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Abstract

Understanding the properties of novel hybrid interfaces has implications in both fun-
damental science and technology. The interfaces of hybrid inorganic/organic systems
(HIOS), for instance, may lead to the emergence of collective effects that the isolated
components forming the interface do not exhibit. The electronic properties and the
function of these interfaces are intimately linked to their interface geometry. The in-
terface structure and its properties are a result of the interplay of electron transfer pro-
cesses, (covalent) hybridization of wave functions, van der Waals (vdW) interactions,
and Pauli repulsion. In particular, vdW interactions are fundamental in determining the
structure of the interface and the stability of HIOS. Thus, controlling the functionalities
of HIOS involves as a first step the prediction and understanding of the structural fea-
tures of the interface. Since the role of vdW interactions is crucial in the determination
of the structural features and stability, their accurate prediction becomes distinctively
relevant in this context. From an atomistic perspective within the computational simu-
lation of materials, it follows that modeling the adsorption of atoms and molecules on
surfaces requires efficient electronic-structure methods that are able to capture both co-
valent and non-covalent interactions in a reliable manner.

It is in this context that we propose a method within density-functional approxi-
mations (DFA) which includes screened vdW interactions (the so-called DFA+vdWsurf

method) to model the adsorption of atoms and molecules on surfaces. Specifically,
we combine dispersion-corrected density-functional approximations (the Tkatchenko-
Scheffler DFA+vdW method) with the Lifshitz-Zaremba-Kohn theory in order to include
the Coulomb screening within the substrate surface in the determination of the vdW C6
coefficients and vdW radii. Our method includes both image-plane and interface po-
larization effects via the inclusion of semi-local hybridization due to the dependence of
the C ab

6 interatomic parameters on the electron density. We show that the inclusion of
the non-local many-body response of the substrate electrons is essential to predict the
structure and stability of atoms and molecules on surfaces in a reliable manner, taking
as examples the adsorption of a Xe monolayer and an aromatic molecule which includes
oxygen in its structure.

In particular, we show that the DFA+vdWsurf method yields geometries in remark-
able agreement (within approximately 0.1 Å) with normal incidence x-ray standing
wave measurements for the adsorption of 3,4,9,10-perylene-tetracarboxylic dianhydride
(C24H8O6, PTCDA) on Ag(111), Au(111), and Cu(111). Additional examples include the

i



ii

adsorption of Xe on transition-metal surfaces and a comparative study of the interfaces
formed by a PTCDA monolayer on the Ag(111), Ag(100), and Ag(110) surfaces, show-
ing that the method also achieves surface-termination sensitivity. These results demon-
strate that the DFA+vdWsurf method can deal in a reliable manner with a wide range of
interactions at HIOS including chemical interactions, electrostatic interactions, Pauli re-
pulsion, and vdW interactions; therefore establishing it as a reasonable option for the ac-
curate treatment of adsorption problems due to its efficiency and affordability in terms
of computational time. Nevertheless, cooperative electronic effects between atoms in
larger molecules lead to non-additive molecular polarizabilities, effect which is absent
in the DFA+vdWsurf method. I conclude by commenting this and further remaining chal-
lenges left in order to achieve both quantitative accuracy and predictive power in the
simulation of the structure and stability of complex interfaces.



Zusammenfassung

Das Verständnis der Eigenschaften von neuartigen Hybrid-Grenzflächen ist sowohl
für die Grundlagenforschung als auch für technologische Anwendungen wichtig. Die
Grenzflächen von hybriden anorganischen/organischen Systemen (HIOS) führen zum
Beispiel zur Entstehung von kollektiven Effekten, welche die isolierten Bausteine nicht
besitzen. Die elektronischen Eigenschaften und die Funktionen dieser Grenzflächen
hängen stark von ihrer Geometrie ab. Die Grenzflächenstruktur und ihre Eigenschaften
resultieren aus dem Wechselspiel zwischen Elektronentransferprozessen, (kovalenter)
Hybridisierung von Wellenfunktionen, van-der-Waals-Wechselwirkungen (vdW) und
der Pauli-Abstoßung. Die vdW-Wechselwirkungen sind entscheidend für die Struktur
und die Stabilität der HIOS. Um schlussendlich die Funktionalitäten der HIOS kon-
trollieren zu können, ist als erster Schritt die Vorhersage und das Verständnis von
strukturellen Merkmalen der Grenzfläche notwendig. Aufgrund der bedeutenden Rolle
der vdW-Wechselwirkungen in diesem Kontext ist es besonders wichtig diese Wechsel-
wirkungen präzise berechnen zu können. Von einer atomistischen Perspektive benötigt
die Computersimulation der Adsorption von Atomen und Molekülen auf Oberflächen
effiziente Elektronenstrukturmethoden, die in der Lage sind sowohl kovalente also auch
nichtkovalente Wechselwirkungen verlässlich zu beschreiben.

In diesem Kontext stellen wir eine Methode im Bereich der Dichtefunk-
tionalnäherungen (DFA) vor, die abgeschirmte vdW-Wechselwirkungen beinhaltet
(DFA+vdWsurf), um die Adsorption von Atomen und Molekülen auf Oberflächen zu
modellieren. Im Besonderen kombinieren wir dispersionskorrigierte Dichtefunktional-
näherungen (die Tkatchenko-Scheffler DFA+vdW Methode) mit der Lifshitz-Zaremba-
Kohn-Theorie um die Coulomb-Abschirmung innerhalb der Substratoberfläche bei der
Berechnung der vdW-C6-Koeffizienten und vdW-Radien zu berücksichtigen. Unsere
Methode inkludiert sowohl Polarisationseffekte der Bildebene und der Grenzfläche
durch semilokale Hybridisierung aufgrund der Abhängigkeit der interatomaren C ab

6 -
Parameter von der Elektronendichte. Wir zeigen, dass die Berücksichtigung der
semilokalen Mehrteilchenantwort der Substratelektronen essentiell für eine zuverläs-
sige Vorhersage der Struktur und Stabilität der Atome und Moleküle auf der Oberfläche
ist. Als Beispiele verwenden wir die Adsorption einer Xe-Monolage und eines aromatis-
chen Moleküls, das Sauerstoffatome beinhaltet.

Im Speziellen demonstrieren wir, dass die DFA+vdWsurf-Methode für die Adsorp-
tion von 3,4,9,10-Perylentetracarbonsäuredianhydrid (C24H8O6, PTCDA) auf Ag(111),
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Au(111) und Cu(111) Geometrien liefert, die bemerkenswert gut (innerhalb von etwa
0.1 Å) mit normal incidence x-ray standing wave Messunge übereinstimmen. Weitere
Beispiele beinhalten die Adsorption von Xe auf übergangsmetall-Oberflächen und eine
vergleichende Studie der Grenzflächen, die von einer PTCDA-Monolage auf Ag(111),
Ag(100) und Ag(110)-Oberflächen gebildet werden, um zu zeigen, dass diese Meth-
ode Oberflächenempfindlichkeit aufweist. Diese Resultate demonstrieren, dass die
DFA+vdWsurf-Methode verlässlich mit einer großen Bandbreite von Wechselwirkungen
der HIOS (chemische Wechselwirkungen, elektrostatische Wechselwirkungen, Pauli-
Abstoßung und vdW-Wechselwirkungen) umgehen kann. Daher stellt sie durch ihre Ef-
fizienz und Leistbarkeit im Bezug auf Rechenzeit eine vernünftige Option für die präzise
Beschreibung von Adsorptionsproblemen dar. Allerdings führen kooperative elektron-
ische Effekte zwischen Atomen in größeren Molekülen zu einer Nicht-Additivität der
molekularen Polarisierbarkeiten. Dieser Effekt wird in der DFA+vdWsurf Methode nicht
berücksichtigt. Abschließend wird dies und andere verbleibende Herausforderungen für
die Erzielung von quantitativer Genauigkeit und Vorhersagekraft bei der Simulation von
der Struktur und Stabilität komplexer Grenzflächen diskutiert.
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CHAPTER

1
Introduction

It is hard to imagine the world of today without the influence of surface science. In 1909
Fritz Haber developed a catalytic process for the synthesis of ammonia from its con-
stituent elements. His process was later refined and industrially scaled by Carl Bosch
and Alwin Mittasch at BASF realizing its potential in the agricultural and military in-
dustries while also laying the foundations of modern industrial chemistry [James et al.,
2011]. The Haber-Bosch process has been a central process in today’s industrial chem-
istry for a century, supplying the world agriculture with a large-scale production of fertil-
izers and thus contributing with the food supply for a growing world population [James
et al., 2011].

This little extract of history of science, which interestingly initiated at the research
institute where this dissertation has been written, shows us the major role that modern
surface science has in the world of today. The physical and chemical processes occur-
ring at surfaces have significant implications for basic science and technological appli-
cations. In this context, the central topic of the research leading to this dissertation has
been the theoretical study of adsorption phenomena at interfaces formed between or-
ganic matter (in our case typically comprised by organic aromatic molecules) and inor-
ganic substrates. The main challenge in modeling the adsorption of atoms and mole-
cules on surfaces is developing efficient electronic-structure methods that are able to
capture both covalent and non-covalent interactions in a reliable manner. In particu-
lar, we focus on the role of collective effects –up to now often underestimated or simply
ignored– in the van der Waals (vdW) interaction of molecules on surfaces, aiming for
an accurate description of the structure and stability of these complex systems in the
context of density-functional theory (DFT).

1.1 Van der Waals interactions in hybrid inorganic/organic
systems

Understanding the electronic properties of hybrid inorganic/organic systems (HIOS)
has implications in both fundamental science and technology. In terms of basic science,
these interfaces may lead to the emergence of collective effects that the isolated compo-
nents forming the interface do not exhibit [Kronik and Koch, 2010; Cahen et al., 2005].
Among these effects, Kronik and Koch [2010] mention the emergence of magnetic phe-
nomena at the interface formed by non-magnetic components (including closed-shell
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molecular layers), localization of electron-hole pairs at the interface, and electronic or
transport properties of molecular ensembles that differ from those of the isolated mole-
cule(s) [see references within Kronik and Koch, 2010].

The eventual control of the function of HIOS has also substantial technological im-
portance. Organic light emitting diodes, organic thin film transistors, and low cost and
efficient organic solar cells are examples of emerging technologies based on organic thin
films, which some of them are now reaching the consumer market [Forrest and Thomp-
son, 2007; Kronik and Koch, 2010]. Potential future applications also include organic
memories and chemical sensors [Forrest and Thompson, 2007; Kronik and Koch, 2010].
The performance and future design of these devices are clearly related to the electronic
properties of the interface in which the interface geometry plays a fundamental role
[Duhm et al., 2008; Tkatchenko et al., 2010]. A balanced description of both the struc-
tural and electronic properties of these interfaces is thus critical for controlling their
functionality.

The interface properties that HIOS exhibit, including their interface structure, are
a result of the interplay of electron transfer processes, (covalent) hybridization of wave
functions, van der Waals (vdW) interactions, and Pauli repulsion. In particular, vdW
forces play an essential part in the structure and stability of these systems [Tkatchenko
et al., 2010; Atodiresei et al., 2009; Mercurio et al., 2010; Stradi et al., 2011; Olsen et al.,
2011; McNellis, 2010; Lazić et al., 2014]. It becomes clear that controlling the functional-
ities of HIOS involves as a first step the prediction and understanding of the structural
features of the interface as these features will determine the electronic properties. It is in
this regard where the accurate prediction of vdW forces becomes distinctively relevant
since their role in the determination of the structural features and stability is crucial.

In this context, DFT has become the method of choice in the calculation of inter-
faces and adsorption phenomena due to its good compromise between accuracy and
efficiency. Unfortunately, modeling vdW interactions in DFT is not an easy task as stan-
dard density-functional approximations (DFA) within DFT do not include them properly.
In this regard, the role of vdW interactions in the binding between small molecules in
the gas phase has been extensively studied and is fairly well understood. Unlike stan-
dard DFA, the hierarchy of methods in quantum chemistry can describe vdW interac-
tions properly; but recent years have also seen the development of several promising
vdW-inclusive schemes in DFT [see Klimeš et al., 2012; Tkatchenko et al., 2010, for a con-
cise review of vdW-inclusive methods in DFT]. Nevertheless, we have observed that their
application to HIOS is questionable due to either the absence or inaccuracy of the non-
local (inhomogeneous) collective electron response of the extended surface in the vdW
energy. This problem has been exemplified in previous publications for the case of the
adsorption of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA, chemical formula:
C24H8O6) on coinage metal surfaces [Rohlfing and Bredow, 2008; Rohlfing et al., 2007;
Romaner et al., 2009; McNellis, 2010; Tkatchenko et al., 2010; Ruiz et al., 2012] and in
general for other adsorption systems [Nguyen et al., 2010; Olsen et al., 2011; Stradi et al.,
2011; Atodiresei et al., 2009; Mercurio et al., 2010; Lüder et al., 2014].

It follows from this evidence that modeling HIOS requires efficient methods that are
able to describe a range of interactions in an accurate manner. The main contribution
that we present in this dissertation is regarding this particular issue. We have developed
a method within DFT, the DFA+vdWsurf method [Ruiz et al., 2012], to model screened
vdW interactions for the adsorption of atoms and molecules which incorporates the col-
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lective response of the substrate electrons in vdW-inclusive DFT for intermolecular in-
teractions.

The DFA+vdWsurf method combines the Lifshitz-Zaremba-Kohn (LZK) theory [Lif-
shitz, 1956; Zaremba and Kohn, 1976] for the inclusion of the non-local collective re-
sponse of the substrate surface in the vdW energy with the Tkatchenko-Scheffler (TS)
method [Tkatchenko and Scheffler, 2009] for intermolecular interactions. We have
demonstrated with this method that the collective response of the substrate electrons
can modify vdW coefficients in HIOS by up to an order of magnitude [see for exam-
ple section 4.4 or Ruiz et al., 2012]. Calculations using this method have demonstrated
that the inclusion of these collective effects, which effectively go beyond an atom-based
pairwise description of vdW interactions, is essential to describe the binding properties
of HIOS. As a vdW-inclusive DFT method, the DFA+vdWsurf method has allowed us to
cover a wide range of interactions in the adsorption of molecules on surfaces. These in-
clude, for example, the adsorption of a Xe monolayer, aromatic molecules (benzene and
derivatives, naphthalene, anthracene, azobenzene, diindenoperylene, and olympicene
and derivatives), C60, aromatic molecules including sulfur/oxygen such as thiophene,
NTCDA, and PTCDA on several close-packed transition-metal surfaces [Ruiz et al., 2012;
Liu et al., 2012; van Ruitenbeek, 2012; Liu et al., 2013b; Bürker et al., 2013; Mercurio et al.,
2013b; Schuler et al., 2013; Liu et al., 2013a, 2014]. A study of a Cu-phthalocyanine film
on a PTCDA monolayer adsorbed on Ag(111) has also been published recently [Egger
et al., 2013]. It is also worth mentioning that Camarillo-Cisneros et al. [2015] have stud-
ied the adsorption, diffusion, and desorption of benzene and naphthalene on a vicinal
Cu(443) surface, showing that the accuracy of the method also extends to adsorption on
stepped substrates.

The work we present here forms part of a stimulating context taking place recently in
surface science where the emergence of novel single-molecule experiments and theoret-
ical predictions, in which accuracy and further understanding are the main goals, have
been received with interest by the scientific community; as evidenced, for example, in
the short article “Dispersion forces unveiled” by van Ruitenbeek [2012]. For instance,
recent single-molecule experiments have aimed to illustrate and quantify the –often un-
derestimated or ignored– role of dispersion forces in molecule/metal interfaces, work in
which we have collaborated from the theoretical perspective [Wagner et al., 2014]. More
specifically, the methods that we present in this work have also contributed in illustrat-
ing the effects of non-additive vdW contributions in organic/metal interfaces while also
testing the asymptotic vdW force law and its validity range.

In short, this work is part of a larger effort trying to develop methods that are able
to give a balanced description of adsorption phenomena while treating realistic adsorp-
tion systems. This development is still experiencing its early phases, but we expect that
our contribution together with the inclusion of all relevant collective many-body effects
should take surface science in general and modeling of HIOS in particular to an unprece-
dented level of accuracy, enabling us to achieve a truly predictive power in the simula-
tion of the structure and stability of complex HIOS.

This dissertation is structured in the following way. Part I contains the description of
the theory and methods used (some of them developed) in this work. It starts in chap-
ter 2 by giving a brief introduction of the theoretical background underlying the atom-
istic methods that we employ to treat molecules interacting with surfaces including DFT,
a brief review of vdW interactions in the context of DFT, and a review of vdW interactions
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in solids with an emphasis on metals. Part I ends in chapter 3 with a short review of ex-
perimental techniques used to analyze the structure and stability of adsorption systems.
Part II, which includes chapter 4, is in many ways the central part of this work contain-
ing also its original contribution. It starts motivating the need of accurate vdW-inclusive
methods to model the structure and energetic stability of HIOS. To this end, we describe
the performance of several vdW-inclusive methods in DFT using one of the best exper-
imentally and theoretically characterized inorganic/organic interfaces –the adsorption
of PTCDA on Ag(111). This is followed by a review of the general theory of vdW interac-
tions including the particular case of the atom-surface vdW interaction. As we progress
in the chapter, we discuss the relation between vdW pairwise interactions and the case
of atom-surface vdW interaction as this relation underlines the DFA+vdWsurf method.
We conclude chapter 4 with a detailed description of the DFA+vdWsurf method.

Part III contains the applications of this new methodology to the adsorption of atoms
and molecules on surfaces. Chapter 5 briefly revisits the adsorption of PTCDA on Ag(111)
as a first example of performance with the DFA+vdWsurf method, it also introduces and
analyzes the adsorption of a single PTCDA molecule on Au(111) as an example of ph-
ysisorption in an inorganic/organic interface. It is also important to indicate that the
adsorption of noble gases on metal surfaces are prototypical examples of adsorption
phenomena where the main attractive forces are given by long-range vdW interactions.
More interesting is the fact that they have been studied extensively in experiments [Vi-
dali et al., 1991; Diehl et al., 2004; Bruch et al., 2007, 1997] and theory [Da Silva et al.,
2003, 2005; Chen et al., 2011, 2012; Bruch et al., 1997]. Because of their status as bench-
mark systems for physisorption in vdW-inclusive DFT methods, in chapter 6 we focus on
the study of the energetics and structure of the adsorption of Xe on selected transition
metal surfaces with the DFA+vdWsurf method.

In chapter 7 we finally address in more detail the structure and stability of HIOS,
topic which is fundamental to our motivation. Chapter 7 includes an in-depth study
of the adsorption structure found in the cases of PTCDA on the Ag(111), Au(111), and
Cu(111) close-packed metal surfaces, as well as their energetic stability. In order to an-
alyze the adsorption of an organic adsorbate on a metal surface with different orienta-
tions, this chapter also includes the adsorption of an organic monolayer on non-close-
packed surfaces. As study case, we take the interface formed by the adsorption of a
PTCDA monolayer on the Ag(111), Ag(100), and Ag(110) surfaces and investigate their
adsorption structure and energetic stability. We conclude this dissertation in chapter 8
with a summary of our research where we also mention the outstanding challenges that
we still face to achieve a truly predictive power in the simulation of the structure and
stability of complex HIOS and adsorption phenomena in general.
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CHAPTER

2
The many-body problem

The goal behind this dissertation is the first-principles modeling of van der Waals inter-
actions to study the structure and stability of molecules adsorbed on solid surfaces. For
this purpose, we require accurate methods that are able to describe efficiently the mi-
croscopic properties of surfaces and molecules in an accurate manner. With this idea in
mind, in this chapter we briefly introduce the theoretical background behind the atom-
istic methods required to treat molecules interacting with surfaces.

