potential is 1/Zo,,
and the Fermi energy is at the VBM. Solid lines show the defeanation energies of an'Fand
F>*+ defect extrapolated to the dilute limit of a single defeceitended materiall(~! — 0).
The dilute limit, the extrapolation procedure, and finiteescorrection schemes are discussed in
Sec4.1.3.

3.3. Summary

In summary, embedded cluster models allow for efficientiappbn of high-level methods like
coupled-cluster, yet, embedding has to be tested carefnthithe approach is restricted to small
system sizes. Periodic models allow for simulations of éigiefect concentrations, for a more
reliable description of the electronic bands, and they ripoate long-range effects such as
polarization. Hence, for defect studies, embedded-alusiadels calculated with high-level
methods can be very beneficial to identify a DFT functionadvting the best compromise
between accuracy and computational cost, using a smalllnsgsieem. The actual analysis of
electronic and geometric structure of a defect in an extmdaterial can then be performed
with supercell models making use of the optimal DFT exchacweelation treatment.

So far, for periodic calculations of charged surface systdmparticular of charged surface
defects, it has been an unsolved issue how charge compmamnsatild be provided in the super-
cell in a physically meaningful way. Here, an approach basethe VCA has been employed
as a reliable compensation scheme for charged slab cadsidatThe VCA allows to model
charged bulk or surface defects in doped metal oxides, jocating global and also some local
effects of doping as they can be observed in reality, progidi well-defined Fermi level and
allowing for simulations of variable dopant concentrasiofror the change in energy upon de-
fect formation in bulk systems, the standard neutraliziogstant-background approach and the
VCA yield the same results. The difference is that with theA/&realistic situation is mod-
eled and can be interpreted as such. While the constangtmokd method is a technical trick,
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3.3. Summary

that lacks any physical justification for surface systemns MCA method, which can be used to
modelp- or n-doped material, is applicable for both, bulk and surfacgesys, in a physically
meaningful way.
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4. Defect stability — formation energy and concentration

Creating a point defect in the bulk or at the surface of a sti@hges the free energy of the sys-
tem. Depending on outer conditions, it may cost energy todhice the defect or it may even be
energetically favorable for the system. Therefore, thexghan Gibbs free energy, when a defect
is formed, termed the Gibbs free energy of formation, detemthe equilibrium concentration
of a defect for a given temperature, partial pressures oftf@ved atomic species, position of
Fermi level, and dopant concentration.

A change in local bonding is one effect that contributes todbfect formation energy. For
instance, removing an atom breaks bonds, while introduamanterstitial creates new bonds
- but also weakens existing bonds. Also, geometric relaragiffects play a role. The atoms
will take up new equilibrium coordinates, according to ttamges in the Born-Oppenheimer
potential energy surface. In addition, charging effecthsas charge transfer from a defect level
to the Fermi level, as well as defect-defect and defect-alojpderactions, will contribute to the
formation energy. Changes in the vibrational energy and-tamge dispersion interaction can
also have a considerable effect.

In the literature, the term formation energy usually reterghe formation energy of a point
defect in the dilute limit. This means, a single, non-intéiry defect is hosted in extended
material and it is not affected by other defects of the samef er different type. For neutral
defects, the formation energy in the dilute limit can be oigd already using moderate sizes of
embedded clusters or supercells. For charged systemsrdong effects of electrostatic inter-
action and lattice polarization make the situation more giarated. Assuming very low defect
concentrations, from the formation energy of a defect indihge limit, also its concentration
can be calculated. The dependence of formation energiescsmegéntrations on temperature and
pressure is accounted for usiaf initio atomistic thermodynamics.

However, considering defects as isolated is rather ustealisince due to long-range and
short-range mutual interaction the formation energy foemiain type of defect will depend on
its own concentration and also on the concentration of albércts. Thus, the most important
part of this chapter discusses how formation energies andecrations of interacting surface
F centers in doped metal oxides can be obtained and how teeletarmined by different types
of defect-defect interaction.

Since it would obviously be very interesting to compare th@oal predictions of defect sta-
bilities with experimental measurements, an overview gre@rental approaches to point de-
fect concentrations is given at the end of this chapter.

4.1. Stability of an isolated point defect

The Gibbs free energy of formatia®{ (7',p) for an isolated point defect is given by the change
in free energy of the system containing the defect with resfgethe pristine system. It can be
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4.1. Stability of an isolated point defect

written as

GHT.p) = By — Euost + Y _ nipti(Tpi) + qer + > piAV + AFE, (T). (4.1)

n; is the number of atoms of specieghat have been removed,;(> 0) and/or added(; < 0)
upon defect creationZ] , and Ey,; are the total energies of the system with and without the de-
fect in charge state. The total energies can be obtained from electronic-straatalculations.
wi(T,p;) is the chemical potential of specigsawhich is a function of temperatufg and partial
pressurep;. The chemical potential of electrons, the Fermi lesel determines the electron
reservoir for the formation of negatively and positivelyaalied defectsAV is the change in
volume of the crystal due to a defect, which is negligibletfa defects in MgO discussed in this
work. AF,;,(T") denotes the vibrational free energy contribution to thebGiibee energy of for-
mation. Using Eg4.1the formation energy of an isolated defect can be calcukasemifunction
of Fermi energy and atomic chemical potentials. Tempegatund pressure dependence enter
the formation energy via the atomic chemical potentialstaed/ibrational energy contribution.
The concentration in the dilute limit can be obtained by mizing the change in Gibbs free
energy of the system due to the defects. Gibbs free en@rgyelmholtz free energy, and
enthalpyH are related to each other via

G=H-TS=U+pV —TS=F +pV, (4.2)

whereU is the internal (total) energy, arfélis the entropy of the system. In the following, the
textbook expression for the concentration in the dilutetlimill be derived.

The enthalpy of a system with defects isH = Hy + nHg, where Hy is the formation
enthalpy of the isolated defect. The total change in entafpye system with a defect with
respect to the pristine systeth— Sy = Sq + nSr can be separated into the entropy due to
configurational disordefy, and a contribution due to disorder induced by lattice \Vibre Sr.
The total change in Gibbs free energy~ due to defect formation is then

AG=G—-Gy=H—TS — (Hy—TSy) = n(Hp — TSyp) — T'Sq. (4.3)

In order to minimizeAG, the derivative with respect to the number of defects isrtakka the
dilute limit, the dependence dfr and.Sr on defect concentration can be neglected, so that
A
08G Hp —T'Sp — T%, (4.4)
on on
whereG{ = Hyp — T'Sy is the free energy of formation of a single, isolated deféaicording
to Boltzmann'’s entropy formula, the configurational enyragp

Sd = kB In <(]V—LT'L)'TL'> s (45)

where N is the number of possible defect sites, apdikthe Boltzmann constant. Using Stir-
ling’s formula (n 2! ~ z(Inz — 1)), and assuming that the defects do not interact, leads to
an N N —n N —n

Z+d 1 ~kl
on N—n+n n } .

= k{%—f In (4.6)
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4.1. Stability of an isolated point defect

Using this expression in E4.4, and determining the minimum &G, where the derivative is
zero, yields the concentration of defects in the limit of loencentrationgy:

po =~ = exp(—(GY /kpT +1)). (4.7)

According to Eg.4.7, the equilibrium concentration of defects@t= 1,000 K is greater than
1 ppm only ifG{ < 1.1 eV. The formation energys{ as a function of defect concentration in
the dilute limit is shown for two different temperatures iig .1
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Figure 4.1.: Formation energy>{ as a function of concentration of defects in the dilute limit
(Eq.4.7) for temperature§” = 300 Kand7T = 1,000 K.

4.1.1. Fermi level position

According to Eg4.1, charged defects’ formation energies depend on the posifithe Fermi
level, a reservoir for electrons and holes. Analyzing thenftion energy dependence on the
Fermi level in a region between valence band maximum (VBM) @nduction band minimum
(CBm) usually covers the most realistic conditions. In apezimental setup, the position of
the Fermi level is often hard to determine accurately. Dgpapplying an electric field, or cre-
ating non-equilibrium populations of charge carriers btiagd excitation can alter its position.
However, this can also be used as an advantage in the comtéeteat engineering, where for
example the charge state of a defect can be tuned by modifgagermi energy. In a theo-
retical approach, any position of the Fermi level can in @gle be modeled. It is convenient
to introduce a reference for the Fermi Ieve}.l?f = erp — Aep. The choice of reference will
not affect any observables, but helps to identify a phylicgakaningful range of the electronic
chemical potential. For practical reasa#¥ is often set to the vacuum level in cluster calcula-
tions, since this is also the natural energy reference. Wargiossibility which is well-defined in
both finite and infinite systems, is an easily identifiable®tic energy level, for example the
lowest unoccupied or the highest occupied molecular dripita cluster, and the CBm or VBM
in a crystal. In the dilute limit, the VBM and CBm of a systermtaining charged defects and
of the host system, coincide. For finite defect concentnatidinite supercells), the Fermi level
will shift. Therefore, care must be taken to identify a cotmeference for the Fermi level, when
using periodic models to calculate isolated charged dédectation energies.

36



4.1. Stability of an isolated point defect

4.1.2. Ab initio atomistic thermodynamics

The strength of DFT is to provide information about the ef@ut structure of a system as well
as its total energy at zero temperature. Combining the DEI émergies with concepts known
from thermodynamics can bridge the gap to higher tempessitand realistic pressures of the
gaseous atmosphere, and to macroscopic properties ofgtersyThis methodology is known
asab initio atomistic thermodynamics, and has been successfully usddfect and surface
physics for the last 25 year24, 133-135.

Calculating the Gibbs free energy of formation and the defeacentration, as described
before, is already one example for applying this idea. Thal tenergies of a system with a
defect and the pristine system are used to calculate a tldgmamic potential function that is
dependent on the ambient conditions - here, the Gibbs freggnThe concentration of defects,
which is a macroscopic system property, can then be obtaisied) the standard methodology
of thermodynamics. From the DFT total energies for diff¢idfect configurations and charge
states, the corresponding defect formation energies cabtained and used to find the most
stable defect type for a certain set of chemical potentials.

The chemical potentials of the atoms involved depend on ¢eatpre and partial pressure.
For an oxygen vacancy in a metal oxide, the chemical poleritiaxygen has to be taken into
account. It is determined by the condition of thermodynaetjailibrium with the surrounding
gas-phase reservoir, which can be approximately treated meal gas composed &f indistin-
guishable @ molecules. The chemical potential of oxygen at given teiipee” and pressure
p can be written as

1 1

1o(T:p) = 5p0,(Top) = 5 (~ksT I Z5) +pV) /N, (4.8)
whereZS’Qt is the partition function of the ideal oxygen gas. Assumthgt the Born-Oppenheimer
approximation holds, nuclear and electronic degrees efifsen are decoupled from vibrations
and rotations. Taking place on different time scales, alsmtional and rotational motions are
decoupled from each other, so ttﬁ;); can be written as:

tot _

1 .
b = ﬁ (202 )N i ZtransZrotZVIbZelectanucl)N' (49)

=

Statistical mechanics can now be applied to calculate tigidual contributions to the partition
function. For details see the original work by Mc Quasetel. (1976) and the application ab
initio atomistic thermodynamics to surfaces by Rogal and Reud®7)225,136. This leads to
the following very convenient representation of B

1 1
po(T'p) = 3 BS! + Apo(T'”) + gksTln (%) (4.10)
—— p
s Apo(T,p)

WhereEg’; is the total energy of the Omolecule,p is the partial pressure of oxygep? is
the standard pressugé = 1 atm, and Auo(T,p) is the chemical potential of oxygen with
respect to the reference chemical potential of oxyggﬁ The total energy of the ©molecule,
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4.1. Stability of an isolated point defect

can be calculated with DFT. However, the binding energy ef @ moIecuIe,Egi;d, is one
of the big challenges for electronic-structure thed®, p2,137,138. The calculated binding
energy is -6.23 eV at PBE level and -5.32 eV when HSEO6 is u$ededuce the uncertainty
due to this specific error, the experimental binding energhout zero-point energ;Egi;d =
—5.22 eV [139 is used in this work, but the total energy of the free atdif", is calculated
with the corresponding electronic-structure approachs €hoice corresponds to a shift of the
energy zero of thé\ ;.o axis. Auo(7T,p") can be obtained from tabulated enthalpy and entropy
values at standard pressyfé = 1 atm. (Values used in this work are taken from the JANAF
Thermochemical Tabled40.)

The chemical potential of the metal can be deduced from theiton of thermodynamic
stability of the bulk metal oxide. For the chemical potelntiemagnesium in MgO this means

g + 10 = ENigd, (4.11)

where the DFT total energy of an MgO unit cé]‘}g}lgl(k) approximates the corresponding Gibbs
free energy. Choosing the chemical potential of magnesiuligO bulk as a referencqm,ll"\?[fg =
Eyils — 3 E5Y, one can obtaim g (T,p) = —Apo(T,p) from Eq.4.11

Bounds for the chemical potentials are determined by ligittonditions for the system in
thermodynamic equilibrium. One limit is the decompositafrthe material into bulk metal and
oxygen gas. For the chemical potential of magnesium thisnweax (ung) = Eyfy (T)p)-
Again, the DFT total energy of a magnesium unit o@ﬂ[“glk approximates the corresponding
Gibbs free energy. Employing E4.11, the lower bound for the chemical potential of oxygen is
thus given by

min(pio(T.po)) ~ Exjyd — Exiy" (4.12)

Since the ionic bonds in MgO are strong, its melting and bgitemperatures at standard pres-
sure are quite high (3,125 K and 3,873 K, respectively). &fwee, experimental conditions of
interest for this work are usually far from the oxygen-pdonit.

A well-defined, reasonable estimate of the oxygen-richtlismhalf the total energy of a free,
isolated Q molecule afl’ = 0K,

1
max(uo(T,po)) = EES’;, (4.13)

corresponding td\ ;.o = 0. This highest possible value for the oxygen chemical pakntay
be identified with the liquid @phase. In summary, the range of interest for the relativenated
potential of oxygen is

Eiat (T = 0,00, pig) — Exty (T = 0,p, pie) — %ES’S < Apo(Tpo) <0.  (4.14)
Sometimes information on the chemical potentials of egicirspecies is needed, too. For ex-
ample, in order to study the local interaction between defand dopants, also lithium substi-
tutional and interstitial defects in the vicinity or far aystom oxygen vacancies in MgO have
been calculated in this work. To explore a wide range of jpbssxperimental situations, the
chemical potential of lithium has been varied between the &nergy of the lithium atom and
that of a lithium atom in LiO, corresponding to fully oxidized lithium.
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4.1. Stability of an isolated point defect

The remainingl’-dependent contribution to the Gibbs free energy of foromatf a defect
is the difference in vibrational energy between the systath & defect and without a defect
AF,ip(T). Within the harmonic approximation, the vibrational eryecgntribution to the Gibbs
free energy can be written as an integral over the frequencie

Fo,(T) = /dw Fop,(Tw)o(w), (4.15)

whereo (w) is the phonon density of states (DOS). This expression caletdeed by separating
F.i,(T) into vibrational energy

0
Expw(T)=——InZ 4.1
Vlb( ) 66 n4z, ( 6)
and vibrational entropy
Svib(T) = kg (an + 6Evib(T))7 (417)

whereg = k}%T Z is the partition function of amV-atomic systemJ41]

3N dk 0o L
g Ok (et D)Bhws(k) 41
;/(277)3;;:]6 2 (4.18)
This yields Eq4.15with
huw
Fan(Tw) = = +kpT'ln (1 - eﬂTW) . (4.19)

The information needed to obtain the phonon density of state) is contained in the potential
energy surface and can therefore be calculated using DEEIpAdnon properties in this work are
calculated via the finite displacement method as implendeint®honopy 142. By displacing
each atom in a supercell by a small amount from its equilibriposition and calculating the
respective forces (using FHI-aims), the dynamical mawixtfie system is constructed, and the
corresponding eigenvalue equation yields the dispersitation for the phonon frequencies.
From this, the phonon density of states can be obtained andlhational energy is computed.

4.1.3. Obtaining the dilute limit with supercell models

Before considering interacting surface defects, the @lilunbit (a single bulk or surface defect
in extended material) is discussed. When the formationggnfer an isolated, charged defect
in a periodic model is calculated applying Ef1, the result will depend on the supercell size
and shape. Even for very large supercell sizes, electiostaéeraction between defect and
compensating charge, as well as Coulomb interaction bettireedefect and its periodic images
will contribute to the computed formation energy. In aceorcke with a simple electrostatic
model of point charges immersed into the jellium of opposharge, these interactions scale
asElL, due to Coulomb interaction between defects and compegseltiarge, for a cubic unit
cell with the supercell lattice constahtcorresponding to the distance between the defect and
its closest images. In the limit of an infinitely large sumirthe Coulomb interaction vanishes
and the isolated, non-interacting defect is describedhdfdilute limit of an isolated defect
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4.1. Stability of an isolated point defect

is desired from the calculation of a realistic supercele£00-1,000 atoms), the effects of
Coulomb interaction between defect and compensating ehaegd to be removed, either by
extrapolation or by correction schemes as discussed belgpecially in systems with small
static dielectric constant.

Makov-Payne correction scheme

Various post-processing corrections have been suggestedtain the dilute limit in super-
cell calculations. The most widely used and discussed rdefifiobulk defects is the correc-
tion scheme derived by Makov and Payne in 1925 that builds on the work by Leslie and
Gillan [143. They considered an array of point charges compensatedbgsiant background
charge within a structureless dielectric medium with ditle constant. The Makov-Payne
correction is

2
¢a | 2mqQ, -5
AE®™ = ~— L 4.2
2eL * 3el? +0( ) (4.20)
whereL = Q3 is the length of a cubic supercell of volurtg « is the Madelung constant that
depends on the crystal structure (simple cubic, face-pathigubic, or body-centered cubic) and
on the number of basis atoms, afyd is the second radial moment of the defect charge density

= 37' T2. .
Q, = /Q &Prpy(r) (4.21)

The leading term in Eg4.20is the screened Madelung lattice energy of point char@é8] [
By decomposing the total charge density of a crystal comtgia point defect into a periodic
(net neutral) contribution of the underlying crysjal and the charge density of the aperiodic
defect, Makov and Payne reproduced this first-order terrd, auitionally obtained a third-
order correction term representing the interaction betwtbe periodic density and the defect
images.

The Makov-Payne correction scheme has been analyzed inrausstudies19, 122, 144
149. It has been shown that in most cases it leads to improvedecgance to the dilute limit,
but there are also shortcomings of the method. Lensl. pointed out thaf),- is not necessarily
independent on the supercell size, because the change @hadinge density introduced by the
defect need not be well localized as assumed by Makov andeHagd]. Furthermore, Segev
and Wei found that there may be situations for which thedattelaxations lead to a symmetry
breaking, and, as a consequence, a net dipole can appeawdhia have to be taken into
account 145. Shimet al. showed that strongly localized charges are far betterritbest by
the Makov-Payne scheme than delocalized ones, by caluglaticancies and interstitials in
diamond [L22.

Freysoldt et al. correction scheme

Another correction scheme for bulk defects was suggest2a(@ by Freysoldet al[150,151].
The electrostatics in a system containing a charged pofettare analyzed and formulated in
terms of the electrostatic potential in this approach.
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4.1. Stability of an isolated point defect

The basic idea is to distinguish between two p#t&°" and E™" of the correction term to
the charged defect formation energy calculated for a firdtesize.

A FCorT — Einter + Eintra (422)

E™Mer s the interaction energy of the defect charge dengity) and the compensating charge
density with the artificial potential due to periodic refieti, andE™™"*# is the interaction energy
of the defect charge density and the background chargetdémsie reference cell.

To derive the corresponding terms, the creation of chargéelcts is divided into three steps,
starting from a neutral defect. First, electrons are addédrtremoved from) the defect state. An
unscreened defect charge densityr) is introduced. Second, electrons are allowed to screen
the introduced charge. This leads to a change in electiogiatential with respect to the neutral
defectVy/o(r) = Viefect,q(T) — Vaeteet,0(r). Third, artificial periodicity and a compensating
homogeneous background charge density —¢ is introduced, leading to a periodic defect
potentialf/q s0(r). All spurious interactions can be expressed through theastijies, according
to

g = 2 [ driaats) + nlTayo(s) = Vayo(r) (4.23)
Q
and
EM = [ drnV,(r). (4.24)
/

The change in potential with respect to the neutral defetttas split into a long-range and a

short-range part; o(r) = th"(r) + Vqsfo(r). The long-range part

Vi) = 2 / gy 2aT) (4.25)

€ |r — /|

can be calculated analytically using a model charge defityy(r), for example assuming a
gaussian shapg’i"ter + Fintra js rewritten as a sum of two terms, where the first summand only
contains long-range, and the second only comprises séiagercontributions

AE©™ = B — g Ay ). (4.26)

The termA, o is an alignment term, that suggests potential alignmentéwst systems in dif-
ferent charge states based on the Hartree potential. It eabtained by calculating’;r(r)
analytically using Eg4.25and demanding that;” (r) = V; o (r) — V;}r(r) must approach zero
far from the defect. Depending on the infrastructure of thgliad electronic structure code this
type of level alignment can be convenient.
If the lattice sum
Bt = / d>r F[qd(r) + ][V (r) = V) (r)] + V) (r) (4.27)

2
Q
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4.1. Stability of an isolated point defect

is evaluated using a point charge model distribution, thedi term of the Makov Payne cor-
rection is recovered. In most (:asE‘$at only weakly depends on the choice of model charge
distribution. This is shown on the example of charged F ceerite MgO bulk, for which the
Freysoldt corrections to the formation energies have bedsulated using a gaussian charge
distribution for different widths (Tabld.1). Up to a gaussian width of 2.0 the Freysoldt correc-
tion yields the same value as the first order Makov-Paynesction to within 0.03 eV.

Table 4.1.: Freysoldt finite-size correction (in eV) to the formatioreegies of an F and P
center in a 64-atom bulk MgO supercell. The correspondingcdMd&ayne first-order correc-
tions for this example are 0.25 eV and 0.98 eV, respectivighg static dielectric constant of 9.8
and Madelung constant of 2.8373 were used.

Gaussian width £ F**

0.1 0.25 0.98
0.8 0.25 0.98
2.0 0.25 0.95

Extrapolation to dilute limit

Although the correction pre-factors of the Makov-Payneesah have been questioned, it is
generally accepted that the leading contributions to thledfect formation energy dependence
on the supercell size are the termsl /L and~ 1/L3, whereL is the supercell lattice constant.
This implies that finite-size scaling according to

q q
YL, e, o) = GP™ (L — oo, em, o) + T+ (4.28)
leads to the correct formation energy in the dilute liG""*?(L — o) [152-154. Different
variations of this scaling method have been proposed toawethe accuracy of the extrapolated
energy 122 145 155-158].

In Fig. 4.2the formation energies for thé =+, and F+ center in MgO bulk are shown as a
function of reciprocal supercell length in the oxygen-riichit for the Fermi level at the VBM.
All cells are fully relaxed, so that all elastic effects aa#en into account for the calculated
values.

The formation energy of a neutral F center is already comgefgr a small supercell of 64
atoms, while the formation energies of thé &nd the BT center show a strong dependence on
L, the higher the charge state the more pronounced is the.effée difference in formation
energy for a 1,728-atom supercell compared to a 1,000-atqersell is still 50 meV for the
F>* center. Finite size scaling is performed by fitting each sedata (for F~ and F+) to
Eq. 4.28 The extrapolation procedure correctly incorporates ffexts of atomic relaxation.
When supercells containing up to 1,728 atoms are calcufatetie doubly charged vacancies,
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4.1. Stability of an isolated point defect
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Figure 4.2.: Calculated formation energies of bulk F centers (filled sgtspas a function of
the reciprocal supercell length—! at PBE level, neglecting vibrations. Formation energies
including the first-order Makov-Payne correction are diguicby open symbols. Solid lines
show finite-size scaling, where supercells of 64 to 1,72&atwere calculated. Dashed lines
mark the extrapolated formation energies.

using PBE exchange-correlation treatment, the accurattyedéast-square fits is 0.05 eV for
the extrapolated values of the formation energies in thealimit.

