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The dissociation of molecules, even the most simple hydrogen molecule, cannot be described
accurately within density functional theory because none of the currently available functionals
accounts for strong on-site correlation. This problem led to a discussion of properties that the local
Kohn–Sham potential has to satisfy in order to correctly describe strongly correlated systems. We
derive an analytic expression for the nontrivial form of the Kohn–Sham potential in between the two
fragments for the dissociation of a single bond. We show that the numerical calculations for a
one-dimensional two-electron model system indeed approach and reach this limit. It is shown that
the functional form of the potential is universal, i.e., independent of the details of the two
fragments. © 2009 American Institute of Physics. �doi:10.1063/1.3271392�

I. INTRODUCTION

Over the years the improvement in exchange-correlation
�xc� functionals made density functional theory �DFT�1,2 the
tool of choice to accurately study and predict properties of
many-electron systems. Applications range from atoms to
molecules and nanostructures, biomolecules, and solids and
cover diverse topics such as theoretical spectroscopy, e.g.,
optical, energy loss, and time-resolved spectroscopy, electron
transport, light induced phase transitions, photochemistry,
and electrochemistry.3,4 Despite this success major basic
challenges remain that usually are manifestations of strong,
static, and dynamic electron correlations.5 Van der Waals in-
teractions, the localization in strongly correlated systems,
open-shell molecules, and molecular dissociation are poorly
accounted for by present functionals.5,6 A general measure of
interelectron correlations is the ratio of the kinetic energy to
the potential energy of the Coulomb interaction between
electrons. While the kinetic energy is lowered by delocaliza-
tion of electrons over the system, the Coulomb repulsion
works in the opposite direction trying to keep electrons far
from each other and thus favoring the tendency to localiza-
tion. In the condensed matter context this interplay of two
opposite tendencies is commonly pictured in terms of the
Hubbard on-site correlations that suppress tunneling of par-
ticles between atoms and lead to localization of electrons on
lattice sites �or groups of sites�. Strong Hubbard correlations
are responsible for the dissociation of molecules, the physics
of Mott insulators, nonitinerant magnetism in most of the
magnetic dielectrics, the Coulomb blockade in quantum
transport, etc. The failure of the common DFT-functionals to
capture the effects of Hubbard correlations led to the devel-
opment of the LDA+U method7 and its more elaborated
counterpart, the dynamical mean-field theory �DMFT�,8 to

describe strongly correlated systems. On the other hand, it is
absolutely clear that DFT being an “in principle exact”
theory should be capable to describe the regime of strong
correlations provided the proper xc potential is known. In
this realm, it is fundamental to increase the knowledge of
relations, fulfilled by the exact xc potential, in order to move
forward on the road toward the ultimate functional, the “holy
grail of DFT.”

In the present work, we consider a prototypical example
of a physical behavior governed by strong Hubbard
correlations—the dissociation of diatomic molecules, and
discuss exact features of the xc potential vxc necessary to
describe the correlation-driven electron localization happen-
ing in the dissociation limit. One such feature is well known;
in the dissociation of heteroatomic molecules the Kohn–
Sham �KS� potential vs acquires a step in between the frag-
ments to adjust the ionization potentials.9 The value of this
step is universal and is simply given by the difference of the
ionization potentials of the two fragments of the dissociated
molecule. Apparently, the presence of this step is necessary
to prevent an unphysical fall of electrons to the fragment
with a higher ionization potential. However, as we discuss
below, it is not sufficient to correctly describe the dissocia-
tion, i.e., the strongly correlated, limit. In fact, in this limit
the xc potential acquires a nontrivial structure even for the
most simple homoatomic molecules, such as H2.