We start with the basic concepts behind the theoretical description of molecules and
solids that lead to the introduction of the electronic problem and electronic-structure
theory. In this context, our next step is to introduce density-functional theory as it con-
stitutes our main tool in electronic-structure theory due to its favorable compromise
between accuracy and efficiency. Finally, we examine some general ways of including
van der Waals interactions within the context of density-functional theory.

The following discussion is mainly based on the monographs by Parr and Yang [1989];
Kohanoff [2006]; Martin [2004]; and Engel and Dreizler [2011]. The reader is referred to
these references for an extended treatment of the subjects here presented.

2.1 The Hamiltonian

In general, any molecule or solid can be thought of as an ensemble of interacting atoms.
At the microscopic scale, molecules and solids can be unambiguously described as a col-
lection of atomic nuclei and electrons that interact via Coulombic electrostatic forces.
The Hamiltonian of such a system with P nuclei and N electrons has the following gen-
eral form

Ĥ =− ħ2

2MI

∑

I
∇2

I − ħ2

2me

∑

i
∇2

i + e2

2

∑

I ̸=J

ZI ZJ

|R I −R J |

+ e2

2

∑

i ̸= j

1
|r i −r j |

−e2 ∑

i ,I

ZI

|r i −R I |
, (2.1)

where R = {R I , I = 1, . . . ,P } is a set of P nuclear coordinates, and r = {r i , i = 1, . . . , N }
is a set of N electron coordinates. ZI and MI denote the nuclear charges and masses,
respectively and me is the mass of an electron. The first and second terms in (2.1) are
the kinetic energy of the nuclei and electrons, respectively. The last three terms describe
the Coulomb interaction between nuclei, between electrons, and between nuclei and
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electrons, respectively. In principle, most physical and chemical properties of molecules
and solids can be obtained by solving the time-independent many-body Schrödinger
equation using the Hamiltonian in (2.1)

Ĥ Φ(R ,r ) = EΦ(R ,r ), (2.2)

where E is called the total energy and Φ(R ,r ) is the wave function of the system. In solv-
ing (2.2), we must take into account the appropriate quantum statistics of the involved
particles. Since the electrons are fermions, the electronic wave function must be anti-
symmetric with respect to the interchange of both the space and spin coordinates of
any two electrons. Different nuclear species are distinguishable, but nuclei of the same
species can be either bosons or fermions, determining the symmetric or antisymmetric
character of the nuclear wave function. In surface science however, the symmetry of the
nuclei does not usually play an important role [Groß, 2009].

All the ingredients in the Schrödinger equation are in principle well known. In prac-
tice however, it is impossible to solve it analytically with the exception of a few simple
cases such as hydrogenoid atoms or the H+

2 molecule [Kohanoff, 2006]. The most im-
portant complications in (2.2) arise from the many-body character of the wave function
and the non-linear nature of the Coulomb interaction, making the Schrödinger equation
not separable. It is necessary to take into account some approximations to make (2.2)
tractable. The first one in this hierarchy of approximations is the Born-Oppenheimer
approximation.

2.2 The Born-Oppenheimer approximation

The first major approximation, which is expected to have validity for an important class
of systems, consists in decoupling the dynamics of electrons and nuclei. The central
idea is that nuclei move more slowly than electrons since they are much heavier. Follow-
ing this reasoning, Born and Oppenheimer first proposed in 1927 [as cited by Kohanoff,
2006] a scheme to separate the motion of nuclei and electrons. They showed that under
certain conditions, the electrons do not undergo transitions between stationary states,
which is called the adiabatic approximation. To a good approximation, the electrons are
thought as to be in motion in the field of fixed nuclei while staying in their ground state
for any configuration of the nuclei. The Born-Oppenheimer approximation serves as an
excellent approximation for many purposes in quantum chemistry and computational
materials science. It also forms the starting point for perturbation theory in electron-
phonon interactions in solids [Martin, 2004; Szabo and Ostlund, 1996].

Following this approximation, the kinetic energy of the nuclei can be neglected and
the repulsion of the nuclei can be considered as constant in (2.1). The remaining terms
in (2.1) form the electronic Hamiltonian which describes the motion of electrons in the
field of P point charges

Ĥ = T̂ +Ûee + V̂ne, (2.3)

where T̂ is the electronic kinetic operator, Ûee is the electron-electron interaction, and
V̂ne is the electron-nuclear interaction. The electronic wave function and the energy are
then obtained via the solution of the electronic Schrödinger equation

ĤΨ(R ;r ) = E(R)Ψ(R ;r ). (2.4)
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In (2.4), the electronic wave function Ψ(R ;r ) and the electronic energy E(R) depend
both parametrically on the 3P nuclear coordinates R . This means that the electronic
wave function is a different function depending on the arrangement of the nuclei and
that we must solve (2.4) for all different nuclear configurations. The total energy for a
fixed arrangement of nuclei must also include the constant nuclear repulsion Vnn [Szabo
and Ostlund, 1996]

U = E +Vnn, (2.5)

where

Vnn = e2

2

∑

I ̸=J

ZI ZJ

|R I −R J |
. (2.6)

Equations (2.3)–(2.6) constitute the fundamental equations for the theory of elec-
tronic structure. By solving the electronic problem, the nuclear problem can also be
solved under the same assumptions. If the electrons move much faster than the nuclei,
the electronic coordinates of the Hamiltonian given in (2.1) can be reasonably approx-
imated by taking their values averaged over the electronic wave function [Szabo and
Ostlund, 1996]. We can thus assume that the motion of the nuclei in the average field of
the electrons follows the Schrödinger equation given by

[
T̂n +U (R)

]
Θ(R) = EBOΘ(R), (2.7)

where T̂n is the kinetic energy of the nuclei, Θ(R) is the nuclear wave function, and EBO
is the Born-Oppenheimer approximation to the total energy in (2.2). Thus, within the
Born-Oppenheimer approximation, the nuclei move in the potential energy surface pro-
vided by the total energy U (R) which is obtained by solving the electronic problem.

The atomic nuclei can often be treated as classical particles hence neglecting the
quantum effects involved in their motion [Groß, 2009; Kohanoff, 2006]. This consists in
identifying the mean value of the position operator acting on the nuclei with the Carte-
sian coordinates of the classical particle [Kohanoff, 2006], leading to the equation of mo-
tion given by

MI
d 2R I (t )

dt 2 =−∂U (R)
∂R I

. (2.8)

A final expression for the force acting on the nuclei can be achieved by using the
Hellmann-Feynman theorem [see for example Groß, 2009; Kohanoff, 2006; Martin, 2004]

F I =−∂U (R)
∂R I

=−〈Ψ(R)| ∂Ĥ(R)
∂R I

|Ψ(R)〉− ∂Vnn(R)
∂R I

. (2.9)

The motion of the nuclei on the potential energy surface is defined by (2.9), its numerical
integration using the Newton equation is called ab initio molecular dynamics [Kohanoff,
2006]. The minima in the potential energy surface define equilibrium geometries which
correspond to the solution of the stationary problem given by F I = 0. The problem of
finding the equilibrium geometry is known as a geometry optimization and is equiva-
lent to the mathematical problem of nonlinear unconstrained minimization [Szabo and
Ostlund, 1996]. All the ab initio single-point molecular simulations and geometry op-
timizations presented in this dissertation are obtained within the Born-Oppenheimer
approximation.
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2.3 The electronic problem

As we have established in the previous section, the fundamental equation to study and
analyze the structure of matter is the time-independent electronic Schrödinger equation
given by

Ĥ |Ψ〉= E |Ψ〉 , (2.10)

where Ĥ is the electronic Hamiltonian

Ĥ = T̂ +Ûee + V̂ext, (2.11)

and V̂ext is the interaction with external fields. This term is a generalization of the
electron-nuclear interaction V̂ne defined in (2.3). The many-body wave function is rep-
resented by a state vector |Ψ〉, according to Dirac’s bra-ket notation, which is character-
ized in real space by its projection onto 〈r | given by Ψ(r ) = 〈r |Ψ〉. The main difficulty in
solving (2.10) is that electrons interact among themselves via the Coulomb long-range
non-linear potential, so the presence of an electron in a region of space will influence the
behavior of electrons in other regions. In mathematical terms, it means that the wave
function of a many-electron system cannot be simply written as the product of the wave
functions of individual electrons [Kohanoff, 2006].

The total energy of the electronic system is the expectation value of the Hamiltonian
given by

E = 〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉 , (2.12)

where |Ψ〉 is the N -electron ground-state wave function. If Ψ is normalized 〈Ψ |Ψ〉 = 1,
the expectation value of an operator Ô in state |Ψ〉 is given by

〈
Ô

〉
=

〈
Ψ

∣∣ Ô
∣∣Ψ

〉
=

∫
dr Ψ∗(r )ÔΨ(r ). (2.13)

In this context, the energy of the electronic system (2.10) with the electronic Hamilto-
nian given by (2.11) becomes

E =
〈

T̂
〉
+

〈
Ûee

〉
+

〈
V̂ext

〉
. (2.14)

The electrostatic nuclear repulsion Vnn of (2.6) is essential in the total-energy calcula-
tion [see (2.5)], but as it only represents a classical additive term in electronic-structure
theory [Martin, 2004], we will consistently keep it separated.

In order to provide an expression for each of the terms in (2.14), let us introduce the
one- and two-body density matrices in their operator form. They are given, respectively,
by [Parr and Yang, 1989; Engel and Dreizler, 2011]

n̂1(r ,r ′) =
∑

σ
ψ̂†

σ(r )ψ̂σ(r ′), (2.15)

n̂2(r ,r ′) = 1
2

∑

σ,σ′
ψ̂†

σ(r )ψ̂†
σ′(r ′)ψ̂σ′(r ′)ψ̂σ(r ), (2.16)

where ψ̂†
σ(r ) and ψ̂σ(r ) are the creation and annihilation operators for electrons of spin

σ at point r . These operators obey the anticommutation relations [Engel and Dreizler,
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2011; Kohanoff, 2006; Parr and Yang, 1989]

{
ψ̂σ(r ),ψ̂σ(r )

}
=

{
ψ̂†

σ(r ),ψ̂†
σ(r ′)

}
= 0, (2.17)

{
ψ̂σ(r ),ψ̂†

σ′(r ′)
}
= δσσ′δ(r −r ′). (2.18)

The diagonal element of n1(r ,r ′) corresponds to the electron density n(r ) given by

n(r ) =
〈

n̂1(r ,r )
〉

= N
∑

σ1...σN

∫
. . .

∫
dr 2 . . .dr N

∣∣Ψ(rσ1,r 2σ2, . . . ,r NσN )
∣∣2 . (2.19)

The electron density n(r ) can then be obtained as the expectation value of the density
operator n̂(r ) which can be expressed as [Parr and Yang, 1989; Engel and Dreizler, 2011]

n̂(r ) =
N∑

i=1
δ(r −r i ) =

∑

σ
ψ̂†

σ(r )ψ̂σ(r ), (2.20)

so that n(r ) = 〈Ψ | n̂(r ) |Ψ〉. The expression for the two-body density matrix in terms of
the many-body wave function |Ψ〉 is [Engel and Dreizler, 2011]

n2(r ,r ′) =
〈

n̂2(r ,r ′)
〉

= N (N −1)
2

∑

σ1...σN

∫
. . .

∫
dr 3 . . .dr N

∣∣Ψ(rσ1,r ′σ2,r 3σ3, . . . ,r NσN )
∣∣2 ,

(2.21)

where the two-body density matrix operator can also be formulated as [Engel and Drei-
zler, 2011]

n̂2(r ,r ′) = 1
2

N∑

i ̸= j
δ(r −r i )δ(r ′ − r j ). (2.22)

n2(r ,r ′) can be interpreted as the probability to find one particle with arbitrary spin
at position r and, simultaneously, a second particle with arbitrary spin at r ′ [see, for
example, Engel and Dreizler, 2011; Martin, 2004; Dobson, 1991]. This interpretation will
be useful to treat and understand the electron-electron interaction.

In the case of local one-particle operators, only the diagonal part is conventionally
written given the fact that it is always possible to find a matrix representation of these op-
erators which is diagonal, that is; Ô1 = ∑

i O1(r i ). The corresponding expectation value
is given by [Parr and Yang, 1989]

〈
Ô1

〉
=

∫
dr O1(r )

[
n1(r ,r ′)

]
r ′=r . (2.23)

This is the case, in particular, for the kinetic energy and the external potential energy
operators of (2.11) which take the following form (adopting atomic units)

T =−1
2

N∑

i=1

〈
Ψ

∣∣∇2
i

∣∣Ψ
〉
=−1

2

∫
dr

[
∇2

r n1(r ,r ′)
]

r ′=r , (2.24)

Vext = 〈Ψ|
N∑

i=1
vext(r i )|Ψ〉=

∫
dr vext(r )n(r ). (2.25)
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The electron-electron Coulomb interaction term Uee in (2.11) is responsible of in-
troducing many-body effects. It consists of a two-body operator which is given by Ô2 =∑

i< j O2(r i ,r j ) and is local with respect to the coordinates of the two particles involved
[Engel and Dreizler, 2011]. Such an operator can be written in terms of the two-body
density matrix defined in (2.21) as [as found in Parr and Yang, 1989; Kohanoff, 2006]

Uee =
1
2

N∑

i=1

N∑

j ̸=i
〈Ψ| 1

|r i −r j |
|Ψ〉=

∫∫
dr dr ′ n2(r ,r ′)

|r − r ′| . (2.26)

Recalling here that n2(r ,r ′) can be interpreted as the probability to find one particle with
arbitrary spin at position r and a second particle with arbitrary spin at r ′ [see (2.21)], we
can write [Kohanoff, 2006; Engel and Dreizler, 2011]

n2(r ,r ′) = 1
2

n(r )n(r ′)g (r ,r ′), (2.27)

where we have defined the pair-correlation function g (r ,r ′) which measures the depar-
ture of n2(r ,r ′) from a simple product n(r )n(r ′) that corresponds to the case of uncor-
related particles. The symmetric function g (r ,r ′) is an object that is different from one
only when r is sufficiently close to r ′. If the electron-electron interaction of (2.26) were
purely classical, meaning that g (r ,r ′) = 1 everywhere, the electron-electron interaction
could be written as the classical electrostatic interaction energy of a charge distribution
n(r ) [Parr and Yang, 1989]

EH[n] = 1
2

∫∫
dr dr ′ n(r )n(r ′)

|r −r ′| , (2.28)

where the factor 1/2 is present to avoid double counting. Expression (2.28) is known
as the Hartree term, its square brackets indicate a functional dependence on the elec-
tronic density n(r ). Expressions (2.27) and (2.28) point in the direction of separating the
electron-electron interaction of (2.26) into two terms [Kohanoff, 2006]

Uee = EH[n] + 1
2

∫∫
dr dr ′ n(r )n(r ′)

|r −r ′|
[
g (r ,r ′)−1

]
, (2.29)

where the first term ignores correlation altogether by taking g (r ,r ′) = 1, thus correspond-
ing to the classic Hartree term defined in (2.28). The second term incorporates all non-
classical effects due to the correlation of electrons by taking into account the departure
of g (r ,r ′) from 1. In this manner, the function g (r ,r ′) incorporates all nonclassical ef-
fects due to the correlation of electrons [Kohanoff, 2006].

The pair-correlation function g (r ,r ′) takes into account the fact that the presence of
an electron at r reduces the probability of finding a second electron located at a position
r ′ in the vicinity of r due to the Coulomb repulsion. In addition, this probability will be
further diminished if the electrons have the same spin projection due to Pauli’s exchange
principle [Kohanoff, 2006]. Correspondingly, the second term in (2.29) includes the so
called effects of exchange and correlation which we will briefly describe next.

2.3.1 Exchange and correlation

Independent (quasi-)particle approximations are at the heart of understanding
electronic-structure theory methods. The simplest possible approximation consists in

12



2.3. The electronic problem

neglecting the second term in (2.29) by taking g (r ,r ′) = 1 everywhere. This leads to a
completely uncorrelated system in which the two-particle interaction becomes the clas-
sical self-repulsion energy of a continuous charge distribution n(r ), namely the Hartree
term in (2.28). This is known as the Hartree approximation [Martin, 2004; Kohanoff,
2006]. The Hartree approximation treats electrons as distinguishable particles but elec-
trons are indistinguishable particles with spin, that is, they are fermions. The next step is
to introduce the exchange interaction, which can be achieved through the Hartree-Fock
approximation.

The Hartree-Fock approximation

Pauli’s exclusion principle states that two fermions cannot occupy the same quantum
state because the many-fermion wave function must be antisymmetric upon particle
exchange. The Hartree-Fock (HF) approximation consists in improving over the simple
Hartree approximation by adding Pauli’s exclusion principle, thus taking into account
that the motion of two electrons with parallel spins must be correlated. It can be fulfilled
by proposing an antisymmetric many-body wave function as a solution to (2.10).

The simplest antisymmetric wave function which can be used to describe the
ground-state of an N−electron system is a Slater determinant

ΨHF = 1
)

N !

∣∣∣∣∣∣∣∣∣∣

ψ1(r 1σ1) ψ2(r 1σ1) · · · ψN (r 1σ1)
ψ1(r 2σ2) ψ2(r 2σ2) · · · ψN (r 2σ2)

...
...

...
ψ1(r NσN ) ψ2(r NσN ) · · · ψN (r NσN )

∣∣∣∣∣∣∣∣∣∣

(2.30)

= 1
)

N !
det

[
ψ1ψ2 . . .ψN

]
(2.31)

where the functions ψi (r jσ j ) = φi (r j )χi (σ j ) are single-particle spin orbitals. Each of
them is the product of a function of the position φi (r j ) and a function of the spin vari-
able χi (σ j ). The mathematical properties of the determinantal expression (2.31) ensure
that the wave function changes sign when exchanging the coordinates of two of the elec-
trons. The variational principle states that the ground-state wave function of the form
(2.31) is the one which gives the lowest possible energy E HF

0 =
〈
ΨHF

0

∣∣ ĥ
∣∣ΨHF

0

〉
, where ĥ

is the electronic Hamiltonian given in (2.11) [Szabo and Ostlund, 1996]. The variational
flexibility in the wave function ΨHF is the choice of single-spin orbitals.1

In terms of the pair-correlation function g (r ,r ′) discussed above, the electron-
electron interaction in the HF approximation becomes [Kohanoff, 2006]

U HF
ee = 1

2

∫∫
dr dr ′ n(r )n(r ′)

|r −r ′|

+ 1
2

∫∫
dr dr ′ n(r )n(r ′)

|r − r ′|
[
gx(r ,r ′)−1

]
, (2.32)

where the contribution of exchange to the pair-correlation function is given by

gx(r ,r ′) = 1−
∣∣n1(r ,r ′)

∣∣2

n(r )n(r ′)
. (2.33)

1The reader is referred to the book written by Szabo and Ostlund [1996] for a detailed description re-
garding the derivation of the HF equations and the determination of the optimal spin orbitals.

13



2. THE MANY-BODY PROBLEM

The HF density and density matrix in (2.32) and (2.33) are calculated from the ground-
state Slater determinant2 ΨHF

0 . The next step is to include effects that go beyond those
of exchange.

Effects beyond exchange: the correlation energy

The HF approximation incorporates exchange effects by proposing a wave function
made from a single Slater determinant. However, since the motion of electrons with
opposite spins remains uncorrelated, a single-determinant wave function is usually re-
ferred as an uncorrelated wave function [Szabo and Ostlund, 1996]. The improvement of
this wave function can be achieved by introducing extra degrees of freedom in the wave
function, thus lowering the ground-state energy. The wave-function-based methods
that improve the quality of the description upon the HF approximation are commonly
known as post-HF methods. These methods include, for example, the linear mixing of
many determinants, known as configuration interaction, and the use of many-body per-
turbation techniques. A detailed description of these methods can be found in the book
by Szabo and Ostlund [1996].