The first-order Makov-Payne correction using the experialeralue for the static dielectric
constant of MgOd = 9.8 [159]) improves the convergence, but still the computationddaye
cells are unavoidable to obtain converged results. By coimgpéhe fitting parameters from the
extrapolation procedure to the Makov-Payne formula, thgcstielectric constant of MgO can
be estimated. For DFT-PBE it is 10.70 with electronic antidatcomponents of 4.88 and 5.82.
The corresponding experimental values are 9.34, 3.01, &3dB50. The PBE self-interaction
error leads to a stronger deviation for the electronic camepb

For charged surface defects, modeled using the VCA, thamodation is slightly different
due to the broken symmetry at the surface. While for bulk sgiks, the formation energies
were fit to Eq.4.28 where a term proportional t% is zero due to symmetry, for the surface
defects this term has to be included. The fitting functiorduseherefore

GE/CA’q(L,eF,,uO) = G;/CA’q(L — 00, €p, 10) + 9 + =2 4+ 3 (4.29)
The periodicity of the surface calculations performed iis thiork is three-dimensional. Slabs
are separated by a vacuum region, and this must be chosenelaogigh to remove undesired
interactions between repeating slabs. In calculationglifterent L, only the lateral dimensions
of the cell are changed, while the vacuum layer thicknesxésifi Since FHI-aims uses local-
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4.2. Stability of interacting surface defects in doped miale

ized basis functions, there is no extra computational cbsinnhe vacuum region is large. The
smallest distance between a defect and its closest atomtfre@siab image in-direction, per-
pendicular to the surface, was chosen as 200 A in this workgusslab to model a defect in the
dilute limit in a semi-infinite system, is only meaningfuldbnvergence of the desired property
can be reached with respect to the number of layérsn the slab. The formation energies for
an isolated™2* center at the MgO (100) surface, extrapolated to the diluti, las obtained for
4-, 5-, and 6-layer slabs, are shown in Fg3. Full relaxation has been performed for all slab
systems (using PBE), since also the convergence of geamelaixation and lattice polarizabil-
ity may vary with Ni,. While a 4-layer slab is not sufficient to obtain an accurasalt for the
extrapolated formation energy in the dilute limit, wheré - 0, the 5-layer and 6-layer slab
models yield the same value within 0.05eV.

Concentration of F§+ centers (%)
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Figure 4.3.: Extrapolation of thé2* formation energieﬁfVCA’q(L), calculated with PBE ac-
cording to Eq.4.1 (vibrations neglected) for different lateral sizes of sup#s and different
numbers of layers in the slab, to infinite supercell dize> oo, using Eq4.29 The Fermi level
is at the VBM and the chemical potential of oxygenis = 1/2 Efs) .

Although computationally demanding, using the virtuatstal approximation in combina-
tion with extrapolation is the most reliable method for cddting formation energies of charged
bulk and surface defects in the dilute limit. The extrapgolaiprocedure correctly incorporates
polarization and geometric relaxation effects and can Ipdiexpto both bulk and surface sys-
tems.

4.2. Stability of interacting surface defects in doped mateal

It is not always realistic to assume that the defect conagatr is small enough for the inter-
action between the defects to be neglected. In particutarged defects and compensating
electrons (or holes) cannot be considered non-interaewen at very low concentrations, be-
cause of the long-range nature of Coulomb interaction.

It is well known that charge transfer at dielectric materigterfaces can lead to spacially
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4.2. Stability of interacting surface defects in doped miale

confined depletion and accumulation of mobile charge garso that a space-charge region is
built up. The space-charge region is overall charge neuwtiate the two oppositely charged
material layers compensate each other. The effect is fangbeautilized inp-n junctions. In

a similar way, charge transfer between surface defectstentidst material can cause space-
charge effects. These, in turn, have an influence on the elsiege and stability of surface
defects, affecting the defect formation energies and auratons. For different reasons, the
effect of space-charge layer formation on the energetictetécts (or adsorbates) at surfaces
or interfaces has been disregarded in the literature. 6&iratl, space-charge layer formation
due to charge transfer between surface defects and the labstiah can only take place, if
mobile charge carriers are present. In theoretical stiggsally intrinsic material is considered
instead of the more realistic situation, where the host rizie intentionally or unintentionally
doped. The technical problem, that in DFT calculations rialbke way of modelling charged
surface defects in doped material existed, has certaimiribated to this restriction. Therefore,
previous theoretical studies often only aimed at a desonpf neutral defects and excluded
the possibility of defect charging, or else charged surfdafects were calculated in the dilute
limit using embedded cluster models, where space-chafgetefwere neglected. Yet another
important aspect explored and accounted for in the follgvignthat the spacial extent of a space
charge layer due to charged surface defects typically sawany more layers than the number
of layers in a DFT surface slab model.

In a realistic situation, surface defects are charged bgranwdating charge carriers from
dopants in the subsurface layers. This results in depletidthe charge carriers and creation of
a space-charge layer in the subsurface region. The res@l@ttrostatic potential causes band
bending and increases the energy cost per defect. As a, tbsuilk are two leading electrostatic
contributions to the formation energy of charged defedtsaction to the compensating charge
and band bending. In the following, it is shown how the staddaethodology for calculating
defect formation energies can be extended to include thekpatrostatic types of defect-defect
interaction. Equilibrium surface defect concentratiores @btained by minimizing the free en-
ergy of the system with respect to the concentrations osarbxygen vacancies in all possible
charge states. Thereby, itis considered that the contientiezf oxygen vacancies in a particular
charge state depends on the concentrations of vacancidlsother charge states, on the bulk
dopant concentration, on the position of the Fermi leveltesnperature, and on partial oxygen
pressure of the surrounding atmosphere.

4.2.1. Space-charge effects due to surface defects

The formation of a space-charge region due to charged sudefects will be explained qual-
itatively on the example of positively charged surface @tygyacancies ip-type MgO with
surface termination (100). First, consider the intrinsetenial (Fig.4.4, left panel), where oxy-
gen vacancies have been introduced at the surface. Thedyiteddiiect donor states deep in the
bandgap that are each occupied by two defect electrons. &fkeetd are neutral. Nexp;type
dopants with a concentratioN, are introduced, but the system is not equilibrated (Eig,
middlepanel). Empty acceptor levels pin the bulk Fermi level to\WBM, meaning that small
variations in dopant concentration have a minor effect erRéarmi level position. In thermody-
namic equilibrium (Fig4.4, right panel), charge carriers (holes) from the bulk have trareder
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4.2. Stability of interacting surface defects in doped miale
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Figure 4.4.: lllustration of space-charge formation and band bendirg tdusurface defects in
p-type MgO.Left Intrinsic material with a neutral surface defektiddle: p-type dopants were
introduced. The system is out of equilibriunRight In equilibrium, an electric field due to
depletion of electrons at the surface and accumulation wipemsating charge within a space-
charge regiord < z < 2°C causes band bending and limits the formation of chargecseirf
defects. The calculated values (see text for details) avessHor a dopant concentration of
Np = 10'® cm3 and surface charge density®f= 2.2 - 102 e/cn?.

to the surface defects. A surface charge densitlye to the positively charged vacancies builds
up (represented by the arrow), and is compensated by a ncapioally extended, yet local-
ized negative charge density within a bulk space-chargemasf thickness:5C. The thickness
depends on the doping profile, and may be limited by the tléskrof the material. Assuming
a uniform dopant distribution and semi-infinite bulk, thaemt of the space-charge region is
proportional to the space-charge density,

SC g
= 4.30
0= (4.30)
wheree is the absolute value of the electron charge. Surface clengspace charge lead to an
electrostatic potential that causes band bending witlérsiace-charge layer. The correspond-
ing electric field along the surface normglis

E, -2 (1 : >ez. (4.31)

€,-€0 25C

The potential differencé\¢ due to band bending,

Ap=—-T 5 (4.32)

2¢.¢0
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4.2. Stability of interacting surface defects in doped miale

can be calculated by integrating Eg31
The energyo E5¢(0,25C) required to take electrons from the surface and distriboéent
uniformly over the thickness>“, increases with the surface charge density:

ZSC
0E5¢(0,25¢) = l/ Fldz=0o T8¢, (4.33)
2 Jo 6erep
The temperature dependence:8f and E5¢(0,25C) at fixedo is neglected. The more charged
defects are formed, the higher becomes the energy cost feet,dg@nce the energy gain due to
charge transfer is reduced. In Fig4this is reflected in the reduced energy difference between
defect level and Fermi level.

In periodic calculations, the extent of the space-chargerlea usually artificially restricted
to the slab thickness. In Fig.4 (right panel) a slab thickness of 5 MgO layers is indicated
for comparison. Therefore, when formation energies fagrantting defects are calculated, the
energy contribution due to band bending constrained tohimetihickness of the slab should be
replaced by the energy contribution due to the correct banding in the semi-infinite material.

In addition to band bending, the second important effedeistestatic attraction between the
localized defect charge and the compensating charge genki two electrostatic contributions
have opposite effects on the formation of charged surfatectde The band bending effect
limits the concentration of charged surface defects, asirgy their formation energies, while
the electrostatic attraction facilitates charged defechhtion, decreasing the formation energy.
Both effects must be accounted for in order to calculate &ian energies for interacting surface
defects in metal oxides.

In analogy to the space-charge effectgitype material with positively charged surface de-
fects discussed above, band bending occurstiype systems with negatively charged surface
defects. Furthermore, depending on the surface termmatnol the particular type of mate-
rial, surface states can be situated in the bandgap, so #$@dce-charge layer due to surface
states is formed. In this case, the Fermi level may be pinodbe surface band energy. For
example, while the MgO (100) surface does not exhibit serftates in the bandgap, the MgO
(111) oxygen octopolar termination is characterized byipad states approx. 0.5 eV above the
VBM (calculated with PBE). Therefore, foryatype doped MgO (111) system a space-charge
layer due to surface states will form and influence surfadeaieoncentration (see also outlook
in Chapterl0). The space-charge and band-bending effects due to stinfdigceed states are
well-known in semiconductor physics. Yet, accounting farde effects in the context of oxide
surface defect stability has so far been disregarded.

4.2.2. Concentration and formation energy of interacting @&fects

To obtain equilibrium concentrations for interacting sgd defects, as a first step, formation
energies of charged defects as a function of surface charggtgo are calculated. In Sed.1.3
formation energies for isolated charged defects were podaiged to the dilute limit and in this
context the formation energy of one type of defect was catedl for decreasing concentrations
of this defect (Fig4.3). The corresponding fitting function (E4.29 can be generalized to the
case when defects in different charge states (for simplittiese are assumed to be 1+ or 2+)
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4.2. Stability of interacting surface defects in doped miale

coexist at the surface. E4.29is rewritten in terms of surface charge densityfor ¢ = 1, 2
usingo, = qe/L*:

1 3
g\ 2 o g\ 2
Gy (0,,d) = GY M (g, — 0) + af (;Z) + ad(d) (;Z) +ad(d) (;Z) . (4.34)

When defects in both charge states are present at the saifackaneously, the surface charge
density isc = o1 + o9. Since the nature of the second and third term is purelyrelstettic, a
mean-field approximation is applied anag is replaced withr in these terms. The fourth term
is more complicated, since in addition to higher-order tetestatic effects it also includes geo-
metric relaxation effects. However, also in this terpis replaced withr. This corresponds to
averaging the relaxation effects over different defectghatates. This averaging may give a
noticeable error only in the specific case of comparable atitkasame time not small concen-
trations of defects in charge sates 1+ and:243@% for F centers in MgO). Thus, the dependence
of the formation energies on the overall surface chargeityemss given by:

1 3
3 2
Gy o d, e, no) = Gy Mo = 0,6, po) + a <%> + a3(d) (q%) + a3 (d) <%> .

(4.35)

Note, thatG;/CA’q(a,d, er, o) still depends on the slab thickneds The electrostatic energy
that causes the formation energy of charged defects toasereith slab thicknessis the band
bending. According to Eqt.33 this contribution is

2
d
= 1¢ 2 4.36
a 6e,.c0 L2 ( )
Subtractingy E5¢ from the formation energies at every cell si’Z’é(CA’q(L), removes the term
o 1/L? in the finite-size scaling curve for each slab thicknesss Thshown for the example of
the P+ center ¢ = 2) at the MgO (100) terrace in Fig.5.

The terme 1/L3 plays a role only for small, so that the remaining linear dependence co-
incides for slabs with a number of layer§, = 4,5,6 and 7 for all calculated surface charge
densitiess = 2e/L?. The solid black line shows a linear fit, incorporating aliccgated forma-
tion energies. This linear fit yields the same value for thenftion energy of the isolated defect
as obtained before for the 5- 6-, and 7-layer slabs usingt2§. The linear term is present due
to the electrostatic attraction between the defects anddahmpensating charge.

Thus, formation energies of charged defects as a functiorsusface charge density
GYOM(5,25C (o)) for an arbitrary space-charge thicknes$ can be obtained by calculating
GfVCA’q(o—,d), subtracting the band bending in the slaB"C (s,d), and adding the band bending
qESC(szSC):

GY M (0,25(0)) = GY M (0,d) — gE5C (0,d) + ¢E5C (0,2%C). (4.37)

Next, the change in Gibbs free energy per unit area upon dfefienation can be expressed

as
2

2
VCA
G (nom1m2,T:p0y - Np) = m0Gf + > 1gGy (0,250, Np)) = T sl e (0,112,
q=1 q=0
(4.38)
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4.2. Stability of interacting surface defects in doped miale
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Figure 4.5.: Extrapolation of thé2* formation energieS}E’CA’q(L) (filled symbols, vibrations
neglected), calculated with PBE according to Ed.for different sizes of supercells, to infinite
supercell sizd. — oo, using Eq4.29 The Fermilevel is at the VBM and the chemical potential
of oxygenisup = 1/2 Eg’; Open symbols and linear fit (black line) are obtained byragting
the band bending contribution (E4.36).

wherenq, 11, andny are concentrations of surface defects in charge state @nbt2+, respec-
tively. The total surface charge density is determined leycibncentrations of charged defects
o = en + 2eny. The configurational entropy per unit argg_ (10,71,72) accounts for ener-
getically degenerate surface defect arrangements. Dueetscreening of the charged defects
by the compensating charge, the number of defect arrangertiet have significantly different
energy relative to the total number of possible arrangesnatnthe surface for fixegh, 11, and

19 is expected to be small, and is vanishing for small defecteotmations. In analogy with
Eq. 4.5, the configurational entropy for each type of defect canetioee be expressed as:

sites

Sgonf = kg (ntszites In n;ites — g lnng — (77q - 77q) ln(nzites - nq)) ) (4.39)

Wheren(j,iteS is the surface density of available sites for the given tyjpdefect:

n(s]ites _ nsites _ Z ;. (440)
i#q

For example, at the MgO (100) surface, the surface densioxpgen atoms ig®is = 0.11 -
1016 cm—2.
Finally, equilibrium defect concentrationg, 71, andns can be found by minimizing with

49



4.3. Experiments on point defect stabilities

respect to these concentrations:

2
0 Szonf(ﬁoﬂhﬂh)

oG =0
— = Gq(U,T,pO Np,ep) =T = =0. (4.41)
g ! ’ dnq
Here,
9 < VCA
G?(O’,T,pOQ,ND,EF) = % Z nTGf 774(0-7111702a]\[DaeF) (442)
7 r=0

is the formation energy of a defect in charge state q in thegmee of other defects. The
formation energy of an isolated charged defect4 0), as introduced in Sed.], is a limiting
case of the formation energy of an interacting charged tlefgagproached when defect and
dopant concentrations are vanishingly small. Since forw@rakdefect § = 0) there is no
electrostatic interaction, its formation energy is clogdhe formation energy of the isolated
defect also for larger defect concentrations. Disregarttie global electrostatic effects due to
charge transfer between surface and bulk can result in anarseveral orders of magnitude in
defect concentration, as shown for F centers at the MgO (d@@ce in the second part of this
work.

4.3. Experiments on point defect stabilities

Different experimental techniques for measuring defeciceatrations are known, but each of
them is only applicable to a specific class of defects andnaige

A straightforward way to obtain point defect concentrasi@xperimentally is to use the dif-
ferential thermal expansion method as introduced by Sinsnamd Balluffi in 1960 161]. It
is assumed that for each vacancy in the crystal an atom iglaatdde surface, increasing its
volume. The change in volume of a crystal sample as a fundidemperature is then due to
regular thermal expansion of the lattice as well as the d@ioeal change from point defects,
especially vacancies. The temperature-dependent changerbscopicaverage lattice constant
ﬁ—g, as determined in x-ray lattice parameter measuremerns,regpect to the lattice constant

ap When the material is defect-free, and the change in "maogpistlinear diIatation%—OL of a
crystal, also with respect to the lengthy for the defect-free system, can be measured simulta-
neously. The vacancy concentration is then obtained frardifierence between the two. In
general, unambiguous measurements for application oh#renal-expansion method can only
be performed, if only one type of defect is present that charige volume of the crystal sam-
ple. However, even if this is the case, some atoms that wégaally occupying the vacancy
site, may have taken up interstitial sites in the lattice tietefore no volume is added to the
crystal. In particular, Frenkel defects in ionic crystalensisting of a vacancy and an intersti-
tial, cannot be measured by this method. Also, for metaks utsually a valid assumption that
desorption of metal atoms into gas phase is energeticafgvarable. For oxygen vacancy for-
mation in metal oxides on the other hand it is well possibkg thkygen atoms at the surface
react with atoms or molecules from the surrounding gas paaddeave the crystal sample. To
limit oxygen fugacity, strongly oxidizing conditions hat@be provided, but then also the oxy-
gen vacancy concentration in the metal oxide will be verylsrkairthermore, in ionic crystals
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4.3. Experiments on point defect stabilities

it is much harder to insure thermal equilibrium at each tampee measuring point. Since the
defect concentration is small, but obtained from the diffiee of two large quantitie%oﬂ and

% that are sensitive to small temperature changes, high @aoim measuring®2 and %

0 ao 0
must be reached. Then, the thermal expansion method isicifpie also applicable for oxygen
vacancies in MgO162]. For metals as for example lead, aluminum, and silver maggessful
measurements using the thermal expansion method of defiecentrations have been reported
(see review by Seeger and references theds4]].

Another possibility to measure the concentrations of veiesnis via the time constant for
positron annihilation as a function of temperatuté3 164]. This method allows for measure-
ments of even very small concentrations of the ordeifof’ vacancies per possible occupation
site. Positrons can be generated by radioactive decayssvamitting astart radiation signal.
They are shot into the sample, and after a certain lifetinmehélate with electrons, again emit-
ting a certain type of radiation, providingstop signal. Detecting these radiations the mean
lifetime of the positrons can be determined, and from thésdlierage electron concentration
available for annihilation can be deduced. Many types oémaies are able to trap the positrons.
Therefore, the concentration of vacancies is related tatheunt of positrons being trapped
which is related to the measured mean lifetime. If the tnaggirobability, or the cross-section
for positron capture, is known, the vacancy concentratem e determined. The positron an-
nihilation method was for example applied to study vacaecynftion in Cu and Sil65, 166].
Applications to MgO also exist, but are of minor relevancetfis work, since only neutral and
negatively charged magnesium vacancies readily trap thiérpos. Also, the systems were not
studied under thermal equilibrium conditioris[7, 168.

An indirect method to measure defect concentrations ispiizal absorption spectra, if these
are accessible. This is also the method used in the onlyghduli experiment measuring the
formation energy of a (neutral) F center in MgO bulk, that wagormed by Kapperst al. in
1970 R6]. The experiment is discussed in detail in the context otltle®retical analysis of the
FO defect in Sec6.1

Other methods, that can in principle be used to study thedtiom of point defects in ionic
crystals, are measuring the resistivity, if ionic conduitti is mediated by point defects, or,
specifically for surface defects, the crystal sample canxpesed to atoms or molecules that
adsorb preferentially at the defect sites and can be reddilycted. It has also been suggested
to obtain a surface vacancy concentration by simply cogrifie defects visualized in atomic
resolution STM imageslfp9. However, for small defect concentrations the error is thiethod
is rather large, and the conditions are usually far fromisgel

In summary, all of the methods mentioned are based on one  assumptions critically
important for the reliability of the deduced value of therf@tion energy. The general, main
challenge for the temperature-dependent measuremenuibbegm defect concentrations or
formation energies in ionic crystals is to establish prgishis thermodynamic equilibrium at
each temperature.
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4.4. Summary

4.4, Summary

In this chapter, the standard approach of calculating fdonanergies and concentrations of
neutral and charged F centers, assuming non-interacso{atéd defects, has been reviewed,
and an extension to describe interacting surface defestdéan introduced. In general, the
concentration of one type of defect depends on the condiemtsaof all other types of defects.
This has been taken into account by introducing conceatratependent formation energies
and minimizing the free energy of the system with respectltsuaface-defect concentrations.
In particular, global electrostatic effects due to defemtipensating charge interaction — effects
that have so far been disregarded — have been consideredgeChansfer between surface
defects and dopants in the bulk leads to formation of a sphaege region, band bending and
an electric field. This limits the concentration of chargedace defects, competing with the
second important electrostatic effect, attraction betwaaface defects and the compensating
charge, which facilitates formation of charged F centeddlowing the methodology suggested
in this chapter, equilibrium concentrations of interagtsurface defects for given temperature,
pressure, Fermi level position, and dopant concentrationbe calculated.

52



Part |l.

Oxygen vacancies in MgO
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5. MgO as a catalyst for methane oxidation

Today, high-value commodity chemicals used in industryfarehe most part produced in a
cost-intensive and environmentally unfriendly way fronsdib resources by cracking and re-
forming. On the way to more sustainable energy conversisrorgg as renewable feedstocks
can not be utilized on a sufficiently large scale, efficiertalydic processes for production of
base chemicals and fuels from methane are highly desird#¢hane (CH) is the main com-
ponent of natural gas, and can also be produced from bionmfstspresent, methane is often
used to generate electric power or heating by full combnstitth emission of carbon diox-
ide. Methane conversion in the presence of oxygen is knovaxidsative coupling of methane
(OCM), where methane can react with oxygen to produce et{@ité;) and ethylene (¢H,),

2CHy4 + 1/202 — CyHg + H2O
CoHg + 1/202 —  CyHy + H50.

However, to direct the reaction towards ydrocarbons rather than carbon monoxide or carbon
dioxide, a suitable catalyst is needed. Already in 1982 diffit oxides, among them magnesium
oxide (MgO), were tested for their activity as OCM catalygtg(. In 1985 lithium-doped
MgO was studied by Ito and Lunsford and found to effectivedynvert methane to ethane and
ethylene at approx. 70C [11,12, 171]. It was shown by Myrach et al. in 201A72 that
lithium-doped MgO is not a stable catalyst due to segregatiolithium to the surface. Still,
there are experimental indications thatype conductivity and presence of oxygen vacancies
are important features for MgO to exhibit catalytic activior OCM: Dubois and Cameron
analyzed the properties of oxide catalysts for OCM and ifledtp-type conductivity as a key
factor for good performance]]. Balint and Aika studied defect sites formed when MgO was
doped with lithium or titanium. Pure MgO and lithium-dopedy® always exhibitec-type
conductivity, whereas titanium-doped MgO was found tonbiype conducting. Doping with
lithium favored formation of oxygen vacancies, while dapiwith titanium had the opposite
effect [32]. Furthermore, the pristine MgO (100) surface, which isitiest stable termination
under a wide range of ambient conditions, is chemicallytinér particular, Trevethaet al.
argue that methane molecules only weakly physisorb on theefieaces 173. There is still
insufficient knowledge on the stability of oxygen vacandiesvigO under realistic ambient
conditions. The only experiment on the stability of the giganeutral oxygen vacancy in MgO
bulk conducted by Kappekt al. in 1970 R€] is in disagreement with theoretical work from the
90ies by Kantorovictet al., Scorzeet al., Orlandoet al., and Pacchionet al. [27,30,174,175].
Due to their electronic structure, also charged oxygennaea in MgO are conceivable, but
their stability has hardly been studietilp, 176.

In the following, the methodology presented in the first péthis work is applied, aiming at a
realistic, accurate description of oxygen vacancies avty® (100) surface. In this context also
bulk defects are analyzed. The focus is on the global effiedbping on oxygen vacancieise.,
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doping is considered as means of creating a reservoir fotretes and holes, characterized by a
chemical potential (Fermi level). But also lithium as a ptgpe dopant in MgO is considered,

where defect complex formation can be favored due to lodelaction between defects and
close-by dopants.
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6. F centersin bulk MgO

MgO crystallizes in the rock-salt structure, where eaclmaitosix-fold coordinated in the bulk
(Fig.6.1). The experimentally determined lattice constant for Mg®.207 A afl’ = 0K [177].
When the effects of zero-point vibrations are removed, dlteck constant is 4.186 A ). The
bonding type in MgO is strongly ionic, with formal ion chaggef magnesium and oxygen 2+
and 2-, respectively. Although the experimental bandgaplg®D is 7.78 eV, as measured by
reflectance spectroscop$ 19, realistic samples are typically neither clear transparer in-
sulating. Defects such as intrinsic point defects, impmgiand defect complexes are not only
responsible for the color of the samples, but can also gae to electron or hole conductiv-
ity [32,180,181].