An important step in understanding the behavior of the
xc potential in the dissociation limit has been made in a
series of works by Baerends and co-authors,10–15 who recon-
structed the xc potential of a number of stretched diatomic
molecules from an accurate many-body configuration inter-
action �CI� ground-state wave function. They noticed that, in
addition to the step, vxc also shows a peak structure around
the middle point between the two atoms.10–14 A subsequent
analysis has shown that the peak in vxc is a general feature of
the dissociation limit, which contradicts the common LCAOa�Electronic mail: nehelbig@gmail.com.
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form of the molecular orbital, but can be reasonably well
reproduced assuming that the two-electron wave function is
of Heitler–London form constructed out of the atomic KS
orbitals.15,16 The one-dimensional �1D� Heitler–London
model wave function was, very recently, used to discuss the
height and position of the peak and step.16 By partitioning
the xc potential Baerends and co-workers showed that the
peak originates from the “kinetic correlation term.”10,14 Ad-
ditionally, they interpreted the peak as a term that must bal-
ance a well in the KS kinetic energy density, and make the
resulting density more localized on the atoms.15 The physical
nature of the peak structure and its connection with the Hub-
bard correlations in the dissociation of a single bond is the
main subject of our paper. We prove that the spatial depen-
dence of the KS potential in between the fragments in the
strongly correlated dissociation limit, including both the
peak structure and the step �for heteroatomic molecules�, is
universal.17 It depends only on the asymptotic behavior of
the density of the fragments, which, in turn, is mainly deter-
mined by the atomic ionization potentials.9 In particular, we
derive an analytic formula that allows us to recover the exact
form of the xc potential in regions far away from the two
fragments in the dissociation limit from the knowledge of the
ionization potentials of the independent fragments. This re-
sult adds one more item to the list of exact properties of the
KS system and xc potential, such as Koopman’s theorem, the
exact asymptotic form of vxc for finite systems, and the exact
relation of the asymptotics of the density to the asymptotics
of the highest occupied KS state.9 We also demonstrate that
the peak structure in vxc can be viewed as a manifestation of
the Hubbard on-site correlations at the level of noninteract-
ing KS particles. The physical significance of this peak is
that it suppresses the quantum tunneling of KS particles be-
tween two fragments, exactly what the Hubbard repulsion
does for real electrons. This ensures that the fragments be-
come physically independent. To the best of our knowledge,
only the nonlocal functionals of Becke18 and Perdew19 show
a peak in the dissociation limit, however, both functionals do
not yield the correct limit at infinite distance.20 Hence, fur-
ther improvement of functionals is necessary, and the results
presented here constitute a stringent test for the future devel-
opment of static and time-dependent functionals aimed at
describing strongly correlated systems.

The structure of the paper is as follows. In Sec. II we
discuss the physics of the strongly correlated dissociation
limit in terms of both Hubbard on-site correlations and the
KS formulation of DFT. Using a simple analytically solvable
model for a 1D symmetric diatomic we derive the asymptotic
form of the KS potential and verify our findings numerically
for more general symmetric 1D systems. In Sec. III we un-
cover the universal physics that governs the behavior of the
KS potential in the dissociation limit, derive general exact
analytic formulas valid for all two-electron systems, and
verify them numerically for model 1D heteroatomic mol-
ecules. We also discuss generalizations of the results for
more general many-electron systems. We then conclude the
paper by summarizing our main results. An Appendix is in-
cluded to connect the results presented here to the previous
works by Baerends and co-workers.10–15,20

II. TOWARD DFT IN THE DISSOCIATION LIMIT

A. Physics of the dissociation limit: Real electrons
versus Kohn–Sham particles

Let us first consider the qualitative physics of the disso-
ciation of simple diatomic molecules with a single �-bond
formed by a pair of electrons originating from the atomic
valence orbitals. Specific examples for this scenario include
H2, Li2, and LiH, to name a few. When the molecule is
stretched, the gain in the kinetic energy due to the delocal-
ization of the electrons, which is proportional to the hopping
matrix element t, decreases exponentially. On the other hand,
the loss in the interaction energy, due to the presence of two
electrons on the same atom, saturates at a certain value of the
Hubbard on-site repulsion U. Starting from some distance,
roughly determined by the condition U� t, the on-site Cou-
lomb correlations block the interatomic tunneling, the elec-
trons get localized on their own atoms, and the molecule
dissociates into two physically independent fragments.

Within DFT the real interacting system is modeled by an
artificial noninteracting KS system with the same ground-
state density. The noninteracting particles are subject to an
effective potential via the KS �Ref. 2� equation �atomic units
are used throughout the paper�,

�−
�2

2
+ vs�r��� j�r� = � j� j�r� . �1�

Since the KS particles are noninteracting there is no way to
localize them on a particular atom, independent of the dis-
tance d between the fragments. For a symmetric molecule,
like H2 or Li2, the KS particles responsible for the formation
of the bond always occupy a symmetric orbital with a prob-
ability of 1/2 to find either particle on each atom.