The effects of correlation can be cast, in terms of the pair-correlation function g (r ,r ′),
as the remaining part of the function once the effects of exchange have been taken into
account [Kohanoff, 2006],

g (r ,r ′) = gx(r ,r ′)+ gc(r ,r ′), (2.34)

where gc(r ,r ′) is the contribution of electron correlation to the pair-correlation func-
tion [Kohanoff, 2006]. In general, since electrons of the same spin are kept apart by the
exclusion principle, correlation is most important for electrons with opposite spin.

One possible definition of the correlation energy (E HF
c ), in the context of HF based

methods (quantum chemistry methods), is given as the difference between the exact
nonrelativistic ground-state energy (E0) within the BO approximation [see (2.4)] and
the ground-state HF energy (E HF

0 ) obtained in the limit where the basis set approaches
completeness: E HF

c = E0 −E HF
0 [Szabo and Ostlund, 1996]. However, this is not the only

possible definition of the correlation energy as it can also be done in terms of another
reference state. Another precise definition emerges in the context of density-functional
theory where the correlation energy still corresponds to the difference between the total
energy and the sum of kinetic, direct and exchange Coulomb energies, but with the con-
dition that the orbitals must give the exact density of the system [Martin, 2004; Kohanoff,
2006]. This fact reveals that a separation of the total energy into different contributions
can be done as a matter of convenience, and that such separation depends on the par-
ticular theoretical framework.

2In the case of single determinants, the one-particle density matrix takes the form

n1(r ,r ′) = n!
1 (r ,r ′)+n"

1 (r ,r ′),

where nσσ
1 (r ,r ′) = ∑

i ψi (rσ)ψ∗
i (r ′σ′). The ground-state electron density is calculated by inserting the

wave-function ΨHF
0 into the expression for the electron density (2.19), yielding

n(r ) =
∑

σ

N∑

i

∣∣ψi (rσ)
∣∣2 = 2

N /2∑

i

∣∣φi (r )
∣∣2 .
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In the next section we describe another approach to address the electronic problem
in which the separation of the total energy into different contributions shall play an im-
portant role. This approach is density-functional theory, which considers the electronic
density to be the fundamental variable in electronic-structure theory. It has been the pre-
ferred choice in electronic-structure calculations in condensed matter physics for some
decades now, but has also become accepted by the quantum chemistry community be-
cause of its computational advantages over post-HF methods of comparable quality.

2.4 Density-functional theory

Density-functional theory (DFT) is a theory for the treatment of many-body systems that
has become the primary tool for calculation of electronic-structure in condensed matter,
molecular, and other finite systems. It considers a special role of the electron density in
the ground-state of a quantum many-body system, postulating that all properties of the
many-body system can be considered to be unique functionals of the ground-state den-
sity [Martin, 2004]. We start by giving a general description of the Thomas-Fermi-Dirac
(TFD) approximation which, although is not accurate enough for present-day electronic-
structure calculations, constitutes the basis for the development of density-functional
theory.

2.4.1 The Thomas-Fermi-Dirac approximation

Thomas and Fermi proposed a method which can be considered as a precursor of
density-functional theory of quantum systems around 1927.3 They gave a prescription
for calculating the energy of an electronic system exclusively in terms of the electronic
density [Martin, 2004; Kohanoff, 2006]. In the Thomas-Fermi method, the system of elec-
trons is idealized as a noninteracting homogeneous gas. The homogeneous electron gas
is the simplest model used to represent condensed matter. It is a system completely de-
termined by its electronic density in which the nuclei are replaced by a homogeneous
positive background charge density. In its noninteracting approximation, it involves the
solution of a set of one-electron equations with the Hamiltonian given in the Hartree
approximation (see section 2.3.1). The ground-state of the system is found by occupy-
ing the lowest eigenstates while obeying the exclusion principle. The solutions to this
approximation are normalized plane waves ψk = 1

Ω1/2 ei k ·r with energy εk = 1
2 k2 [Martin,

2004].
The main idea in the Thomas-Fermi method is to construct the same quantities for

the inhomogeneous system as

Eα[n] =
∫

dr n(r )εheg
α [n(r )], (2.35)

where ε
heg
α [n(r )] is the energy density of the contribution α, which potentially includes

the kinetic, exchange, and correlation contributions, determined locally at the value as-
sumed for the density at any given point [Kohanoff, 2006]. This is the first proposal of the
local-density approximation (LDA). In the noninteracting homogeneous electron gas,

3The original reference(s) can be found in Martin [2004]; Kohanoff [2006]; Parr and Yang [1989]; and
Engel and Dreizler [2011].
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2. THE MANY-BODY PROBLEM

the electronic density is calculated in terms of the Fermi energy εF as [Kohanoff, 2006;
Martin, 2004]

n = 1
3π2

(
2εF

)3/2 , (2.36)

the kinetic energy per electron is given by Ts(V ) = 3
5εF , and the kinetic-energy density

becomes [Kohanoff, 2006; Engel and Dreizler, 2011]

ts[n] ≡ Ts(V )
V

= 3
5

(
3π2n

)2/3
. (2.37)

In the approximation by Thomas and Fermi, the kinetic-energy density ts(r ) of the
inhomogeneous system is replaced by the energy density of the electron gas given in
(2.37), but evaluated with the local density n(r ). As a result, the kinetic energy is given
by [Engel and Dreizler, 2011; Kohanoff, 2006]

T TF
s [n] =Ck

∫
dr n(r )5/3, (2.38)

where Ck = 3
10 (3π)2/3 = 2.871 hartree. Whereas the rigorous formula of (2.24) for the

kinetic energy is given in terms of the one-body density matrix, Thomas and Fermi orig-
inally approximated the kinetic energy of the electrons as an explicit functional of the
density, but neglected exchange and correlation among the electrons. It was Dirac, in
1930 [as found in Martin, 2004; Kohanoff, 2006], who formulated the local approxima-
tion for exchange of an homogeneous electron gas as

Ex[n] =−Cx

∫
dr n(r )4/3, (2.39)

with Cx = 3
4 ( 3

π )1/3 = 0.739 hartree.
By recalling the general energy expression for a many-body electronic system of

(2.14) and keeping in mind that the TFD approximation neglects the correlation energy,
the TFD approximation for the energy of a system of electrons in an external poten-
tial Vext is obtained by replacing the approximations given in (2.38)–(2.39) as [Kohanoff,
2006]

ETFD[n] = Ck

∫
dr n(r )5/3 +

∫
dr vext(r )n(r )+ 1

2

∫∫
dr dr ′ n(r )n(r ′)

|r − r ′|

−Cx

∫
dr n(r )4/3, (2.40)

where ETFD[n] is said to be a functional of the electronic density as its formulation is
given in terms of the electronic density alone. The next step is to assume that, by means
of a variational principle, we can search for the ground-state density n(r ) that minimizes
the energy functional ETFD[n] under the constraint that the total integrated charge be
equal to the number of electrons

∫
dr n(r ) = N . (2.41)

This minimization can be evaluated using the method of Lagrange multipliers, so the
ground-state density must satisfy the variational principle

δ

{
ETFD −µTFD

[∫
dr n(r )−N

]}
= 0, (2.42)
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2.4. Density-functional theory

where the Lagrange multiplier µTFD is given by

µTFD = δETFD[n]
δn(r )

(2.43)

= 5
3

Ckn(r )2/3 + vext(r )+
∫

dr ′ n(r ′)
|r −r ′| −

4
3

Cxn(r )1/3. (2.44)

Extensions of the TFD energy formula (2.40) include correlation contributions that
can be introduced within the same philosophy of a local quantity in the framework of
the homogeneous electron gas, as first done for example by Wigner [as cited by Kohanoff,
2006]. Further extensions correspond to those of the Thomas-Fermi kinetic energy, as
taken first by von Weizsäcker [see for example Engel and Dreizler, 2011; Martin, 2004], in
order to account in a better manner for the inhomogeneity of real systems. A thorough
account of these extensions and the related models to the TFD method can be found in
Parr and Yang [1989] and Engel and Dreizler [2011].

The idea of expressing the energy of an electronic system exclusively in terms of
the three-dimensional quantity that is the electron density is a very attractive feature
of the TFD model. However, its approximations result to be too severe, missing essen-
tial physics and chemistry such as the shell structure of atoms and binding of molecules
[Martin, 2004]. We shall continue by addressing the Hohenberg-Kohn theorems which
form the mathematical basis of modern DFT.

2.4.2 The Hohenberg-Kohn theorems

Hohenberg and Kohn [1964] were the first to formulate DFT as an exact theory of many-
body systems by proving two theorems in which DFT is based upon. In an N−electron
system with a Hamiltonian given by (2.11), the external potential vext(r ) defines the nu-
clear frame for an electronic system which together with the number of electrons N de-
termine all the electronic properties of the ground state [Parr and Yang, 1989]. The for-
mulation of the theorems of Hohenberg and Kohn is restricted to nondegenerate ground
states.

The first Hohenberg-Kohn (HK) theorem [Hohenberg and Kohn, 1964] provides the
grounds for using the electron density n(r ) as basic variable in place of N and vext. It
states that4 the external potential vext(r ) is determined, within a trivial additive constant,
by the electron density n(r ). Since n(r ) determines the number of electrons, it also de-
termines the ground-state wave function Ψ and all the other electronic properties of the
system [Parr and Yang, 1989]. The proof of this theorem is simple and can be found, for
example, in Parr and Yang [1989]; Kohanoff [2006]; and Martin [2004] in addition to the
original reference [Hohenberg and Kohn, 1964].

Since the electronic density n determines N and vext, it follows that n also deter-
mines all properties of the ground state as the kinetic energy T [n], the potential energy
V [n], and thus the total energy E [n]. In place of (2.40), we define the energy Ev , which
is a functional of the density because of the previous theorem, as [Parr and Yang, 1989;

4Taken from Parr and Yang [1989].
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Kohanoff, 2006]

Ev [n] = T [n]+Vext[n]+Uee[n]

= FHK[n]+
∫

dr vext(r )n(r ), (2.45)

with
FHK[n] = T [n]+Uee[n]. (2.46)

Note that FHK[n] must be universal (the same for all electron systems) by construction
since it is defined independently of the external potential vext(r ) [Parr and Yang, 1989].

The second HK theorem [Hohenberg and Kohn, 1964] provides the variational prin-
ciple for the energy:5 for a trial density ñ(r ), such that ñ(r ) ≥ 0 and

∫
dñ(r ) = N ,

E0 ≤ Ev [ñ] (2.47)

where Ev [ñ] is the energy functional of (2.45). This inequality is analogous to the varia-
tional principle for wave functions and provides justification for the variational principle
in the TFD theory as ETFD[n] is just an approximation to E [n] [Parr and Yang, 1989]. The
proof of this theorem can also be found in Parr and Yang [1989]; Kohanoff [2006]; Martin
[2004]; and the original reference [Hohenberg and Kohn, 1964].

The variational principle of (2.47) requires that the ground-state density satisfies the
stationary principle

δ

{
Ev [n]−µ

[∫
dr n(r )−N

]}
= 0, (2.48)

where the Lagrange multiplier µ corresponds to the chemical potential for integer parti-
cle number [Parr and Yang, 1989; Engel and Dreizler, 2011] and is given by

µ= δEv [n]
δn(r )

= vext(r )+ δFHK[n]
δn(r )

. (2.49)

Equation (2.49) is the basic equation of DFT given the fact that if we knew the exact
form of FHK[n], (2.48) would be an exact expression for the ground-state electron density
[Parr and Yang, 1989]. Unfortunately, the explicit form of FHK[n] is (unsurprisingly) not
known.

The fact that the ground-state electron density uniquely determines the properties
of a ground state brings us to the definition of v−representability. An electron den-
sity is defined as v−representable if it is associated to the antisymmetric ground-state
wave function of a Hamiltonian of the form (2.11) with some external potential vext(r )
(not necessarily a Coulomb potential). In these terms, a given density may or may not
be v−representable [Parr and Yang, 1989]. The first HK theorem can then be thought
as the existence of a one-to-one mapping between ground-state wave functions and
v−representable densities, via which a v−representable density determines the prop-
erties of its associated ground state [Parr and Yang, 1989]. The HK functional FHK[n] is
then defined only for trial densities that can be generated by some external potential
[Martin, 2004]. It is clear that FHK[n] and the variational principle of (2.47) both depend
on the v−representability of trial densities, but the conditions for such representability
are, in general, not known [Parr and Yang, 1989; Martin, 2004].

5Taken from Parr and Yang [1989].
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Constrained search formulation in density-functional theory

The question of v−representability is solved by an alternative construction due to Levy
and Lieb [as found in Martin, 2004; Parr and Yang, 1989]. The idea behind the Levy-Lieb
(LL) formulation is to define a two-step minimization procedure starting with the gen-
eral expression for the energy in terms of the many-body wave functionΨ given by (2.14).
Instead of minimizing the energy with respect to all variables in Ψ, the LL formulation
first considers the energy only for the class of many-body wave functions Ψ that have the
same density n(r ) [Martin, 2004]. The total energy for any wave function can be written

E =
〈
Ψ

∣∣ T̂
∣∣Ψ

〉
+

〈
Ψ

∣∣Ûee
∣∣Ψ

〉
+

∫
dr vext(r )n(r ). (2.50)

If we minimize the energy (2.50) over the class of wave functions with the same density
n(r ), it is possible to define a unique lowest energy for that density

E [n] = min
Ψ→n(r )

{〈
Ψ

∣∣ T̂
∣∣Ψ

〉
+

〈
Ψ

∣∣Ûee
∣∣Ψ

〉}
+

∫
dr vext(r )n(r )

= F [n]+
∫

dr vext(r )n(r ), (2.51)

where the LL functional of the density is defined by [as found in Martin, 2004]

F [n] = min
Ψ→n(r )

〈
Ψ

∣∣ T̂ +Ûee

∣∣Ψ
〉

. (2.52)

The variational search is constrained in (2.52) because the space of trial wave functions
comprises only those giving n(r ) [Parr and Yang, 1989]. With the definition of F [n], the
energy E [n] is manifestly a functional of the density and the ground-state E0 is found by
minimizing E [n],

E0 = min
n(r )

E [n] (2.53)

where E [n] is given by (2.51).
The LL construction provides a meaning for the functional F [n] and an operational

definition given as the minimum of the sum of kinetic plus interaction energies for all
possible wave functions having the density n(r ) [Martin, 2004]. The LL functional F [n]
is defined for any density n(r ) derivable from an antisymmetric wave function for N
electrons, condition which is termed N−representability [Martin, 2004; Parr and Yang,
1989]. The existence of such representability is satisfied for any reasonable density.6 The
LL functional F [n] thus extends the domain of definition from v−representable densi-
ties to N−representable densities, eliminating the v−representability constraint found
in the HK functional FHK[n]. Since in the constrained search of F [n] only one of a set
of degenerate wave functions is selected, the LL construction also eliminates the restric-
tion to nondegenerate ground states found in the HK formulation [Parr and Yang, 1989].
At the minimum of the total energy of the system in a given external potential, the LL
functional F [n] must be equal to the HK functional FHK[n] since the minimum is a den-
sity which can be generated by an external potential [Martin, 2004].

6The conditions for a density n(r ) to be N−representable are relatively simple. It is possible to con-
struct any density integrating to N total electrons of a given spin from a single Slater determinant of N one-
electron orbitals, subject only to the condition that n(r ) ≥ 0 and

∫
dr |∇n(r )1/2|2 is finite [Martin, 2004].
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The ground-state density and energy can be determined exactly by means of DFT,
provided that F [n] is known. However, the HK theorems do not provide us with any hint
concerning its explicit form. In this context, Kohn and Sham [1965] devised a practical
scheme for determining the ground-state which we shall discuss next.

2.4.3 The Kohn-Sham equations

We have discussed how the Thomas-Fermi and related models provide a direct approach
in which one constructs explicit approximate forms for the kinetic energy T [n] and the
electron-electron interaction Uee, producing equations that involve the electron density
alone. Unfortunately, the approximations of the TFD related models are too severe. The
main problem at this stage is related to the kinetic energy T = 〈Ψ|T̂ |Ψ〉. Its exact cal-
culation –as shown in (2.24)– involves evaluating the Laplacian of the one-body density
matrix, which has no straightforward relation to the density. Kohn and Sham [1965] de-
vised an ingenious indirect approach to the kinetic energy functional T [n], turning DFT
into a practical tool for rigorous calculations [Parr and Yang, 1989; Kohanoff, 2006].

Kohn and Sham proposed to introduce single-particle orbitals in order to compute
the kinetic energy in a simple manner and with good accuracy, leaving a residual correc-
tion to it that is handled separately. Let us start by considering a system of noninteract-
ing electrons with the external potential vs described by the Hamiltonian

Ĥs =
N∑

i

[
−1

2∇
2 + vs(r i )

]
. (2.54)

The corresponding N−particle ground state, assumed to be nondegenerate, is a Slater
determinant

Ψs =
1

)
N !

det
[
ψ1ψ2 . . .ψN

]
, (2.55)

where the functions ψi are the N lowest eigenstates of the one-electron Hamiltonian
[Engel and Dreizler, 2011; Parr and Yang, 1989]

ĥsψi =
[
−1

2∇
2 + vs(r )

]
ψi = εiψi . (2.56)

The ground-state density n0s(r ), corresponding to (2.55) and (2.56), is given by

n0s(r ) =
∑

σ

N∑

i

∣∣ψi (r ,σ)
∣∣2 = 2

N /2∑

i

∣∣φi (r )
∣∣2 . (2.57)

The sum over the N energetically lowest single-particle states can be written in the more
general form

ns(r ) =
N∑

i
fi

∑

σ

∣∣ψi (r ,σ)
∣∣2 , (2.58)

where fi are the occupation numbers corresponding to the single-electron orbitals ψi .
Equation (2.57) is the special case of (2.58), having fi = 1 for N orbitals and fi = 0 other-
wise [Engel and Dreizler, 2011; Parr and Yang, 1989].

It is convenient at this point to recall that the HK theorems are valid for arbitrary
many-particle systems. In particular, they also apply to the case of noninteracting
systems. Thus, the nondegenerate ground-state (2.55) is uniquely determined by the
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ground-state density (2.57): Ψs =Ψs[n]. We can now define the HK ground-state energy
functional of a noninteracting system as [Engel and Dreizler, 2011]

Es[n] =
〈
Ψs[n]

∣∣ T̂
∣∣Ψs[n]

〉
+

∫
dr vs(r )ns(r ). (2.59)

The functional Es[n] has the same properties of the functional Ev [n] defined in (2.45).
Recalling the expression for T̂ given in (2.24), expression (2.59) defines the kinetic en-
ergy functional Ts[n] of noninteracting particles for any ground-state density n resulting
from a Hamiltonian of the type (2.54). That is, for any noninteracting v−representable
density n, Ts[n] takes the form [Engel and Dreizler, 2011]

Ts[n] =
〈
Ψs[n]

∣∣ T̂
∣∣Ψs[n]

〉

=−1
2

N∑

i

〈
ψi [n]

∣∣∇2 ∣∣ψi [n]
〉

, (2.60)

which shows that not only the many-body ground-state Ψs is a unique functional of
n, but also its components; ψi (r,σ) = ψi [n](r,σ). The fact that the orbitals are density
functionals becomes evident if one considers that a change in n(r ) can only be induced
by a corresponding change in vs(r ) and that any modification of vs(r ) leads to a unique
change of all orbitals via (2.56) [Engel and Dreizler, 2011].