Figure 6.1.: Simple cubic unit cell of MgO.

Oxygen vacancies are typically studied in the context af tihluence on the oxide proper-
ties. These point defects are also called color centers enters, referring to the German word
Farbzentrum due to their effect on the optical properties. Despite mome studies, the ac-
tual abundance of oxygen vacancies at realistic conditiemains undetermined. Even for the
simplest type of oxygen vacancy, the neutrélcEénter in MgO bulk, the challenge to obtain an
accurate estimate for point defect formation energies firegment and theory becomes evident,
since reported experimental and theoretical results thsaggverely. In the following, electronic
and geometric structure of bulk F centers in MgO are studied, formation energies as well
as electronic levels are tested for their dependence on Réffaage-correlation treatment. The
goal is to find a reliable exchange-correlation functiomalthe analysis of neutral and charged
F centers in MgO.

6.1. Neutral oxygen vacancy in bulk MgO

The formation energy of the neutral oxygen vacancy in bullOMgas measured by Kappess
al. in 1970 R6]. A deviation of 2eV between theoretical results reportediterature and
the experimental value has been a long-standing discrgpdrits issue is approached in the

56



6.1. Neutral oxygen vacancy in bulk MgO

following paragraphs, using periodic and embedded clustedels and comparing DFT and
hybrid DFT results to high level coupled-cluster theoryues.

Experimentally measured formation energy

In Kappers’ experiment the bulk oxygen vacancies are addatedditive coloring 26]. Single
crystals of MgO are heated in magnesium vapor at tempesattom 1,870 K to 2,100 K under
pressures up to 5.3 atm. The high magnesium chemical paitéoiers the formation energy
of the bulk F centers (compare E41and Eg.4.11) and allows for them to form in detectable
concentration. Optical absorption experiments are thefomeed, and from the maximum in-
tensityu,.x and width at half-maximund/ of the absorption peak the density d¢f éentersipo
can be obtained. For this, the Gaussian form of the Smakutaulla [187 is used, depending
also on oscillator strengtlfi,s (& measure of the transition strength) and the index of ctfna
k:

(k2—|—2)2 fos max

The ratio between Fcenter density and the density of atoms in the magnesiumrvapo
shown in Fig.6.2 (left) for several crystals colored at 2,086 K and 1,885 K. In thetymamic
equilibrium, the increase in free energy if one atom is readofrom the magnesium vapor is
equal to the increase in free energy if one magnesium atonohdischto the crystal and a bulk F
center is formed. This relates the ratio of the density‘bé&nters and the magnesium atoms in
the vapor to the defect formation enthalpy; atT" = 0 K with respect to cohesive energy of
the MgO crystal via

Npo X U. (6.1)

AH
ngo/nyg = C - ¢ FaT. (6.2)

A H; is the enthalpy change upon removal of a neutral oxygen atom MgO bulk and placing
it into the gas phase. The cohesive energy is defined as thgyetest of separating an MgO
crystal into free magnesium and oxygen atoms, per Mg-O gédie dependence of C on tem-
perature is weak, and is therefore neglected. From the tglenasio, measured as a function of
temperature/A H¢ can thus be obtained by a fit to E§j2, as shown in Fig6.2 (right).

The experimental value for the’ Formation enthalpy estimate @t = 0K is 1.53 eV above
the cohesive energy with respect to oxygen atpg € Eo), and -1.06 eV with respect to,0O
molecule 1o = 1/2Fp,). Adding the experimental cohesive energy of 10.35 83 results
in a formation enthalpy of 11.88 eV with respect to oxygemator 9.29 eV with respect toO
molecule.

As also mentioned by Kapperg€], it is hard to ensure that thermal equilibrium is reached
when the crystals are colored. Additional uncertainty enterough assumptions made to de-
rive EQ.6.1, which may be problematic for ionic solids, as pointed outDmxter [L82. Also
specifics of the estimate made for the oscillator strengthnat documented. Therefore, com-
parison with different experiments would be desirable.
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6.1. Neutral oxygen vacancy in bulk MgO
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Figure 6.2.: Left: Equilibrium density of B centersupo as a function of the density of atoms in
the magnesium vapon,, Right: Ratio of the density of Fcenters to the density of atoms in the
vapor as a function of the reciprocal temperature. Eachifglgnt, except for the one measured
at an intermediate temperature, corresponds to one dathipdahe graph on the left. The two
open points in the right graph correspond to the two linearifiithe graph on the left. Graphs
are taken from Ref.Zg], labels have been adjusted to match denotations in the(teapyright
(1970) by The American Physical Society.)

Theoretical results

The formation energy for the’Feenter has been calculated and reported in literature aiing
ferent methods and model27-30]. Fig. 6.3 summarizes these results, comparing formation
energiesG{(T = 0,p°) according to Eg4.1in the oxygen-rich limit 4o = 1/2 E{Y). The
zero-point vibrational energy contribution to the forroatienergy, estimated using the finite-
displacement method forzax 2 x 2 MgO bulk unit cell, is -0.12 eV. Vibrational energy contri-
butions are neglected in the following. It becomes evideat the experimental estimate for the
FY center formation energy of 9.29 eV is in disagreement withrtsults reported in literature
and with the formation energies calculated within this wdd symbols in Fig6.3). Forma-
tion energies calculated with LDA are surprisingly closesthe experimental estimate. LDA
is known to systematically overestimate the binding betwa®ms in crystals184], hence a
higher formation energy is obtained than for the other méthessed. Compared to the experi-
mental MgO lattice constant of 4.186A77,178 (extrapolated td” = 0 K), the lattice constant
optimized with LDA underestimates (4.165 A), while PBE @82A), HSE06 (4.218 A) and
PBEO (4.212 A) optimized lattice constants overestimatar. details on lattice parameter op-
timization see appendik.3. Geometric relaxation effects play a minor role for forroatiof

FO centers. The relaxation energy due to the removal of oxygehlieV at PBE level, and
therefore only makes up for 1.4% of the formation energyqe¥). Already for a2 x 2 x 2
supercell, containing 64 atoms, the formation energy ohthdral oxygen vacancy is converged
with respect to the supercell size. The two defect electremsin localized at the vacancy site.
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6.1. Neutral oxygen vacancy in bulk MgO

They occupy a defect level in the middle of the bandgap, aadrerefore higher in energy than
the electrons associated with the regular ionic bondingenMgO lattice (see also Fi§.10).
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Figure 6.3.: F' center formation energy in the oxygen-rich limitq = 1/2 Eg’;). Literature
results foruo = ES* were recalculated foio = 1/2 E§? using the experimental {binding
energy. Different types of exchange-correlation treatnaer periodic (circles) or embedded
cluster (triangles) models were used. Red circles showtsesiotained within this work, orange
triangles were calculated in a collaboration by S. Sicd®5. From literature, periodic DFT
calculations at LDA level (blue circle2[]; green circle £8]) and GGA level (green circle,
PBE [28]; gray circle, PW91 29)]), as well as embedded cluster calculations applying HF and
HF+MP2 (black triangles30]) are shown for comparison.

The results calculated with periodic models using the HSHilfaof functionals, including
PBE and PBEO, agree within 0.15 eV, if thg kinding energy is corrected, but a2 eV lower
than the experimental result. The experimental estimateasiginally obtained with respect to
cohesive energy. Therefore, to compare directly with thasueed quantityG?c is calculated
with respect to cohesive energy

Eplo = Eviat — Exfy — 1/2E8Y, (6.3)

where Eypit is the total energy of bulk MgO per MgO unik;j3! is the total energy of a Mg
atom, and the total energy of oxyg@‘g;t is obtained using the experimental binding energy, as
described in Seel.1.2 for different parameter sets (w) (Fig. 6.4). However, the discrepancy
between experiment and theory is still mainly due to the fdiom energy, not the cohesive
energy.

It was demonstrated by Rampras@l. in 2012 that there is a near-linear correlation between
the formation energies of neutral point defects in bulk S8, @nO, and Zr@ and the corre-
sponding valence bandwidth (VBW) of the defect-free paneaterial, when both are computed
as a function of the HSE parameted8§]. The deviations from linearity increase when the
bandgap is used instead of the VBW. The bandgap was alreadggmut to be an unreliable
descriptor for defect formation energies by Lany and Zumg@010 [L87]. The prescription for
finding reliable formation energies for neutral point défesLiggested by Rampraseidal. is to
find a DFT functional that gives the experimental VBW for thieeg material — which requires
only pristine bulk calculations —, and use the correspanéixchange-correlation functional to
compute the accurate defect formation energies.
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6.1. Neutral oxygen vacancy in bulk MgO
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Figure 6.4.: F° center formation energy with respect to cohesive energy@BJ)jin the oxygen-
rich limit 1, calculated for different parameter sets () of the HSE hybrid-functional family.
Formation energies are shown as a function of oxygeih&ndwidth, the solid red line indicates
the experimental valuep].

For MgO, the bulk neutral F center formation ene€gyonly weakly depends on the exchange
and screening parameters of HSE. Still, a near-linear kedioa with small but finite slope is
found for G as a function of oxygen 2 bandwidth (Fig.6.5. However, the methodology
suggested in Ref1Bg) cannot be applied to MgO, because of a large uncertaintyprr@mental
oxygen 2p bandwidth 188-191].
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Figure 6.5.: F° center formation energy, calculated for different paraneets of HSE{(, w)
(black symbols), shown as a function of oxygep Bandwidth (black line shows linear fit). The
red line indicates the experimentally measured formatimrgy R6]. The blue lines depict ex-
perimental values for the MgO oxygemdandwidth, measured using electron momentum spec-
troscopy (EMS) 191], angle-resolved ultraviolet photoelectron spectrogc@GrPRES) [190],
x-ray photoelectron spectroscopy (XP$89 and x-ray emission spectroscopy (XE3B§].

Another approach is to benchmark HSE functionals agairgtdnilevelab initio methods,

LIn this work, the oxygen-rich limit is always calculated ngithe experimental ©binding energy as described in
Sec4.1.2
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6.1. Neutral oxygen vacancy in bulk MgO
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Figure 6.6.: Formation energy of the neutral oxygen vacancy at the cerfite) an unembed-
ded MgO; (with a charge +10) and b) an unembedded; M3 (with a charge +2) cluster
model, calculated at different levels of electronic stuuettheory using NWChem (red squares)
with basis sets up to cc-pVTZ, and FHI-aims (blue trianglgih basis sets up ttght, tier 4.
Formation energies have been corrected for the basis setpmgition error using the counter-
poise correction method (see Appendix for details). In the NWChem calculations for the
Mg140;3 cluster, only the cc-pVDZ basis set could be used forAMP2 andACCSD cor-
rections 192-195, since employing a higher-level basis set (cc-pVTZ) usmese methods in
the available implementation was computationally notifdasdue to extremely high memory
consumption.

such as coupled-cluster theory with single and double &keits (CCSD), CCSD plus triple
excitations by perturbation theory (CCSD(T)), RPA®W . This can be performed efficiently
using cluster models. First, two MgO clusters are calcdlate six-coordinated oxygen atom
(MgsO4), and a 27-atom MgO cube (MgO:3) (see Fig.6.6). The clusters were constructed
using the PBE optimized lattice constant of bulk systemsaih clusters there are more mag-
nesium atoms than oxygen atoms. The clusters are therdfargex by removing all magnesium
valence electrons that cannot be accommodated by oxygers dtmunting two electrons per
oxygen atom). This corresponds to a charge +10 fog@®gand a charge +2 for MgO;s.
The oxygen removal energies for these two (unrelaxed) sysséee calculated at different levels
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6.1. Neutral oxygen vacancy in bulk MgO

of electronic structure theory, where possible using twiedint all-electron codes, FHI-aims
and NWChem. Since the cluster models are not embedded, jlgexemoval energies are
not quantitatively comparable to those of tHedenter in extended material. However, for each
cluster model, the formation energy of the neutral F cerdtrutated with CCSD is close to the
results obtained with PBEY(= 0, w = arbitrary) and PBEO4 = 0.25,w = 0). The formation
energies obtained with CCSD are much closer to the HSE sa$ialh to the experimental value.

This result has been corroborated in a cooperation with. Pafier’s theoretical chemistry
group of the Humboldt-Universitat zu Berlin. Embedded ®ugalculations at PBE, PBEO and
B3LYP level and with the CCSD(T) coupled-cluster methodeygerformed using the TURBO-
MOLE code P€]. Forthe DFT TURBOMOLE calculations on embedded clustgrs3p2d1 1/
[5s4p3d] triple-zeta valence plus polarization basis sets werd [k26]. For the CCSD(T) com-
putations also electrons in the magnesiumahd 2p shells were correlated using core-valence
correlation consistent basis sets, cc-pCVXZ (X = D, T, Q)rfagnesium, whereas on thé O
ions the aug-cc-pVXZ basis sets were uskai7]. For consistency between FHI-aims and TUR-
BOMOLE, embedded cluster calculations at PBE, PBEO and B3level were also performed
with FHI-aims using the same cluster models. In both CCSI2{iJ DFT calculations, the
basis set superposition error (BSSE) was evaluated follpwhe Boys-Bernardi counterpoise
correction 198]. The MgO clusters are embedded in a periodic point changs aising the pe-
riodic electrostatic embedded cluster modeédg] in TURBOMOLE, and a converged finite set
of point charges in FHI-aims. To minimize non-physical piaation of peripheral oxygen an-
ions by the embedding point charges, pseudopotentialsddierao the first shell of embedding
Mg?* cations (all-electron Hay&Wadt effective core potenti@€Ps) P00 in TURBOMOLE,
and Troullier-Martins-type norm-conserving non-locaépdopotentialsg01, 2027 in FHI-aims
calculations). The PBE lattice constant is used for the eluiée clusters. Apart from the outer-
most frozen shell of atoms, full relaxation is allowed in ET calculations for larger clusters
(Mg14049). For the CCSD(T) calculations and respective DFT valugainkd for smaller clus-
ters (Mg;Oy), formation energies of neutral, unrelaxed F centers amgpeoed.

G? is calculated at very high accuracy with CCSD(T) for the eddssl MgO, cluster
(Fig. 6.7), the largest model that is still computationally feasibdeie to high memory con-
sumption. The CCSD(T) value is compared to the formationrgiee calculated for the same
system with various DFT functionals, yielding a correctierm ACCSD(T) for each DFT func-
tional. The correction term is finally added to the DFT forimatenergies calculated for a larger
cluster Mg 409 that is converged also with respect to geometric relaxation

Table6.1 summarizes the formation energies for a neutfat&nter in MgO bulk calculated
with the Mg; Oy model, and formation energies including geometric relaraas obtained with
an Mg4O,9 embedded cluster. For consistency, formation energiesleédd with FHI-aims
for the same cluster models usingight, tier 3 basis, and for periodic models usingight,
tier 2 basis are also shown. Obviously, the formation enefghe unrelaxed defect is already
converged within 0.1 eV with respect to cluster size.

The correctiong®ACCSD(T) for the DFT formation energies ard.09 eV for PBE,0.07 eV
for PBEO, and—0.28 eV for B3LYP. Adding these corrections to the DFT formatioresgies
obtained with a converged cluster size M@ (with charge -10), yields DFTACCSD(T)
results of 6.85eV, 6.88 eV, and 6.89 eV, respectively.

From this it is concluded that the formation energies fortrau- centers can be calculated
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6.1. Neutral oxygen vacancy in bulk MgO

potentials

Figure 6.7.: MgsOq cluster model (with charge -6), embedded by magnesium aatenpals.

Embedding point charges (see text) are not shown. CCSDI@)lations were performed using
this model at unrelaxed bulk’Ffgeometry, where the central oxygen atom in the cluster was
removed.

Table 6.1.: Formation energies;?, calculated for unrelaxed (unrel.) and relaxed (rel.) aom
coordinates for a bulk Fcenter, as obtained from embedded cluster DFT and CCSDI@)-ca
lations employing FHI-aims (AIMS) and the TURBOMOLE (TURRBode.

Structure model PBE HSEO6 PBEO B3LYP RPA rPT2 CCSD CCSD(T)
@PBE @PBE
MgeOy (unrel., TURB.) 7.18 - 7.02 7.37 - - 7.05 7.09
MgsOg (unrel., AIMS) 7.11 7.03 6.99 7.35 7.13 7.45 - -
Mg14O19(unrel.,,TURB.) 7.06 — - - - - - -
Mg140y9 (rel.,TURB.) 6.94 — 6.81 7.17 - - - -
Mgl4019 (reI,AIMS) - 7.05 - - - - - —
periodic (rel.,AIMS) 7.09 7.04 7.07 - - - - -

accurately to within 0.2 eV even at PBE level. In particulag DFT+ACCSD(T) formation en-
ergy values are in good agreement with the HSEQGFmation energies 7.04 eV and 7.05eV,
obtained from the Mg, 0,9 embedded cluster and periodic calculations, respectivslgg FHI-
aims. It is concluded that the experimental value for thé il center formation enthalpy in
MgO [26] is a significant overestimate. The most likely reason i$ thermodynamic equilib-
rium was not reached in the experiment.

Based on the accurate value of the formation energy, th@mea®r the failure of certain
electronic structure methods to accurately describe tmeval of a neutral oxygen atom from
MgO bulk can be deduced (see F&3 and Fig.6.6): using the local density approximation
leads to overestimated formation energies, while not dhioly electron correlation yields un-
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6.2. Charged defects in bulk MgO

derestimated formation energies. It is also interestiagq tiine formation energy calculated with
the many-body perturbation theory method RPA is in goodexgent with the CCSD(T) result,
while renormalized second-order perturbation theory rPri2203, 204, which goes beyond
RPA by including second-order screened exchange (SOSEXKyamormalized single excita-
tions (rSE), rpT2=RPA+SOSEX+ISE, overestimates thednater formation energy (Tabel).
CCSD, which yields a slightly underestimated formationrgp®f 7.05 eV, is connected to rPT2
in so far that the Goldstone diagrammatic expression for Q@fiere only double, but not sin-
gle excitations are accounted for) equals that of RPA+SOREY. RPA+SOSEX vyields an
overestimated formation energy of 7.40 eV. Obviously, far tonsidered MgO system, there is
no advantageous error cancellation when adding SOSEX d@ntbrRPA.

6.2. Charged defects in bulk MgO

In contrast to the neutral defect discussed above, thelatdcuenergy levels and total energies
of charged oxygen vacancies in MgO are found to depend dyronghe employed treatment of
exchange and correlation of the many-electron system. #s\atic approach is taken to explore
this dependence using the whole parameter range of the Higkdnal family. An optimabpt-
HSE functional that correctly describes the charge excitafmmthe defects is identified by
requesting that the ionization potentials obtained withdpt-HSE functional should agree with
the results of & (Wy@opt-HSE calculation.

6.2.1. Geometric relaxation

Atomic relaxation, which can make a large contribution te thrmation energy, especially for
charged defects, is calculated using the semilocal exeheogelation functional PBE for all
periodic models including all atoms in a supercell. HSE walions are performed at these
geometries, since changes in the calculated formatiorgesewhen scaled to optimized HSE
lattice parameters are found to be negligible. (The absatror is <0.03 eV for the most severe
case, the E" center, calculated with HSEO06 for a bulk defect in a 64-atopescell and for a
surface defect in an 80-atom supercell.)

When an oxygen atom is removed from the MgO lattice, the gearent of atoms in the
vicinity of the defect will adjust to lower the energy of thgsteem. For the neutral F center,
where two electrons remain at the defect site, the displaneof atoms is not very pronounced,
since the defect electron distribution resembles the reledistribution around an © anion.
Removing one or both of the defect electrons leads to a metiadi geometric relaxation. The
Mg?* ions close to the positively charged oxygen vacancy ardlegpavhile the G~ lattice
ions feel an attraction. For the neutrdl Eenter, only the nearest neighboring atoms are in-
volved in the geometric relaxation. For charged defects akxt-nearest neighbors contribute
to the geometric relaxation around the oxygen vacancy.elisaro symmetry-breaking in either
case, which was also tested by starting the relaxation frgmometry with broken symmetry
using PBE and HSEO06 exchange-correlation functionals. gdwnetric relaxation for all rel-
evant charge states are quantified in Taéh The equilibrium PBE bulk distances between
magnesium and oxygen atoms and the oxygen vacancy sitestw® together with the relaxed
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6.2. Charged defects in bulk MgO

distances for the s F+, and F+ center. The relaxations are given in % with respect to thé equ
librium bulk distances. There is an outward relaxation adraet-neighbor magnesium atoms
and an inward relaxation of nearest-neighbor oxygen atemg*" and F~ centers, while for
the P center a weak outward relaxation of both nearest-neighamagnesium and oxygen
atoms takes place.
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Atom Eq. distance to  Relaxation (%) Relaxation (%) Relama(Po)

vacancy site (A) f Fr F+
Mg (1) 2.129 0.6 5.0 9.3
0 (1) 3.011 0.3 1.1 2.6
Mg (2) 3.688 0.0 0.1 0.1
0 (2) 4.258 0.0 0.5 1.2
Mg (3) 4.761 0.0 0.5 0.9
0 (3) 5.215 0.0 0.2 0.4
O (4) 6.022 0.0 0.1 0.3
Mg (4) 6.388 0.0 0.1 0.1
0 (5) 7.375 0.0 0.1 0.1

Table 6.2.: Outward (positive) and inward (negative) relaxation in %hwiespect to the equi-
librium bulk distances between close-by atoms and vacaitey Bhe model shown is a cut out
of a periodic 1,000-atom relaxed supercell with &r Eenter.

The more distinct the geometric changes due to the defectraréarger is the supercell size
needed to obtain the respective relaxed structure witheomgtry-related interaction between
defects. This is evident from the supercell size dependehdee relaxation energy, which is
defined as the total energy difference between the relaxédiarelaxed system with a defect,
shown in Fig.6.8. In fact, this energy difference also incorporates sizeedeent changes in
electronic polarizability, which cannot be rigorously aegted from the geometric relaxation
effects. The converged relaxation energy increases dadigtivith defect charge, itis 0.1eV
for the neutral oxygen vacancy, 0.9 eV for the Eenter, and 3.0eV for the?E center. A
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6.2. Charged defects in bulk MgO

2 x 2 x 2 supercell is sufficient to obtain a relaxation energy cagwerwithin 0.01 eV for the
neutral oxygen vacancy. However, the defect-defect distanust be >12A for the Fcenter
and >16A for the BT center to reach converged relaxation energies within 0.1 eV

Number of atoms in supercell

64 216 512 1,000 1,728
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Figure 6.8.: Convergence of relaxation energies with supercell sizéh®bulk P, F, and B+
centers’ L is the supercell lattice constant. The PBE exchange-atioal functional was used.

6.2.2. Electronic structure

The most prominent feature in the electronic structure aéters in MgO is a highly localized
defect state. For the neutral defect, this state is occupad/o electrons. By removing one or
two electrons from the defect level, singly- or doubly-ged oxygen vacancies can be created.
As a measure for spatial localization, the spin density lier E~ center is shown in Fig6.9,

as calculated with PBE and HSE06. The stronger localizaifdhe defect electrons obtained
with HSEOQG is due to the reduced self-interaction error. E\my, in case of F centers in MgO,
there is noqualitative difference between the PBE and HSEO6 results. The strormdjzation

of the s-shaped defect wave function is responsible for severajuenproperties of F centers.
The charge density due to the two defect electrons of theeRter resemble the missing O
ion so closely that the crystal lattice is hardly disturbgdhe presence of the defect.

The band structures for bulk F centers show the defect level ffat energy band close to
midgap (Fig.6.10. The absence of dispersion is a consequence of the higealefidefect-
state localization. The defect charge has only a weak inflien the position of the defect state
with respect to VBM. For the F center, the two spin channels are considered separatetg si
the two defect spin states are no longer degenerate. Rngjeébe density of states (DOS) on
the basis functions of individual atoms in the system, ithieven that the defect level is mainly
due to magnesium 8states, while the VBM is dominated by oxygemp 2tates.