Apparently, the behavior of the KS particles is very dif-
ferent from that of real physical electrons. The difference
between the real world and an artificial world of KS particles
becomes especially striking in the regime of strong correla-
tions, and the dissociation of simple molecules provides us
with a bright example of this phenomenon. However, a cer-
tain physical information, namely, the ground-state density,
is reproduced exactly by the KS system. Therefore, the real
physics should be reflected in the properties of the KS sys-
tem. Establishing a map of the physics governed by the
strong Hubbard on-site correlations to the properties of the
KS potential, i.e., the map of the real world to the world of
KS particles, is the main subject of this work. In order to find
this map we mainly concentrate on a minimal model that
captures all key physics of dissociation—the system of two
electrons in a potential formed by two nuclei/potential wells.
In Sec. III we argue that the main conclusions are transfer-
able to a more general many-electron case.

In the case of two electrons in a singlet state only one
spatial KS orbital is occupied. Therefore, the density is given
as n�r�=2��1�r��2=2�1

2�r�, because the orbital can always be
chosen to be real. Hence, from inverting Eq. �1�, the exact
KS potential is given by
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vs�r� =
1

2

�2�n�r�
�n�r�

+ �1, �2�

with n�r� being, by construction, the exact ground-state den-
sity of the two-electron system. Hence, given the exact two-
body ground-state wave function ��r1 ,r2�, one can calculate
the density n�r�=	dr2���r ,r2��2, and then recover the exact
KS potential by inserting n�r� into Eq. �2�. This formally
maps the physical two-body wave function to the KS poten-
tial. However, extracting the physics behind this formal map
is not as simple as one may think since in a general three-
dimensional �3D� case the wave function ��r1 ,r2� is a com-
plicated object given fully numerically, e.g., from CI calcu-
lations, and, moreover, may be numerically problematic for
realistic systems when one reaches the dissociation limit.
Therefore, it is instructive to look first at some simplified
models and then, after the essential physics is understood,
return to realistic situations.

An obvious simplification, which still contains all physi-
cal ingredients of the original problem, is to consider a sys-
tem of two interacting particles in one dimension. The cor-
responding two-electron Schrödinger equation takes the form

�−
1

2

 �2

�x1
2 +

�2

�x2
2� + vext�x1� + vext�x2� + vint��x1 − x2���

���x1,x2� = E��x1,x2� , �3�

where vext�x� is the external potential, and vint��x−x��� is the
potential of the interparticle interaction. At the end of this
section and in Sec. III we present the results based on the full
numerical solution of Eq. �3�. However, to gain some physi-
cal insight into the shape of vs in the dissociation limit, we
simplify the model even further to make it analytically solv-
able.

B. Analytical model of strongly correlated electrons

First, we assume that the external potential in Eq. �3� is
given by a sum of two �-function wells of equal strength, v,
located at the points x= �d /2. Similarly, we take the inter-
action to be a zero-range delta-potential of strength 	,

vext�x� = − v���x − d/2� + ��x + d/2�� , �4�

vint��x − x��� = 	��x − x�� . �5�

Physically, in the dissociation limit the only role of the inter-
action is to block the interatomic tunneling. Therefore, in
that limit, the behavior is expected to be universal and inde-
pendent of a particular form and/or strength of the interac-
tion. This leads us to the last simplifying assumption,
namely, the limit of infinitely strong �-repulsion, 	→
.
Now the problem becomes immediately solvable by the so
called Girardeau mapping21 �see also a more recent
review�,22 which allows to map the ground state of strongly
interacting “hard-core” bosons �a symmetric wave function�
to the ground state of noninteracting fermions �antisymmet-
ric wave function�. In our two-particle case the exact ground-
state �singlet, i.e., symmetric� wave function takes the form

��x1,x2� = ��1�x1��2�x2� − �2�x1��1�x2�� , �6�

where �1�x� and �2�x� are the two lowest states of the fol-
lowing one-particle Schrödinger equation:

− 1
2�n��x� + vext�x��n�x� = �n�n�x� . �7�

In other words, the ground state of two infinitely interacting
particles in a singlet state is given by the modulus of the
ground-state wave function of two noninteracting spinless
fermions in the bare external potential vext�x�.