This leads us to the discussion of the interacting system described by the electronic
Hamiltonian (2.11). Kohn and Sham [1965] proved that for any admissible potential vext,
the ground-state density n0(r ) of the interacting system is equal to the ground-state den-
sity of some yet to be determined system of noninteracting electrons moving in the ef-
fective local single-particle potential vs(r ) = veff(r ) (different from vext). The auxiliary
system of noninteracting electrons is called the Kohn-Sham (KS) system [Engel and Drei-
zler, 2011]. Assuming that the KS system exists,7 the ground-state density of the interact-
ing system can then be represented in terms of the single-particle orbitals ψi (r ,σ) of the
noninteracting system as [taken from Engel and Dreizler, 2011]

n0(r ) ≡ n0s(r ) =
∑

σ

N∑

i

∣∣ψi (r ,σ)
∣∣2 . (2.61)

Engel and Dreizler [2011] emphasize the difference between (2.57) and (2.61) by observ-
ing that while (2.57) is a straightforward result for the density of a noninteracting system,
equation (2.61) corresponds to a highly non-trivial representation of the interacting den-
sity.

In this context, the HK energy functional (2.45) can be rewritten as

E [n] = Ts[n]+Vext[n]+EH[n]+Exc[n] (2.62)

where all the terms have been defined in the preceding sections except that the
exchange-correlation (xc) energy functional Exc[n] is now defined in the context of KS-
DFT as

Exc[n] ≡
〈

T̂
〉
−Ts[n]+

〈
Ûee

〉
−EH[n]. (2.63)

7The fact that the exact ground-state density of the interacting system can be represented by
the ground-state density of an auxiliary system of noninteracting particles is called noninteracting
v−representability [Martin, 2004]. The question of such representability; that is, whether the KS system
actually exists for arbitrary n0, is discussed in more detail by Engel and Dreizler [2011] and Parr and Yang
[1989]. In the treatment of the Kohn-Sham theory here presented, we proceed assuming its existence.
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The xc energy functional of (2.63) contains not only the nonclassical part of Uee but also
the difference between T and Ts [Parr and Yang, 1989].

The nature of the interacting system must be reflected in the structure of the effec-
tive potential veff as it ensures that the density of the noninteracting reference system is
the same as the true density of the interacting system. To determine it, we look for the
minimization of the total-energy functional (2.62) with respect to the density under the
constraint that this density integrates to N particles. If we apply the variational principle
of (2.48) to the energy functional E [n] of (2.62),

δ

{
E [n]−µ

[∫
dr n(r )−N

]}
= 0, (2.64)

we obtain the following equation for minimizing the ground-state density [Kohanoff,
2006]

µ= δTs[n]
δn(r )

+ vext(r )+ δEH[n]
δn(r )

+ δExc[n]
δn(r )

. (2.65)

The next step is to consider the auxiliary noninteracting system, that is the KS system.
Since the particles of such system do not interact between themselves but only with the
effective potential veff, its energy functional Es[n] is given by (2.59) with vs(r ) = veff(r ).
Its ground state is the same as that of the interacting system because they share the
same electronic density. Applying the variational principle of (2.64) to Es[n], we obtain
the chemical potential of the noninteracting system which must be equal to that of the
interacting system µ given by (2.65), yielding the following expression for the effective
potential

veff(r ) = vext(r )+ δEH[n]
δn(r )

+ δExc[n]
δn(r )

= vext(r )+
∫

dr ′ n(r ′)
|r −r ′| + vxc(r ), (2.66)

with the exchange-correlation potential vxc(r ) given by

vxc(r ) = δExc[n]
δn(r )

. (2.67)

The well known Kohn-Sham equations result from rewriting the single-particle equa-
tions (2.56) with vs(r ) = veff(r ). If we define the KS effective potential as vKS(r ) ≡ veff(r ),
the KS equations are then given by

ĥKSψi =
[
−1

2∇
2 + vKS(r )

]
ψi = εiψi . (2.68)

The KS equations have the form of independent-particle equations with a potential that
must be found self-consistently, making sure that the density used to construct it coin-
cides with that obtained from the solutions of (2.68) [Kohanoff, 2006; Martin, 2004].

2.4.4 Energy functionals for exchange and correlation

In the KS-DFT framework, all the many-body complexity of the electronic problem is
contained in the unknown xc term. This term can be reasonably approximated as an
explicit functional of n(r ) and its local gradients as done in conventional functionals,
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or as a functional of the single-particle orbitals {ψi }, themselves functionals of n(r ), as
done in non-local formulations. The different existing approximations have been sum-
marized and classified in a hierarchical scheme by Perdew and Schmidt [1994].8 As our
interest in this thesis is mainly van der Waals interactions, it is illustrative and advanta-
geous to start by discussing a formally exact representation of the xc energy functional
before addressing conventional xc functionals. Engel and Dreizler [2011] discuss two dif-
ferent variants to derive the xc functional in the KS-DFT framework: Kohn-Sham pertur-
bation theory and the adiabatic connection. In this work, we shall focus on the adiabatic
connection formalism.

Exact formalism: the adiabatic connection

In the adiabatic connection (AC) formalism, the ground state of a many-body Hamilto-
nian can be obtained by introducing a coupling constant λ into the total Hamiltonian

Ĥ(λ) = Ĥ0 +λĤ1 (2.69)

that connects a reference Hamiltonian Ĥ0 = Ĥ(λ = 0) with the total many-body Hamil-
tonian Ĥ = Ĥ(λ = 1) [Ren et al., 2012b]. In the case of an electronic system, the total
Hamiltonian for a given λ takes the form [Engel and Dreizler, 2011]

Ĥ(λ) = T̂ +
∫

dr uλ(r )n̂(r )+λÛee, (2.70)

in which the external potential, denoted by uλ, is chosen in such a way that the ground-
state density at coupling constant λ is equal to the ground state for any given interaction
strength. That is, for all 0 ≤λ≤ 1,

nλ(r ) = 〈Ψλ|n̂(r )|Ψλ〉 ≡ n(r ), (2.71)

where we have introduced the ground-state wave function |Ψλ〉 for the λ-dependent
system such that

Ĥ(λ) |Ψλ〉= E(λ) |Ψλ〉 . (2.72)

The external potential uλ reduces to the physical external potential of the fully interact-
ing system at λ = 1, uλ=1(r ) = vext(r ). In the context of KS-DFT, the reference Hamil-
tonian, given by (2.70) at λ = 0, is the Hamiltonian of the KS system, meaning that
uλ=0(r ) = vKS(r ).

Adopting the normalization condition 〈Ψλ|Ψλ〉= 1, an application of the Hellmann-
Feynman theorem [see, for example, Engel and Dreizler, 2011; Nguyen, 2008] leads to
the expression

d
dλ

E(λ) = d
dλ

〈
Ψλ

∣∣ Ĥ(λ)
∣∣Ψλ

〉

= 〈Ψλ|
∫

dr n̂(r )
∂uλ

∂λ
|Ψλ〉+

〈
Ψλ

∣∣Ûee
∣∣Ψλ

〉
, (2.73)

8This hierarchy is the well known “Jacob’s Ladder” of density-functional approximations for the xc en-
ergy.
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from which we can express the ground-state energy E0 = E(λ= 1) in terms of an integra-
tion with respect to the coupling constant as

E0 = E(1) = E(0)+
∫

dr
[
vext(r )− vKS(r )

]
n(r )+

∫1

0
dλ

〈
Ψλ

∣∣Ûee

∣∣Ψλ

〉
. (2.74)

Recalling that E(λ= 0) corresponds to (2.59) with vs(r ) = vKS(r ),

E(0) = Ts[n]+
∫

dr vKS(r )n(r ), (2.75)

and E(λ= 1) is the energy of the total many-body electronic Hamiltonian given by (2.50),
expression (2.74) leads to the equality

〈
T̂

〉
+

〈
Ûee

〉
−Ts[n] =

∫1

0
dλ

〈
Ψλ

∣∣Ûee
∣∣Ψλ

〉
. (2.76)

Recalling the definition of the xc energy functional Exc[n] within KS-DFT given by (2.63),
the first term of (2.76) can be conveniently expressed as EH[n]+Exc[n] yielding the iden-
tity [Nguyen, 2008]

EHxc[n] ≡ EH[n]+Exc[n] =
∫1

0
dλ

〈
Ψλ

∣∣Ûee
∣∣Ψλ

〉
. (2.77)

Equation (2.77) shows that the unknown xc energy functional in KS-DFT can be formally
constructed by adiabatically switching on the Coulomb interaction between electrons
while keeping the electron density fixed at its physical value [Ren et al., 2012b]. The right
hand side of (2.77) can be rewritten in terms of the two-body density matrix n2(r ,r ′), in
analogy to (2.26), as

EHxc[n] =
∫1

0
dλ

∫∫
dr dr ′ n2λ(r ,r ′)

|r − r ′| , (2.78)

where n2λ(r ,r ′) takes the form, using (2.22), (2.20) and (2.71), of [Dobson, 2006]

n2λ(r ,r ′) =
〈
Ψλ

∣∣ n̂2

∣∣Ψλ

〉

= 1
2
〈Ψλ|

N∑

i ̸= j
δ(r −r i )δ(r ′ − r j )|Ψλ〉

= 1
2

{
〈Ψλ|

N∑

i
δ(r − r i )

N∑

j
δ(r ′ −r j )|Ψλ〉−δ(r − r ′)〈Ψλ|

N∑

i
δ(r − r i )|Ψλ〉

}

= 1
2

{〈
Ψλ

∣∣ n̂(r )n̂(r ′)
∣∣Ψλ

〉
−δ(r − r ′)n(r )

}
. (2.79)

Let us now introduce the density fluctuation operator

δn̂(r ) = n̂(r )−n(r ), (2.80)

which describes spontaneous density fluctuations around the expectation value of the
operator n̂(r ) [Dobson, 2006; Ren et al., 2012b]. It is worth mentioning that density fluc-
tuations found away from their expectation value n(r ) produce electric fields leading to
the van der Waals energy [Dobson, 2006]. The next step is to insert n̂(r ) = δn̂(r )+n(r )
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into (2.79) and note that 〈Ψλ|δn̂(r )|Ψλ〉= 0 in order to obtain the final form of n2λ(r ,r ′)
as

n2λ(r ,r ′) = 1
2

{〈
Ψλ

∣∣δn̂(r )δn̂(r ′)
∣∣Ψλ

〉
+n(r )n(r ′)−δ(r −r ′)n(r )

}
. (2.81)

If we introduce the second term on the right hand side of (2.81) into the AC formula
(2.78), we shall notice that the result is the term corresponding to the Hartree energy
EH[n] given by (2.28). The other two terms thus provide us with an exact expression for
the xc energy functional which takes the form of [Ren et al., 2012b]

Exc[n] = 1
2

∫1

0
dλ

∫∫
dr dr ′ nλ

xc(r ,r ′)n(r )
|r −r ′| , (2.82)

where nλ
xc(r ,r ′) is known as the xc hole and is given by

nλ
xc(r ,r ′) =

〈
Ψλ

∣∣δn̂(r )δn̂(r ′)
∣∣Ψλ

〉

n(r )
−δ(r − r ′). (2.83)

Equations (2.82) and (2.83) show that the xc energy9 is given in terms of the density-
density correlation function 〈Ψλ|δn̂(r )δn̂(r ′)|Ψλ〉, which describes the correlation be-
tween density fluctuations at r with those occurring at r ′ [Dobson, 2006]. In physical
terms, the xc hole nλ

xc(r ,r ′) can be interpreted as the depletion of electron density at
point r ′ caused by the presence of an electron at point r [Ren et al., 2012b]. In terms of
the pair-correlation function g (r ,r ′) defined in (2.27), nλ

xc(r ,r ′) takes the form of

nλ
xc(r ,r ′) = n(r ′)

[
gλ(r ,r ′)−1

]
. (2.84)

Any approximation to nλ
xc or gλ defines an approximation for the xc energy functional.

The density-density correlation function can also be related to the response properties
of the system, which we will discuss in more detail later on (see page 29).

The xc energy functional can also be written as the Coulomb interaction between
the electron density n(r ) and a displaced charge density [Kohanoff, 2006; Parr and Yang,
1989]. To this end, we can define the xc hole in terms of its average over the coupling
constant λ as

n̄xc(r ,r ′) =
∫1

0
dλ nλ

xc(r ,r ′), (2.85)

where n̄xc(r ,r ′) is known as the average xc hole [Martin, 2004; Parr and Yang, 1989]. The
xc energy functional can then be written in terms of the average xc hole as

Exc[n] = 1
2

∫∫
dr dr ′ n̄xc(r ,r ′)n(r )

|r −r ′| . (2.86)

The average xc hole n̄xc can be interpreted according to (2.86) as a fictitious charge
depletion due to exchange and correlation effects.10 This means that the xc hole con-
tains exactly one displaced electron and follows the sum rule given by

∫
dr ′n̄xc(r ,r ′) =∫

dr n̄xc(r ,r ′) = −1 [Kohanoff, 2006]. This sum rule places constraints on any approxi-
mate forms that may be proposed and serves, along with the analysis of the nature of
n̄xc(r ,r ′), as one of the primary approaches to develop improved approximations for
Exc[n] [Martin, 2004].

9The important result given in (2.82) was independently developed [see, for example, Kohn, 1999; Parr
and Yang, 1989] by Harris and Jones [1974]; Langreth and Perdew [1975]; and Gunarsson and Lundqvist
[1976].

10The integral given in (2.86) involves only the spherically averaged behavior of nxc(r ,r ′) [Parr and Yang,
1989].
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The local-density approximation

The local-density approximation (LDA) is considered the “mother” of almost all approx-
imations in use in DFT [Kohn, 1999]. It was proposed by Kohn and Sham [1965] but its
philosophy was already present in TFD theory. Its main idea is to consider a general in-
homogeneous electronic system as locally homogeneous using the xc hole correspond-
ing to the homogeneous electron gas [Kohanoff, 2006].11

The ingenious explicit separation of the independent-particle kinetic energy and the
long-range Hartree terms in KS-DFT offers the possibility of reasonably approximating
the xc functional Exc[n] as a local or nearly local functional of the density. In practice,
this means that Exc can be given –in analogy to (2.35)– as

E LDA
xc [n] =

∫
dr n(r )εheg

xc [n(r )], (2.87)

in which the xc energy density ε
heg
xc at each point is assumed to be the same as in a homo-

geneous electron gas with that density [Martin, 2004]. By comparing (2.86) and (2.87),
we shall notice that we can recover an expression for the xc energy in terms of the aver-
age xc hole if

ε
heg
xc [n] = 1

2

∫
dr ′ n̄LDA

xc (r ,r ′)
|r −r ′| , (2.88)

where n̄LDA
xc (r ,r ′) is the average xc hole given in the LDA. In principle, εxc is an extremely

complex functional of the full density, but in the LDA it becomes just a functional of the
local density because it corresponds to a homogeneous system where n is the same ev-
erywhere [Kohanoff, 2006]. These considerations finally lead to the form of the average
xc hole in the LDA, which is given by

n̄LDA
xc (r ,r ′) = n(r )

[
ḡheg

(
|r −r ′|;n(r )

)
−1

]
, (2.89)

where ḡheg
(
|r −r ′|;n(r )

)
is, in analogy to (2.84), the λ-averaged pair correlation function

of the homogeneous electron gas of density n.
From a practical point of view, the xc energy within the LDA is calculated via (2.87)

using ε
heg
xc [n] = ε

heg
x [n]+ε

heg
c [n] [Kohanoff, 2006]. The exchange energy density ε

heg
x [n]

is given according to Dirac’s expression (2.39) as ε
heg
x [n] = −Cxn1/3. In the case of the

correlation energy density ε
heg
c [n], the most accurate results are based on the quantum

Monte Carlo simulations of Ceperley and Alder [1980], which are exact within numeri-
cal accuracy and have been parametrized for the spin-polarized and spin-unpolarized
homogeneous electron gas [Kohanoff, 2006]. The expression for εheg

c [n] and a more in
depth treatment of the homogeneous electron gas and the LDA can be found, for exam-
ple, in Parr and Yang [1989]; Kohanoff [2006]; and Martin [2004].

The LDA is a very successful approximation especially for those systems where the
electronic density is quite uniform such as bulk metals, but also for less uniform sys-
tems such as molecules, semiconductors, and ionic crystals [Kohanoff, 2006]. However,
the LDA tends to overestimate the bonding strength, resulting in bond lengths that are

11The xc hole for the homogeneous electron gas is known to an excellent accuracy. It has been calculated
by quantum Monte Carlo methods at full coupling strength λ= 1 [see, for example, Martin, 2004; Kohanoff,
2006].
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too short or tending to favor close-packed structures. It also overestimates atomization
energies in the order of 1 eV, much larger than the desired “chemical accuracy” of around
0.05 eV [Kümmel and Kronik, 2006].

The generalized-gradient approximation

The first step to go beyond the LDA and address the inhomogeneities in the electron
density is to carry out an expansion of the density in terms of the gradient and higher
order derivatives. To this end, the xc energy of (2.87) can be written in a generalized
form as

E GE
xc [n] =

∫
dr n(r )εxc [n(r )]Fxc

[
n(r ),∇n(r ),∇2n(r ), . . .

]
, (2.90)

where Fxc is a dimensionless enhancement factor that modifies the LDA expression ac-
cording to the variation of the density in the vicinity of the considered point [Kohanoff,
2006]. Gradient expansions are a semi-local approach which, however, will hardly be
able to capture non-local effects at longer ranges (vdW interactions, for example).

The low-order expansions of the exchange and correlation energies are known, but
the approximations based on gradient expansions do not lead to consistent improve-
ments over the LDA. The expansion breaks down because of the large gradients present
in real materials. The generalized gradient approximations (GGAs) correspond to a num-
ber of proposed second-order gradient expansions which behavior at large gradients is
modified to preserve certain desired properties such as the exact conditions required for
the exchange and correlation holes [Martin, 2004; Kohanoff, 2006]. In this regard, there
is only one defined LDA but many possible GGAs.

We rewrite equation (2.90) in its GGA form as [Martin, 2004; Perdew et al., 1996]

E GGA
xc [n] =

∫
dr n(r )εGGA

xc [n(r ), |∇n(r )|]

=
∫

dr n(r )εheg
x

(
n(r )

)
Fxc

(
n(r ), |∇n(r )|

)
, (2.91)

where the best choice for the enhancement factor Fxc is the subject matter in the devel-
opment of GGAs. Much work has been done on GGAs [see for example Kohanoff, 2006;
Martin, 2004], but we focus here on the first-principles GGAs proposed by Perdew, Burke,
and Ernzerhof (PBE) [Perdew et al., 1996].

A first-principles GGA is constructed [as found in Perdew et al., 1996] starting from
the second-order density gradient expansion for the xc hole surrounding an electron in a
system of slowly varying density and finally cutting off its long-range parts to satisfy sum
rules on the exact hole. The functional proposed by Perdew and Wang (PW91) [Perdew
and Wang, 1992] is an analytic fit to this numerical GGA which is designed to satisfy
several exact conditions. The PBE functional takes the general features of the underlying
construction given by the PW91 functional, but in contrast to the latter, it is designed to
satisfy only those exact conditions –not necessarily unique however– that are deemed to
be energetically significant [Perdew et al., 1996].

The PBE functional for exchange is given by a simple form of the enhancement factor
Fx over local exchange –as defined in (2.91)– which depends on the local Seitz radius12

12The Seitz radius or density parameter rs is defined as the radius of a sphere containing one electron
on average: 4

3πr 3
s = n−1. In the homogeneous electron gas, it constitutes a measure of the average distance

between electrons and characterizes its density n [Martin, 2004].
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rs =
( 3

4πn

)1/3
, the magnetization density ζ (in the spin-dependent case),13 and the di-

mensionless density gradient s = |∇n(r )|/(2kF n), where kF = ( 9
4π)/rs is the Fermi wave

vector. It takes the form

Fx(s) = 1+κ− κ

1+µs2/κ
, (2.92)

where κ, µ, and the specific form of (2.92) are chosen to satisfy several formal conditions
and recover some limits found in the LDA [see Perdew et al., 1996].