2If not explicitly mentioned, FHI-aim#ght, tier 2 basis settings were used for periodic defect calculation®O
in this work. (For convergence tests see ApperfliX)
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Figure 6.9.: Spin density (in A ) for FT, calculated with PBE (a) and HSEO06 (b) using a 64-
atom supercell. Shown is a cut along the (100) plane with &fiead in the center. Contour levels
are drawn in steps of 0.02°R&.

The positions of defect level and CBm with respect to VBM agrecfion of supercell size for
F centers in different charge states is shown in &ifjL Again, the supercell size needed to con-
verge the electronic structure increases with defect ehaBgometric relaxation is responsible
for a deviation from monotonic behavior for the 64-atom .c&till, the position of the defect
level can be estimated within 0.1 eV from the converged teslbady for this smallest cell
size for all three charge states. The defect level positigtisrespect to VBM, calculated with
HSEO6 for a 64-atom supercell are 3.10 eV f8r £30 eV for the occupied and 4.52 eV for the
unoccupied spin state for'fFand 3.77 eV for Ef. The KS bandgap calculated with HSEQ6 in
pristine MgO is 6.5 eV, while the experimental bandgap, messby reflectance spectroscopy,
is7.78eV [L79.
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Figure 6.10.:Band structures, total density of states (DOS) (black) greties projected DOS
(magnesium blue, oxygen red) for the pristine MgO crystalthe bulk P, F+, and F+ centers,
calculated for a 64-atom supercell using HSE06. Defeatleecupations are marked by gray

arrows.
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Figure 6.11.: Defect levels and CBm with respect to VBM for increasing suapk size, cal-

culated with PBE. 1I is the reciprocal supercell lattice constant. For eachrsefiesize, the
geometry is fully relaxed.
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6.2. Charged defects in bulk MgO

6.2.3. Opt-HSE for charge-transition levels and formationenergies

In the following, the dependence of calculated total emsrgin the exchange-correlation treat-
ment is analyzed by determining the formation energiestfer®, F*, and F* centers in the
dilute limit (i.e., for isolated defects) for different HSE functionals. Tdlde the extrapola-
tion procedure outlined in Sed.1.3 formation energies for increasing supercell sizes have to
be calculated with each functional. First, the full extriagion curve for the charged defects is
calculated with PBE. For members of the H&E() family that incorporate a fraction of exact
exchange, which corresponds to all cases wheté 0 andw is finite, this is not a trivial task.
Hybrid functional calculations for unit cells of more tha@iBatoms are currently unfeasible,
since hybrid calculations are far more time-consuming fBE calculations.

Concentration of defects (%)
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Figure 6.12.:Finite-size scaling for the® center formation energy{=VBM, o = 1/2E0,).
Solid lines show least-squares fits to Bq28for LDA and PBE formation energies. Formation
energies obtained with HSEO6 lie on the shifted PBE curvecofdingly, PBE coefficienta?
anda? are used to extrapolate to isolated defects for all memifettseodHSE(v,w) functional
family.

However, it is found that the HSEO6 formation energies fertiio smallest supercells (64-
and 216-atom cells), lie on the same fitting curve as the PBBRdton energies, but shifted by
a constant value, as shown in F&y12 for the P+ center. Therefore, formation energies for
all HSE functionals are calculated for the smallest supkerzed then extrapolated to the dilute
limit (1/L — 0) using a shifted PBE fitting function. The calculated valoéshe dilute limit
GP™(1/L — 0) and the coefficients? anda as obtained by extrapolation, are summarized
in Table6.3. Vibrational contributions to the formation energies aisedssed in Se@.2.4

There is a strong dependence of the formation energies oftltheyed defects on the pa-
rameters of the HSE functional family, when the Fermi leehi the VBM (see Fig6.12).
The question arises which HSE parameter aetj should be used to describe the stability of
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6.2. Charged defects in bulk MgO

Table 6.3.: G{"%(1/L. — 0) and coefficientsz? and a as obtained with LDA and PBE
exchange-correlation (xc) functionals ig=VBM and o = 1/2 Eg".

xc functional | ¢ | GP"™(1/L = 0)(V) | a?(eVA) | ad(eVA’)

LDA 0 8.62 0 0
1 6.03 -2.17 20.94
2 4.21 -8.82 162.49
PBE 0 7.09 0 0
1 4.54 -1.91 20.77
2 2.82 -7.96 167.27

charged F centers in MgO correctly. To address this isseajébendence of formation energies
and of charge-transition levels on the exchange-coroglatieatment is further explored.

The charge-transition level; + 1/q) corresponds to the Fermi level position where point
defects in charge stategs+ 1 andg are in thermodynamic equilibrium with each other, so that
their formation energies coincide. The charge-transitewel between the singly charged and
the charge-neutral F centers is therefore given by theibguih conditionG} = G{, which can
be written in terms of total energies and chemical potental

E‘;C - E:ost tpo +eér = Egac - Egost + po- (64)
The charge-transition level follows as
(+/0) = ESaC - E}?ost - (E\—/’;LC - E}Tost) . (65)

In analogy, the charge transition level between the doubbrged and the singly charged F
centers is
(2 + /+) = E\—/tiC - E}Jlrost - (E\%a-‘t: - E}21(J>rst) . (66)
When the neutralizing background method is applied forgdaompensation, the host system
for both defect states are identically given by the neupaktine MgO bulk system and the
expression reduces to
(+/0) = EY . — Ef,

vac vac*®

(6.7)

In analogy, the charge-transition level betweéh Bnd F- centers can be expressed as

2+ /+) = Ef,. — E2F (6.8)

vac vac*®

To see how the charge-transition levels and formation eeedepend ondo(w), the extrap-
olated formation energie@?”lk’q for FY, Ft, and P centers in the dilute limit are computed
for varying HSE parameter sets as a function of Fermi enérgg. respective charge-transition
levels(2 + /+) and(+/0) can then be obtained at the formation energy intersectamshown
for the example of HSEQG6 in Fi§.13. Here, oxygen-rich conditions are considered. Changing
the oxygen chemical potential results in a constant shifvimation energies (see E4.1). For
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6.2. Charged defects in bulk MgO

example, at a chemical potential of -0.5 eV below the oxydgem1imit, all formation energies
in Fig. 6.13 are shifted down by -0.5 eV.

Both p-type MgO, where the Fermi level is close to VBM, amdype MgO, where the Fermi
level is close to CBm, are covered in Fig.l3a. Inp-type MgO,q = 2 is the most stable
charge state of the bulk F center. irtype MgO, F is the most stable defect, but its formation
energy is very high. In the following, the focus is prtype material, because of its intriguing
catalytic properties that have been outlined in the intotida (Secl). Only in p-type MgO the
concentration of oxygen vacancies, namety Eenters, in thermodynamic equilibrium can be
significant.

a b
: 14 o ‘ ‘ ) 0
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~ 10 ~ 2| CBm |
T gl T 5 (0
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p-type <«—— €p(eV) —>» n-type (0.5,0.11)

Figure 6.13.:a) Formation energies of oxygen vacancies in bulk M@, in the dilute
limit, calculated with HSEO06 using (E4.1) as a function of Fermi energy, in the oxygen-rich
limit. The energy zero ofy is at the VBM. Charge-transition levels (2+/+) and (+/0) ara&rked
by arrows. b) VBM, CBm, and charge-transition levels (E&- 6.6) for different functionals of
the HSE family. The energy zero is at the vacuum level.

The fact that, compared to the neutral F center, the formatitergies of charged defects
depend much stronger on the exchange-correlation furadfidnints at a dependence of the
VBM energy level (the Fermi level in this system) on exchanggelation treatment, since
only for charged defects the formation energy depends ofré¢hmi energy (Eg4.1, see also
Ref. [205]). To investigate the dependence further, the electromicctire, including VBM,
CBm, and charge-transition levels, is considered for eaobtfonal and aligned at the energy
level in vacuum. Setting the energy zero to the vacuum lemeksponds to calculating forma-
tion energies and charge-transition levels for a situatwimere the Fermi level is the vacuum
level. This is only considered to gain a better understapdivhy for the realistic situation,
whereep = VBM, the formation energies depend on the exchange-cornelfditctional. The
vacuum level is a well-defined reference energy, which idyeascessible in cluster calculations
and can also be determined for a periodic bulk model by psifay a calculation for a periodic
slab of the pristine MgO (100) surface. A vacuum regior-a00 A separates repeating 5-layer
MgO slabs, where the potential in the middle of this vacuugiom is the vacuum Ievel«]\s,f(fj
for the surface calculation. To obtain the energy diffeeebetween VBM and vacuum level
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6.2. Charged defects in bulk MgO

for the bulk system VBNji¥, the difference betweeR{4, and the 1s core level of magne-
sium ES in the middle, bulk-like layer of the slab is determined. Stlifference is added to

core

the magnesium % core level in the bulk systemi2ulk and the resulting bulk vacuum level is

core !

subtracted from the bulk VBMZBLL obtained in the periodic bulk calculation

VBMULE = EP — (B + (B3R - ES)) (6.9)
VBMELE is converged with respect to slab separation and slab teéskiThe calculated values
for VBMELE are—5.7 eV for PBE,—6.8 eV for HSE06, and-7.2 eV for PBEO.

Table 6.4.: GY™, (+/0), and (2+/+) in eV for &, F*, and P+ centers in MgO bulk in the

dilute limit, calculated with different exchange-coritada functionals using periodic boundary
conditions (pbc), employing FHI-aims. The Fermi level is ttacuum level, the numbers in
parentheses correspond to the Fermi level at VBM,is 1/2Eg’2t. HSEOQ6 provides the best
accuracy within the HSE family of functionals for the forrioat energy of F centers in MgO
(discussed below), and the corresponding numbers arddherfgighlighted. The calculations
in Ref. [30] were performed using embedded clusters (ecm).

Method P F+ P2+ (+/0) (2+1+)

PBE-pbc 7.09 10.24 (4.54) 14.22 (2.82) -3.15 (2.55) -3.98)

HSEO06-pbc  7.04 10.20 (3.40 14.16 (0.56)-3.16 (3.64; -3.96 (2.84)

PBEO-pbc  7.07 10.15 (2.95) 14.24 (-0.16) -3.08 (4.12) -43081)
HF+MP2-ecm 0] 7.35  9.98 13.88 -2.63 -3.90

VBM, CBm, and charge-transition levels are shown in Bid.3 for different functionals of
the HSE family, when the Fermi level is the energy level inman. In agreement with related
work on ZnO and Zr@ by Ramprasaét al.[186], the charge-transition levels (2+/+) and (+/0)
for F centers in bulk MgO are almost independent on the exgdwaorrelation functional within
the HSE family, when the Fermi level is the vacuum level. Bdlein MgO this is even true
for the corresponding formation energ'@&“”"q. Bulk F center formation energies and charge-
transition levels fokyp at the vacuum energy level amgd = VBM (in parenthesis), calculated
with different exchange-correlation functionals, are suwamzed in Tableé.4.

Whener is at the vacuum level, formation energies calculated ysergpdic boundary condi-
tions and the PBE, HSEO06, and PBEO functionals as repreésent$SE members, agree within
0.05eV for P, 0.09 eV for F, and 0.08 eV for E*. The respective deviations for the charge-
transition levels arec 0.13 eV.

For the more relevant case, whenis at the VBM, the formation energies depend almost
linearly on the exchange parameteras shown foto = 0.11 bohr ! andw = 0.3 bohr~! in
Fig. 6.14 This is mainly due to a linear dependence of the VBM with eg$po vacuum on the
exchange parameter, since the charge-transition levesitipns depend weakly am whenep
is the energy in vacuum. Accordingly, the near-linear depece of the formation energy en
is approximately twice as strong fof F as for F.
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6.2. Charged defects in bulk MgO
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Figure 6.14.:Defect formation energies;"? in the dilute limit as a function of HSE exchange
parameterx for two choices of the range-separation parameter. Craossek the results for
HSEO06. The Fermi level is at the VBM, and the chemical poéti oxygenuo = 1/2Eo, .

Next, an optimal DFT exchange-correlation functional tsatide the formation energies of
F centers in MgO is identified, according to a condition on Déilization energies. The term
ionization energyoriginally refers to the energy required to remove an etgcfrom a system
and put it to the vacuum. This concept is used in a wider seafEring to ionization energy
as the energy required to remove one electron from the syatehput it to the Fermi level.
For an F center in charge statethe ionization energy at fixed geometry describes the aigrg
of the defecty — ¢ + 1. The charge transition levély + 1/q), where the energy zero is
at the VBM (compare Fig6.13 can be interpreted as ttagliabaticionization energy, where
geometric relaxation due to the change in charge state auated for and the removed electron
has been brought to the VBM. Since it is found that atomiodaian around F centers in MgO
is described accurately already by the PBE functional,ntai@s to find HSE parameters that
give correct ionization energies at fixed geometry.

The GW approach allows to accurately calculate single-partizigitation energies, which
includes the ionization potential. In practic@)V ionization energies are usually calculated
as a perturbative correction to the Kohn-Sham levels. Tondigish this approach from the
non-perturbative, fully self-consisteatlV, it is usually termed=,1W,@XCA, where XCA de-
notes the employed exchange-correlation approximatiahismeplaced by the name of the
DFT functional used as an input. The following approach &pired by the X concept by
Slater R06,207]: Such parameters of the HSE functional are found thatAIS«€F ionization
energy, calculated with the corresponding functional l8&, coincides with thé& o1, @opt-
HSE ionization energies.

The ionization potential at a fixed defect geometry for agifterctional HSE(, w) is

IS4 = B3 +ep — B2, (6.10)

where bothE%,. and B4 are extrapolated to the dilute limit. Fer =VBM, Iggggl depends
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6.2. Charged defects in bulk MgO

on (o, w). The requirement that1 and HSE ionization energies agree defines the opt-HSE
functional that correctly describes the charge excitatibine defect

T = o0 = clionto = TAsC opt—se- (6.11)
Here the HOMO level is calculated iy, Wy@opt-HSE. An embedded cluster model can be
used to efficiently perform this validation step. The iotiza energies/~+ and It—2* for

w = 0.11 bohr! as a function ofx are calculated foer at VBM at ' geometry for the em-
bedded MgOq cluster model (Fig6.7) using FHI-aims. The Fermi levelr is obtained as
VBM = E;'l — By using HSE functionals, and from the HOMO of the host systettinén
corresponding,Wy@HSE calculations. The ionization potentials show a near-lirdspen-
dence on the exchange parametdor both ASCF and=, W, methods (Fig6.15. The starting
point dependence of th&,1V, ionization energies is weak for this system. The intersacti
of the linear fits are at=0.27 for I°7* and a=0.26 for It—~2*, very close ton in HSE06
(«=0.25). The same result is obtained, when the HSE ionizatimrgies are determined from
the highest occupied Kohn-Sham level at half occupaté#ing7]. Therefore, HSEOQ6 is used as
an opt-HSE functional that correctly describes the chaxg#ation of the defect. The difference
in formation energies witlh=0.25 instead of:=0.27 is negligible for k£, less than 0.1 eV for
F*, and less than 0.2 eV forf.
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Figure 6.15.: lonization potentiald9—+! at P geometry calculated for an M@, embedded
cluster using the\SCF method with HSE functionals (black circles) and fromi@MO of a

GoWo@HSE calculation (blue squares). The screening paramster=i 0.11 bohr~!. Solid

and dashed lines show linear fitsk&~+ and IT—2* as a function of exchange parameter
Red crosses show the Kohn-Sham eigenvalues at half oconpati

Furthermore, it has been found in Sécl that DFT+ACCSD(T) results of the Fformation
energy are in good agreement with the HSEG@dfmation energy. Thus, HSEOQ6 is the opt-
HSE functional in accordance with1/ as well as coupled-cluster results, and can be used to
accurately calculate’FF+, and P+ center formation energies and related properties in MgO.
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6.2. Charged defects in bulk MgO

6.2.4. Changes in lattice vibrations due to defect formatio

Vibrational contributions to defect formation energiesdimme important, if there is a consider-
able change in phonon modes and therefore in the vibratfoealenergy between host system
and system with a defect. The following vibrational free rggeestimates are based on DFT
calculations of 64-atom bulk cells at PBE level, and weraintetd as described in Set1.2

In fact, neither for the neutral nor for the charged bulk defehe vibrational energy differs

severely from that of the pristine MgO bulk system at techgimlally relevant temperatures. In

Fig. 6.16the vibrational energy contributions

AF(T) = F3sf — prert (6.12)

to the formation energie&{ for the P, F*, and F* centers are shown as a function of tem-
perature. For temperatures between 0 and 1,200 K the absalute ofA F;;, does not exceed
0.13 eV for any of the defects.

Two aspects are important for the change in vibrational ggegrbetween the system with
and without an oxygen vacancy. On the one hand, one atom isvegimand consequently in
the system with a defect there is one nucleus less than irrigtenp system that contributes to
the phonon energy. This effect dominates in the whole teatper range shown for the neutral
oxygen vacancy. On the other hand, for &t Eenter at” > 800K and for an F center at
T > 1,000 K the gained spatial freedom of the nuclei next to the vacaecypimes important,
so that the vibrational energy is actualigherthan in the pristine system.
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Figure 6.16.: Vibrational free energy contributions to the formation rgies of the bulk £, F+
and P+ centers as a function of temperature (based on PBE).

6.2.5. vdW effects on defect formation energies

HSE exchange-correlation functionals do not comprise Inoal correlation. Therefore, the
long-range contribution of the van der Waals (dispersiatgraction is not captured by the HSE
functional family and has to be computed separately. Theltedy van der Waals energy is due
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6.2. Charged defects in bulk MgO

to the electrostatic interaction between fluctuating dipoFor atoms in a solid, not only short-
range effects due to the local environment but also longeaifects play a role. The long-range
interactions arise, since fluctuating dipoles interaattedstatically with more distant fluctuating
dipoles, creating a correlated, dynamic electric field. sTdiynamic field in turn has a local

influence on the environment of each dipole. Therefore, \@n\/dals dispersion interactions
arise on the one hand due to short-range and on the other hanid dong-range interactions,
which both cause local variations in the electron density iafluence the polarizability of the

atoms in the system.

In pristine MgO the long-range interactions between flubgadipoles cancel due to the
cubic symmetry of the lattice. However, removal of an oxygésm breaks the symmetry and
leads to a change in van der Waals contribution to the totiggrof the system.

The long-range effects that are missing in HSE can be takenaiocount by solving the
self-consistent screening equation of classical elegtrachics as suggested by Tkatcherdto
al. [208], using TDDFT-based atom-in-solid reference polarizéed as discussed by Zhaeg
al. [209. Applying this methodology to F centers in MgO, DFT caldidas of 64-atom bulk
cells at PBE level are performed, partitioning the electiensity using the Hirshfeld partition-
ing method 114. The frequency-dependent dielectric constant of MgQmfrehich the polariz-
ability is obtained, has been calculated In R209], applying time-dependent DFT using HSE
exchange-correlation treatment, coupled with the Nanaguaon-local exchange-correlation
kernel, which includes excitonic effects. The Hirshfeldigiis from the PBE DFT calculation
are used here to partition this polarizability. Solving e#f-consistent screening equation

5B (riw) = oTPPFT (r iw) 4+ 5 (r, iw) / dr'T(r — )5S (v, iw), (6.13)

whereT'(r — r') is the dipole-dipole interaction tensor, results in thevatoscreened polariz-
ability tensorsa5“S. The G coefficient to the pairwise interatomig &% term follows from the
Casimir-Polder integralZ10 211]. The van der Waals energy can then be computed according
to
Fraw — —% S fa(Ban, RS, RS CAP RS, (6.14)
AB

summing over all pairs of atoms A and B. The van der Waals fafliwere originally defined
as half the distance at which the Pauli repulsion balanae$ dimdon dispersion attraction. In
a solid this is defined such that it depends on the correspgrgiirtitioned polarizabilityZ09].
fa(Rag,R},RY) is a damping function that removes the singularity?q@“f3 at small distances.

Obviously, the van der Waals contribution to the total epefghe pristine MgO host system
and each system with a defect is negative. It is found thatdhection is larger for the pristine
systems. This results in a positive correction to the foiomagnergy of the defect

AEvaw = EQia1vaw — il vaw- (6.15)

The calculations show that the contribution of the van deal/ateraction tails increases the
defect formation energy only slightly for the neutral oxggacancy (0.13 eV). However, for the
charged defects it becomes more important. It contribu23 &€V to the defect formation energy
of the singly charged defect, and 0.32 eV for tiie Eenter. The van der Waals correction to
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6.3. Summary

the formation energy increases with the charge state of ¢fiecd This can be understood
qualitatively from the electronic structure of the defectée electronic configuration for the
neutral F center is very similar to that of the pristine systdue to the two defect electrons being
localized at the defect site resembling thé& Qon that held this position before. Removing
one or two of these defect electrons changes the polaiitgabfl the electronic structure in
the vicinity of the defect more drastically. This leads taeger change in £coefficient and
consequently to a larger contribution of van der Waals auton to the formation energies for
the charged defects than for the neutral F center.

6.3. Summary

In this chapter F centers in bulk MgO have been analyzed.slbean shown that formation en-
ergies of charged F centers in MgO bulk exhibit a near-linkgorendence on the HSE exchange
parameter. for a fixed screening parameteydue to a variation in VBM with respect to vacuum
level with «. To find a reliable exchange-correlation description, & baen requested that the
opt-HSE vertical ionization energy, defined as the enerquired to remove an electron from
the system and put it to a Fermi level, calculated usingAR8CF method or Kohn-Sham level
at half occupation, should agree with the respeatiy@l, @opt-HSE value, obtained from the
HOMO of the same system. Itis found that HSE06 qualifies ap&i&E functional for the de-
scription of F centers in MgO. This has been confirmed by Ca3bdlculations of the neutral
F center formation energy. The only available experimeestimate for the formation energy
of the P center in MgO 6] is a significant overestimate, most likely since thermaxiyic
equilibrium was not reached in the experiment.
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7. F centers at the MgO (100) surface

Understanding and quantitative characterization of thbikty of defects at oxide surfaces is
of great value for heterogeneous catalysis. In the first glatihis work, anab initio method

to calculate interacting defects’ concentrations at séialiconditions has been developed. A
reliable functional to be used for the respective DFT caltiohs of F centers in MgO has been
identified. In the following, properties of charged F cestardoped MgO surfaces are analyzed
applying the VCA to model charged surface systems, usingBE06 exchange-correlation
functional for quantitatively accurate total-energy eiinces and energy levels, and calculating
formation energies and concentrations at realistic anilwienditions, including defect-defect
interactions and space-charge effects.

The focus of this chapter and at the same time the highlightefapplications part of this
thesis is the analysis @f; centers in different charge states at the MgO (100) terfalstronic
and geometric relaxation effects are discussed, and clianggtion levels, formation energies,
and defect concentrations are calculated for realistigoe dopant concentrations.

If not stated otherwise, surface systems are calculated) slayer slabs separated by a vac-
uum region of 200 A. The two lattice vectors along the surfaleme are orthogonal and have
equal length. The defect is created on one side of the sladis Bad grid settings are the same
as for the bulk calculations (for convergence tests seergjix)e Relaxed atomic coordinates
for all atoms in the system were calculated using the PBEan@é+-correlation functional, and
single-point calculations at the relaxed coordinates weréormed with HSE functionals.

7.1. Geometric relaxation

First, the pristine MgO surface (without defects) is coasidl. The (100) termination reduces
the coordination of surface atoms with respect to their loalénterparts. The interatomic dis-
tance between a surface oxygen atom and its nearest-neigilsnbsurface magnesium atom
increases by 1.1 %, while surface magnesium atoms relaxrdtsway -0.7 %, where relaxed
coordinates were obtained using PBE exchange-correlagatment. This outward/inward re-
laxation is due to different polarizabilities of the magnes cations and oxygen anions at the
pristine surface and is often referred to as surface rumgi2 213. The displacements of
subsurface atoms from bulk positions is below 0.1 %.