The two lowest energy solutions of Eq. �7� with the ex-
ternal potential of Eq. �4� are easily found to be �1�x�
=�+�x� and �2�x�=�−�x� with

���x� = C��e−���x+d/2� � e−���x−d/2�� , �8�

where C� are the normalization constants. The parameters
��, which determine the corresponding eigenvalues �1,2

=��=−��
2 /2, are the solutions of the following dispersion

equations:23

�� = v�1 � e−��d� . �9�

Using the exact ground-state wave function �6� we obtain the
exact density

n�x� =� dx��2�x,x�� = �+
2�x� + �−

2�x� , �10�

and, finally, by inserting n�x� into the 1D version of Eq. �2�,
the exact KS potential for our strongly correlated two-
particle system, vs�x�=
vs�x�+vext�x�,


vs�x� =
��+�−� − �+��−�2

2��+
2 + �−

2�2 −
�+�+

2 + �−�−
2

�+
2 + �−

2 −
v2

2
. �11�

Equation �11� gives the exact KS potential for any distance
between the wells. In the dissociation limit, vd�1, ��→v,
and ��→−v2 /2. Therefore, the last two terms in Eq. �11�
cancel while the remaining first term simplifies to


vs�x� =
v2

2 cosh2�2vx�



I

cosh2�2�2Ix�
. �12�

I=v2 /2 is the ionization potential of a separate fragment, the
delta-potential of strength v. Hence, we found that the exact
KS potential in the dissociation limit has the form of a peak
built up between the two fragments of the “molecule.” The
shape of this peak looks quite close to the peak structure
observed in previous works.10–13 It also confirms previous
observations that the height of the peak equals the ionization
potential.10,20

C. 1D model for homoatomic dissociation

It is physically plausible to expect that the behavior in
the dissociation limit is independent of the particular form
and strength of the interaction, and that the asymptotic form
of vs�x� for more general systems is similar to that given by
the simple formula �12�. We now verify this expectation for a
1D system of two particles in a more general, but still sym-
metric, external potential, namely,
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vext�x� = − v� 1

cosh2�x − d/2�
+

1

cosh2�x + d/2�� . �13�

The two particles are interacting with a finite range interac-
tion potential of the form

vint��x − y�� =
b

cosh2�x − y�
. �14�

The choice of the 1 /cosh2 shape of the wells and the inter-
action potential is arbitrary. It is simply a matter of conve-
nience as the 1D Schrödinger equation with a 1 /cosh2 poten-
tial is exactly solvable,24 which allows us to control the
accuracy of our numerical calculations. In addition, the
finite-range interaction �14� allows us to reach the dissocia-
tion limit in a controllable way without numerical instabili-
ties.

For the numerical solution of Eq. �3� with general vext

and vint, we note that the 1D two-particle problem defined by
Eq. �3� can be formally interpreted as a 2D one-particle prob-
lem with the Hamiltonian

H2D = −
1

2
� �2

�x2 +
�2

�y2� + vext
2D�x,y� , �15�

where the effective 2D one-particle potential is defined as

vext
2D�x,y� = vext�x� + vext�y� + vint��x − y�� . �16�

Consequently, the exact ground-state wave function ��x ,y�
and the exact 1D ground-state density for the physical two-
particle system, n�x�=	dy���x ,y��2, can be obtained numeri-
cally from any computer code that is able to treat noninter-
acting electrons in two dimensions. All our calculations in
this work were carried out with the OCTOPUS code.25

The exact KS potential, vs�x�, for vext and vint of Eqs.
�13� and �14� with v=0.9 and b=0.5, and varying interwell
distance d is shown in Fig. 1. At first sight, the results look
very surprising: starting from a certain distance, d=8 a.u.
for these particular parameters, the shape of the KS potential
saturates exactly at the form given by the analytic formula
�12� with I being the ionization potential of a single 1 /cosh2

well. Calculations for different strengths of the wells v, dif-

ferent interaction strength b, as well as for a long-range soft-
Coulomb interparticle interaction all show the same result.26

At large distances the exact KS potential is not only similar
to the analytic form of Eq. �12�, obtained from an oversim-
plified model with an infinite �-repulsion, but matches it ex-
actly as soon the dissociation limit is reached! In the next
section we discuss a deep, though simple physical reason for
this seemingly surprising universality.