The correlation energy in PBE is expressed as the local correlation plus a correction
term H(rs ,ζ, t ) defined to satisfy several conditions and properties [see Perdew et al.,
1996]. It has the following form

E GGA
c [n] =

∫
dr n

[
ε

heg
c (rs ,ζ)+H(rs ,ζ, t )

]
, (2.93)

where the correlation correction term H(rs ,ζ, t ) depends on the local Seitz radius rs , the
magnetization density ζ, and another dimensionless gradient t .14 The PBE functional is
very satisfactory from the theoretical point of view: it satisfies many of the exact condi-
tions for the xc hole and it does not contain any empirical fitting parameters [Kohanoff,
2006].

In comparison to the LDA, GGAs tend to improve total energies, atomization ener-
gies, energy barriers, and structural energy differences [Perdew et al., 1996]. GGAs also
typically favor density inhomogeneities more than the LDA does. An important defi-
ciency in the GGAs (and the LDA as well) however is the presence of the self-interaction
present in the Hartree term. The KS-DFT energy functional of (2.62) partitions arbitrar-
ily the energy due to the electron-electron interaction into a classical term, the Hartree
term of (2.28), and a nonclassical part found in the definition of the xc energy of (2.63).
The Hartree term has an inherent error in its expression caused by the self-interaction
of an electron with itself, which is known as self-interaction error (SIE) [Kümmel and
Kronik, 2006; Martin, 2004].

The electron-electron interaction could, in principle, be handled exactly in DFT, con-
sequently canceling any error that is present in the Hartree term. However, complete
error cancellation is only guaranteed for the exact xc functional. Hence, only partial
cancellation is obtained within the LDA or the GGAs. The SIE is one of the most funda-
mental deficiencies in approximate KS-DFT that could lead to important consequences.
Kümmel and Kronik [2006] point out that the SIE leads to a destabilization of localized
orbitals, diminishing their binding energy. This causes that the LDA or the GGAs may
fail in the qualitative treatment of localized states, resulting in a qualitative erroneous
picture of the electronic-structure whenever there is a significant interaction between
localized and delocalized states [Kümmel and Kronik, 2006]. A scenario like this is com-
mon when studying defects in solids, transition-metal oxides, or the interaction between
localized 4 f electrons and itinerant s-d electrons in rare-earth metals for example. The
erroneous treatment within KS-DFT of the photoemission spectra and electron transfer
processes in interfaces formed between organic molecules and metal surfaces are also a
consequence of the SIE [Tkatchenko et al., 2010].

13The magnetization or spin-polarization density ζ is defined as ζ(r ) = n↑(r )−n↓(r ).
14See Martin [2004]; Kohanoff [2006]; or Perdew et al. [1996] for details on the form of the correction

term H(rs ,ζ, t ) and the dimensionless gradient t .
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Beyond the GGAs lies the meta-generalized gradient approximations (which con-
sider the fourth-order gradient expansion of the xc energy) and orbital-dependent func-
tionals within the KS framework [see Perdew and Schmidt, 1994, for a hierarchical
scheme of approximations for the xc functional]. Treatments including exact exchange
or orbital-dependent functionals are ways to overcome the SIE in KS-DFT. As a special
case of orbital-dependent functionals, the so-called hybrid functionals combine a frac-
tion of exact exchange (defined in the context of KS-DFT) with a fraction of semi-local
exchange and correlation.15 As a final remark, the LDA and its improvements are natu-
rally inappropriate for all those systems for which the starting point of an electron gas
of slowly varying density is fundamentally incorrect, such as van der Waals energies be-
tween nonoverlapping subsystems or materials with strongly correlated electrons [Kohn,
1999].

The random-phase approximation for the electron correlation

The computational efficiency and the relative accuracy in many polyatomic systems
of conventional xc functionals such as the LDA or GGAs have a major contribution to
the success of DFT in first-principles materials science. However, as mentioned before,
these approximations have well-known shortcomings such as the self-interaction error
in the Hartree term and the lack of non-local effects in the correlation energy. It is in
this context that the treatment of exchange and correlation in terms of exact exchange
plus correlation in the random-phase approximation (RPA) [Ren et al., 2012b] becomes a
promising approach. Especially, we are interested in the fact that the correlation energy
in the RPA is fully non local and includes long-range van der Waals interactions automat-
ically and seamlessly [Ren et al., 2012b]. Because of this fact, the RPA correlation energy
can also be used as a tool in testing and developing approximations for vdW-inclusive
DFT approaches.

The RPA for correlation energy can be introduced in the context of KS-DFT via the
adiabatic connection fluctuation-dissipation theorem (ACFD). This is achieved by for-
mulating the density-density correlation function, found implicitly in the AC formula
for exchange and correlation (2.82), in terms of the linear density-response function,
〈Ψλ|δn̂(r )δn̂(r ′)|Ψλ〉, of the λ−scaled system described in page 23. The fluctuation-
dissipation theorem (FDT) is the technique that can be used to make this connection.
The FDT states that the response of a system at thermodynamic equilibrium to a small
external perturbation is the same as its response to the spontaneous internal fluctua-
tions in the absence of the perturbation [as found in Ren et al., 2012b]. Thus, the FDT re-
lates the correlations of electron positions in the absence of an external influence to the
response of the electrons in the presence of a time-dependent external influence [Dob-
son, 1994]. The zero temperature FDT leads to [see for example Ren et al., 2012b]

〈
Ψλ

∣∣δn̂(r )δn̂(r ′)
∣∣Ψλ

〉
=− 1

π

∫∞

0
dω Imχλ(r ,r ′,ω), (2.94)

where χλ(r ,r ′,ω) is the linear density-response function of the λ−scaled system. By
using expressions (2.82), (2.83), (2.94), and v(r ,r ′) = |r −r ′|−1, the ACFD formula for the

15See Kümmel and Kronik [2006] for a detailed review on orbital-dependent functionals.
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xc energy within KS-DFT is obtained as

Exc =
1
2

∫1

0
dλ

∫∫
dr dr ′v(r ,r ′)

[
− 1
π

∫∞

0
dωχλ(r ,r ′, iω)−δ(r − r ′)n(r )

]
, (2.95)

where we have used the fact that, because of its analytical structure, χλ(r ,r ′,ω) becomes
real on the imaginary axis so the frequency integration can also be performed along
the imaginary axis [Ren et al., 2012b]. An equivalent expression based on (2.95) can be
obtained for the exact-exchange energy within KS-DFT,

Ex =
1
2

∫1

0
dλ

∫∫
dr dr ′v(r ,r ′)

[
− 1
π

∫∞

0
dωχ0(r ,r ′, iω)−δ(r − r ′)n(r )

]
, (2.96)

and the correlation energy

Ec =− 1
2π

∫1

0
dλ

∫∫
dr dr ′v(r ,r ′)

[∫∞

0
dωχλ(r ,r ′, iω)−χ0(r ,r ′, iω)

]
. (2.97)

In a system with a coupling constant λ, the density-response function χλ can be re-
lated to the noninteracting limit (λ= 0) response function via the self-consistent Dyson-
like screening equation [see, for example, Gross and Burke, 2006; Dobson, 2006; Lu et al.,
2010],

χλ(r ,r ′, iω) =χ0(r ,r ′, iω)

+
∫∫

dr 1 dr 2χ0(r ,r 1, iω)
[

λ

|r 1 −r 2|
+ f λ

xc(r 1,r 2, iω)
]
χλ(r 2,r ′, iω), (2.98)

where χ0 is the response function of the system at λ= 0 which in this case corresponds
to the response function of the KS reference system. It is known in terms of the single-
particle KS orbitals ψi , along with the corresponding eigenvalues εi and occupation
numbers fi [see (2.58)], as

χ0(r ,r ′, iω) =
∑

σ,σ′

∑

i j
( fi − f j )

ψ∗
i (r ,σ)ψ j (r ,σ′)ψ∗

j (r ′,σ′)ψi (r ′,σ)

εi −ε j + iω
. (2.99)

The exchange-correlation kernel f λ
xc(r 1,r 2, iω) of (2.98) is on the other hand not known.

The RPA consists in setting f λ
xc = 0, providing a simple approximation to the linear

density-response function χλ. The xc energy can then be separated in the RPA into two
terms, one for the exact-exchange energy and another for the RPA-correlation energy as

E RPA
xc = E EX

x +E RPA
c , (2.100)

where the exact non-local exchange (EX) energy E EX
x is given in the framework of KS-

DFT by inserting the expression for χ0 of (2.99) into the formula (2.96) [see, for example,
Dobson and Gould, 2012; Ren et al., 2012a]. The RPA-correlation energy (cRPA) E RPA

c
takes the form, in accordance to (2.97), of

E RPA
c =− 1

2π

∫∫
dr dr ′v(r ,r ′)

∫∞

0
dω

[∫1

0
dλχRPA

λ (r ,r ′, iω)−χ0(r ,r ′, iω)
]

, (2.101)

where χRPA
λ

is given by (2.98) with f λ
xc = 0. The correlation energy of the system is now

written in terms of the response functions of a series of fictitious systems along the AC
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path. The λ integration of (2.101) can be carried out analytically yielding [Dobson and
Gould, 2012; Ren et al., 2012a]

E RPA
c = 1

2π

∫∞

0
dωTr

[
log(1−χ0(iω)v)+χ0(iω)v

]
(2.102)

=− 1
2π

∫∞

0
dω

∞∑

n=2

1
n

Tr
[
(χ0(iω)v)n]

, (2.103)

where
Tr[AB ] =

∫
dr dr ′A(r ,r ′)B(r ′,r ). (2.104)

Alternatively, the RPA correlation energy (2.101) can be written in terms of the expansion
in powers of the fully interacting RPA response function χ≡χRPA

1 as [Lu et al., 2010]

E RPA
c =− 1

2π

∫∞

0
dω

∞∑

n=2
(−1)n

(
1− 1

n

)
Tr

[
(χ(iω)v)n]

. (2.105)

The EX+cRPA method is an orbital-dependent functional within the KS-DFT frame-
work that can be solved self-consistently, but this represents a formidable task in numer-
ical terms. In practical terms, EX+cRPA calculations are commonly performed based on
preceding reference calculations in a post-processing fashion where single-particle or-
bitals from a self-consistent KS-DFT calculation in the LDA or GGA are used to evaluate
both the EX and cRPA terms.

Despite the fact that the EX+cRPA technique is a very promising non-local method
to include correlation energy in the KS-DFT framework, there are some shortcomings
of this method like its systematic underestimation of binding energies and the fact that
it is sometimes sensitive to the input orbitals. Another well-accepted fact is that short-
range correlations are not adequately described within the RPA, which has triggered the
development of range-separated frameworks in which the long-range part of the cRPA
energy is explicitly included but the short/mid-range correlation is treated in a different
manner. Moreover, the development of methods that go beyond the standard RPA has
become a very active research field in recent years. We refer the interested reader to the
reviews by Ren et al. [2012b]; Eshuis et al. [2012]; and Dobson and Gould [2012].

2.5 Practical methods to include van der Waals interactions in
density-functional approximations

The need for efficient methods that incorporate vdW forces with accuracy has come
along with the rise of DFT as the theoretical method of choice for many applications
in physics, chemistry, and materials science. The vdW forces are essential in determin-
ing the properties of many systems such as biomolecules, molecular crystals, and or-
ganic/inorganic interfaces. The term vdW forces is sometimes associated with different
types of long-range intermolecular interactions such as electrostatics, induction, and
dispersion. These correspond, respectively, to a permanent multipole-permanent multi-
pole interaction, permanent multipole-induced multipole interaction, and the induced
multipole-induced multipole interaction [Stone, 2013; Tkatchenko et al., 2010]. In this
work, our main concern is the dispersion energy, but as done frequently, we will use the
terms “vdW energy” and “dispersion energy” as interchangeable.
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Dispersion energy is a quantum-mechanical phenomenon whose origin lies in the
correlated motion of electrons. Unfortunately, its modeling in DFT is not an easy task as
(semi–)local and hybrid functionals used to approximate the xc energy functional do not
include them properly. Due to its importance in many applications, several promising
vdW-inclusive approaches in DFT have been developed in recent years. This section is a
general review of these methods. As base for our discussion, we follow the classification
done in the review by Klimeš et al. [2012], meaning that the complexity grows with each
tier of methods. We also use concepts from the review papers by Tkatchenko et al. [2010]
and Dobson and Gould [2012].

2.5.1 Empirical pairwise corrections

The simplest approach to recover the correct long-range asymptotic behavior for parti-
cles in the gas phase is to add an additional attractive energy term to the KS-DFT total
energy. In this context, the total energy is given by

Etot = EDFA +EvdW, (2.106)

where EDFA corresponds to the energy of a density-functional approximation (DFA) com-
puted within KS-DFT [see (2.62)] and EvdW is the vdW energy. The vdW energy in this ap-
proximation is typically written as a sum of −C ab

6 R−6
ab terms over all pairs of atoms a and

b, where Rab is the distance between atoms a and b and C ab
6 is the associated dispersion

coefficient, thus considering only the leading-order term for the vdW energy and assum-
ing its pairwise additivity. The fact that the −C6R−6 term diverges at short-range inter-
atomic separations is solved by damping the vdW-energy term. These methods have the
following general expression for the vdW energy

EvdW =−1
2

∑

a,b
fdamp

(
Rab , a,b

) C ab
6

R6
ab

, (2.107)

where the damping function fdamp is equal to one for large R and decreases EvdW to
zero or to a constant for small R, eliminating the R−6 divergence at short inter-atomic
separations. The damping function depends on the definition of the atomic size of pairs
a and b (usually vdW radii are used) and must be adjusted with each xc functional in
order to be compatible.

Among these type of methods, the schemes developed by Grimme are widely used,
in particular the method known as DFT-D2 [Grimme, 2006]. In this method, the compu-
tation of dispersion coefficients is based on calculated atomic ionization potentials and
static polarizabilities with data given for all elements up to Xe. Although its popularity,
low computational cost, and good accuracy for small molecules16 are attractive features
of the DFT-D2 method, it shares some severe limitations along with other methods us-
ing empirical pairwise corrections,17 such as neglecting many-body dispersion effects
by only taking the leading term of the vdW interaction. In addition, it is not clear what

1615%-20% error for energies and 0.1-0.2 Å for equilibrium distances [see for example Tkatchenko et al.,
2010].

17See Klimeš et al. [2012] and references within for a comprehensive list of methods including empirical
pairwise corrections for the vdW energy.
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is the best manner to obtain the C6 coefficients involving, sometimes, experimental po-
larizabilities and ionization potentials that are not transferable as data often come from
species in organic molecules. Furthermore, the C6 coefficients are kept constant, ig-
noring the possibility of effects due to different possible hybridization/oxidation states
of atoms in different chemical or geometrical environments [Tkatchenko et al., 2010;
Klimeš et al., 2012].

2.5.2 Environment-dependent pairwise methods

The second tier of methods is characterized by the fact that the influence of the environ-
ment is incorporated in the determination of the parameters involved in the calculation
of the dispersion energy. We focus, in particular, on three methods: the Becke-Johnson
(BJ) method, the Tkatchenko-Scheffler (TS) DFA+vdW method [2009], and the DFT-D3
method developed by Grimme et al. [2010]. All these three methods are still based on a
separation of terms according to (2.106) but share a novel concept, namely the fact that
the dispersion coefficient of an atom in a molecule depends on the effective volume of
the atom, thus exploiting the relation between volume and polarizability in an atom.

The proposal in the BJ model is that the exchange hole instantaneous dipole mo-
ment is the source of dispersion interactions behind nonoverlapping systems. This
model exploits the physical interpretation of the xc hole in which there exists a region
where the electron density is depleted due to the presence of an electron [see (2.83)]. The
asymmetric electron density that follows such depletion creates non-zero dipole and
higher electrostatic moments. This causes polarization in other atoms given in some ex-
tent by their polarizability. The BJ method then generates dispersion interactions by us-
ing the dipole moment of the exchange hole. The dispersion coefficients are calculated
using the average square of the hole dipole moment together with isotropic polarizabili-
ties. Two effects modify the dispersion coefficients in the BJ method. The first one is the
change given by scaling the polarizabilities of atoms in molecules from their reference
values according to their effective atomic volumes. The second is through the changes
of the exchange hole, which are a respond to the chemical environment, but are also
difficult to quantify in a precise manner.

The DFA+vdW method by Tkatchenko and Scheffler [2009] starts by taking high level
quantum-chemistry calculations of atomic polarizabilities and dispersion coefficients
for free atoms. Using these as a reference, C6 coefficients for heteronuclear atoms can
be calculated by a simple but powerful combination rule.18 The next step consists in
including the changes that result from the chemical environment, which are obtained
from the electron density of the polyatomic system by using effective atomic volumes.
The system of interest is divided between the individual atoms using the Hirshfeld parti-
tioning scheme [Hirshfeld, 1977], and for each atom its density is compared to the den-
sity of the free atom. The factor that is obtained by this comparison is then used to scale
the reference C6 coefficient, the atomic polarizability, and the vdW radius thus changing
the value of the dispersion energy. We will describe this method in more detail in chap-
ter 4 (see section 4.4), where we develop a methodology to include vdW interactions
within DFT for adsorption phenomena. As a final remark, it is worth to mention that

18See Tkatchenko and Scheffler [2009] or expression (4.29) in section 4.4.
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the DFA+vdW method is also a true functional of the density as its recent self-consistent
implementation within KS-DFT exemplifies [Ferri et al., 2015].

The DFT-D3 method by Grimme et al. [2010] incorporates the effect of the environ-
ment in the C6 coefficient by considering the number of neighbors that each atom has.
In this manner, the dispersion coefficient will decrease when an atom has more neigh-
bors. These effects are taken into account by having a set of precalculated C6 coefficients
for various pairs of elements in difference reference states (or, equivalently, different hy-
bridization states). The function calculating the number of neighbors is defined so that
it continuously interpolates between the precalculated reference values. As a result, the
C6 coefficient can change continuously if the hybridization state of an atom is changing
during a simulation.

2.5.3 Non-local density functionals

The methods in the preceding subsections require the input of predetermined parame-
ters in order to determine the dispersion interaction. We now describe the methods that
add the long-range correlations to (semi-)local correlation functionals. These methods
are termed non-local vdW functionals.

The non-local (long-range) correlation energy in these functionals is calculated with

E nl
c [n] =

∫∫
dr dr ′n(r )φ(r ,r ′)n(r ′), (2.108)

where φ(r ,r ′) is an integration kernel with a complicated expression that includes the
O (|r−r ′|−6) asymptotic behavior. A number of approaches have been proposed in the lit-
erature for E nl

c [see Klimeš et al., 2012; Dobson and Gould, 2012, and references within].
Within these functionals, Dion et al. [2004] proposed an approximated ACFD type func-
tional, known as van der Waals density functional (vdW-DF), that is able to evaluate the
non-local energy correlation for overlapping molecules and arbitrary geometries. In the
vdW-DF, the xc energy is calculated as

E vdW−DF
xc [n] = E GGA

x [n]+E LDA
c [n]+E nl

c [n], (2.109)

where the exchange energy is given in the revPBE approximation [Zhang and Yang, 1998].
The vdW-DF is an important conceptual development since it is a functional that com-
bines correlations of all ranges in a single formula, adding dispersion interactions within
DFT. A detailed description of the steps to derive the ACFD-type non-local functional, as
well as its approximations within the vdW-DF, can be found, for example, in the works
by Dobson and Gould [2012] and Lu et al. [2010].