Compared to the bulk F centers, the atoms neighboririg, @enter at the surface are less con-
fined. As for the bulk defects, for the surfaEg centers geometric relaxation depends strongly
on the charge state of the defect. In Tabléthe equilibrium distances between an oxygen atom
at the surface and close-by atoms are listed and the chanfjese distances due to relaxation
foranF?, F, andF2* center are reported. For the neutfdicenter, all nearest-neighbor atoms
relax slightly outward from the vacancy, as for the neuttdk = center. For the singly- and
doubly-charged surface defects, there is a strong outvedasation of nearest-neighbor mag-
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7.1. Geometric relaxation

a) F.*", side view b) F.**, top view

Atom Eq. distance to  Relaxation (%) Relaxation (%) Relama(Pbo)

vacancy site (A) f Ft F2+
Mg (1) 2.130 3.1 7.4 11.8
Mg (2) 2.153 1.4 5.2 10.6
Mg (3) 2.153 0.0 0.6 16
0 (1) 3.011 0.7 1.8 5.9
0 (2) 3.034 0.7 17 6.7
0 (3) 4.258 0.6 1.0 1.9
0O (4) 4.288 0.2 0.2 1.2
Mg (4) 4.761 0.5 1.0 1.8
Mg (5) 4.788 0.1 0.4 1.3
0 (5) 6.022 0.3 0.2 0.7
0O (6) 6.044 0.1 0.3 1.0

Table 7.1.: Outward (positive) and inward (negative) relaxation in %thwiespect to the equi-
librium distances at the pristine surface between closatbyns and vacancy site. The model
shown in side view (a) and top view (b) is a cut out of a peridd&20-atom relaxed MgO (100)
surface slab with a2+ center. The PBE exchange-correlation functional was used.

nesium and a less pronounced inward relaxation of neaeéginor oxygen atoms. Similar to
charged F centers in the bulk, removing defect electrongbliéiges the ionic lattice: Relative

to the original site there is a net positive charge in the negaso that Mg* cations are repelled
and G~ anions are attracted to the vacancy, and the deformationeadfttice increases with
the positive charge of the vacancy frdffi to F2+ (Tab.7.1). In Fig. 7.1the relaxation energies
as a function of supercell lattice constdnére shown for the surface defects, calculated using 5
layers in the slab, and for comparison also for the bulk defda accordance with the stronger
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7.1. Geometric relaxation
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Figure 7.1.: Convergence of relaxation energies with supercell siz¢nesurface?, F, and
F2+ centers (filled symbols and solid lines) and for the bufk F", and F* centers (open
symbols, dashed lines). is the supercell lattice constant, wheire= L, = L, parallel to the
surface for the surface defects ahdis kept fixed, so that the extent of the vacuum region is
200 A. The slab thickness is 5 layers. The PBE exchangelatioe functional was used.

deformation of the crystal lattice around the charged deffer the surface, the relaxation en-
ergy is larger for the surface than for the bulk defects. Tiergy of the system is lowered
due to geometric relaxation by 0.11 eV, 1.21eV, and 3.23 e\Ffo ", andF2", respectively.
Supercells with a separation between the point defect anie#irest image of at least 4 lattice
constants (for PBE this corresponds to 17.035 A) have to &e tasobtain the relaxation energy,
converged within 0.1 eV foF2*. At this lateral cell size, 4, 5 and 6 layer slabs yield the sam
relaxation energy within 0.05 eV (Fig.2).

3.20

2+
S

315 x/x\x

3.10

F

Relaxation energy (eV)

4 5 6
Number of layers in the slab

Figure 7.2.: Convergence of relaxation energies, calculated using RBEhe P+ center with
the number of MgO layers in the slab. The supercell latticapaters parallel to the surface are
kept fixed toL, = L, = 17.035 A.

The results presented here for the F center relaxation iesesigow that typical sizes of super-
cells (64 atom bulk celll. < 8.5 A [214) and embedded cluster modefs §3 atoms in a bulk
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7.2. Electronic structure

and a surface model, embedded with effective core potsrdiad point charges3(]) that have
been used in the literature to calculate charged F centdwgid, are not sufficient to obtain
relaxation energies converged within 0.1 eV.

7.2. Electronic structure

Also the electronic relaxation fdf, centers at the surface is less confined than for the bulk
defects. As an example, the defect level wave function isvatia Fig. 7.3 for the F2+ center.
Note that the defect level is unoccupied in this case. Theadlleftate spills out only weakly

at the surface, it is still clearly localized in anorbital shape in the vacancy, wifltshaped
contributions mainly on the nearest-neighboring oxygematin the top layer. This is similar

to the strongly confined defect states of the bulk oxygenneiea. The defect state localization
at the surface is an important aspect when considering $tace adsorption of molecules like
hydrogen or water at surface F centers.

a) F2", side view b) F2, top view

Distance from defect (A)

Distance from defect (A) Distance from defect (A) (Af%)

Figure 7.3.: Side view (a) and top view (b) of the defect level wave funct{;m A‘%) of the
MgO (100) surface with a2+ center at (0,0), calculated with HSEO6 using & 6 x 5 atom

slab. Contour levels are drawn in steps of 0.05A

The MgO (100) surface introduces surface bands in the banddease to the CBm and at
the VBM. Fig. 7.4a shows the surface band structure, computed using a 9€&ferand total
density of states (DOS) with projected bulk energy bandsd@&. All DOS shown in Figr.4
have been normalized by dividing by the number of electroreach system. The energy zero is
at the VBM. The calculations were performed using the HSE®@Gtional. The projected DOS
for the middle layer of the slab agrees well with the DOS otgdifrom the bulk calculation,
when slabs with>5 layers are used, showing that the atoms in the central lafydre slab
have bulk character (Fig..4b). Also for the DOS projected on the surface layer there ahg o
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7.3. Formation energy of the neutral oxygen vacancy at MdiD)(1

small quantitative changes when the slab thickness in tloelledion is increased from 5 to 9
layers. However, a 3 layer slab is clearly not sufficient teaiée the electronic structure of the
semi-infinite MgO (100) system.

The HSEOQ6 bandgap for the surface system is smaller than §@ bulk, since compared to
the bulk, the 3 states of the magnesium atoms in the surface layer, whignrdate the CBm,
are shifted by 1.2 eV to lower energies (Figda).

a) )
m Middle layer 3 layer slab
DOS o
12 S = — ) Surface layer
10 = o ] =
) I 3 t()st:ft]g%es 1 172} 5 layer slab
— *(9 layer slab) o
> 1 A
) Middle layer | Y A Y W
b>6 proj. DOS T T T T T T T T
b Bulk 71 lab
E total DOS 8 dyersia
|
gﬂ‘l "] ‘ o s
e n 9 layer slab
: Q
a
A A [l Areant
4 -2 0 2 4 6 g8 10 12
Energy (eV)

Figure 7.4.:a) Band structure and total density of states (DOS, norelia DOS per electron)
for the pristine MgO (100) surface (black) with the total bblland structure and normalized
DOS projected onto the surface (gray shaded), calculatdd MSE06. The primitive simple
cubic unit cell (2x2x2 atoms) for the bulk and a 9-layer slak2&9 atoms) for the surface was
used. The projected DOS per electron for the atoms in theleldger of the slab is shown for
comparison to the bulk DOS obtained with the bulk model. lmjddted DOS per electron for
the middle layer (blue) and the surface layer (red) of 3, &and, 9 layer slabs, and bulk DOS per
electron (gray), calculated with HSEO6.

The surfacd’ center defect levels are deep in the bandgap — as their bulkeparts. For
an estimate of the charged €enter defect level positions, slabs of at least 6x6x5 atsimosid
be used for an accuracy &f 0.2¢V (tested for PBE). Calculated with HSEOQG6, the defect level
position for theF2* center is 3.4 eV above the VBM, while the bandgap is 5.1 eV.

7.3. Formation energy of the neutral oxygen vacancy at MgO @0)

The published formation energies of the neuff@icenter calculated at different levels of the-
ory are summarized in Fig..5. Vibrational contributions to the formation energy arecdssed
in Sec.7.6. For the neutral defect already small cell sizés§.2 A, compare Fig7.1) are
sufficient to obtain converged, relaxed coordinates. Introbhe cluster models used for calcu-
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7.3. Formation energy of the neutral oxygen vacancy at MdiD)(1

lations shown in Fig7.5, only nearest-neighbor atoms were relaxed around the ggeand the
cluster size was not tested with regard to relaxation eneogyergence. However, the error in
formation energies due to models too small to fully incluéemetric relaxation, is<0.11 eV,
which corresponds to the converged relaxation energy dffreenter. The trends observed for
the neutral bulk F center are also valid for the surface defect: Using LDA asponaximation
to the exchange-correlation energy leads to larger foonanergies, while not including elec-
tron correlation (HF) yields lower formation energies cargul to the results obtained with HSE
functionals. Formation energies calculated with PBE, HgEDd PBEO agree withil eV.

8.5
8
7.5
7
6.5

6
5.5
5
4.5

.

A cluster

O periodic

[
[
[ ]
>

Formation energy (eV)

| | | | | | ’ |

LDA GGA HSEO06 HSE06 PBEO B3LYP HF MP2
w=0.5 w=0.11

Figure 7.5.: FY center formation energy foro = 1/2 Eg’; (literature results were recalculated
using the experimental £Obinding energy) for different types of exchange-correlatireat-
ment. Red circles show results obtained within this worknge triangles were calculated in a
collaboration with S. Sicolo and J. SauéBp|. From literature, periodic DFT calculations at
LDA level (blue circle, R7]), GGA level (purple circle, PBEZ1Y5]), and using HF (green cir-
cle, [L74), as well as embedded cluster calculations applying B3QxdHow triangle, [L12),
HF (blue triangle 216 and black triangle 30]), and HF+MP2 (black triangle30]) are shown
for comparison.

The formation energy for the’Feenter, calculated with an unrelaxed @ embedded clus-
ter model with the CCSD(T) method, yields correctidd€CSD(T) for the DFT formation
energies of -0.26 eV for PBE, -0.01 eV for PBEO, and -0.28 e\BBLYP. From the corrected,
converged DFTACCSD(T) and from the embedded cluster and periodic HSEQtses for-
mation energy with a reliable error bar 628 + 0.05eV is obtained for the ¥ center. For
comparison, the corresponding bulk defect formation gnexg.95 + 0.10eV. The calculated
formation energy values that were used to obtain thesetsemd shown in Tabl@.2
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7.4. Charge-transition levels and formation energieseanditute limit

Table 7.2.: Most reliable values of the formation energ'@% in eV for the P center in MgO
bulk and for thel? center at the MgO (100) terrace, calculated using embeddstec models
(ecm) and periodic boundary conditions (pbc). Embeddestets Mg,0;9 for the bulk and
Mgs00s0 for the surface were used for the DFT formation energieslated geometric coordi-
nates around the defect. The CCSD(T) corrections for eawttitnal were obtained using bulk
MgsOgy and surface MgOs embedded clusters. The MgO supercells in the periodic lzdions
include 64 atoms for the bulk and 80 atoms for the slab, whéomardinates are fully relaxed.
The chemical potential of oxygem, 1/2E5". The final results7? = 6.95 + 0.10eV for the P
center and>? = 6.28 £ 0.05eV for the FY center are calculated by taking the average of the
values listed in this table for the bulk and the surface defespectively.

Method P FY
HSEO06-pb¢ 7.04 6.34
HSEQ06-ecm 7.05 -

PBE [ACCSD(T)]-ecri 6.94 [-0.09] 6.49 [-0.26]
PBEO [ACCSD(T)]-ecri 6.81 [+0.07] 6.26 [-0.01]
B3LYP [ACCSD(T)]-ecrit 7.17 [-0.28] 6.61 [-0.28]

*calculated using FHI-AIMS
fcalculated using TURBOMOLE in collaboration with Prof. 888 Theoretical Chemistry Group, HU Berlin

7.4. Charge-transition levels and formation energies in th dilute
limit

The formation energies for the charged surface vacanciedirat calculated using the PBE
exchange-correlation functional for increasing latergbescell parameters. As discussed in
Sec.4, the formation energy as a function of defect concentraticen be extrapolated to the
dilute limit of a vanishing defect concentration and theffioents, obtained from fitting the
calculated values to Ed..29 can be used to obtain the dependence of the surface defect fo
mation energies on the surface charge. This informatiosesl in the thermodynamic model to
describe the concentrations of interacting surface def{&.4.42. As for the bulk (Fig6.12),
it is found that the surface F center formation energiesutated using HSE for the two smallest
cells @ x 4 x 5and6 x 6 x 6 atom slabs) lie on the PBE fitting curve, but shifted by a camist
value. Therefore, the HSE fitting parametefsin Eq. 4.29can safely be approximated by the
PBE coefficients, when the formation energy as a functioreééact concentration is calculated.
It has been shown that HSEO6 is the opt-HSE functional tordes€& centers in MgO. Still, for
completeness, formation energies in the dilute limit (eetyghg contributions due to phonons)
and charge-transition levels calculated for differenthexge-correlation functionals are listed
in Table7.3.

The work function for a pristine MgO slab is the energy at tHBM/with respect to the
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7.4. Charge-transition levels and formation energieseanditute limit

Table 7.3.: Gy, (+/0), and (2+/+) in eV for the??, F+, and F2* centers at the MgO
(100) terrace in the dilute limit, calculated with diffetesxchange-correlation functionals using
periodic boundary conditions (pbc) and embedded clusteteisdecm). The Fermi level is the
vacuum level. The numbers in parentheses are calculatettiddfermi level at VBM g is
1/2Eg’;. Values taken from literature have been converted to theecotdr oxygen reference
using the experimental {binding energy. Formation energies calculated with HSEG&Be
the best accuracy within the HSE functionals and are thexdfighlighted.

Method FY Ft F2+ (+/0) (2+/+)

S

PBE-pb¢ 6.48 9.48(4.18) 13.28 (2.68) -3.00(2.30) -3.80 (1.50)

HSEO6-pb¢  6.34 9.06(2.76) 13.15 (0.55) -2.72(3.58) -4.09 (2.21)

PBEO-pb¢ 6.33 9.26 (2.56) 13.55(0.12) -2.93(3.77) -4.26 (2.44)
B3LYP-ecm 117 6.46  8.96 13.46 -2.50 -4.50
HF+MP2-ecm80] 6.74  8.17 11.46 -1.43 -3.29

*calculated using FHI-AIMS
fealculated using TURBOMOLE in collaboration with Prof. 8da Theoretical Chemistry Group, HU Berlin

energy in vacuum VBMac. Calculated with PBE, HSE06, and PBEO VBN is -5.3 eV,
-6.3 eV, and -6.7 eV, respectively. The work function coomegls to the ionization energy for
the pristine surface that has been estimated as -6.7 eV th&@rBBLY P functional by Sushket
al. [112], and was determined experimentally as -6.0.4 eV from metastable impact electron
spectra (MIES) on different MgO samples by Kantorovittal.[217]. The reason for the rather
large error bar in the experimentally determined value tesplicitly given in Ref. R17]. Most
likely it is due to averaging over results obtained with elifint samples and the peak width in
the MIES spectra. Using MIES, excited (metastable) He* stane brought close to the sample
surface and interact with the surface atomic layer. In trseaf MgO (100), electrons from
the 2p states of surface oxygen atoms tunnel inte dtates of the He* atoms which leads to
simultaneous release of 2electrons from helium. The energy of these released electio
measured and used to determine the ionization energy f@atimple surface. The advantage of
using MIES for these measurements is that it is a surfacgitsentechnique, where electrons
only from the surface top layer can be removed and probeduiitspurious effects from deeper
layers. (For more details see Ref1P, 217].) The experimental value for the ionization energy
of the pristine MgO (100) surface agrees with the B3LYP resyorted in Ref.112], and with
the HSEO06 and PBEO periodic calculations in this work.

As for the bulk defects, formation energies and chargesttian levels in the dilute limit agree
between different exchange-correlation treatments gifftrmi level is the vacuum level. df:
is at the VBM, as in the case pftype MgO, total energy differences and energy levels dgpen
strongly on the functional. For all functionals, the ordéstability for the F center charge state
is T > Ff > FY, as for the bulk defects. The formation energies obtainet thie optimal
functional, HSEOG6, differ by more than 2 eV between différenarge states. Although this
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7.5. Concentrations and formation energies of interadiingenters

is still under the assumption of very low defect concentraj this indicates that?F centers
should be the most abundant defects at the (100) surfagetygfe MgO in thermodynamic
equilibrium.

7.5. Concentrations and formation energies of interacting-
centers

To obtain equilibrium concentrations of interacting désethe formation energies as a function
of surface charge density, for a slab thicknesg corresponding to 5 MgO layers, are calculated
for theF} andF2* centers according to

1 3
2 2
Gy o d, ep, o) = Gy M (0 = O,er, po) +al (;—e> +ad(d) ((%) +ad(d) (%) .

The extrapolation curve for thE2+ center, using Eq7.1, has already been shown in Figg5

in Sec.4.2.2 where the methodology was discussed. The calculatedsvaluine dilute limit
GfVCA’q(o— — 0) and the coefficientag, 1 = 1-3, as obtained by extrapolation, are summarized
in Table7.4.

Table 7.4.:Gy “*(o — 0) as obtained with the HSEO6 functional, and coefficietits = 1-3
for a 5-layer surface slab systemp€VBM, o = 1/2 EEY).

q ‘ G?/CA’q(U — 0)(eV) ‘ af{(eVA) ‘ ag(eVAZ) ‘ ag(eVAJ)

0 6.34 0 0 0
1 2.76 -4.93 24.76 42.29
2 0.55 -17.49 80.86 258.11

Next, the artificial restriction to the width of the slab ismeved by subtracting the energy due
to formation of the space-charge region in the slab,

2e d 2ed [ o
pse-94¢ ¢ _ 4 7). 7.2
9 6ereg L2 6ereg \ ge (7:2)

For consistency, the extrapolation is performed agais,tihie using the analytic expression for

the coefficientad,
2

§ = —d 7.3
aQ 6€r€07 ()

as determined by comparing Eg2 with Eqg. 7.1 The formation energy in the dilute limit and
the coefficients:/, i = 1-3 as obtained from this second extrapolation procedurdistes in
Table 7.5. G?’CA"](U — 0) anda{ agree well with the values obtained only from the DFT
data points. a{ characterizes the dependence of the electrostatic itimaoetween surface
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7.5. Concentrations and formation energies of interadiingenters

charge and compensating charge within the space-chargmrety. As discussed and shown
in Sec.4.2.2(see also Fig4.5) the coefficientad only becomes important for small, corre-
sponding to surface defect concentrations >10%.

Table 7.5.:G;“% (s — 0) as obtained with HSE06 and coefficienfs i = 1-3 for the 5-layer
slab €r=VBM, 1o = 1/2 E§"), whereaj was obtained from E¢.3.

q| &Y = 0)(eV) | al(eVA) | ad(eVA?) | al(eVAY)

0 6.34 0 0 0
1 2.77 -5.30 30.69 14.35
2 0.60 -20.13 122.78 62.93

Now the formation energy as a function of the surface chaayesity o for a uniform distri-
bution of dopantsVp in the semi-infinite crystal is known, according to

G M (o) = GY M (0,d) — qB5C(0,d) + ¢E5C(0,25°), (7.4)

where the surface charge density= en; + 2en- is determined by the concentrationsandmn,
of the charged defects’Fand E*. The formation energy}E’CA’q(U) can be understood as the
energyper defecheeded to creat& oncea certain defect concentration, corresponding to a sur-
face charge density. When defects are not created at oncedné by oneeach of them causes
an infinitesimal change in Gibbs free energy of the systemmirizing the Gibbs free energy of
the system using E4..41— including electrostatic interaction terms and configoral entropy
of the defects — can be interpreted as starting from anlimiti@trary concentration and creating
and annihilating defects one by one until this is no more gatarally favorable. This results
in the equilibrium concentration of oxygen vacancies atpfaoped MgO (100) surface and
the formation energy={(o,T,po,,.Np,er) (EQ. 4.42) that corresponds to the energy needed to
create a surface oxygen vacancy at the given temperatwrygen partial pressui®,,, dopant
concentrationVp and equilibrium surface charge density

For oxygen vacancies at thedoped MgO (100) surface the concentrations BfaRd F-
centers are found to be negligible at realistic conditidtse P+ concentration;, as a function
of Np is shown in Fig7.6, left panel, for catalytically relevant temperatures and tyljgicessure
(po, = 1 atm). The corresponding width of the space-charge lay€ris shown in Fig.7.6,
right panel. Although the ¥ Gibbs free energy of formation at — 0 is small or even
negative at elevated temperatures, the equilibrium def@otentration does not exceed1%
at Np < 10" cm™3. The space-charge layer formation and resulting bandibgneffects
that limit the surface defect concentration dominate ofer electrostatic attraction between
defect-induced surface charge and compensating charge. nidans that space-charge layer
formation can be a mechanism by which wide-bandgap semimodsurfaces remain stable
at high temperatures. The space-charge layer deptk i40 — 100 nm for realistic dopant
concentrations.

For high dopant concentrations also the vacancy concenmtratcreases and the difference
between the defect concentrations7at= 400 K and 7" = 1,000 K becomes negligible. The
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Figure 7.6.: Left F2* center concentration as a function of dopant concentratigrfor two
different temperatures, oxygen partial pressure of 1 atm= VBM, anduo = 1/2 Eg’;
Right Dependence of the space-charge depthon Np,.
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Figure 7.7.: Gibbs free energies of formation of tié* centerG? (black), and the individual
energy contributions due to electrostatic attraction eetwdefect-induced surface charge and
compensating charge (red) as well as due to band bendingg@ras a function of dopant
concentration for the F center at the-doped MgO (100) surface f&F = 400 K (left) and

T = 1,000 K (right) at a partial pressure of oxygei,=1 atm andr=VBM. For comparison
also the formation energy of tH&* center in the dilute limit- — 0 is shown (blue).

reason for this can be understood by considering the diffexaergy contributions to the for-
mation energy of thé2" center. In Fig.7.7 the formation energy:? is shown as a function
of dopant concentration together with the individual elestatic terms — due to attraction be-
tween surface charge and compensating charge, and dueddbading. It can be seen that
these electrostatic terms become dominant at high dopaweotrations, so that temperature
effects are suppressed. For comparison alsd #iecenter formation energy in the dilute limit
G?%(o — 0) is shown. Fofl" = 1,000 K and a realistic dopant concentration/éf, = 10'%cm~3
the formation energy of the interacting defecti& eV higher than the formation energy in the

89



7.5. Concentrations and formation energies of interadiingenters

dilute limit. At these conditions the electrostatic attia term is -0.31 eV and the band bending
term is 1.27 eV. The formation energies for the interactinjase F centers in all three charge

a) Po.=1atm, T=1,000 K, b) po,=1atm, 7=1,000 K,
Np=10"cm™ Np=10"%cm? 0=2.6-10" e/cm?
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Figure 7.8.: a) Gibbs free energies of formatid®! of F centers at the MgO (100) surface
for T = 1,000 K and partial pressure of oxygem,=1 atm, as a function of Fermi energy,
er, Where the energy zero is at the VBM. Realistic dopant camnaton Np=10"® cm—3 and
surface charge = 2.6 - 10121:1%2 (solid lines) and the dilute limir — 0 (dashed lines) are
shown. b) Inp-type MgO €r=VBM) under realistic conditions, band bending, due to fation

of a space-charge region, limits the formation of surfage ¢enters.

states at these conditions, and the corresponding bandnigepicbfile, are shown in Figr.8.
Also here it can be seen that the band bending energy dominaés the contribution due to
attraction between defects and compensating charge ylermging the formation energies of
the charged oxygen vacanciBs andF2+ at the surface (FigZ.8a). The amount by which the
formation energy of the interacting defects is raised in ganson with the formation energies
in the dilute limit, is larger for thé"2* center than for thé;" center. This implies that if two
charge states of a defect in a metal oxide are close in $}almbmparing formation energies
only in the dilute limit can even predict a wrong hierarchydifect stabilities for the interact-
ing system. Fop-type MgO, both the dilute-limit estimate and the full tre&nt of interacting
defects yield a stability order df>* > F} > F{, where the concentrations Bf andF? cen-
ters are negligible. However, the space-charge effectb®néfect formation energies are still
severe. For the conditions shown in Fig8a, if the band bending was not taken into account,
the (100) surface gf-doped MgO would be predicted to be unstable. The band bgmuiofile
(Fig. 7.8b) shows that in a realistic situation this does not happeocatise the bulk bands bend
downwards by 0.6 eV, and the (2+/+) charge-transition levé&wered from 2.2 eV to 1.7 eV
above the Fermi level. This makes it energetically lessrive for charged defects to form,
and limits their concentrations.