III. EXACT KOHN–SHAM POTENTIAL IN THE
DISSOCIATION LIMIT

A. Universality of the Kohn–Sham potential

In order to understand the nature of the universal peak in
the asymptotic form of the KS potential, we turn back to our
first simple model with an infinite zero-range repulsion and
look more closely at the behavior of the exact density deter-
mined by Eq. �10�. In the dissociation limit, vd�1, the func-
tions �+�x� and �−�x� become simple symmetric and anti-
symmetric combinations of “atomic” orbitals. Taking the
squares and summing them up, as suggested by Eq. �10�, we
find that all interference terms, i.e., the cross product of dif-
ferent atomic orbitals, cancel, and the total density reduces to
a sum of two atomic densities,

n�x� = ve−2v�x−d/2� + ve−2v�x+d/2�. �17�

This is exactly what Hubbard on-site correlations do—they
destroy the interatomic tunneling/interference, which local-
izes the electrons on separate sites, and eventually makes the
density to be the sum of the densities of two physically in-
dependent fragments. On the KS side of the mirror, the KS
potential, whatever it is, cannot localize the KS particles.
However, by building up a self-consistent peak between the
fragments, it suppresses the tunneling/interference of the
atomic KS orbitals to mimic the density distribution of the
two independent atoms. Thus, the physics of the on-site Hub-
bard correlations in the real world is mapped to the peak in
the KS potential in the artificial world of KS particles. It is,
therefore, not surprising that the universality of the physics
in the dissociation limit is reflected in the universal form of
the asymptotic KS potential. Since for DFT, only the density
distribution is essential the general condition that determines
the KS potential in the dissociation limit is simply

n�r� = n1�r� + n2�r� . �18�

In other words, the total density n�r� is equal to the plain
sum of the densities, n1�r� and n2�r�, of the two independent
fragments. The asymptotic form of the KS potential should
be such that it supports the density distribution given by Eq.
�18�. As the densities n1�r� and n2�r� decay exponentially
from different sides the only way to mimic this at the level of
a single KS orbital is to insert a potential peak in the middle
region. Having understood the key physics we are ready to
go to more complex systems.

B. Kohn–Sham potential of heteroatomic 1D molecules

It is now straightforward to find the form of the KS
potential in the dissociation limit for a general 1D molecule
formed by two different wells. Assuming that the densities,

-4 -2 0 2 4
x (a.u.)

0

0.1

0.2

0.3

0.4

0.5
v s-v

0

d=3.0
d=5.0
d=7.0
d=8.0
d=14.0
Analytical

FIG. 1. KS potential for two equivalent wells at different distances
�v=0.9�. The external potential has been subtracted to facilitate the compari-
son. Analytical results are given by Eq. �12�.
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n1�x� and n2�x�, corresponding to one electron sitting in a
separate well are known, we require that the total density
n�x� is given by their sum, Eq. �18�, and substitute this sum
into Eq. �2�. The result can be reduced to a form that looks
structurally similar to Eq. �11�,


vs�x� =
��n1�x

�n2 − �n2�x
�n1�2

2�n1 + n2�2 +
I1n1 + I2n2

n1 + n2
− I , �19�

where I1,2 are the ionization potentials of the fragments and
I=min�I1 , I2� is the ionization potential of the total system.
Equation �19� is valid in the dissociation limit, and from its
structure it is clear that 
vs�x� has a nontrivial x-dependence
�i.e., differs from a constant� only far away from the “at-
oms,” where the densities fall off exponentially. Therefore,
for the practical evaluation of vs in the dissociation limit, it is
sufficient to know only the asymptotic behavior of the den-
sity of the separate fragments. In the 1D case, the asymptot-
ics of the densities n1�x� and n2�x� have the following gen-
eral form

n1,2�x� = A1,2e−2�1,2�x�d/2�, �20�

where the exponents �1,2 are related to the ionization poten-
tials of the atoms I1,2=�1,2

2 /2 and A1,2 are prefactors to the
exponential decay.