The vdW-DF itself overestimates the long-range dispersion but since its develop-
ment, many studies and proposals have emerged to improve and better understand the
method. We find, among these proposals, the vdW-DF2 [Lee et al., 2010], developed by
the same group behind the vdW-DF, and the vdW-DF-type functionals with modified
(optimized) exchange termed optB88-vdW and optPBE-vdW [Klimeš et al., 2010]. The
reader is referred once more to the review by Klimeš et al. [2012] and the references
found in there for additional information on the developments of non-local functionals.
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2.5.4 Methods going beyond pairwise additivity

The methods that we have reviewed in section 2.5.1 and section 2.5.2 so far consider dis-
persion to be pairwise additive. This assumption has the consequence of, for example,
ignoring the role that collective excitations would have in the polarizability of the atoms
involved. Let us take for instance the description of organic molecules adsorbed on an
inorganic surface, where pairwise interactions vdW methods are frequently employed
without any consideration of the relatively strong electrodynamic response screening
present within bulk materials [Mercurio et al., 2010; Atodiresei et al., 2009; Stradi et al.,
2011; Tonigold and Gross, 2010].19

The next tier in vdW-inclusive DFT methods consists in approximations that go be-
yond the assumption of pairwise additivity. The EX+cRPA method described in page 29
includes many-body effects in the vdW interaction, but it is still computationally expen-
sive for the calculation of realistic systems and sometimes sensitive to the input orbitals
[Tkatchenko et al., 2010]. Efforts have recently started to focus on methods treating the
vdW interaction beyond the pairwise additivity that are accurate and efficient enough to
treat realistic systems such as extended molecules, molecular crystals, and adsorption
systems [see, for example, DiStasio Jr. et al., 2014; Klimeš et al., 2012]. Many-body effects
in the vdW energy may not play a decisive role in small molecules, but recent studies
show that a many-body description of vdW interactions is essential, for example, in ex-
tended molecules, molecular solids, and even organic molecules of intermediate size
[Tkatchenko et al., 2012; DiStasio Jr. et al., 2012]. Our own recent work has been directed
to investigate the influence of many-body dispersion effects in the adsorption of atoms
and molecules on metal surfaces [Maurer et al., 2015].

We focus on the approach termed many-body dispersion (MBD) by Tkatchenko et al.
[2012] which is an efficient and accurate approach that incorporates higher order dis-
persion terms in the context of DFT. The MBD method maps the atoms in the system
onto a set of atom-centered quantum harmonic oscillators using an effective oscillator
Hamiltonian and interacting via the dipole-dipole interaction potential. The long-range
correlation is treated based on a range-separation of the interelectronic Coulomb poten-
tial [Tkatchenko et al., 2013]. Its formulation in terms of the RPA shows that it includes
many-body effects in the long-range correlation energy to all orders and that it becomes
a very accurate technique when correct polarizabilities are used as input [Ambrosetti
et al., 2014a]. This representation, however, assumes a finite electronic gap in order to
divide the system into effective atomic fragments, fact which does not provide a com-
plete description of delocalized electrons present, for example, in metallic systems.

2.6 Van der Waals interactions in solids

The role of vdW interactions in solids had not been a matter of extensive study due to
the long-time belief that vdW interactions were relatively not important or determinant
in the cohesive properties of solids. From a historical perspective, Zhang [2014] traces
back the earliest studies of vdW forces in solids to the x-ray measurements of noble-gas
solid structures performed in the 1920s [see the text by Zhang, 2014, for the original ref-

19A more detailed analysis of the performance of several vdW-inclusive DFT methods is left for later on
in chapter 4, section 4.1.
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erences]. It was necessary, however, the development of quantum mechanics to fully
explain the origin of the interaction among rare gas atoms. The origin of these interac-
tions was solved by London [1930, 1937] with the development of the theory of disper-
sion forces.20 The studies on noble-gas solids were eventually followed up by research
showing that dispersion interactions can actually contribute to the bonding of ionic and
metallic solids as well [see Zhang, 2014, for a more detailed account on the topic].

From a modern materials perspective, it has become clear in the last few years that
vdW interactions can play a nonnegligible role in the cohesive properties of hard solids
such as ionic solids, semiconductors, and metals [Woods et al., 2015]. For instance,
Zhang et al. [2011] demonstrated that dispersion interactions account for 10-15% of the
cohesive energy and bulk modulus of Si, Ge, GeAs, NaCl, and MgO. In a similar manner,
Klimeš et al. [2011] found a systematic improvement in the cohesive properties of alkali
metals and alkali halides when nonlocal correlations are accounted for through vdW-
DF-type functionals with modified (optimized) exchange. Tao et al. [2010] also found
improvements in the lattice constant of alkali metals by including nonlocal correlation
within KS-DFT. Relative stabilities of different solid phases, phase transition pressures,
phase diagrams, and defect formation energies are additional solid properties that can
be influenced by the description of vdW interactions [see Woods et al., 2015, for a more
detailed account].

The description of vdW interactions in metals is a difficult task because of the si-
multaneous presence of localized and delocalized electronic states. The free electrons
in metals give rise to a dynamically screened interaction between the ions that modi-
fies modifying the vdW interaction between atoms. The accurate determination of the
vdW contribution in metals has consequently proven to be challenging for theory as
estimates have ranged in the past from being negligible to roughly a third of the total
cohesive energy [Rehr et al., 1975; Richardson and Mahanty, 1977; Zhang, 2014]. Be-
fore addressing the theory of vdW interactions in bulk metals, it is useful to review the
phenomenon of screening because an analogous effect plays an important role in the
adsorption of atoms and molecules on inorganic substrates such as metal surfaces. It
is, in addition, the foundation of the methodology that we propose in the next chapter
for the treatment of vdW interactions in adsorption phenomena. As such, we first give
a general description of the phenomenon of screening in metals and finally, we address
its influence on vdW interactions in metals.

2.6.1 Screening in solids (metals)

A detailed theory describing the screening in a realistic periodic potential of a metal
is a very complex problem. A simple way to analyze this problem is to imagine a test
positively charged particle placed and held at a specific position inside the electron gas.
Our interest is in the dielectric properties of the electron gas, that is, its response to this
perturbation. This positive charge will attract electrons in its surroundings creating an
excess of negative charge which in turn will reduce (screen) its field. The total effective
potential φeff generated like this is formed by two contributions, the first as a conse-
quence of the positively charged particle itself, which we will call φext, and the second
contribution, which is the potential δφ induced by the cloud of screening electrons, so

20See the textbook by Kaplan [2006] for a historical survey of intermolecular interactions in general.
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that
φeff =φext +δφ. (2.110)

These potentials satisfy Poisson’s equation,

−∇2φeff =4πneff,

−∇2φext =4πnext, (2.111)

−∇2δφ=4πδn,

where next corresponds in this case to the charge density of the positive particle, δn is the
electron density induced in the electron gas due to the presence of the positive charged
particle, and the effective charge density neff is given by

neff = next +δn, (2.112)

thereby relating each charge distribution with its associated potential.
The external and the effective potentials are related, in analogy to the theory of

dielectric media, linearly by [see, for example, Ashcroft and Mermin, 1976; Bruus and
Flensberg, 2004]

φext(r , t ) =
∫

dt ′
∫

dr ′ϵ(r t ,r ′t ′)φeff(r , t ), (2.113)

where ϵ(r t ,r ′t ′) is the dielectric function which is, in general, non local both in time
and space. In the translation-invariant case (the homogeneous electron gas, for exam-
ple), the dielectric function depends only on the differences of the argument, that is
ϵ(r t ,r ′t ′) = ϵ(r − r ′, t − t ′), so that (2.113) can be formulated in the frequency and mo-
mentum space such that after a Fourier transformation in space and time,21, it assumes
the product form of

φext(q ,ω) = ϵ(q ,ω)φeff(q ,ω). (2.114)

Expression (2.114) can be rewritten as

φeff(q ,ω) = 1
ϵ(q ,ω)

φext(q ,ω), (2.115)

which shows that the qth component of the total potential is equal to the external poten-
tial reduced by the factor 1/ϵ(q ,ω) [Ashcroft and Mermin, 1976].

To calculate the dielectric function ϵ(q ,ω), which is the physical quantity that we are
interested in when dealing with screening in metals, we must, however, first turn our
attention to the charge density δn(r , t ) induced in the electron gas by the perturbation,
that is, the external potential φext(r , t ). In the case of a self-consistent theory, linear-
response theory relates the induced density to the external potential as

δn(q ,ω) =χ(q ,ω)φext(q ,ω), (2.116)

21The Fourier transforms in this case are defined as

ϵ(q ,ω) =
∫

d(r − r ′)
∫∞

−∞
d(t − t ′)e−i q ·(r−r ′)eiω(t−t ′)ϵ(r − r ′, t − t ′),

ϵ(r − r ′, t − t ′) =
∫

dq

(2π)3

∫∞

−∞

dω
2π

ei q ·(r−r ′)e−iω(t−t ′)ϵ(q ,ω),

with similar equations for each potential.
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where χ is the density-density response function or density-density correlation function
which we have first encountered in the RPA for the electron correlation in section 2.4.4
(see page 29). The next step is to write the Fourier transform in space and time of the
induced density given in the set of expressions (2.111),

q2δφ=4πδn, (2.117)

which together with (2.116) lead to the following expression for the induced potential

δφ(q ,ω) = vqχ(q ,ω)φext(q ,ω), (2.118)

where vq = 4πq−2 is the Fourier transform of the Coulomb potential. Using expressions
(2.118) and (2.110), the total effective potential can be written in terms of the response
function as

φeff(q ,ω) =
[

1+ vqχ(q ,ω)
]
φext(q ,ω). (2.119)

By comparing (2.119) and (2.115), we identify the expression for the dielectric function
as [Bruus and Flensberg, 2004]

1
ϵ(q ,ω)

= 1+ vqχ(q ,ω). (2.120)

Expression (2.120) shows us that, in order to calculate the dielectric function and esti-
mate the screening effects in the system, we need to evaluate the response function of
the electron gas. In practice, (2.120) can be evaluated under a number of approxima-
tions for the density-density response function. Depending on these approximations, it
is possible to propose a microscopic dielectric function for metallic systems based, for
example, on the homogeneous electron gas.

Several formulations for the response function χ –all of them intimately related– can
be found in the literature depending on the particular context. For our discussion we
make use of the retarded response function which is given in statistical physics as [Engel
and Dreizler, 2011]

χ(r t ,r ′t ′) =− iΘ(t − t ′)
〈

[δn̂(r , t ),δn̂(r ′, t ′)]
〉

=− iΘ(t − t ′)
〈

[n̂(r , t ), n̂(r ′, t ′)]
〉

, (2.121)

where the expectation value is taken for the unperturbed system, Θ(t − t ′) is the step
function, and the operators n̂(r , t ) and δn̂(r , t ) have been defined in expressions (2.20)
and (2.80), respectively. Solving the density-density response function for the fully in-
teracting system is a very complicated task to which we have already discussed some
approximations, within KS-DFT, in the previous section. Because of this reason, it is
convenient to first address the case of the noninteracting homogeneous electron gas22

since an expression for its response function is well known. It becomes an integral over
states where |k | < kF is occupied and |k +q | > kF is empty with the following expression
[Martin, 2004]

χ0(q ,ω) = 2
∫k=kF dk

(2π)3

Θ(|k +q |−kF )
εk −ε|k+q |−ω+ iη

, (2.122)

22See section 2.4.1.
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where εk = 1
2 k2 and (kF )3 = 3π2n. Expression (2.122) is known as the Lindhard function,

its explicit expression can be obtained by inserting the eigenstates of the noninteracting
homogeneous electron gas in (2.122) and integrating with limit η→ 0+.

In the case of theories in which the electrons interact via an effective field, such as
those reviewed in this chapter, the Dyson screening equation can be used to expand the
response function in terms of its basic building blocs, with an expression of the form
[see for example Engel and Dreizler, 2011; Bruus and Flensberg, 2004]

χ(q ,ω) = Π(q ,ω)+Π(q ,ω)vq (q)χ(q ,ω)

= Π(q ,ω)
1− vq (q)Π(q ,ω)

, (2.123)

where χ(q ,ω) is expanded in terms of the irreducible or proper polarization Π(q ,ω). We
have already used an equation of the type of (2.123) for expression (2.98) within the con-
text of KS-DFT. With the result given by (2.123), the dielectric function is determined
according to (2.120) as

1
ϵ(q ,ω)

= 1+ vq
Π(q ,ω)

1− vq (q)Π(q ,ω)
= 1

1− vq (q)Π(q ,ω)
. (2.124)

The lowest-order contribution to χ is the response function of the noninteracting
homogeneous electron gas χ0 given by (2.122). In the RPA, the irreducible polarization is
approximated by the noninteracting response function which corresponds to Π(q ,ω) ≃
χ0(q ,ω), leading to the full response function in the RPA as [Bruus and Flensberg, 2004]

χRPA(q ,ω) = χ0(q ,ω)
1− vq (q)χ0(q ,ω)

. (2.125)

Consequently, the dielectric function in the RPA is given according to (2.124) as

ϵ(q ,ω) ≃ ϵRPA(q ,ω) = 1− vq (q)χ0(q ,ω). (2.126)

Static regime ω= 0

This brings us to the first approximation for screening in the static regime ω= 0, which
is the Thomas-Fermi approximation for the electron gas (see also section 2.4.1). It de-
scribes the effect of a static potential (zero frequency) at long wavelength by taking the
limit ω = 0, q → 0 of χ0(q,ω). At T = 0, χ0(q → 0,0) =−∂n/∂εF , leading to the following
expression for the dielectric function in the long wavelength

ϵ(q,0) ≃ 1+ 4π
q2

∂n
∂εF

= 1+
k2

T F

q2 , (2.127)

where kT F is the Thomas-Fermi wave vector which is given for the homogeneous elec-
tron gas by

kT F =
√

4π
∂n
∂εF

=
√

6πn
εF

. (2.128)

39



2. THE MANY-BODY PROBLEM

The positively charged particle that we have placed in the electron gas would produce a
potential φext(q) = 4π/q2 everywhere in space. The effective potential in the medium is
then given, according to (2.115), as [Ashcroft and Mermin, 1976]

φeff(q) = φext(q)
ϵ(q)

= 4π

q2 +k2
T F

, (2.129)

showing that the Thomas-Fermi wave vector cuts off the divergence of the bare Coulomb
interaction. In real space, the effective potential becomes the Yukawa or screened
Coulomb potential given by

φeff(r ,r ′) =
∫

dq
(2π)3 ei q ·(r−r ′)φeff(q) = 1

|r − r ′|e
−kT F |r−r ′|. (2.130)

Expression (2.130) shows the importance of including screening effects: the fact that the
effective or screened interaction at long wavelength is finite. The long-range Coulomb
interaction has been reduced due to the rearrangement of the electron gas.

The Thomas-Fermi theory describes how screening is responsible of cutting off the
singularities of the long-range Coulomb potential. However, expression (2.129) is valid
only when q << kF . Due to its long wavelength approximation, it cannot reproduce the
response of the electron gas to a short-range perturbation in an adequate manner. We
must then incorporate the finite −q behavior in the response function χ0(q ,0). This
gives rise to a modification in the dielectric function, leading to the following expression
for the dielectric function

ϵ(q,0) ≃ 1+
k2

T F

q2 F (x), (2.131)

where x = q/(2kF ) and F (x) is the Lindhard correction to the Thomas-Fermi result.23 It
is equal to one when limit q/(2kF ) → 0 but is not analytic at q = 2kF . The result is that,
at large distances, the effective potential at T = 0 goes as [Ashcroft and Mermin, 1976]

φeff(r ,r ′) ∼ 1
|r − r ′|3 cos

(
2kF |r − r ′|

)
. (2.132)

The screened potential of (2.132) has not an exponential decay anymore but an oscilla-
tory decaying behavior instead, showing that the potential is quite sensitive to the be-
havior of the density-density response function at q = 2kF .

Dynamic regime ω ̸= 0

We now investigate the case in which the external potential has a frequency ω and how

this affects the dielectric function. In the limit of T = 0, for |ω| > kF q + q2

2 , the imaginary
part of χ0 vanishes (Imχ0 = 0). In this region of the (q,ω) plane, the real part of χ0 at
long-wavelength (small q) and T = 0 can be expanded to give

χ0(q,ω) ≃
k3

F

3π2

q2

ω2

[
1+ 3

5

(
kF q
ω

)2]

≃ nq2

ω2

[
1+ 3

5

(
kF q
ω

)2]
. (2.133)

23With F (x) = 1
2

[

1+ 1−x2

2x
ln

(
1+x
|1−x|

)]

.

40



2.6. Van der Waals interactions in solids

Using (2.133) and (2.126) lead to the following expression for the frequency-dependent
dielectric function

ϵ(q,ω) ≃ 1−
ω2

p

ω2

[
1+ 3

5

(
kF q
ω

)2]
, (2.134)

where we have introduced the characteristic frequency ωp , known as the electronic
plasma frequency

ωp = (4πn)1/2 . (2.135)

The plasma frequency sets the energy scale of several processes in the interacting
electron gas. For instance, it determines the limit above which metals become transpar-
ent. A direct manifestation of the plasma frequency is the existence of collective charge
density oscillations known as plasmons. These spontaneous oscillations can be found
if we consider the case in which ϵ(q ,ω) = 0. In this condition, the system responds very
strongly to a small perturbation as (2.114) and (2.115) show. The plasmon frequency for
the electron gas is given in the RPA by setting ϵ(q,ω) = 0 in (2.134), which leads to [Bruus
and Flensberg, 2004]

ω(q) ≃ωp

[
1+ 9

10
O

(
q

kT F

)2]
. (2.136)

The plasma oscillations are examples of undamped excitations. The damping of ex-
citations is described by the imaginary part of χ0, which is non zero if the real part of
the denominator in the integrand of (2.122) vanishes. This is possible for wave vectors k
such that ±ωk = εk+q −εk where |k+q | is always above the Fermi surface and k is always
below. The physical origin of this resonance condition is the ability of the electron gas to
absorb incoming energy by generating electron-hole pairs [Bruus and Flensberg, 2004].
For fixed q , there is a maximum frequency where there are no more possible particle-
hole excitations. Outside of this (q,ω) area, the electron gas cannot absorb energy by
the excitation of electron-hole pairs. The plasmon excitation starts in the (q,ω) space
where dissipation is zero, which occurs at small values of q yielding infinite life times for
them. At some point, the plasmon dispersion curve crosses into the dissipative region
where Imχ0 ̸= 0 and the plasmon acquires a finite life time. This damping mechanism is
called Landau damping [Bruus and Flensberg, 2004].

2.6.2 Van der Waals interactions in metals

In their work dealing with vdW forces in noble metals, Rehr, Zaremba, and Kohn [1975]
already mentioned that attractive vdW interactions between ions in a metal had long
been recognized to contribute effectively to the total cohesive energy. They also stated,
however, that the magnitude and relative importance of this contribution had remained
as an open question, where the estimates had ranged from being negligible to approxi-
mately a third of the total cohesive energy [see Rehr et al., 1975].

The main reasons for these discrepancies reflect the differences when estimating
the ionic polarizabilities and the screening of the polarization forces due to the free elec-
trons in metals. The free electrons in metals give rise to a dynamically screened interac-
tion between the ions which is reflected in the vdW interaction among the ions in the
metallic system. As we have mentioned above, the importance of this effect lies in the
fact that an analogous mechanism takes place in the adsorption of atoms and molecules
on inorganic substrates such as metal surfaces. With this in mind, we review the work
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of Rehr et al. [1975], who calculated the interaction between ions using diagrammatic
techniques within many-body perturbation theory.