Note, that also in the bulk, the hierarchy of defect stabdgiin p-type MgO isF?+ > Ft >
FO. In fact, for the conditions discussed above for the surtaggen vacancies] = 1,000 K,
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po, = 1 atm, andep=VBM, the formation energy in the dilute limit for the’f center in MgO
bulk is -0.54 eV, implying that ¥ centers can readily form in the bulk as far as compensating
dopants are available. If all free charge carriers duetiype dopants transfered to oxygen va-
cancies, it would mean that the material would no longerkakppitype conductivity. However,

in experiment it has been shown that MgO, which has been dajtedelectron acceptors, as
for example lithium-doped MgO, is indeedtype conducting32]. Reasons for hindered for-
mation of bulk defects can for example be kinetic limitaipwhere diffusion mechanisms of
dopants and vacancies play a role. Furthermore, hydrogesuedly present in experiment and
can change the defect properties.

7.6. Lattice-vibration effects on surface-defects energies

Vibrational energy contributions for the surface defectrfation energies can be calculated in
the same way as for bulk defects, as described in®@2c} using the PBE exchange-correlation
functional and the finite displacement method for a 5-layay snodel containing 80 atoms per
unit cell. For the neutral Fcenter, the vibrational free energy contribution to thelGitiree
energy of formation is 0.01 eV, and is therefore negligiligjle for temperatures 500 K its
contribution is> 0.15 eV.

For charged surface defects charge compensation is ptbvidehe VCA, altering the nu-
clear charges of the magnesium atoms in the system, andahhsequences for the calculated
vibrational energy. Consider théF center in the bulk, where the vibrational free energy con-
tribution to the formation energy as a function of tempemttan be calculated with both the
neutralizing background method (red, solid line in Fig9) and the VCA (red, dashed-dotted
line).

The reference vibrational energy is in both cases that ofptigtine system with natural
nuclear charges. Applying the VCA and therefore reducirg rtragnesium nuclear charge
by dq leads to a decreased repulsion between thé™Mgations in the crystal, according to
(e™)? = (2= 0q)(2 — 6q) ~ 4 — 4 6q, as well as to a decreased attraction betwe&nions
and Mgt cations, proportional tqk’féAqO = (2 —dq)(—2) = —4 + 26q. Since the first effect
is stronger (by a factor of 2), the potential energy surfaameoines stiffer. The phonon frequen-
cies are higher and consequently the vibrational free gresimate is at a higher energy than
that obtained based on the neutralizing background metBpdncreasing the nuclear mass of
atoms in the system, the VCA vibrational energy curve cardjgsged to the background-based
result. For Bt in the 64-atom unit cell, changing the nuclear masses of@ihs in the unit cell
by 1% makes the VCA curve agree within 0.01 eV with the neiziraj background method
(red, dotted line in Fig8.3). (Note, thatdq and therefore also the scaling factor depend on the
size of the supercell.) The correction to nuclear masseaseatdkefrom the bulk calculations can
then be used to determine the corrections for surface defecivhich only the VCA approach
is applicable.

Estimates of the vibrational energies of charged surfatectieusing models of 5-layer slabs
with 4 x 4 or 6 x 6 atoms per layer or an 11-layer slab witkx 4 atoms per layer with the finite-
displacement method show that these supercell sizes afficient to yield converged results.
To obtain accurate estimates for the vibrational energyritrtions to the surface defect for-
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Figure 7.9.: Vibrational free energy contributions to the formation ges of the bulk E, Ft,
and P+ centers, and the’Feenter at the (100) terrace

mation energies, an even larger number of layers in the slabdessary, since localized surface
modes may exhibit large vibrational amplitudes. Explciticluding several tens of layers in the
finite displacement method and calculating the respeatikeefconstants with DFT is computa-
tionally too expensive. It has been suggested in literatuegpply slab-filling techniques, where
force constants of inner layers of a slab are taken for exafnpin less expensive bulk calcula-
tions [218 219. A crude estimate for thedcenter (see Fig7.9, black dashed line), obtained
with a 5-layer slab and x 6 atoms per layer, assuming that the vibrational contrilmstim the
formation energies do not vary severely with the chargee st is the case for bulk defects,
shows that vibrational effects very likely do not change dhger of surface vacancy stability,
but might slightly lower the surface defect concentrations

For F centers in MgO bulk the vibrational energy is lower tivathe pristine system in the
whole temperature range shown here. As discussed in6S&d,. for the bulk defects the fact
that one nucleus less than in the pristine system contshliatdhe phonon energy dominates over
the gained spatial freedom of the nuclei next to the vacaRoy.the estimated vibrational free
energy of the surface defect systems the opposite is trueafidms close to the vacancy at the
surface have one more degree of freedom available thandihi&counterparts and increase the
vibrational free energy with respect to the system withafedt.

7.7. Van der Walls effects on surface defect formation energs

Long-range dispersion interaction contributions on thdase defect formation energies can
be determined in analogy with the bulk defects as discusse&®kc.6.2.5 However, similar
to the vibrational contributions, the computed van der \Waslergies depend on the applied
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charge-compensation method. For the bulk F centers, whatte \WICA and constant back-
ground method are applicable for charged defects, the vaWdeals corrections to the forma-
tion energies are shown in Fig.10for both types of charge compensation. The van der Waals
contributions to the formation energies

_ D host
AEvaw = Eigia1vaw — Etotal vaw (7.5)

of charged defects are lower when obtained with the VCA tlhasd obtained with the back-
ground method. The differences are 0.04 eV for tHecEnter and 0.08 eV for the’E center.
This can be explained by considering the ratio of electravier nuclear charge for the host
system and for the system with a defect and comparing the®esbe VCA and background
method. Decreasing the number of electrons in the systeus teaa lower polarizability, while
decreasing the nuclear charge means that electrons asgrmsgly bound and the polarizability
is increased. In the pristine system without dopants the cdtelectronic over nuclear charge
is 1. This is also true for the doped pristine system caledlatith the VCA. The difference
between the van der Waals correctiafig)?; | 4 for the doped pristine system and the pure
host system i< 0.01. So here the increase in polarizability due to reduced andkarge can-
cels with the decrease in polarizability due to reductiomiuimber of electrons for the virtual
crystal. For the systems with charged defects, on the otéied,hthe ratio of electronic over
nuclear charge is 1 when the VCA is used, and <1 when the bawkdrapproach is applied.
The number of electrons is the same in both cases, but usngGiA the nuclear charge is de-
creased compared to the case where the background methsmtis@onsequently, the electron
density in the virtual crystal is more polarizable and tha dar Waals interaction has a more
pronounced effect on the total energy of the virtual crystatem than it is the case for the
system treated with the constant background method. Takendifference between the van der
Waals energy of the system with a defect and the undisturbstslgstem thus leads to a van der
Waals contribution to the defect formation energy that vedowhen the VCA is applied than
the one obtained with the background method. The VCA modelaege a realistic balance of
electronic over nuclear charge, while this is not the cass\etems, where the constant back-
ground method is applied. For this reason the van der Waalsilsotions calculated with the
VCA, modeling a random distribution of dopants, can be abersid more realistic than those
obtained with the constant background method.

For the surface, only the van der Waals correction based @V@A is applicable. From
Fig. 7.10it can be seen that the contribution of van der Waals intenadb G{ is smaller by
~0.1 eV for the surface than for the bulk defects. For all sigfdefect charge states the van der
Waals correction to the formation energies is below 0.16Milar to the bulk defects, the van
der Waals correction to the formation energy increases tivétcharge state also for the surface
defects (Fig7.10. As mentioned in Se®.2.5 this is because the electronic structure close to
a neutral F center is very similar to that of the host systemreasing the defect charge state by
removal of defect electrons introduces more severe chdodles polarizability of the electronic
structure in the vicinity of the defect, higher long-ranga\der Waals energy contributions to
the vacancy formation energies for increasing chargesstate
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Figure 7.10.:van der Waals corrections to the formation energies of Fecetih MgO bulk and
at the MgO (100) terrace. For bulk both neutralizing backgband VCA charge compensation
are shown.

7.8. Summary

The VCA has been used to model charged surface F centersMygth€100) surface. To obtain
accurate formation energies and equilibrium concentnatifor interacting oxygen vacancies
the opt-HSE functional for F centers in MgO, HSEOQ6, has baapleyed. Comparing bulk
and surface F centers in MgO reveals many similarities, hasteng localization of the defect
level, confined geometric relaxation, and a hierarchy=f>F° of the stabilities of F centers
in different charge states. It has been found that the carat@m of surface E" centers can
be as high as-1 atomic percent, while Fand F concentrations are negligible, at realistic
temperature and pressure conditions relevant for catagiplications of MgO. For the charged
defects space-charge effects play an important role. féketic attraction between surface
charge due to charged defects and compensating charga thighépace-charge region facilitates
surface defect formation, while band bending effects liimit surface defect concentration. For
realistic conditions these electrostatic contributiomshie formation energy of interacting
defects are of the order of 1 eV. Downward band bending lowersharge-transition levels with
respect to Fermi level at the surface. This raises the vadammation energy by up to 1 eV
and, therefore, limits the defect concentration.
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8. Defect complexes in lithium-doped MgO

MgO has been studied extensively in heterogeneous catadgsh catalytically active mate-
rial and as a catalyst support. Its functionality as an act&talyst can be enhanced when its
electronic and morphological properties are modified in itable manner, e.g. by inserting
electrically active defects or dopants. A prominent exanigllithium-doping of MgO, which
represents a potential pathway to produce a catalyst rabterioxidative coupling of methane.
One aspect to explore in this context is the role of the lithiconstituents and their interplay
with oxygen vacancies in the MgO lattice.

The formation of surface oxygen vacanciegitype MgO, as discussed in Chapfedepends
on the concentration of mobile holes in the bulk. For siniplithe concentration of free charge
carriers has been referred to as the dopant concentratipnTherefore, defect complexes that
may be formed in the bulk have not been considered expligithce only the remaining-type
conductivity was relevant. Lithium dopants in MgO act as ma@ient acceptors, and it has
been shown in experiment that lithium-doped MgO is indedgpe conducting32]. However,
given the energetically unfavorable nature of lithium de&fein MgO [L72 220, the impurity
atoms tend to induce compensating defects especially dtiginetemperature conditions of a
chemical reaction421]. Myrach et al. have demonstrated Hirst-principlescalculations that
the formation energies for oxygen vacancies in the MgO ($08face are significantly reduced
in the presence of nearby L172]. Oxygen vacancies can act as an electron source and can thus
annihilate the oxygen 2 hole states and neutralize the effect of the lithium sultsbihal defect,
transferring charge directly to the neighboring dopantisTheans that, if lithium is available,
the formation of neutral or charged defect complexes cinisty one or two Li atoms adjacent
to an oxygen vacancy can be favorable. For these defect easgpthe global effects gktype
doping apply and determine the Fermi level, but also lodalces of doping become important:
Charge localization, as well as proximity-induced elegitcand geometric relaxation effects,
influence the formation energy of the dopant-vacancy coxple

Similar to the work of Myractet al. on the influence of lithium close to an oxygen vacancy
in MgO [172, the local and also the global effects of various dopanciggewith variable
oxidation states on oxygen-vacancy formation have beetiesty Li and Metiu for lanthanum
oxide (L&Os3) in 2010 [124], and by Hu and Metiu for ceria in 201125. Also in these cases
it was shown that local effects of doping can lower the foioraenergies of oxygen vacancies
in the vicinity of dopants substantially.

While in Ref. [L24, 125,172 formation of an oxygen vacancy in doped material is investi
gated, in the following formation of dopant-vacancy compkeis considered. This means that
in the former case a finite concentration of dopants in th& lsuhssumed and the doped sys-
tem is regarded as the host for oxygen defect formation. énldtter case, the formation of
defect complexes is considered for varying availabilitylitfium, determined by its chemical
potential, while the host system is pure MgO. The intrinsetenial is compared to a situation,
where a source of lithium has been provided and lithium hesrporated into MgO, possibly
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under formation of lithium-induced (or lithium-mediatedgfect complexes. The objective is to
understand if and what type of lithium-mediated defect clexgs can be present under equilib-
rium conditions and to explore electronic and structurapprties of these complexes. For this,
a combination of scanning tunnelling microscopy (STM),icgdtspectroscopy, and electronic
structure calculations performed at the DFT level has beed.uThe experimental work was
performed by F. Stavale and N. Nilius at the FHI Chemical Risydepartment. Calculated ther-
modynamic stabilities of defect complexes that can formmiithium dopants are introduced
into MgO are compared to scanning tunneling microscopy athodo-luminescence spectra
revealing experimental signatures for the defects. Sitedl&ermi level and1(, p) conditions
are chosen in accordance with experimental informatione Mlost relevant experimental ob-
servation is a downshift of the fundamental MgO optical magen doping, being indicative
for new electronic states in the bandgap. As has been egplamprevious chapters, oxygen
vacancies in MgO generally produce such gap states, butdt isleara priori what charge state
and configurations of defect complexes comprising lithidopants and an oxygen-vacancy are
relevant. Therefore, formation energies in the dilute tliane calculated for a variety of defect
complex configurations, in order to identify those with l@vormation energy. For complete-
ness, not only complexes of lithium dopants and oxygen tefaa also lithium substitutional
and interstitial defects in different charge states witheualose-by oxygen vacancy are consid-
ered.

8.1. Experimental characterization of lithium-induced ddects

The STM and cathodo-luminescence experiments have be&rrped in ultrahigh vacuum,
where the STM was operated at liquid nitrogen temperatutge detup is equipped with an
optical readout that enables the collection of photons filoentip-sample junction and their de-
tection with a charge-coupled device unit outside the vatabhamber. By this means, spatially
resolved optical measurements can be carried out in a wagtblevindow from 200-1,200 nm,
using the STM tip as local electron source. For the cathaddrescence measurements, the
MgO optical modes have been excited by injecting electraitis ¥100-150 eV energy (M=100-
150 V) and 5 nA current into a pre-selected sample regi#?][ STM topographic images
were taken with V=3.5 V. The MgO films used in the experiments were grown bytieac
deposition of magnesium i x 10~7 mbar G onto a sputtered and annealed Mo (001) single
crystal P23. The oxide has been crystallized via annealing to 1,000#&dpcing a sharp square
pattern in low-energy-electron-diffraction that indiesita (100) termination of rock-salt MgO.
STM measurements revealed an atomically flat oxide surfaxgosing a network of mainly
[100]-oriented dislocation lines (Fi@.1a, inset). The line defects develop spontaneously in the
film in order to compensate the 5.4 % lattice mismatch withMilog(001) surface beneat24).
Lithium-doped MgO samples with a film thickness of 15 ML weregared in two different
ways, embedding lithium into the bulk lattice by simultangaleposition of magnesium and
lithium onto the molybdenum substrate in oxygen atmosphard by depositing lithium onto
an MgO sample, and subsequent annealing. MgO films with ditélim amounts incorporated
into the bulk layers (using the first preparation method) etihibit the rock salt lattice of the
bare oxide 172. However, the film crystallinity is reduced, i.e. oxiderres are smaller and
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Figure 8.1.: STM topographic images of (a) a 15-monolayer (ML) thick Mg@ixed film on
Mo (001) and (b) a pristine MgO film after exposure to 0.2 Mhilitm (200 x 200 nm?). The
insets display a bare MgO film (a) and a close up of a lithiumeced film (b). Both insets are
50 x 50 nn? in size. (\, =3.5V)

defect lines are less straight than in the non-doped cage§Ha). This lower film quality can
be related to a mixture of kinetic and thermodynamic effeEtsst, lithium-doped films cannot
be annealed as thoroughly as pristine ones, as the alkaliriti@s tend to leave the oxide at
temperatures beyond 800 K. And second, the presence aftlitiperturbs the crystallization
process of the rock-salt lattice, e.g. by enriching in trsadiation lines, occupying interstitial
lattice sites and agglomerating into tiny Li-O units.

Adsorbed lithium deposited at 300 K (using the second pedjger method), on the other
hand, grows into monolayer islands on the surface (Eith), as discussed in detail in earlier
work [172,225. The formation of 2D lithium islands is not so much the capsnce of the Li-
MgO interface interactions, but results from a relativalyhtbarrier for lithium up-step diffusion
that impedes the development of 3D particl22q]. Upon annealing above 600 K, the adsorbed
lithium structures quickly disappear from the surface. M/lthe majority of lithium simply
evaporates into the gas-phase agl1j177, a small amount diffuses into the film.

To take STM topographic images and measure the cathodovbisitence spectra, the samples
were cooled down to liquid nitrogen temperature witkiri hour. In both preparations — lithium
embedding into the bulk lattice and annealing of lithiunface-islands — the presence of lithium
defects in the MgO becomes manifest from distinct changé#eioptical response of the oxide
film (Fig. 8.2). Pristine MgO films of 15-100 ML thickness display a chaggistic 400 nm
emission peak in cathodo-luminescence spectra performéeiSTM setupd23. This peak
can be assigned to the radiative recombination of elediada-pairs excited by the incoming
electrons across the bandg&®27]. These excitonic modes are mobile in the bulk lattice but
get trapped at low-coordinated surface sites, in parti@tlaxygen corner and kink sites, where
recombination takes place in a second s&28[229. The 400 nm emission peak is therefore
representative for exciton recombination at low-coortiidasurface sites and can be quenched
by dosing small amounts of metals, e.g. gold, onto the oxide[#30.

The characteristic optical signature of the pristine filnarges significantly upon lithium
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Figure 8.2.: Cathodo-luminescence spectra of (a) bare and mixedyIfiighs of 15 ML thick-
ness and (b) bare and lithium-covered MgO films after anngdlth 550 K. All spectra were
taken with \, = 150 V, | = 1 nA and 60s accumulation time. Note the pronouneedshift of
the main emission peak when lithium is present in the MgQckatt

incorporation. Most importantly, the emission maximumte spectrum undergoes a red-shift
by 100-150 nm and now peaks at around 550 nm (Biga,b). Additionally, its full-width-
half-maximum (FWHM) increases froms 100 nm in the pristine to more than 150 nm in the
doped films. (These features in the spectra have also beemnvetdsfor thicker films with up
to 100 layers.) The red-shift suggests the developmentwfraeombination channels for the
excitonic modes in the presence of lithium defects, foranse via new localized states in the
MgO bandgap. The bulk excitons get trapped and recombir@adlrin deeper layers of the
film and do not reach the surface anymore. The possibility ttealithium-induced gap states
are surface states is discarded, as the new optical signatut hence the new recombination
channel is insensitive against adsorption of rest gas mla@ecsuch as water, CO or hydrogen.
Also, surface oxygen defects can disappear via heterolgter splitting and formation of OH
groups, as discussed in the next section. Hence, the lompereission signature observed
on lithium-doped MgO films may relate to the presence ofdithior oxygen defects or defect
complexes in the volume of the film.

8.2. Theoretical analysis of lithium-induced defect compm@xes

To identify possible bulk defect complex configurationsibdities of different defect arrange-
ments are calculated using DFT with simple-cubic MgO bulgesaell models including 64,
216, and 512 atoms. Formation energi#$T’, p) for all defect configurations are computed us-
ing Eq.4.1 The dilute limit is obtained by extrapolation to an isothtkefect or defect complex

in extended material as described in ChagtefFormation energies are computed for a temper-
ature of 600 K and an oxygen pressure of 10atm, as a set of characteristic conditions for the
experiment. Conclusions drawn in the following do not cleamghen ambient conditions are
varied within the relevant experimental temperature ams$gure range. The oxygen chemical
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potential Apo (600 K, 10719 atm) = —1.21 eV with respect td /2Eo, at the temperature and
pressure conditions for which the formation energies aleutated, has been obtained using
Eq.4.10as described in Sed.1.2 The chemical potential of magnesium is deduced from the
condition of thermodynamic stability of bulk MgO. For lithih, different chemical potentials
u1; are considered, ranging between the free energy of theiittatom and that of lithium

in LioO. Apuy; denotes the chemical potential of lithium with respect tat thf fully oxidized
lithium. The change in volumAV of the crystal due to defect complex formation is neglected.
(A contribution of 1 meV to the formation energy would copead to a huge change in crystal
volume of~16 pn? for an oxygen pressure aH~'° atm.)

In the following, a notation for defects is used, that is $amio the Kréger-Vink notation, but
omits the electronic charge of the species relative to tiginal site, for simplicity. A defect
(Mg)¢ describes a species M (for instance M=Li) or a vacancy (M=8jupying the site of
species S (S=Mg, S=0, or S=i for an interstitial). The chagee of the defect, in case of an
extra or a removed electron, is specifiedgby

The contribution of phonons to the defect complex formagéinargy is calculated as described
in Chapterd.1for 3x3x 3 MgO supercells (216 atoms), using the finite displacemethousand
the PBE exchange-correlation functional. For the mostestdéfect complexes, the vibrational
energy contribution i\F'%, < 0.14 eV for temperatures below 1300 K (Fi§.3). Apparently,
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Figure 8.3.: Vibrational free energy contributiod %, to the formation energy={(T',p) for
two defect complexes as a function of temperature, cakedlasing the PBE functional for 216-
atom supercellsAFY, (T') is the difference between the vibrational free energy ferNMgO
system with a defect complex and the vibrational free enérgthe pure MgO host system.

the vibrational free energy has no effect on the energy tubkyeaof the defects considered here.
In the formation energies reported below, the vibratiomaitdgbution is therefore neglected.

For all systems fully relaxed atomic coordinates are catedl using the PBE exchange-
correlation functional at the respective optimized lattmarameter (4.258 A). The relaxed ge-
ometries for th& x 2 x 2 MgO supercell are then scaled to the HSE06 optimized Igitcameter
(4.218 A) and a HSEO06 single-point calculation is perforrfardhe scaled, relaxed structures.
For neutral defects, convergence tests for increasingscads with fully relaxed coordinates
show that interactions between the defect and its imagealgedmetric and electronic relax-
ation effects vanish fast with increasing supercell siZee formation energies of these defects
are already converged within 50 meV for cubic supercellsbfioms (cell length 8.435 A).
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8.2. Theoretical analysis of lithium-induced defect coaxpk

The formation energies for the charged defects are exttgabto the dilute limit of isolated,
non-interacting defects by calculatidg (L) for 64-, 216-, and 512-atom cubic supercells (with
L=8.517 A,.=12.775 Aand.=17.034 A, respectively), using E4.28

For three defect structures, @gvo)ﬂ 2LingVo, and Liye (shown in Fig.8.6 and dis-
cussed in detail below), relaxed atomic coordinates haelzen calculated with HSE06. The
error made by using the PBE relaxed, scaled to HSEO6 lattinstant geometries was found
to be <0.03 eV, and the HSEO06 relaxed geometries are prictezguivalent to those relaxed
with PBE. This is in particular interesting for the lithiuralsstitutional defect, where symmetry
breaking has been predicted by Licharbal. in an unrestricted Hartree-Fock stud®sfl]. Us-
ing the HF method leads to localization of the lithium valemtectron on one nearest-neighbor
oxygen atom and as a consequence the distance betweemita l&tom and this oxygen atom
is elongated with respect to the equilibrium MgO bulk interaic distance. Indication (but no
rigorous proof) for this has also been found in electron pa@agnetic resonance spectroscopy
(EPR) and electron nuclear double resonance spectros&pp@R) experiments by Abra-
hamet al.[221,237]. In this work, three different starting geometries haverbé&ested for the
HSEO06 geometry relaxation: (i) the relaxed symmetric PB&cstire, (ii) a structure where the
lithium atom has approached one of its nearest-neighboganyatoms, according to the equi-
librium structure found in Ref.Z231] using HF, and (iii) a structure where the lithium atom is
slightly displaced in all three dimensions. In all threeesasalculating the relaxed atomic co-
ordinates using HSEO6 resulted in a symmetric structuréh@®ne obtained with PBE. The
total energy difference between the system with startirmrgery (ii) and the system with re-
laxed coordinates, calculated using the HSEQ6 functiasal).2 eV. This shows that the relaxed
geometric coordinates correspond to a shallow minimumerpthtential energy surface. There-
fore, deviations from the relaxed geometric coordinatdsicivcan for example be caused by
vibrational effects, will only have a minor effect on therfmation energy of the defect.

For the extrapolation, coefficient§ anda? in Eq.4.28are determined with PBE and used to
extrapolate the formation energy of an isolated defect fiteerHSEOQG6 calculation of thx 2 x 2
supercell (see also Chap®t The FHI-aims electronic structure packag@83 is employed for
all DFT calculations. The numerical settings aretilgat predefined settings.