Inserting Eq. �20� for a symmetric molecule �equivalent
wells with A1=A2, and �1=�2� into Eq. �19� we immediately
recover our first model result of Eq. �12� thus confirming its
universality. In a general asymmetric case �different wells or
a “heteroatomic” molecule� a new qualitative feature, a
“step,” appears. This step in vs is such that it aligns the
ionization potentials of the atoms. Formally, it results from
the last two terms in Eq. �19� which do not cancel if the
ionization potentials are different. Substituting the general
form of Eq. �20� into Eq. �19� we find the explicit results for
vs in different regions of space. It is convenient to represent
the KS potential as a sum of two different contributions, i.e.,

vs�x�=vs

�1��x�+vs
�2��x�. For the region between the wells,

i.e., for −d /2�x�d /2, the two contributions correspond to
the “peak” and the “step” discussed before. They are given
by

vs
�1��x� =

��1 + �2�2/8
cosh2���1 + �2��x + x0��

, �21�

vs
�2��x� =

I2 − I1

1 + exp�2��1 + �2��x + x0��
, �22�

with

x0 =
1

�1 + �2
��1 − �2

2
· d + log

A2

A1
� . �23�

Here, and in the following, we assumed that �1��2, i.e.,
that the left fragment has a larger ionization potential. Obvi-
ously, for a symmetric configuration, vs

�2� vanishes identi-
cally, i.e., there is only a peak in this case. Also, in this case
x0=0, i.e., the peak is exactly in the middle between the two
identical fragments as expected from symmetry. The position
of the peak and shelf has been derived for a specific model

system in Ref. 16 while the result in Eq. �23� is more gen-
eral.

For x�−d /2 the two contributions read

vs
�1��x� =

��1 − �2�2/8
cosh2���1 − �2��x + x0���

, �24�

vs
�2��x� =

I2 − I1

1 + exp�− 2��1 − �2��x + x0���
, �25�

with

x0� =
1

�1 − �2
��1 + �2

2
d − log

A2

A1
� . �26�

Contrary to before, vs
�1� does not describe a peak but it can

actually be shown that the potential is strictly monotonically
increasing describing the building up of the step, or its return
to zero depending on the direction one approaches x0� from.
Also, for the symmetric case, both contributions vanish as
there is no step in that case. For the region x�d /2 the po-
tential decays exponentially without specific features.

We emphasize that neither the specific form of the frag-
ments nor the type of interaction between the electrons enters
the derivation of our analytical result directly. The specifics
of the fragments appear in the result only via the parameters
�1,2 and A1,2. The former describes how fast the density de-
cays, i.e., it is directly related to the ionization potential of
each fragment. The latter is connected to the normalization
of the wave function and only enters the potential as a loga-
rithmic correction to the position of the peak and step with-
out changing the shape of the potential. For a symmetric
system the potential is completely determined by the ioniza-
tion potential of the two fragments. In all cases, symmetric
and asymmetric, the functional form of the KS potential is
universal; only the position and the width and height of the
peak depend on the system under consideration. Both in the
symmetric and in the asymmetric case, the presence of the
universal peak reflects Hubbard correlations. The potential
peak suppresses the tunneling and drives the KS density to
the density corresponding to physically independent sub-
systems.

To ensure that our universal analytical formulas are in-
deed correct, we performed numerical calculations for an
asymmetric two-electron system with the external potential
given by the sum of two different potential wells,

vext�x� = −
v1

cosh2�x − d/2�
−

v2

cosh2�x + d/2�
, �27�

with v1=0.9 and v2=0.7. As before, for the interaction we
keep the finite range potential of Eq. �14�. Since the one-
particle problem with 1 /cosh2 is exactly solvable,24 the pa-
rameters �1,2 and A1,2, entering our asymptotic formulas Eqs.
�21�–�26�, are available in the analytic form. In particular, for
the pre-exponential factors in the asymptotics of the
“atomic” densities, we get

A1,2 = 22�1,2
���1,2 + 1/2�
�����1,2�

, �28�

where � denotes the usual gamma-function.
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In Fig. 2 we show the comparison of the analytic KS
potential given by Eqs. �21� and �22� and the KS potential
obtained from the full numerical solution of the problem
defined by Eqs. �3�, �14�, and �27�. As expected, in the asym-
metric case, v1�v2, the KS potential acquires a step struc-
ture in addition to the peak. The step is a direct result of the
necessary alignment of the KS energy levels �the ionization
potentials� in the two fragments.9,27 It is already not so sur-
prising to see that the KS potential again approaches the
analytic asymptotic form with increasing distance. As in the
analytic calculation, the exact position of the peak and the
step depends slightly on the distance between the two wells
always being closer to the deeper well. While in the symmet-
ric case, see Fig. 1, the dissociation limit is reached at a
distance of around 8 a.u. in the asymmetric case around 11
a.u. are necessary. In both cases the numerical results agree
perfectly with the analytical expression. The larger distance,
necessary in the asymmetric case, is a result of the shallower
right potential well in that case.