We start by considering the interaction between two ions a and b separated by a
distance R which are embedded in an homogeneous electron gas with density n. The
distance R is large enough that their ionic charge distributions are spherically symmetric
and there exists no overlap between them. The Hamiltonian of the system is given by

Ĥ = Ĥ0 +Ĥ1, (2.137)

where the unperturbed part Ĥ0 consists of two effective one-electron Hamiltonians
which describe the ions in the metal and a Hamiltonian for a noninteracting electron
gas,

Ĥ0 = Ĥe +Ĥa +Ĥb . (2.138)

The perturbation Ĥ1 consists in the Coulomb interaction between the charge distribu-
tions of the ions and the electron gas,

Ĥ1 = Ĥab +Ĥae +Ĥbe +Ĥee . (2.139)

In this context, the treatment by Rehr et al. [1975] consisted in including the inter-
actions between ions themselves and between the ions and the electron gas to non van-
ishing order while keeping the electron-electron interactions to all orders, leading to the
following expression for the dispersion energy between ions

Udisp(R) =−
∫∞

0

dω
2π

∫∫
dq

(2π)3

dq ′

(2π)3 χT
a (q , q ′, iω)V (q ′, iω)χT

b (q ′, q , iω)V (q , iω),

(2.140)
where χT

j ( j = a,b) is the continuation to complex frequencies of the Fourier transform
of the time-ordered density-density response function. A relevant result found in (2.140)
is that the summation of the electron-electron interactions originates a frequency-
dependent screened interaction of the same form of (2.115),

V (q ,ω) = v(q)
ϵ(q , iω)

, (2.141)

with the same dielectric function ϵ(q , iω) of (2.124).
The time-ordered response functionχT

j is intimately related to the retarded response
function of (2.121) that we have encountered in the context of linear response theory.
The relation between them can be solved in terms of the Lehmann representation [see
for example Fetter and Walecka, 1971; Engel and Dreizler, 2011]. Given the assumption
of spherically symmetric ions, χT

j is proportional to the ionic dipole polarizability α j (iω)
to leading order in q and q ′,

χT
j ≃−q ·q ′ei (q−q ′)·R j α j (iω). (2.142)

Using the approximation of (2.142) in expression (2.140), the dipole-dipole polarization
forces between the ions in real space takes the form of

Udisp(R) ≃−
∫∞

0

dω
2π

αa(iω)αb(iω)
[(

∂2V (R, iω)
∂R2

)
+ 2

R2

(
∂V (R, iω)

∂R

)2]
, (2.143)
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where V (R, iω) is the screened Coulomb interaction at separation R and frequency iω
given as

V (R, iω) =
∫

dq
(2π)3

4π
q2

ei q ·R

ϵ(q , iω)
= 2

π

∫
dq

sin qR
qR

1
ϵ(q , iω)

. (2.144)

One of the essential ingredients to evaluate the dipole-dipole contribution to the
vdW interaction between the ions in the metal is the screened Coulomb interaction,
given by (2.144), together with its first and second derivatives with respect to R. This
term is given by the term in brackets of expression (2.143). For the case of a very dilute
electron gas or for frequencies much larger than the plasma frequency, ϵ(q , iω) → 1 and
the bracketed quantity of (2.143) goes as R−6, leading to the reduction of Udisp(R) to the
pairwise expression for the vdW interaction between atoms or molecules. The screen-
ing is, however, most effective at frequencies lower than the plasma frequency, reducing
considerably the magnitude of the ion-ion interaction at low frequencies. The result-
ing values of evaluating expression (2.143) neglecting the screening effects are 2-3 times
larger according to the work of Rehr et al. [1975].

The other ingredient in (2.143) is the evaluation of the frequency-dependent dipole
polarizabilities of the ions. Rehr et al. [1975] extracted them from the optical data for
the noble metals given the fact that the ionic polarizabilities can be expressed by the
long-wavelength limit of the dielectric function. This was done by subtracting the free
electron part from the imaginary part of the observed dielectric function using a Drude
formula past the onset of the d−electron transitions. Finally, they also took into consid-
eration local-field effects by a Lorentz-Lorentz relation for the final ionic polarizability
of each core. For the dielectric function, they performed a numerical evaluation of its
RPA form. Furthermore, they also found that only the small−q behavior is relevant in
the evaluation of the screened potential V (R, iω), behavior which corresponds to taking
the limit q → 0 of (2.134).

With the model described above and estimating the contribution of higher order po-
larization forces, they calculated the total dispersion energy for Cu, Ag, and Au to be
0.21, 0.42, and 0.63 eV per atom, respectively. These values correspond to an approxi-
mate contribution of 6%, 14%, and 17% to the total cohesive energy of Cu, Ag, and Au,
respectively. Richardson and Mahanty [1977] also estimated the contribution of the vdW
energy to the binding energy of Au and Cu, obtaining a reasonable agreement with the
work of Rehr et al. [1975]. Most importantly, both works show that the vdW energy makes
an important contribution from the structural point of view to the stability of these no-
ble metals. We must also mention that the same contribution considered by Rehr et al.
[1975] has also been investigated by Maggs and Ashcroft [1987] and Mon et al. [1979].

2.6.3 Screening in density-functional approximations including van der
Waals interactions

The previous section has shown the effect of free-electron screening in the vdW interac-
tion between ions in metals, an example of a highly polarizable material. From a more
general perspective, the screening of the Coulomb interaction couples fluctuations be-
tween two atoms resulting from the polarization of the electronic charge on other atoms
[Dobson and Gould, 2012]. These collective effects go beyond the physics described by
simple pairwise interatomic vdW methods, especially for anisotropic and highly polar-
izable systems in which this behavior becomes stronger. It is evident that an analogous
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mechanism can then take place in complex systems such as adsorption systems, hybrid
interfaces, or nanostructures to name a few, whose electronic properties are determined
by a non-trivial interplay between localized and free electrons.

We have emphasized the reduction of the vdW interaction between ions as a very
important result of these collective effects. This result is, however, given at a sufficiently
large distance R such that there is no overlap between the ions in a metal. But from the
perspective of modeling complex systems such as adsorption systems, this also leads to
inaccurate magnitudes of vdW interactions between atoms at short to intermediate dis-
tances where wave-function hybridization takes place. From this context, it is necessary
to examine the theory behind the vdW-inclusive DFT methods that we have reviewed in
section 2.5, and their potential quantitative accuracy on systems in which screened vdW
interactions may be relevant.

The simple pairwise interactions described in section 2.5.1 are based on the pairwise
expression (2.107), where the C6 coefficients are evaluated by a simple average of atomic
C6 coefficients. Such a simple consideration is not sufficient to capture the collective ef-
fects among atoms that lead to the emergence of screened vdW interactions. As a conse-
quence, these methods will overestimate the contribution of vdW interactions between
atoms in highly polarizable systems such as metals or complex interfaces determined
by the presence of free electrons. The environment-dependent methods of section 2.5.2
go beyond the simple pairwise methods by taking into account the chemical environ-
ment of each atom. In this regard however, these methods suffer from the same limita-
tion implicit in their asymptotic R−6 behavior and the fact that the C6 coefficients are
calculated from atomic polarizabilities taking into account the chemical environmental
effects, which are only semi-local in their character, but do not represent the collective
non-local nature of the screening effects.

The ACFD theorem of section 2.4.4 is a method to include many-body dispersion in-
teractions seamlessly within KS-DFT. For a system with the electron-electron coupling
constant λ, vdW interactions are included automatically in the total correlation energy
of expression (2.97) in terms of the retarded density-response function χλ. The non-
local density functionals of section 2.5.3 and the RPA correlation energy are both based
on this formula to include dispersion interactions within KS-DFT. There are, however,
differences in both methods, some of which we will briefly examine [see especially Dob-
son and Gould, 2012; Lu et al., 2010, for a discussion of these differences].

The first difference that we address is the model used to define the dielectric re-
sponse function. In the RPA, the dielectric function is given from a fully microscopic
theory by expression (2.126), which along with expression (2.102), leads to

E RPA
c = 1

2π

∫∞

0
dωTr

{
log

[
1−χ0(iω)v

]
+χ0(iω)v

}

= 1
2π

∫∞

0
dωTr

{
log[ϵ(iω)]+ [1−ϵ(iω)]

}
. (2.145)

In the vdW-DF of Dion et al. [2004], the density-response function to the full effective
potential δn = χ̃φeff is used as alternative to expression (2.116). From classical electro-
dynamics, the polarization P of a dielectric material is given in terms of the macroscopic
dielectric function ϵM and the total electric field E tot by

P = ϵM −1
4π

E tot. (2.146)
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The macroscopic dielectric function is then introduced to relate the induced charge den-
sity δn to the polarization P as [Dion, 2004; Langreth et al., 2005]

δn =−∇ ·P =−∇ ·
(ϵM −1

4π
E tot

)
=∇ ·

(ϵM −1
4π

∇φeff

)
, (2.147)

which implies that the dielectric function is given by ϵM = 1+4πα given that P = αE tot,
where the dipole polarizability α has the general form of a matrix in spatial positions
[Rydberg et al., 2000]. If we compare expression (2.147) to δn = χ̃φeff, the following ex-
pression is obtained [Langreth et al., 2005]

χ̃λ =∇ ·
ϵM
λ
−1

4πλ
∇. (2.148)

This representation for ϵM
λ

differs from the quantum-mechanical microscopic represen-
tation of ϵ in the RPA [see expression (2.126)]. The macroscopic representation of the
dielectric function is in general not equal to its microscopic representation due to local-
field effects.

Another difference lies in the approximation to perform the λ integration of expres-
sion (2.97). In the RPA, the xc kernel f λ

xc is neglected in the Dyson equation (2.98) of
the density-response χλ, leading to (2.102). In the vdW-DF, on the other hand, the full
potential approximation (FPA) is introduced, that is χ̃λ ≡ χ̃1, assuming that the λ inte-
gration in expression (2.97) can be done analytically to give a logarithmic operator; so
that [Dobson and Gould, 2012; Langreth et al., 2005]

E nl
c = 1

2π

∫∞

0
dωTr

{
log

[
1− χ̃1(iω)v

]
− log

[
ϵM(iω)

]}
. (2.149)

The analogous expression in the RPA is exactly true where χ0 is independent of λ, but
constitutes an approximation in other formalisms [Dobson and Gould, 2012]. Since χ̃1
can be given in terms of ϵM according to (2.148), the correlation energy of (2.149) can be
expressed in terms of ϵM alone. As a final approximation, the correlation energy given
by (2.149) is solved in the vdW-DF by expanding the logarithm in second order in the
quantity

(
ϵM)−1 −1 termed as ‘S’ [see Dion et al., 2004; Dobson and Gould, 2012].

The RPA correlation energy includes, at least qualitatively, the correct screening be-
havior at the long-range regime, where the expression (2.140) by Rehr et al. [1975] is
evaluated. In fact, an analogous expression can be recovered when the RPA correlation
energy is evaluated in the limit of non-overlapping fragments [Dobson and Gould, 2012].
In the case of the vdW-DF, the approximations behind its derivation yield a density-
dependent pairwise additive behavior of the form −∑

ab C abR−6
ab at large separations

[see for example Dobson and Gould, 2012]. This implies the same asymptotic behav-
ior both for insulators and metallic systems, contradicting the result obtained by Rehr
et al. [1975] given in (2.143). A final and most important remark is the fact that the same
pairwise behavior eventually leads to an overestimation of vdW interactions in highly po-
larizable and anisotropic systems at intermediate and short distances, region in which
we are interested in the case of inorganic/organic systems for instance.

The MBD method [Tkatchenko et al., 2012; Ambrosetti et al., 2014b], which consists
in an efficient dipole approximation to the RPA, includes many-body effects in the long-
range correlation energy to all orders, but does not include a simultaneous description
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of localized and metallic states. The quantum harmonic oscillators, which represent the
basic model elements of the MBD method, have a non zero excitation gap and are ini-
tially localized. The coupling of the whole system eventually can induce a delocalization
of the polarizability, which can be significantly closer to the correct metallic response in
comparison to a pairwise response. This means that, together with the accurate input
polarizability of each of the atomic components in a given metallic system, the MBD
method has the potential to capture many-body dispersion effects with reasonable ac-
curacy in metallic systems [Maurer et al., 2015]. The challenge in the MBD method still
remains, however, to introduce the correct free-electron screening in metallic systems
in a fully microscopic manner.

In this last section we have analyzed, from a theoretical perspective, the effect of
free-electron screening in the vdW interactions of metallic systems focusing in metals
and the inclusion of screening effects in vdW-inclusive KS-DFT. It remains only to recall
that an analogous mechanism can take place in adsorption systems where free electrons
play a similar role, this is the case, for example, of the adsorption of atoms and molecules
on metal surfaces. We will address the specific theory of vdW interactions in adsorption
phenomena in chapter 4, focusing also on the practical perspective of the computational
simulation of materials.
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CHAPTER

3
Brief review of experimental
techniques

Validation is a major part of any approximate model since it tests the accuracy of our
representation of the real system. As we want to model the structure and stability of
adsorption systems in an accurate manner, the validity of our model is given by a direct
comparison with results found in experiments. For this reason, before entering into
the discussion of vdW interactions in adsorption phenomena, we briefly review some
experimental techniques that are used to determine the important quantities involved
in the structure and stability of adsorption systems.

We first give a brief review of the normal incidence x-ray standing wave technique,
which is frequently referred to throughout this text as it has become one of the most fa-
vored methods to determine accurate adsorption geometries of inorganic/organic sys-
tems. In section 3.2, we briefly address the temperature programed desorption tech-
nique, one of the favored methods to measure the adsorption energies of rare gases and
organic molecules on metal surfaces. Finally, in section 3.3 we discuss a recent tech-
nique which combines scanning tunneling microscopy (STM) and non-contact atomic
force microscopy (NC-AFM) to manipulate the adsorption of large organic molecules on
metal surfaces at the single-molecule level.

3.1 The normal incidence x-ray standing wave technique

The normal incidence x-ray standing wave technique (NIXSW) is a powerful experimen-
tal tool to determine accurate geometries of molecular adsorbates. In the last decade,
it has become the method of choice in this regard and contributed largely to further
understand the adsorption properties of organic films adsorbed on different surfaces
[Hauschild et al., 2005, 2010; Mercurio et al., 2013a; Bauer et al., 2012; Gerlach et al.,
2007; Mercurio, 2012; Stadtmüller, 2013; Mercurio et al., 2014]. The NIXSW technique
combines x-ray diffraction and inelastic x-ray scattering (photoelectric effect, Auger ef-
fect, fluorescence) using the coherent interference between the incident and diffracted
waves to create a standing wave inside and above the crystal. The spatial distribution of
the atoms can then be determined from their characteristic scattering response within
the standing wavefield [Mercurio, 2012].

Among the main advantages of the NIXSW technique we can mention that long-
range order of the adsorbate under study is not required in addition to the inherent
chemical sensitivity that the technique provides [Mercurio et al., 2014; Mercurio, 2012].
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This last point is of great importance for the validation of our electronic-structure meth-
ods in the context of adsorption phenomena given the fact that the structural informa-
tion –more specifically the vertical adsorption height– of each chemical species forming
the molecular adsorbate can be obtained. Not only the position of each chemical ele-
ment can be determined, but also the position of atoms of the same element in different
chemical environments within a molecular adsorbate [Mercurio et al., 2014]. We shall
now briefly discuss the fundamentals of the NIXSW method based mainly on the works
by Mercurio [2012] and Stadtmüller [2013]. A more detailed treatment of the NIXSW
technique can be found in these works along with the reviews by Zegenhagen [1993]
and Woodruff [2005], for example.

3.1.1 Fundamentals of the normal incidence x-ray standing wave method

The NIXSW technique consists of an incoming x-ray wave E0 illuminating a crystalline
sample in a direction perpendicular to the Bragg planes of the sample. If the photon
energies of the incident wave are close to the Bragg condition, a Bragg-reflected wave
EH will be generated. The x-ray standing wave (XSW) is then formed inside and above
the crystalline sample by the coherent interference of both wavefields. Assuming the
two waves to be planar, linearly polarized, and with parallel electric field vectors, both
wave fields E0 and EH can be characterized by the complex amplitude of the electric field
of the electromagnetic wave as [Mercurio, 2012]

E0 =E0e2πi (ν0t−K 0·r ), (3.1)

EH =EH e2πi (νH t−K H ·r ), (3.2)

where ν0 and νH are the respective frequencies of the radiation, K 0 and K H are the prop-
agation vectors, and r is a coordinate vector with respect to an arbitrary origin. The total
wavefield E of the XSW is given by the superposition of E0 and EH , that is E = E0 +EH .
Its intensity IXSW, normalized to the incoming beam, at a position r of the real space is
given by [Mercurio, 2012; Stadtmüller, 2013]

IXSW = EE ∗

|E0|2
=

∣∣∣∣1+
(

EH

E0

)
e−2πi H ·r

∣∣∣∣
2

. (3.3)

In expression (3.3), E0 and EH are the incident and reflected complex amplitudes of
the electric field of the electromagnetic wave, respectively, and H corresponds to the
reciprocal lattice vector of the Bragg reflection that generates the standing wave, that is
K H = K 0 +H .

Considering the coherence between E0 and EH , the ratio of the complex wavefield
amplitudes EH /E0 can be expressed as a complex number containing a phase factor υ
given by [Zegenhagen, 1993; Mercurio, 2012]

EH

E0
=
)

Reiυ, (3.4)

where υ defines the phase relationship of E0 to EH , and R, which represents the reflec-
tivity, relates the amplitude of EH to E0. Using (3.4), expression (3.3) takes the form
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[Zegenhagen, 1993; Mercurio, 2012] of

IXSW =
∣∣∣1+

)
Rei (υ−2πH ·r )

∣∣∣
2

=1+R +2
)

R cos(υ−2πH · r ). (3.5)

Expression (3.5) shows how the standing wave probes the position r in space. According
to expression (3.5), the pattern of the wavefield is determined through H , so the nodes
and antinodes (minima and maxima of intensity respectively) of the wavefield intensity
lie on planes; whereas its intensity at a particular location r in space, whether a max-
imum or a minimum intensity can be found at this point, is determined by the phase
υ.

The planar wavefield described by (3.5) has a spacing ds which is determined by the
relationship between K 0 and K H . This relationship is associated to the specific Bragg
reflection from the (hkl ) scatterer planes separated by dhkl , which is in turn given by H
since K H = K 0 +H . Thus, the spacing ds between the maxima of the wavefield is given
by the spacing dhkl of the Bragg planes, yielding [Mercurio, 2012; Zegenhagen, 1993]

ds = dhkl = |H |−1. (3.6)

Expressing H · r = H z, where H = |H | and z is the vertical distance of the real space
point defined by r from the nearest Bragg plane below, expression (3.5) can be written
as [Mercurio, 2012]

IXSW(z,E) = 1+R(E)+2
√

R(E) cos
(
υ−2π

z
dhkl

)
. (3.7)

The vertical z position of the atom can be analyzed through expression (3.7). Further-
more, changing υ by π exchanges the positions of the nodal and antinodal planes, that
is a shift of the wavefield by dhkl /2.