The electronic structure of F centers in MgO is charactdrizg a defect level deep in the
bandgap, which is occupied by 2 electrons in the neutfatdhter, by 1 electron in the'F
center and which is empty in théF center (see Chapteésand?). Lithium dopants introduce
empty states close to the valence band maximphtyge doping), which enables the electrons
from the P and F- center to lower their energy by transferring into the hoteesin the valence
band. An F vacancy adjacent to a lithium dopant can transfer one eledtrthe lithium defect
and turns into an F defect, building a defect complex together with the lithiiom. In analogy,
an P vacancy adjacent to two lithium substitutional defectshea® to an Et defect upon
electron transfer, within a defect complex that comprises lithium atoms and an oxygen
vacancy. Local geometric and electronic relaxation, whubtiously strongly depends on the
atomic configuration, can further lower the formation eyesfithe defect complex.

The frequency shift that is observed in the cathodo-luntieese spectra, when comparing
pure MgO to MgO with Li, shows that the preferred decay chaforeexcitons created in the
experiment changes, when Li is present in the sample. Asiomatt above, defect complex
formation comprising Li dopants and oxygen vacancies cauige electronic levels in the gap
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that can open a new exciton decay channel, where electien<boombination can happen via
a defect level in the bandgap. However, the defect level meistalf-filled or empty, so that an
excited electron at the CBm can transfer to the defect leveéfiaally to the electron reservaif:
at the VBM. This means, that defect complexes comprisih@FF*-type defects are possible
candidates to be observed in the photon-emission expeisméncontrast, neutral or charged
lithium defect configurations without oxygen vacancy, liiteium substitutional defects, inter-
stitials or a combination of both, cannot open new decay rblanbecause they do not provide
suitable gap states. However, in the theoretical analysisthese defects are considered.
Lithium is expected to leave the surface in the form gf@imolecules at temperatures above
800 K. However, at lower temperatures the lithium-mediadetect complexes with + and
F>*-type defects can be formed both at the surface and in the bulact, the free formation
energy of all considered defect configurations is lower atdtwrface in a wide range of condi-
tions in the absence of water. However, in the experimenemiaipresent and can interact with
defect complexes at the surface. To test this scenariotdbéity of a defect complex compris-
ing an Pt vacancy adjacent to two lithium substitutional defetitsyi, Vo at the corner of a
2-layer3 x 3-atom MgO island on a 4-layer MgO (100) surface slab is cated (Fig.8.4a).
The formation energy of this defect complex is comparedeédahmation energy of a configura-

Figure 8.4.: Models for calculating the stability of a defect complex goising an F*-type
oxygen vacancy adjacent to two lithium substitutional defet the corner. (&)Liv, Vo corner
defect complex. (b) Hydrogenatively annihilated defechptex 2Liye2H.

tion 2Liyi2H after hydrogenative annihilation, where two hydrogen aafa water molecule
have formed OH groups with the surface oxygen atoms neasblitthum dopants, while the
oxygen atom has healed the vacancy Bigb). The difference in free formation energy between
the two systems is in favor of vacancy healing for tempeestwf 600 K and below and water
pressures of 10'4 atm and above (Fig8.5). In principle, vacancy healing is also possible for
bulk defect complexes in the presence of water due to diffusf hydrogen or OH into the bulk
(not considered in this study). However, diffusion will biedered, and the MgO films used in
the STM and cathodo-luminescence experiments describaee ae rather thick (15 ML), so
that it is unlikely that all defect complexes in the bulk ayglfogenatively annihilated.
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Figure 8.5.: Hydrogenative annihilation of th&l.iy;, Vo corner defect complex. The difference
in free energy (calculated with HSE06) between the healstésy (Fig.8.4b) and the system
with a2Liy, Vo defect complex (Fig8.4a) is shown as a function of4® pressure for different
temperatures. TheLin, Vo defect complex is thermodynamically unstable for tempeest
and pressures, where the energy difference is negativdgdha gray).

8.2.1. Hierarchy of defect stabilities

Ball-and-stick models for all relevant defect configuratiare shown in Fig8.6. Their relaxed
coordinates and charge states are given in T&ldle-or defect complexes comprising an oxygen
vacancy there is an outward relaxation of nearest-neightegnesium atoms and an inward
relaxation of nearest-neighbor oxygen atoms forype and E -type oxygen vacancies, while
for F)-type defects this trend is reversed and less pronounced.

Potential candidates for causing the observed change iphbn emission spectrum are
the P+-type defects within the defect complexes RLVo and (LivigVo)™ (orange lines in
Fig. 8.7) and the F-type defects within (2Li;Vo)~ and Livi,Vo (blue lines), since these
defects exhibit an empty or half-filled defect level in thextigap.
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Table 8.1.: Relaxed interatomic distances in A for defect configurationdifferent charge states (compare F¢f). Corresponding
distances are also given for pristine MgO for comparisorstdbices between adjacent lithium and oxygen atof@s@f?), where lithium
has substituted a magnesium atom in the lattice, can be cemthpathe distance between nearest neighbor magnesiumxggdroin

pure MgO (2.11A).

pristine MgO 2LngVO (2LngVO)_ (2LngVO)2_ (LngVO)+ LngVO (LngVO)_ Lng Lil;lg
F>ftype  Fr-type F-type F>t-type Fr-type F-type |subst. subst.
oM -mgm 2.11 2.09 2.12 2.15 2.09 2.11 2.15 - -
Mg-Mg®) 4.22 4.51 4.33 4.10 4.54 4.37 419 | 4.16 4.15
oW-0® 5.97 5.88 5.96 6.03 5.87 5.95 6.03 - -
MgM-0®) 2.11 2.05 2.07 2.09 2.04 2.06 209 | 211 2.08
LiW-0® - 2.15 2.15 2.16 2.14 2.15 216 | 216 217
LiW-0®) - 2.20 2.21 2.22 2.14 2.15 216 | 216 217
Li(M-0®) - 1.90 1.99 2.09 1.89 1.98 207 | 216 217
LiW-0®) - 2.15 2.15 2.16 2.14 2.15 216 | 216 217
Li (1D-0(©) - 2.09 2.10 2.11 2.14 2.15 216 | 216 2.17
Li®-0(©) - 2.09 2.10 2.11 - - - -
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8.2. Theoretical analysis of lithium-induced defect coaxpk

a) (LiygVo)" b) 2Liy, Vo
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Figure 8.6.: Relaxed structures for (a) (i;Vo)™, (b) 2LingVo, (€) LivgliiVo, (d) Ling,
and (e) LiigLi;. The shown structures have been cut out from the relaxediicates calculated
using 216-atom supercells for neutral and 512-atom sulpefoecharged defect configurations.
Relaxed coordinates not given here are listed in T8kle

Fig. 8.7a shows the defect formation energies for the Fermi levdleaWBM as a function of
lithium chemical potential. The Fermi level with respecthe VBM is denoted ad\ep. This
situation corresponds to experiments on thicker MgO filnbeya 10 ML), where electron tun-
neling from the molybdenum support into the majority of fil@fects is not possible anymore.
In general, free formation energies of lithium-containitefect configurations decrease and,
consequently, their concentrations increase with inangdé&hium chemical potential. Within
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8.2. Theoretical analysis of lithium-induced defect coaxpk

the whole range of lithium chemical potential, the hiergrcii formation energies for defect
complexes comprising lithium dopants and oxygen vacaraaesbe classified in terms of the
charge state of the included oxygen vacanéy;-fype < F-type < Fl-type. In particular, the
defect complexes with + and F-type defects are so high in formation energy, that their cal
culated concentrations are negligible. Pogy; close to lithium in LyO and the Fermi level at
the VBM, the order in formation energies for defect comptegemprising E™- and F -type
defects is (LirgVo)' < 2LingVo and LivigVo < (2LivgVo) ™, respectively. The lowest for-
mation energy ig7¢((LingVo)™)=1.2 eV. Thus, (LisVo)™ will be the most abundant defect
complex at an equilibrium temperature of 600 K and an oxygessure of 10'° atm.

The order is reversed within each charge state wherapproaches the energy of a lithium
atom, which would imply that gas phase atoms are the sourdighinfm during annealing,

a condition that is never fulfilled experimentally. The tmedynamic stability of LiLi;,
Gt(LingLis)=-3.1 eV, is then comparable to that of the lowest defectmem2Liy,Vo con-
taining an BT -type defect,G¢(2LingV0)=-2.6 €V, forAu;=3 eV and the Fermi level at the
VBM.

In Fig. 8.7b the Fermi level is 1.5 eV above the VBM, a situation that isnid in ultrathin
films (1-5 ML), wherecr is still governed by the Mo (001) support below the film. Again
the formation energies for the different defect configaradiare shown as a function of lithium
chemical potential. The general trend in formation energieneutral defect complexes?+
type < Fr-type < Fo-type in terms of the charge state of the oxygen vacancy irdéfect
complex, is not affected by the shift in Fermi level. Only eletf configurations carrying a net
chargeg # 0 depend orep. The formation energy of the defect complexyikM o)™ (which
contains an Fr-type defect), is therefore shifted up by 1.5 eV, while therfation energy
of (2LimgVo)~ (comprising an the F-type defect) is shifted down by 1.5 eV with respect
to Fig. 8.7a, wherecp=VBM. For Apup;=0 eV (oxygen-rich conditions) all defect complexes
with oxygen vacancy defects have formation energies hitear 2.5 eV. When lithium is not
fully oxidized, its chemical potential is raised and theatfcomplexes which contairt F-type
defects can form more easily in thermodynamic equilibridttowever, attp = 1.5 eV above
the VBM, the defect complexes (u4i,Vo) ™ and (2Livig Vo), Which comprise F"-type defects,
have higher formation energies thanfiand LiyigLi;.

Fig. 8.7 (c) shows the dependence of the formation energies for ffezeht defect configura-
tions on the position of the Fermi level between VBM and CBrhe Tithium chemical potential
is fixed at the value derived from the stability condition fd5O (A1;=0 eV). The lowest transi-
tion levels between different defect configurations octufa4.0 eV (2Livi;Vo/(2LivgVo) ™,
F>*-type to F-type in terms of the contained oxygen vacancies), andrat 4.8 eV
((2LingV o) /(2LivgVo)?~, Fh-type to P-type). Among the defects containing an oxygen
vacancy, the structural motif of two lithium substitutibriiefects adjacent to one oxygen va-
cancy is favored only whea: > 2.3 eV, otherwise (Li;Vo) " defects are easier to form. The
main conclusion of Fig8.7 is that the most abundant bulk defect complexes that mayecaus
the observed shift in the photon-emission peak are thosgiisimy P*-type defects, namely
(LngVO)+ and ZLMgVO.

The theoretical analysis enables the following intergii@taof the experimental data. For
the given film thickness of 15 ML, the metal substrate belog/fthn is an unsuitable electron
source, as tunneling into MgO gap states is blocked by a awilist barrier. This situation is
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8.2. Theoretical analysis of lithium-induced defect coaxpk

best described by a Fermi level at the VBM. For the lithiummloal potential, as the second
variable in Fig8.7, lower i1 ; can be considered more realistic than higher values, astithvill

be completely surrounded by oxygen species from the MgOixredter deposition/annealing.
The most realistic situation is therefore displayed in Big.(a,c) — left side. Here, (hisVo)™"

< 2LiMgVo < LingVo is the predicted hierarchy of formation energies for detechplexes
containing oxygen vacancy defects and lithium impuritiék the defect complexes have char-
acteristic defect states in the MgO bandgap and can thuaiaxple shift in the optical spectra
(see SedB.2.2. Note, that the lithium defects without oxygen vacancyaptcally inactive and
will therefore diminish the emission response when becgrttie dominant species. The visi-
bility of a red-shifted emission peak in lithium-doped Mdtefore proves that the conditions,
at which Liy, and LivigLi; defect complexes become energetically preferred, areeatzed in
the experiment (high Fermi levels, high lithium chemicalgotials). The electronic structure of
the defect configurations, which compris&Fand F" defects, is discussed in the following.
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Figure 8.7.: Formation energies of different lithium-mediated defamtfigurations at a temper-
ature of 600 K and an oxygen partial pressure of '#0atm. (a) and (b) show the formation
energies as a function of the lithium chemical potentiatjiechbetween the chemical potential
of lithium in LioO (Aur,;=0 eV) and the chemical potential of a lithium ator(; ;=4.55 eV).

In (a) the Fermi level is at the valence band maximuxag{=0 eV) and in (b) the Fermi level is
1.5 eV above the valence band maximuftx£=1.5 eV). In (c) the chemical potential of lithium
is fixed toAur,;=0 eV and the Fermi level is varied between VBM and CBm. Reeslishow
lithium substitutional and interstitial defects withouygen vacancy, while all other defect con-
figurations consist of one or two lithium impurities adjacenan oxygen vacancy: Black lines
show defect complexes comprisint-&pe defects, blue lines depict defect complexes inclydin
F*-type defects, and orange lines represent defect complgxiel contain E*-type defects.
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8.2. Theoretical analysis of lithium-induced defect coaxpk

8.2.2. Position of defect levels

The HSEO06 calculations show that an unoccupied defect isvieldeed present deep in the
bandgap for the two defect complexes that cont&in-fype defects, (LigVo)™ and 2LivigVo,
opening a new channel for recombination of excitons cregtelde cathodo-luminescence ex-
periment. The total and projected density of states (DOSh® (Lini; Vo)™ defect complex is
shown in Fig.8.8. The VBM is due to oxygen 2 states, while the defect level and the CBm
are dominated by magnesiuns3tates (see Chaptéj. The HSE06 Kohn-Sham defect-levels
are 4.2 eV above the VBM for (l[;,/ngo)Jr and 4.4 eV above the VBM for 24,Vo. For the
defect complexes which comprise fype defects the Kohn-Sham defect levels are 2.7 eV and
2.9 eV above the VBM for Li;;Vo and (2LiVo) ™, respectively. The overlap of different
recombination channels involving different gap stateshinlge responsible for the substantial
peak broadening in emission spectra of lithium-doped MgO.
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Figure 8.8.: Total and projected density of states forylV o)™, comprising an Ef-type de-
fect, calculated with HSEO06. The defect level is unoccugiad allows for additional exciton
decay channels.

For the changed optical decay detected in the cathodo-ksoéamce experiment for lithium-
doped MgO compared to pure MgO, in principle two transiticome into consideration. De-
excitation of a hot electron in the conduction band involtes steps, one from the CBm to
the defect level and the second from the defect level to th1VW&/hich transition is dominant
for the photon emission depends on the symmetry of the boriing orbitals (Fig8.9). For
both defect configurations eigenstates at the CBm and indfexztdhave comparable symmetry,
dominated by ar-shaped orbital arising from the magnesium &ates. The state at the VBM,
on the other hand, shows the distinct symmetry of the oxygerstates. The dipole selection
rules for an optical transition can therefore only be fidfillfor the defect> VBM transition,
where the state symmetry changes accordingato= +1, wherel is the orbital momentum
guantum number. The CBm-defect transition, in contrastipele-forbidden, as the orbital
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8.2. Theoretical analysis of lithium-induced defect coaxpk

symmetry remains constant. A comparison of spatial symesatf the states therefore suggests,
that the peak in the luminescence spectra is mainly due maitians from the defect levels of
defect complexes comprising'Fand F+-type defects to the VBM.
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a) State at VBM (HOMO) b) State at VBM (HOMO)
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Figure 8.9.: Highest occupied valence statey), defect level fiddle), and lowest conduction-band
state potton), in A-%, as afunction of spatial coordinates in A in the (100) plaeffin, Vo)™ (a,left
panel), where Li, is at (0,-2.1) and ¥ at (0.0) (see Fig8.6(a) for comparison), and 2hi,Vo (b, right
panel), wher@neof the two Liy, is at (2.1,0) and ¥ at (0.0) (see Fig8.6b for comparison).
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8.3. Summary

8.3. Summary

In summary, the observed red-shift of the main optical eimisband in lithium-doped as com-
pared to pristine MgO films suggests the opening of new redaatibn channels for electron-
hole pairs injected in cathodo-luminescence experimevitih are mediated by new electronic
states inside the bandgap of the oxide material. Wherdmsritsubstitutional defects by them-
selves do not induce suitable gap states, defect compleaesdnsist of lithium impurities and
compensating oxygen defects are likely candidates to gandre observed emission signature.
While defect complexes containing electron-richtifpe oxygen vacancies and lithium dopants
can be discarded in this context, as they are unstable,tdefefigurations comprising electron-
poor F- and F+t-type oxygen vacancies that have lost electrons to theulitiinduced hole
states in the MgO valence band are compatible with the exjartal results. From thermo-
dynamic stability criteria the defect complexes compgsitoubly positively charged -type
centers are most likely responsible for the red-shiftedssion peak at 550 nm, as they imprint
a suitable defect state in the MgO bandgap for electrons ¢aydsom the conduction to the
valence band. However, also defect complexes that contaityfpe defects with a half-filled
defect level are potential candidates. Given their higbemétion energies with respect to dif-
ferent defect configurations that comprise Rype oxygen vacancies, their contribution to the
observed optical response of MgQilms can be considered as small.

It is clearly demonstrated that the majority of lithium-iorfiies in MgO appears as defect
complexes, comprising lithium dopants and oxygen defedtgre charge transfer between the
oxygen vacancy and one or two lithium atoms annihilates th@en 2p hole states due to
lithium and therefore neutralizes the effect of the lithigmpant. (This is one reason, why
formation of Li"O~ pairs, as active centers for methane activation, as swegjbgtLunsford in
1985 R34 and widely accepted in the literature, as reviewed by Amtdil. [22( in 2011, is
regarded thermodynamically unfeasible.)
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9. Concluding remarks

Within the presented work a theoretical methodology waeld@ed and tested that can be used
to predict charge states and concentrations of point defgicsemiconductor surfaces under
realistic conditions from first-principles. The conceps l@en applied to F centers in MgO, and
has led to some important insights on charge state and cimatiens of these defects.

One important objective was to find a suitable charge-cosgt@n method for supercell
models of charged systems, in particular for surface caticns, where the standard constant-
background approach is not applicable. Inspired by earlykved Vegard (1921) 126 and
Scheffler (1987)127], a variant of the VCA has successfully been tested and egpdi resolve
this issue. Within this approach, an adjustable densityadés at the Fermi level is introduced by
modifying the electron-nuclear interaction potentialhiritthe host material, while keeping the
system charge-neutral. This simulates the realistic tiitnaf a doped material, where defect
states in the bandgap can accommodate charge carriers liaovs dopant levels, providing
a natural charge-compensation mechanism. In an all-efecinde the idea is easily realized
by madifying the nuclear charges of the atoms of the host mahtey a small fraction. The
VCA allows to choose the type of doping-(or n-type), and the "dopant" concentration and
distribution. The benefits of the VCA for charge compensatice a well-defined Fermi level,
applicability to systems of different dimensions (bulkyfage, wire, or cluster), and widely
variable dopant concentrations.

To ensure a quantitatively accurate description of foroma@nergies of F centers in MgO,
embedded cluster models were employed. For these syst8irignd coupled-cluster methods
are readily applicableGoW,@HSE was used to identify HSE06 as an opt-HSE functional that
correctly describes the charging of F centers in MgO, in d@npe with a condition on the
ionization potential. In a collaboration with Prof. Sagegroup from the Humboldt University
Berlin, also coupled-cluster calculations of the neutsgigen vacancy formation energy were
performed, confirming that HSEQ6 provides reliable excleacgrelation treatment for F cen-
ters in MgO. Embedded cluster and periodic calculationsewarefully tested for consistency.
Accurate formation energies with reliable error bars {.15e¢V) were calculated for charged
and neutral F centers at varying concentrations by comdpiadvantages of both periodic and
cluster models. As an important result it has been showntligabnly available measurement
on the neutral bulk F center formation energy in Md®®][should be revised, most likely since
thermodynamic equilibrium could not be reached in the erpant.

For the last 25 years realistic atomic and electronic chahgpotentials, and therefore also
realistic temperature and pressure conditions, have bemuated for in theoretical studies of
defect stabilities in insulators or semiconductors, ugitg methods by what is now known as
ab initio atomistic thermodynamics. Defects have been calculated-éeaxed geometry, using
an embedded cluster or a supercell of certain size, and fiesetcalculations the formation en-
ergy of the defect in the dilute limit, for vanishing defecncentrations was obtained. Indeed,
the focus was often on how this dilute limit could be obtaimeadst accurately and efficiently
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by extrapolation or correction schemes. However, to addaesore realistic situation, finite
concentrations of interacting surface vacancies have beesidered in this work. As a key
result, it has been shown that the formation of charged sairdefects in doped materials can
be largely determined by formation of a space-charge regitimnassociated band bending and
electric field. The contribution of the electric field enetgythe defect formation energy can be
divided into two parts: the energy need for charging the @sfeand the attraction of defects to
the compensating charge. The existing approaches to atif@hon-interacting defect forma-
tion energies and concentrations has been extended tadtitey defects. This is achieved by
including the interaction energy (the energy of the eledigld) into the Gibbs free energy of
the system, and then minimizing the free energy with resjoeitte concentrations of vacancies
in all possible charge states. For surface defects, thedmgdint concentration complements the
set of thermodynamic variables (temperature, pressuceFarmmi energy) that the defect sta-
bilities depend on. Also, the configurational entropy ofea¢$ in all charge states is accounted
for. This framework has been applied to oxygen vacanciesg@Mand the predominant charge
state and concentration of these defects under realigtidittons have been predicted.

In MgO, the formation of surface?F centers can reach approx. 1 % at conditions relevant for
catalytic applicationsT( = 1,000 K,p = 1 atm,ep=VBM , N, = 10'8c¢m~3). The concentration
of F2* centers does not exceed 1% due to the build up of the spacgedager, which raises the
defect formation energy by up to 1 eV relative to the isolatefibct. In other words, starting from
a defect-free surface, first defects are formed spontatyedug as their concentration grows,
each new defect costs more energy. These results are impéotafuture studies of charged
defects at semiconductor surfaces, since they show thetradtatic space-charge effects are
a type of defect-defect interaction that can not be negleciéhe energy of this interaction is
sensitive to the distribution of the compensating chardgeickvcan extend over macroscopic
length scales. This implies that DFT slab calculations ralsays be corrected for the limited
thickness, as described in this work, when they are usededigirproperties of single-crystal
surfaces. The same is true for experimental studies, wierged defects at thin films are used
to understand properties of single-crystal semicondusidiaces.

Furthermore, defect complexes in bulk lithium-doped MgQenstudied. It has been shown
that upon lithium doping, formation of defect complexesoiorating one or two lithium de-
fects and an oxygen vacancy is favored. Also within the cexgs with lithium the preferred
charge state of the vacancies is 2+. These results are indaroe with an observed red-shift
of the main optical emission band in cathodo-luminescepeetsa that is observed for lithium-
doped MgO when compared to spectra for pristine MgO, medsarBrof. Freund’s group of
the FHI Chemical Physics department. Interestingly, datmns performed within this work
predict that there is a competition between\(LV o)™ and (2L, Vo) defect complexes. This
has not been addressed in literature despite the large @ambwork devoted to lithium-doped
MgO due to its catalytic properties.

In summary, the goal of this work was to take a step forwarchenttay to understand defect
formation at semiconductor surfaces, motivated in pdeichoy the role of oxygen vacancies in
catalysis. This was achieved by providing an understandirequilibrium F-center concentra-
tions at metal oxide surfaces, in particular at the MgO (I0jace, and introducing a general
theoretical framework to calculate charged-defect stadsil

From here on, using the presented model, theoretical estsrad formation energies and
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concentrations of interacting defects can be further imgapfor instance by accounting for re-
alistic dopant concentration profiles that can be realinegkperiment. Concerning F centers in
MgO, also concentrations of defects in different chargeestat low-coordinated sites and sur-
face terminations other than MgO (100) are of interest iregain and in catalysis in particular.
A brief outlook on some very interesting questions arisimigH centers at steps and corners, and
at reconstructions of the polar (111) surface of MgO, is giveChapterlO.
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10. Outlook: F centers at low coordinated sites and
polar surfaces

Depending on the environment, the most stable surfacenatiohs of a metal oxide can vary.
Also, realistic surfaces exhibit steps and corners whefiectielike oxygen vacancies can appear.
It has been shown that while the (100) surface is the mostestabmination of pristine MgO,
p-type doping the material, for example with lithium, candéa roughening or even to a change
in hierarchy of the different surface terminatiody®, 235.