Unfortunately, the analytical result of the step returning
to zero cannot be verified numerically for the systems at
hand. The position x0�, Eq. �26�, is so far away from the
actual potential wells that the density is numerically zero.
There is, however, no doubt that the step returns to zero
exactly as predicted by the analytic formula.

C. Generalizations to three-dimensional
and many-electron systems

The general argumentation used in the previous subsec-
tion to derive the exact KS potential in the dissociation limit
is not restricted to 1D systems. The general physical condi-
tion for dissociation is that the density is given by the sum of
the densities of the independent fragments, Eq. �18�, because
the interfragment tunneling is destroyed by Coulomb corre-
lations. The inversion formula of Eq. �2� is also valid for any
two-particle system independently of dimension. Therefore,
an elementary 3D generalization of Eq. �19� takes the form


vs�r� =
��n1 � �n2 − �n2 � �n1�2

2�n1 + n2�2 +
I1n1 + I2n2

n1 + n2
− I ,

�29�

where all notations are the same as in Eq. �19�. Using this
formula we can recover the exact limiting functional form of
the KS potential for any two-particle object dissociating into
two one-particle fragments. The only required input is the
long-range asymptotics of the independent fragments, which
is mainly determined by their ionization potentials. It is im-
portant to emphasize that the pre-exponential factors give
only weak logarithmic corrections to the position of the peak
and the step.

As an illustration, we present the exact KS potential that
controls the dissociation limit of the H2 molecule. The final
results obtained by inserting the ionization potential of the
hydrogen atom, and the electronic densities of two indepen-
dent hydrogen atoms, located at the points R1 and R2, into
Eq. �29� takes the form


vs
H2�r� =

1 − r1r2/r1r2

4 cosh2�r1 − r2�
, �30�

where r1,2=r−R1,2 are the vectors between the two protons
and the considered point in space. The KS potential for the
hydrogen molecule, Eq. �30�, is shown on Fig. 3. It is
easy to see from Eq. �30� that along the molecular axis

vs

H2��=0,z� is exactly of the 1D form Eq. �12�, while in the
perpendicular direction it has a Lorentzian shape,


vs
H2��,z = 0� =

1

2

1


2�

d
�2

+ 1

, �31�

with the width increasing at increasing distance between the
two hydrogen atoms.

Similarly, we can obtain an explicit form of the exact KS
potential for any two-electron system in the strongly corre-
lated dissociation limit. Moreover, one can argue that the
general formula �29� remains valid also for many electron
systems in those cases where the separate fragments have a
single electron in the highest occupied KS orbital. Indeed, in
this case the asymptotic behavior of the density away from
the atoms is completely determined by the two KS particles
in the highest occupied KS molecular orbital �KS HOMO�,
while the rest of the electrons effectively contribute to the
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rigid atomic cores. Therefore, the asymptotic form of the KS
potential can be obtained by inverting only one KS equation,
namely, for the KS HOMO, and, hence, the two-particle for-
mula �2� remains asymptotically valid. In the general case,

vs in Eq. �29� describes the difference between the actual vs

and the sum of the KS potentials of the two independent
fragments.

IV. CONCLUSIONS

In conclusion, we presented a recipe to calculate the ex-
act KS potential of systems in their dissociation limit. The
main ingredient is the ionization potential of the dissociated
fragments, a quantity that is readily available from spectro-
scopic data. We presented the explicit results for a 1D model
system and the hydrogen molecule. It is shown that the func-
tional form of the potential is independent of the specific
system and the details of the interaction as long as the latter
is repulsive and sufficiently strong. For the 1D model system
the numerical results approach the analytical one as the dis-
tance between the two fragments is increased. Hence, they
confirm our analytical result perfectly for both a symmetric
and an asymmetric system. Our results not only pose a strong
constraint for the development of xc functionals but also
introduce an alternative way to look at the electron localiza-
tion in strongly correlated systems. How to incorporate those
effects in a density-functional treatment remains a challenge.
It is especially intriguing to explore implications of our uni-
versal results for the quantum transport in the regime of Cou-
lomb blockade. It is natural to expect that the potential peak
in the KS potential should modify the tunneling probability
when the transport is described in terms of KS DFT.
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APPENDIX: CONNECTION TO THE KINETIC-
CORRELATION POTENTIAL