Myrach et al. have demonstrated in a combined STM and DFT study, thatutiace mor-
phology of mixed Li/MgO films changes with temperature suwt tithium segregates towards
the surface at approximately 700K in ultra-high vacuum doomas, and Liy,-rich surface is-
lands are formed. Annealing at higher temperatures leadsetdormation of LiO clusters
at the surface, and their subsequent evaporation, leaki@igO (100) surface with a char-
acteristic pattern of monolayer-deep rectangular holethénMgO surface after annealing at
approximately 1,050 K172].

Figure 10.1.: The most stable surface termination of MgO nanocrystals@és from (100) to
(111) upon addition of lithium to the precurs@35]. (Figure adapted from Ref2B5], copyright
(2011) by John Wiley & Sons, Inc.)

The effect of doping on the surface structure can even be profeund when the morphology
is not restricted (as it is in the case of thin films). Zavyaleval. found that adding 1 weight %
lithium to the combustion precursor of MgO nanocrystalsdgeto a morphology change of
MgO nanoparticles from on average 8 nm edge length (100)ineted nanocubes to complex
nanoparticles with polyhedral surfaces of up to 250 nm imeier, exposing more and more
(111) facets 235 (Fig. 10.1).

No theoretical or experimental studies on F center formadiothe MgO (111) surface have
been reported so far. One open question is, for example, tnlithium dopants influence
the composition, stability, and electronic structure @& (th11) surface termination. If there are
surface states in the bandgap, formation of a space-chegignrand associated band bending
is possible.

The MgO (111) surface has an interesting feature: it is pdktacking of charged atomic
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10.1. F centers at MgO (100) steps and corners

layers (Mg+ and &) along the surface normal results in uncompensated chéuie dulk-
like surface termination. The surface charge must be cosgted to make the polar surface
stable. Stabilities of polar oxide surfaces, consideriagous stabilization mechanisms, such as
spontaneous metalization of the surface layers, nonkstoieetry, faceting, or adsorption, have
been studied for instance by Nogue2a3§-240], accounting also for ambient temperature and
partial pressures. It would be interesting to see how dopfferts composition, stability, and
electronic structure of polar oxide surfaces. One podsitid that charged defects, in particular
oxygen vacancies, can compensate the surface charge. dbendlg, understanding F center
formation at these surfaces with regard to charge trangfsvden surface states, defect states,
and Fermi level is desirable.

Concerning the stability of oxygen vacancies at low-cawatid sites, formation energies of
neutral defects have been reported already 15 years agto(smeample Ref.27,112 216 for
MgO). However, as it was demonstrated above, chargeédcEnters in bulk MgO and at the
(100) surface are much more stable. Therefore, also chalgfedts at low-coordinated sites
should be considered.

10.1. F centers at MgO (100) steps and corners

In the following, neutral F centers at low-coordinated siéee briefly discussed as a first step
towards a full description of these defects, considerihgadsible charge states.

At structural defects like steps and corners, oxygen atam$oar-fold and three-fold coor-
dinated, respectively. The lower the coordination of the i, the less confined are geometric
and electronic relaxations, and, as a consequence, thatiomenergy of the neutral oxygen
vacancy is reduced with respect to the defect at the terfa@enation energieél? for neutral
oxygen vacancies at steps and corners have so far only beeettetad using embedded cluster
models at HF and LDA level of theor2¥,216]. Sushkoet. al. also reported the formation en-
ergy of the corner defect calculated with B3LYPLP]. Embedded cluster models using PBEO
have been calculated in the present wdrRq).

Periodic models for low-coordinated defects can be coowduin different ways. For the
monolayer step, a zig-zag structure and a model with moeolaye-dimensional rail structures
on 5-layer (100) surface slabs (see Hig.2a-b) have been calculated and compared at PBE level.
Step and rail size, respectively, were increased systeatlgti until formation energies were
converged within 0.04 eV. The formation energies obtainéd the two periodic models are in
very good agreement (within 0.02 eV). To model the corner; si8 x 3 x 2-atom island of two-
layer height on a 4-layer (100) slab has been calculatedHge#0.2). Structures were relaxed
with PBE, and single-point calculations with HSE06 and PBEDe performed for the relaxed
structures, scaled to HSE06 and PBEO optimized latticenpeters, respectively. The formation
energies are listed in Tabl®.1 As discussed for F centers in the bulk and at the terracéatke
of correlation in HF leads to an underestimation of the fdiomeenergies, while including only
local exchange leads to an overestimated formation enéirggs been demonstrated in Séc.
that the formation energy for neutral F centers in MgO onlyakie depends on HSE parameters
and can be estimated using HSE06 or PBEOQ. The energiesataidwiith these functionals are
highlighted in the table. The formation of F centers is eaticglly much more favorable at
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10.1. F centers at MgO (100) steps and corners

a) Mg O

Figure 10.2.: Side view of a) rail and b) zigzag periodic models that wersdu® calculate an
oxygen vacancy at the MgO (100) monolayer step site. c) dstandel used to calculate an
oxygen vacancy at the corner site.

steps and corners than in the bulk or at the terrace. Howtneformation energy of the neutral
defect also at these low-coordinated sites is so high tleat ¢bncentration is still negligible.

The systematic description of the formation energies asetifon of defect concentration or
surface charge for charged defects at steps and cornersalisnding due to the complicated
geometry. Periodic models can be used, but the structurdelmdave to be chosen and tested
carefully — in particular for the corner models. In additimnF centers also intrinsic intersti-
tials at steps or corners are possible and can be analyzegd i same methodology (for a
discussion of neutral oxygen interstitials in bulk MgO sppendix).

Table 10.1.: Formation energie&? (eV) of the neutral oxygen vacancy at the MgO (100)
surface corner and monolayer step, calculated using erededdister (ecm) and periodic
models (pbc). The chemical potential of oxygen correspdnddie oxygen-rich limit where
A,uo =0eV.

Method Step Corner
HF-ecm R16] 424 3.24
LDA-ecm [27] 6.99 545
PBE-ecm[l85 5.68 5.13

PBEO-ecm185 5.44 4.89
B3LYP-ecm L85 5.72 5.07
B3LYP-ecm [L17] - 4.63

PBE-pbc 5.79 5.17

HSE06-pbc 5.61 -
PBEO-pbc 5.61 -
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10.2. F centers at the MgO (111) surface

The (111) surface termination of ionic rock-salt metal @sids polar. Alternating layers of metal
and oxygen ions generate an electrostatic dipole field peipelar to the surface (Fid.0.3a)).
The calculated surface energy for formally neutral bulikdi@ated slabs of increasing thickness
diverges. As discussed by Tasker already in 1979, polaasesfcan be stabilized by rear-
rangement of charge, typically facilitated by substargiatface reconstructior2§1]. In some

a) Side view b) Top view
(Bulk terminated) (O-octopolar reconstruction)

Figure 10.3.:a) Side view of the unstable, bulk-terminated, polar MgO1j1durface. Alter-
nating magnesium cations and oxygen anions lead to anielelijpole perpendicular to the
surface. b) Top view of the octopolar O-terminated recawsion of the MgO (111) surface
with the primitive rectangular unit cell (white lines). Te&ucture has been relaxed using PBE.

cases, stabilization can also be achieved merely by eféctobarge transfer between layers, as
demonstrated by Wandet al. for ZnO (0001)-Zn and0001)-O surfaces42. The stability,
and structural and electronic properties of 12 models ofptilar undopedMgO (111) surface
were studied in 2008 by Zhang and Tang, applying DFT with a G@#tional, andab initio
atomistic thermodynamic243. In agreement with an earlier study by Finocehi al. (2004),

it was found that under conditions;.o > —5.6 eV the O-terminated octopolar structure is the
most stable reconstruction of the MgO (111) surface. In tHer@inated octopolar reconstruc-
tion, 3/4 of the ions in the outermost layer and 1/4 of the ionthe second layer are missing
(Fig. 10.30). To achieve charge neutrality, half of the negative chamghe surface layer should
be removed, which would correspond to removing 50% of thegeryatoms in the top layer of
the slab. Instead, in the octopolar reconstruction 75%ehtgative charge is removed from the
top layer, but furthermore 25% of the positive charge in #e&sd layer is taken away, so that
in total the desired 50% of negative charge at the surfad@iénated and the surface is charge
neutral.

There is a fundamental difference between the electronictstre of the MgO (100) and the
MgO (111) surface terminations. While the (100) surfacedisaere at the bulk VBM, the O-
octopolar reconstructed (111) surface termination eihiirface bands in the bandgap, 0.5 eV
above the VBM (Fig10.4). They are mainly due to oxygen atoms in the top layer of the su
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10.2. F centers at the MgO (111) surface

face, but there is also a contribution from magnesium atontké second layer, as shown by
the projected DOS in FidL0.4. Note, that these preliminary calculations have beeropedd
with PBE, and therefore only allow for a qualitative destiap. For the system without dopants

a) b) 10
6 = '
— > :";’ 0.8 r Surface
% 4 g 06 t .
T 3 g : O in top layer
) & I
g 5 04
SSEE| o
0 A 0.2 Mg in 2" layer
- SIS = 0.0
M Z X AT M 2 0 2 4 6 8

Energy (eV)

Figure 10.4.:a) Surface band structure of the O-terminated octopolamnsouction of MgO
(111) without defects, calculated for a 288-atom cell wiBE? b) MgO bulk DOS (gray) and
surface DOS (black), where both have been normalized bylidiyiby the number of electrons
in the system. The projected DOS for the top-layer oxygematfred) and second-layer mag-
nesium atoms (blue) are also shown (compare surface mo&da.ih0.5.

or defects, the surface bands are fully occupied. Intradugitype dopants in the bulk leads
to charge transfer between occupied surface bands andtacbands at the bulk VBM. This
results in downward band bending and a partial occupatigcheourface band. An important
step in a study of the doped MgO (111) surface would be to firichow electron transfer and
associated space-charge effects influence the surfachistoietry and reconstruction. In con-
trast to the (100) surface, band bending at the doped (1tfHcsuwill occur without vacancies,
and will contribute to the surface energy.

Here, F-center formation at the O-octopolar reconstrustathce is briefly analyzed. The
atom that is removed from the surface to create a vacancyversim theleft panel of Fig.10.5
In this picture also the underlying cubic MgO structure casilg be recognized. The position
where the vacancy is created corresponds to the edge of Azma x 2-atom MgO “cube”.
Similar to F centers at MgO (100), geometric relaxation isthpwonounced for the?!'—’l‘11 cen-
ter. The next-neighboring atoms below the vacancy try toveca flat surface. Magnesium
atoms move downwards, deeper into the surface, while oxgtems are displaced outwards
and upwards (Figl0.5 middleandright panel). The surface defects introduce defect levels in
the bandgap, above the surface band, similar to F centerg@ iilk and at the MgO (100) sur-
face. But since here also the surface band is present, thgyegened by electron transfer from
a surface defect to an empty surface state — at the VBM of tiséirg slab, which is a Fermi
level in case itis pinned at the surface of doped MgO — is @ndilan for the surfack; centers
at the MgO (100) terrace. Therefore, one more question tmbeered is if this effect dom-
inates over differences in electronic and geometric rélemaetween (100) and (111) surface
oxygen vacancies. Once all aspects mentioned above hawmecbesidered, the methodology
introduced in this work can be used to calculate concentratdf interacting surface oxygen
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Side view Top view

0.16A 0.20A

0.22A

Figure 10.5.: Relaxation due to jf{u center. Left O-octopolar reconstruction of the MgO
(111) surface. The oxygen atom that is removed to form an Feces marked by a yellow
circle. Middle, right Displacement of atoms closest to tlﬁﬁjﬁ center, markedlg andO, after
formation of the defect. Relaxation was calculated with PBE

vacancies at an MgO (111) surface in analogy with the arsmjysisented for F centers at the
MgO (100) surface.
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A. Appendix

A.1l. Oxygen interstitials in MgO bulk

Apart from vacancies, self-interstitials are a common typdefect in semiconductors and ox-
ides. Magnesium interstitials are harder to form than oryiperstitials, because they need
more space in the lattice. Here, only the neutral oxygenstitial will be considered. Since the
neutral oxygen vacancy formation energy can accuratehalmeiiated using the PBE exchange-
correlation functional, it is safe to assume that this ie &idid for the neutral oxygen interstitial.

Figure A.1.: Relaxed geometries for three oxygen self-interstitialfigamations corresponding
to local energy minima: a) face-centered, b) body-centeaed c) dumbbell configuration.
Measurements are in A. The distance between oxygen and siagnia pristine MgO is 2.13 A
(PBE).

To obtain the most favorable oxygen interstitial geometrg, MgO structure is relaxed start-
ing from different geometric configurations. These are afeentered, body-centered, and edge,
as well as some intermediate positions. The energeticalgs$t configuration found is a dumb-
bell configuration, where the interstitial oxygen togethéth a lattice oxygen atom forms a
dumbbell along the [111] direction, centered at the oxygatick site. The formation energy
for this configuration is 1.93 eV fqip = 1/2 Eg’; calculated with PBE. Two local minima are
given by the configuration, where the oxygen interstitidlaise-centered between two oxygen
and two magnesium atoms in the (100) plane as well as by a teakered configuration. The
relaxed structures are shown in FAy1l. Most severe changes compared to the pristine MgO
lattice are obviously introduced by the dumbbell configorat

Similar to the oxygen vacancy, the oxygen self-interdsitintroduce defect levels in the elec-
tronic structure of MgO. Two defect states appear in the fapdcorresponding to the 2p or-
bitals of the additional oxygen atom, each of them occupié two electrons. The face cen-
tered oxygen interstitial introduces one defect level daghe bandgap and the other one close
to the VBM. For a body-centered interstitial and a dumbbeaihfation centered at an oxygen
site the levels are almost degenerate and close to the VBBIb&hdstructure of pristine MgO
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A.1. Oxygen interstitials in MgO bulk

and the bandstructure of the most likely interstitial comfedgion (dumbbell), both calculated for
a 64-atom unit cell with the PBE exchange-correlation fiomztl, are shown in FigA.2. The
oxygen interstitial defect states are due to oxygen 2psstatainly of the two oxygen atoms that
form the dimer-like interstitial structure.

a) Pure MgO b) O interstitial (dumbbell)

8 K DOS ]

6 = -
B 4 |
>
20
g 2r - 2r -
= 02p 02p

Figure A.2.: Bandstructure and density of states for pristine MgO (a)taedlumbbell intersti-
tial configuration (b), obtained with PBE for a 2x2x2 MgO sigae#l. The energy zero is set to
the VBM. Note the two fully occupied defect levels close to MBor the dumbbell interstitial
configuration.

Fig. A.3 shows the formation energies for the three interstitiaffigomations and the neutral
oxygen vacancy af' = 600 K as a function of oxygen chemical potential and oxygen pressu
At this temperature contributions due to phonons are -Ovif2eF° and 0.30 eV for the dumb-
bell interstitial configuration. Vibrational effects aretrtaken into account in the following.
Referenced to the energetically most favorable dumbbeidfigoration, the face-centered and
body-centered configurations are 1.09 eV and 3.48 eV highenérgy. This is in qualitative
agreement with relative energies of 1.45eV and 3.57 eVeasely, calculated with a full-
potential linear-muffin-tin-orbital method using a 164atsupercell, where only next neighbors
are relaxedZ44]. For comparison also the’feenter formation energy is shown. For increasing
oxygen pressure, and therefore for increasing oxygen aatimotential, oxygen interstitials are
more easily introduced into the MgO lattice. Under the ctiods shown, the formation of a
neutral oxygen interstitial is preferred over the formatad a neutral oxygen vacancy.
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O, pressure at 600K (atm)
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Figure A.3.: Formation energies for interstitials and oxygen vacancg asction of oxygen
chemical potential and £pressure al” = 600 K. All defects are charge neutral.

A.2. Convergence tests for periodic systems

Formation energies for oxygen vacancies in periodic butk surface systems were calculated
in this work with a k-grid of4 x 4 x 4, tight integration grids, dier 1 basis for magnesium and
tier 2 for oxygen, where convergence within 0.1 eV is reached lfatedect charge states. For
the most severe case, the oxygen vacancy in charge statee2sgrivergence tests are shown in
Fig. A.4 for the bulk defect. (The convergence behavior for the seffg ™ center is equivalent.)

Basis functions are constructed in analogy with the folfayexamples.
hydro 2 p 1.8 Hydrogen-like function of 2p type with an effective ionihargeZ=1.8.
ionic 3 d autofor Mg: 3d function of the Mg+ ion (always doubly positively charged ion of
corresponding element), where the onset radius of the @mént potential is chosen automat-
ically to equal the one specified for the radial function eiqume
For each radial function there are correspondirigt(2) angular functions.
Basis functions are grouped into tiers, mostly orderedsotcessive angular momentum shells,
based on an iterative basis construction process descrnilieef. [99]. Energy convergence with
respect to basis set can be achieved by successively adeliagit single basis functions.
Fromlight overtight to safe/really tightsettings, parameters controlling the angular momen-
tum expansion of the atom-centered charge density mudtiforlthe electrostatic potential, the
confinement potential for the basis functions, and the gedmused for radial and angular inte-
gration are altered for increasing accuracy. For detafl$ad. P9 and manual that is distributed
with the code.
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Figure A.4.: Convergence of formation ener(‘tig);““"2 for a bulk P* center in a 64-atom su-
percell in the oxygen-rich limit, neglecting vibrationalexgy contributions, for a) PBE and b)
HSEO06 exchange-correlation functional, calculated whh-&ims. The Fermi level is at VBM.
(i) Convergence with k-pointsTight grids with atier 1 basis for magnesium ariér 2 for oxy-
gen were used. (i) Convergence with basis s&ight integration grids and & x 4 x 4 k-point
mesh were used. (iii) Convergence with integration gridimeés4 x 4 x 4 k-point mesh and a
tier 1 basis for magnesium arnigr 2 for oxygen were used.
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A.2. Convergence tests for periodic systems

Table A.1.: Standard numerical atom-centered orbital basis for hyarplithium, oxygen, and
magnesium, as distributed with FHI-aing9].

H Li O Mg
Minimal 1s [He]2s [He]2s2p [Ne] 3s
Tier 1 hydro2s2.1 hydro2pl1l.6 hydro2pl1l8 hydro2pl.5
hydro2 p 3.5 hydro 2 s 2 hydro3d 7.6 ionic 3d auto
hydro3d2.6 hydro3s6.4 hydro3s24
Tier2 hydrol1s0.85 hydro3p4.6 hydro4f11.6 hydro4f4.3
hydro2p3.7 hydro2p1.8 hydro3p6.2 hydro2p3.4
hydro2s1.2 hydro3s6.2 hydro3d5.6 hydro4s11.2
hydro3d 7 hydro4d4.7 hydro59g17.6 hydro3d6.2
hydro4f4.1 hydro1s0.75
Tier3 hydro4f11.2 hydro4d0.95 ionic2pauto hydro2s0.6
hydro3p4.8 hydro3p6.2 hydro4f10.8 hydro3p4.8
hydro4 d 9 hydro3s1.7 hydro4d4.7 hydro4f7.4
hydro 3 s 3.2 hydro2s6.8 hydro5g6.6
hydro2 p 1.6
hydro 3d 1.8
Tier 4 hydro3p5 hydro4p 0.45

hydro3s3.3 hydro5g 10.4

hydro5915.6 hydro2s12.4
hydro4f17.6 hydro4d 1.7
hydro4d 14
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A.3. MgO lattice-parameter optimization

Optimized lattice parameters for different exchange-alation functionals were obtained cal-
culating the cohesive energy of MgO using simple cubic @l&q8 atoms) for varying lattice

parameters and performing a least-squares fit of the esevgisus unit cell volume by the
Birch-Murnaghan equation of stat245 246. As an example, the fit is shown for HSEO06 in
Fig. A.5. Optimized lattice constants for different functionale aummarized in tabla.2.
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Lattice parameter (A)

Figure A.5.: Cohesive energy of MgO as a function of lattice constant fSEB6, obtained as
a fit by the Birch-Murnaghan equation of state. Total-enexgigulations were performed with
FHI-aims, using theéight predefined grids and basis settings.

Table A.2.: Optimized MgO lattice constants (A) for different exchasugerelation functionals.
Total energy calculations were performed with FHI-aims.

HF PW-LDA PBE HSEO6 PBEO B3LYP
4.185 4.165 4258 4217 4.212 4.235

A.4. Convergence tests and BSSE corrections for cluster
calculations

An unrelaxed MgOy embedded cluster model was used to find the opt-HSE funttioneal-
culating F centers in MgO. Embedding pseudopotentials feomFig.6.7) and point charges
were employed. For calculations with FHI-aims a finite seewfbedding point charges was
used. To insure convergence with respect to embedding toamgli the formation energy of the
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neutral F center (formed in the center of the cluster) wasutatied for increasing shells of em-
bedding point charges. This was performed for two diffeembedding geometries, spherical
and cubic. FigA.6 shows that the formation energy converges fast with redpettie number
of embedding shells and that the formation energy does pa&rdkeon the embedding geometry.
The calculations were performed using PBE exchange-atioal treatment.

a) b)
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Number of full cube-shaped shells Number of full spherical embedding shells

Figure A.6.: Convergence of formation energs for F° in eV with respect to number of point
charge embedding shells, calculated with PBE, basis sergogition error has been removed.
a) cube-shaped embedding , b) spherical embedding

For comparison, the formation energies of thecEnter, as calculated with different methods
using the embedded M@y cluster, are shown in Tabla.3. A tier 3 basis set was used for
all atoms in calculations with FHI-aims, whe@ is converged within 0.05 eV for all methods
shown. TURBOMOLE calculations were performed by S. Sicélarfiboldt University Berlin).
All formation energies were corrected for the basis set agsition error (BSSE) using the
Boys-Bernardi counterpoise correcticl®f. The BSSE may arise due to the incompleteness
of the atom centered orbital basis sets used in the calon&f9, 103 198 247. Depending
on the geometric structure and the basis set used, overlbpsig functions can improve the
computed total energy of a system. When energy differenetsden systems with different
numbers of atoms or different atomic arrangements are dered, this may lead to an error,
since the superposition of wave functions is not the samthéodifferent atomic configurations.
For the defect formation energy? three systems are calculated — the cluster without defest, t
cluster with defect, and a bare oxygen atom. For exampldgiriull cluster the atoms adjacent
to the central oxygen atom might profit from its basis funtsiowhile this is not the case,
when the central oxygen atom is removed in the cluster witefaad. The BSSE corrections as
obtained with FHI-aims for the vertical formation energ[é%for an P center, calculated in the
embedded MgOy cluster, are shown in Tabl.4. In general, the BSSE for GGA and hybrid
functional ground state energies is small when computed k#tl-aims, due to the construction
of numeric atom-centered basis sets, where the total enémyree non-spinpolarized atom is
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already converged at the minimum basis set 1e96).[ For explicitly correlated methods also
unoccupied orbitals are needed (see 2%cso that the BSSE becomes sevet83. Using
the counterpoise correction method, the BSSE can be obitainé corrected for@? — GY +
ACP(GY)) by computing the system fragments, here the cluster wittfectiEZS and the bare
oxygen atomE§E ), with the same basis functions that are used in the fulbslys(here the
pristine cluster) 199,

ACP(G?) = + EO atom (EFO + Eo atom)o

Indeed, as shown in Tabk.4, the absolute values of the BSSE corrections to the formatio
energiesi) are negligible (<0.04 eV) for the GGA functional PBE, and kyérid functionals
HSEO06, PBEO, and B3LYP, while for the explicitly correlategthods MP2 and RPA they are
as large as 1.71eV and 2.75eV, respectively. For all clustkulations in this work, BSSE-
corrected energies were used for consistency when congpdifferent methods and formation
energies calculated with different codes. In general, tB&B also concerns periodic calcu-
lations. Since based on the cluster results its absoluteevialassumed to be 0.04¢V for
the GGA and hybrid DFT defect formation energy calculatipasformed in this work, it was
neglected in these calculations.

Table A.3.: Vertical formation energies:? for F* in eV, as obtained from embedded M@,
cluster calculations (incl. BSSE corrections).

Code PBE HSEO6 PBEO B3LYP MP2 RPA CCSD(T)
@PBE

TURBO- 7.18 - 7.02 7.37 - - 7.09

MOLE

FHI-aims 7.11 7.03 6.99 7.35 805 7.13 -

Table A.4.: Basis set superposition correctloﬁgp in eV, as obtained from embedded @y

cluster calculations with FHI-aims (see text), USIIEJ 3 basis sets angkally tight/safegrid
settings.

PBE HSE06 PBEO B3LYP MP2 RPA@PBE
-0.03 -0.03 -0.03 -004 -171 -2.75
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