In this appendix we make a connection of our results to
the partitioning of the KS potential introduced in Ref. 10,
and to the interpretation of the peak in vs in terms of the
conditional probability.14 The key object is an amplitude of
the conditional probability that, for a general N-particle sys-
tem, is defined as follows:

��r2, . . . ,rN�r1� =
��r1,r2, . . . ,rN�

�n�r1�/N
, �A1�

where ��r1 ,r2 , . . . ,rN� is the ground-state many-body wave
function. The square of the function ��r2 , . . . ,rN �r1�, Eq.
�A1� gives a probability distribution for N−1 particles when
the position of a selected “reference” particle is fixed at r1.

In Refs. 10 and 14 the peak structure in vs has been
attributed to a “kinetic-correlation” part, vkin, of the decom-
position of the KS potential proposed in Ref. 10. In terms of
the conditional amplitude it is given as

vkin�r1� = 1
2� ��r1

��r2, . . . ,rN�r1��2dr2 . . . drN. �A2�

Physically, vkin�r� can be interpreted as an “integrated rate”
of change of the conditional probability under an infinitesi-
mal shift of the reference electron from a given point r.
Hence, a peak in vkin�r� in the dissociation limit signals that
the conditional probability changes significantly when the
reference electron crosses over the middle point between two
fragments. To make the connection of this interpretation to
our universal results as clear and explicit as possible, we
employ the analytically solvable model with an infinite delta
repulsion, which has been discussed in Sec. II B.

The exact ground state wave function is given by Eq.
�6�. Inserting this wave function into Eqs. �A1� and �A2� we
obtain for the correlation-kinetic potential

vkin�x� =
1

2
 d

dx

�+�x�
�n�x�

� +
1

2
 d

dx

�−�x�
�n�x�

�
=

��+�−� − �+��−�2

2��+
2 + �−

2�2 , �A3�

where ���x� are defined after Eq. �8�. Comparing the result
of Eq. �A3� with the exact KS potential �11� we find that the
first term in Eq. �11� is exactly the correlation-kinetic poten-
tial. According to our analysis, in the dissociation limit, only
this term survives and yields the universal peak, Eq. �12�, in
the KS potential. Hence, in agreement with Refs. 10 and 14,
vkin is indeed responsible for the peak structure. Apparently,
this conclusion is universal and applies to all generalizations
considered in Sec. III.

A peak in vkin�x� should correspond to rapid variations in
the conditional probability when the reference particle moves
across the middle point in the bonding region.11–13 Therefore,
it is instructive to look at the behavior of the function
�2�x2 �x1� for our analytic model,

�2�x2�x1� =
��+�x1��−�x2� − �−�x1��+�x2��2

�+
2�x1� + �−

2�x1�
. �A4�

In the dissociation limit vd→
 this equation can be repre-
sented in the following asymptotic form:

�2�x2�x1� �
1 − tanh 2vx1

2
ve−2v�x2−d/2�

+
1 + tanh 2vx1

2
ve−2v�x2+d/2�. �A5�

Equation �A5� clearly shows how the strong Hubbard corre-
lations, which are present in the ground-state wave function,
govern the behavior of the conditional probability of the sec-
ond particle when the reference particle is moving from the
left to the right across the system. When the reference elec-
tron is on the left hand side, at x1�−1 /2v, the first term in
Eq. �A5� dominates and the second particle is forced to sit on
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the right atom. If the reference particle is located on the right
hand of the system, at x1�1 /2v, the situation is opposite—
the second term in Eq. �A5� dominates and the second par-
ticle is repelled to the left atom. The crossover between these
two regimes occurs when the reference electron crosses the
middle region, in particular at x1=0 the probability to find
the second particle on either atom is equal to 1/2. Exactly
this crossover behavior is reflected in the peak of vkin�x� and,
therefore, in the KS potential
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