3.1.2 The normal incidence x-ray standing wave experiment

As the fundamental principle behind the NIXSW technique is to use the XSW as a probe
to determine the spatial distribution of the atoms in the sample, the x-ray intensity at
the position of a scatterer atom must be experimentally detected. In this regard, we fo-
cus on the photoelectric effect rather than on the decay processes as the Auger effect
or x-ray fluorescence.1 If the incident photon energy hν is greater than the sum of the
electron binding energy Eb and the work function W , that is hν > Eb +W , the electron
is emitted. The detection of the emitted photoelectrons at position z, known as the elec-
tron yield Y (z), is proportional to the absorption Ia(z) of the XSW from a given element
at position z. Within the dipole approximation, the photon absorption Ia is at the same

1The experiments that we use to validate our theoretical predictions in this dissertation have been
mainly performed in the last decade. We believe that research using this specific technique are well rep-
resented in the works by Mercurio [2012]; Mercurio et al. [2014]; and Stadtmüller [2013]. In this context,
Mercurio [2012] mentions the advantages of detecting photoelectrons over Auger electrons or x-ray fluores-
cence. Among these advantages, the most important from our perspective is that photoelectrons are both
element specific and bonding-environment specific.
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time proportional to the intensity IXSW of the XSW given by (3.5) [Mercurio, 2012]. In
simple terms,

Y (z) ∝ IXSW(z). (3.8)

Expression (3.8) is the link between the probe and the measured electron yield corre-
sponding to a spatial distribution of atoms located, in the case of the adsorption systems
of our interest, at different positions z on top of an inorganic substrate.

In general, during an XSW experiment, either the incident angle or the energy of the
incoming photon varies. In the experiments that we cite in this dissertation, the NIXSW
technique was used, meaning that the incident angle is perpendicular to the set of Bragg
planes. As a result, the incident photon energy is the variable quantity, being scanned
through the finite range of energies, changing the phase υ, and eventually including the
Bragg energy EBragg = hc/λBragg. This leads to diffraction and the generation of the stand-
ing wave. The photon absorption Y (z) is then quantified by recording secondary emis-
sion processes, mainly photoelectrons. The position z is finally determined using (3.7),
by fitting photoemission yield curves Y (z) together with the calculated R and phase υ

[Stadtmüller, 2013; Mercurio, 2012].

The coherent fraction Fc and coherent position Pc

There are two structure parameters that are extracted from fitting the photoemission
yield profile: the coherent fraction Fc and the coherent position Pc . The origin of these
is that different vertical positions can occur in complex adsorbate systems due to verti-
cal disorder, surface defects, or thermally induced vibrations [Stadtmüller, 2013; Mercu-
rio et al., 2014]. These aspects are introduced in (3.7) with a distribution function f (z)
which describes the vertical position of all atoms of one species so that

∫dhkl
0 f (z)dz = 1.

Expression (3.7) then takes the form of [Mercurio, 2012]

IXSW = 1+R +2
)

R
∫dhkl

0
f (z)cos

(
υ−2π

z
dhkl

)
dz

= 1+R +2Fc

)
R cos

(
υ−2πPc

)
, (3.9)

where the parameters Fc and Pc , which take values between 0 and 1, are defined. The
coherent position Pc is related to the averaged vertical position in fractions of the Bragg
plane distance Pc = Dc

dhkl
above the nearest Bragg plane. Pc = 0 and Pc = 1 correspond

to a Bragg plane position while any value between 0 and 1 corresponds to a position be-
tween two consecutive Bragg planes. The coherent fraction Fc refers to the fraction of
photoemitters found at the position Pc . An homogeneous distribution of adsorbates rel-
ative to the Bragg planes is indicated by Fc = 0 while Fc = 1 indicates that all photoemit-
ters are located at the same height associated to the coherent position Pc [Stadtmüller,
2013; Mercurio et al., 2014].

3.2 The temperature programed desorption technique

The adsorption energy is often used to validate the predictions of electronic-structure
methods. Campbell and Sellers [2013] review some of the experimental techniques to
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measure adsorption energies of adsorbates on single-crystalline surfaces such as single-
crystal adsorption calorimetry, equilibrium adsorption isotherms, and temperature pro-
gramed desorption (TPD). Here, we limit our discussion to the TPD method because
this technique is highly favored in the case of the adsorption of rare gases and organic
molecules on metal surfaces in part because of its simplicity and power. We base our dis-
cussion of this technique on the works by Campbell and Sellers [2013] and King [1975].

The TPD method is an experimental technique used to characterize the energetics
of adsorbates on single-crystalline surfaces since the late 1950’s [King, 1975]. It is not a
direct method in the sense that it only provides an accurate activation energy for des-
orption

(
Ed

)
in the best case. This energy can only be equated to the adsorption energy

when the adsorption ! desorption process is reversible and the activation energy for
adsorption is negligible [Campbell and Sellers, 2013].

During a TPD experiment, a sample with the preadsorbed species is heated in ultra-
high vacuum at a constant heat rate, preferably linear in time, while monitoring at the
same time the rate of appearance of gases emitted by the surface [Campbell and Sellers,
2013]. The desorption rate is typically recorded with a mass spectrometer. The des-
orption energy Ed is then determined by analyzing the measured desorption rate data
versus temperature and coverage [see, for example, Figure 3 in Campbell and Sellers,
2013]. Other kinetic parameters can be also be obtained from this analysis. We shall
now discuss briefly some of the methods to obtain the desorption energy.

If the adsorption ! desorption process is reversible and the activation energy for ad-
sorption is negligible, the desorption energy can be related to the enthalpy of adsorption
∆H 0

ad (where the superscript 0 refers to its value at the standard pressure of 1 bar) by

qad =−∆H 0
ad = Ed + 1

2 RT, (3.10)

where qad is the differential heat of adsorption, R is the universal gas constant, and T
is the average sample temperature where the desorption rates were measured. One can
safely assume that the activation energy for adsorption is negligible when the sticking
probability for adsorption is nearly unity, which is usually the case for simple molecular
adsorption [Campbell and Sellers, 2013].

For the case of a reversible molecular adsorption ! desorption process, where it is
reasonable to assume that desorption is a first-order process, the Polanyi-Wigner equa-
tion reads [Campbell and Sellers, 2013]

r (Θ,T ) =−dΘ

d t
= ν1Θ e−Ed(Θ)/(RT ), (3.11)

where the desorption rate r (Θ,T ) is a single-valued function of the coverage Θ and tem-
perature T , ν1 is the pre-exponential factor, generally assumed not to vary with coverage
or temperature, and Ed (Θ) is the coverage-dependent desorption activation energy. The
desorption energy clearly changes with the coverage as the adsorption energy does since
it depends on the adsorbate-adsorbate distance or the adsorption site (defects, terraces,
for example). We will partially address this effect in section 5.2. From (3.11), the value of
Ed(Θ) can be obtained with the knowledge of ν1 using

Ed(Θ) =−RT ln
[
−dΘ

d t
(ν1Θ)−1

]
. (3.12)
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The pre-exponential factor ν1 in (3.12) is treated as a variational parameter by optimiz-
ing the fit between experimental and simulated TPD spectra, finding the prefactor that
best describes the kinetics of the desorption process [Campbell and Sellers, 2013].

Another option, commonly used, to calculate Ed is by using the first-order Redhead
equation [Redhead, 1962; Campbell and Sellers, 2013]. This equation relates Ed to the
temperature Tp at which the desorption maximizes, the heating rate β, and ν1 as

Ed

RT 2
p
= ν1

β
e−Ed/(RTp). (3.13)

In this case, Ed is commonly calculated using expression (3.13) assuming a value for
ν1. Extracting Ed from the Redhead equation (3.13) is a highly favored method which
gives reasonable accuracy if the value ν1 is approximately correct [Campbell and Sellers,
2013]. For simple adsorbates such as small molecules, small prefactors of the order of
1011−1012 s−1 are expected and sometimes assumed (such as the case of the adsorption
of small alkanes for instance) [Fichthorn and Miron, 2002; Liu et al., 2013b]. However,
recent experimental and theoretical studies have shown that the value of ν1 is signif-
icantly increased for larger molecules, reflecting a discrepancy between the adsorbed
and the gas-phase (transition-state) entropies [Fichthorn and Miron, 2002; Tait et al.,
2005]. Campbell and Sellers [2012] have tackled this issue by estimating values of ν1
from a discovered relation between the pre-exponential factor for desorption and the
entropy of the gas-phase product [see also Campbell and Sellers, 2013]. Liu et al. [2012]
have applied this methodology to revisit experimental adsorption energies for benzene
on coinage metal surfaces in order to validate theoretical predictions, finding that a pref-
actor of 1015 s−1 describes more accurately the kinetics of the desorption process of ben-
zene on coinage metal surfaces. As we can infer from this discussion, the correct inter-
pretation of experimental results is highly important in order to achieve an adequate
validation of our theoretical methods.

3.3 Combining experimental microscopy techniques for
single-molecule manipulation

In this last section, we briefly review a recent experimental technique which combines
scanning tunneling microscopy (STM) and non-contact atomic force microscopy (NC-
AFM) aiming to investigate, at the single-molecule level, the energetic features of large
organic molecules adsorbed on surfaces [Wagner et al., 2012, 2014]. An important part of
this research is unveiling the influence of vdW interactions in the adsorption of organic
molecules on metal surfaces [van Ruitenbeek, 2012]. We only give here a brief review of
this experimental technique. More detailed information can be found, for example, in
Fournier et al. [2011]; Wagner et al. [2012, 2014]; and Wagner and Temirov [2015].

This novel experimental technique uses a low-temperature, ultrahigh-vacuum scan-
ning tunneling microscope whose tip is glued to a tuning-fork-type quartz mechanical
sensor [van Ruitenbeek, 2012]. The mechanical sensor uses a piezoelectric tuning fork
resonator as tip mount which measures the shift of the resonance frequency f0 of the
resonator with the stiffness k0 at any given spatial position of the tip. The frequency
shift ∆ f of the tip oscillating with a small amplitude along the z−axis perpendicular to
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the surface is related to the first derivative of the force Fz acting from the surface on the
tip along z [Wagner and Temirov, 2015],

dFz

d z
=−2k0

f0
∆ f . (3.14)

This configuration extends the capabilities that STM provides in imaging individual mol-
ecules and their functional groups while adsorbed on metal surfaces. Such a combined
NC-AFM/STM working at temperatures of approximately 5 K was the first instrument
used to obtain images of the structure of a large organic molecule, namely pentacene
[Gross et al., 2009].

Wagner et al. [2012] used this technique to obtain experimental information in or-
der to partition the overall binding energy of the adsorption of a single PTCDA mole-
cule on Au(111) into its different bonding channels. They were able to establish contact
between the microscope tip and the corner of the molecule, forming a chemical bond
between the molecule and the outermost tip apex atom, then retract the tip from the
surface, lifting the molecule, and eventually approaching the tip back to the surface,
thus restoring the bond between PTCDA and Au(111). They measured the stiffness of
the surface-molecule-tip junction throughout the complete removal process, probing
all the interaction potentials that form the bond between PTCDA and Au(111).

To retrieve the quantitative shape of all the interaction potentials –Pauli repulsion, lo-
cal chemical bonds, and dispersion interactions– they used the information contained
in the curve generated with expression (3.14). By modeling the various components of
the molecule-substrate interaction with generic potentials, simulating the junction stiff-
ness dFz

d z based on these potentials, and eventually fitting them to the experimental data
throughout the whole manipulation process, they finally extracted the potential param-
eters and retrieve the desired partitioning [Wagner et al., 2012]. The adsorption poten-
tials generated with this technique serve as a direct benchmark for the potentials cal-
culated with electronic-structure methods. Furthermore, this technique also provides
the adsorption energy and distance of single molecules adsorbed on surfaces, providing
another source of validation for our theoretical methods.
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in density-functional
approximations

55





CHAPTER

4
Van der Waals interactions in
adsorption phenomena

This chapter includes our original work and specific topic of interest in this dissertation,
namely accurately modeling vdW interactions in DFT within the context of adsorption
phenomena. We are especially interested in the interfaces formed by inorganic/organic
systems as they are of great interest to both basic science and technology. The interface
geometry of these systems plays a fundamental role in their electronic properties in such
a way that a balanced description of both their structural and electronic properties is
critical for their understanding [Tkatchenko et al., 2010].

We start by describing the performance of several vdW-inclusive methods in KS-DFT
using one of the best experimentally and theoretically characterized inorganic/organic
interfaces. We continue by describing the theory behind vdW forces in the context of ad-
sorption phenomena. From this analysis, an expression for the vdW interaction between
an atom and a solid surface can be obtained. We conclude by describing the develop-
ment of a method (which we call DFA+vdWsurf) to treat vdW forces between complex
adsorbates and surfaces within DFT. Much of the work here presented is based on our
own previously published work [Ruiz et al., 2012, 2016].

4.1 State of the art

The reliable prediction of the equilibrium structure and dynamic properties of hybrid
inorganic/organic systems (HIOS) from first principles represents a great challenge to
the state-of-the-art theoretical methods due to the interplay of covalent interactions,
electron transfer processes, van der Waals (vdW) interactions, and Pauli repulsion. In
particular, vdW interactions are fundamental in determining the structure and stability
of organic molecules on solid surfaces [Atodiresei et al., 2009; Mercurio et al., 2010; Stradi
et al., 2011; McNellis, 2010; Tkatchenko et al., 2010; Olsen et al., 2011; Lazić et al., 2014].

Routine KS-DFT calculations using (semi-)local and hybrid functionals to approxi-
mate the xc energy functional do not include vdW interactions at all, but recent years
have seen the development of several promising vdW-inclusive approaches in KS-DFT.
In this context, the role of vdW interactions in the binding between small molecules in
the gas phase has been extensively studied and is fairly well understood. Methods such
as the ones we have described in section 2.5 have shown to be remarkably accurate for
intermolecular interactions but their application to HIOS is questionable due to either
the absence or inaccuracy of the impact that the non-local (inhomogeneous) collective
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electron response of the extended substrate has on the vdW energy of the system. The
foundation of this statement is given, from the theoretical point of view, in the discus-
sion of section 2.6.3. From the practical perspective of the computational simulation
of materials, this problem has been exemplified for several adsorption systems [see for
example Nguyen et al., 2010; Olsen et al., 2011; Stradi et al., 2011; Atodiresei et al., 2009;
Mercurio et al., 2010; Lüder et al., 2014].

Within the large variety of HIOS, 3,4,9,10-perylene-tetracarboxylic dianhydride
(PTCDA, chemical formula: C24H8O6) on coinage metals is one of the best experimen-
tally and theoretically characterized systems. The adsorption geometry of PTCDA on
Ag(111), Au(111), and Cu(111), has been accurately determined by means of the nor-
mal incidence x-ray standing wave (NIXSW) technique [Gerlach et al., 2007; Henze et al.,
2007; Hauschild et al., 2010], making these systems a suitable choice for testing the pre-
dictive power of theoretical methods. In particular, Romaner et al. [2009] studied the
adsorption of PTCDA on coinage metal surfaces and concluded that a more accurate
approach to include vdW interactions is needed. Several other studies for PTCDA on
Ag(111) have also been published on the matter [Rohlfing and Bredow, 2008; Rohlfing
et al., 2007; Romaner et al., 2009; McNellis, 2010; Tkatchenko et al., 2010; Ruiz et al.,
2012].

To illustrate the challenge of predicting the equilibrium structure in HIOS from first
principles, we start by comparing the performance of existing theoretical methods for
the interaction of PTCDA with Ag(111) in Figure 4.1. The average adsorption height of
2.86 ± 0.05 Å is reliably known from a number of NIXSW studies for the ordered mono-
layer at room temperature [see Hauschild et al., 2010, and references therein]. From an
experimental perspective, the adsorption energy is unavailable because PTCDA breaks
down upon thermal desorption in TPD experiments [Zou et al., 2006]. Nevertheless, the
adsorption energy of 1.16 ± 0.1 eV has been measured from TPD experiments for the
adsorption of 1,4,5,8–naphthalene–tetracarboxylic–dianhydride (C14H4O6, NTCDA) on
Ag(111) by Stahl et al. [1998]. Both NTCDA and PTCDA are molecules terminated with
two anhydride functional groups, however NTCDA has a smaller aromatic backbone.
Based on this information we have initially made an estimate of 2.4 ± 0.2 eV for the ad-
sorption energy of PTCDA on Ag(111) [Tkatchenko et al., 2010; Ruiz et al., 2012].1 Using
KS-DFT with the PBE functional [Perdew et al., 1996] results in no visible minimum in
the binding curve [see also Tkatchenko et al., 2010]. The LDA underestimates the bind-
ing distance (≈ 2.65 Å), although it (fortuitously) yields a better adsorption energy [see
also Rohlfing et al., 2007].

The inclusion of vdW interactions using the non-local vdW-DF [Dion et al., 2004]
leads to results that are far off both for the binding distance and the binding energy
[Tkatchenko et al., 2010; Romaner et al., 2009]. The interatomic pairwise PBE-D2 cor-
rection by Grimme appears to be closer to the experimental binding distance; the cal-
culated binding energy is, however, larger by 1 eV than the above mentioned estimate
[McNellis, 2010]. The interatomic pairwise PBE+vdW correction scheme [Tkatchenko
and Scheffler, 2009], where the vdW coefficients and radii are determined nonempiri-
cally from the electron density, leads to a better prediction for the energy but it still over-
estimates the equilibrium distance by about 0.35 Å [see also Tkatchenko et al., 2010].
Even the computationally most expensive calculations using exact exchange with elec-

1We revisit this estimate for the adsorption energy of PTCDA on Ag(111) later on chapter 7, section 7.3.1.
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FIGURE 4.1: Adsorption energy Eads as a function of vertical distance d for PTCDA on
Ag(111) employing different vdW-inclusive DFT methods. The estimated adsorption
energy for the system of −2.4 ± 0.2 eV [Tkatchenko et al., 2010] and the experimental
adsorption distance of 2.86 ± 0.05 Å [Hauschild et al., 2010] are indicated by shaded in-
tervals. These error bars correspond to typical experimental error estimates.

tron correlation treated in the RPA (EX+cRPA, with some additional approximations to
make these calculations feasible) yield a 0.2 Å overestimation in the equilibrium distance
of PTCDA on Ag(111) [Rohlfing and Bredow, 2008].

The discussion above, along with that of section 2.6.3, give us a clear picture of what
the state-of-the-art computational modeling of HIOS was at the moment when the re-
search project of this dissertation started. It is evident that modeling HIOS in KS-DFT
requires efficient and accurate methods that are able to include a wide range of interac-
tions, especially vdW interactions. It is also evident that the methods which were avail-
able did not have the required accuracy to predict the structure and stability of HIOS in
a reliable manner. As a result, the prediction, understanding, and eventual control of
the functionality of these interfaces would become almost impossible from the compu-
tational point of view given the fact that the interface geometry of these systems deter-
mines their electronic properties.

It is in this background, and with the intention of solving this problem, that we
have developed the DFA+vdWsurf method [Ruiz et al., 2012] to calculate the adsorp-
tion properties of atoms and molecules on surfaces. This method combines the
DFA+vdW method [Tkatchenko and Scheffler, 2009] for intermolecular interactions with
the Lifshitz-Zaremba-Kohn (LZK) theory [Lifshitz, 1956; Zaremba and Kohn, 1976] for
the inclusion of the non-local collective response of the substrate surface in the vdW
energy tail. Calculations using the DFA+vdWsurf method have demonstrated that the in-
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clusion of these collective effects, which effectively go beyond the atom-based pairwise
description of vdW interactions, enables us to reliably describe the binding in many sys-
tems, including the adsorption of a Xe monolayer, of aromatic molecules (benzene and
derivatives, naphthalene, anthracene, azobenzene, diindenoperylene, and olympicene
and derivatives), C60, molecules including sulfur/oxygen such as thiophene, NTCDA,
and PTCDA on several close-packed transition-metal surfaces [Ruiz et al., 2012; Liu et al.,
2012; van Ruitenbeek, 2012; Liu et al., 2013b; Bürker et al., 2013; Mercurio et al., 2013b;
Schuler et al., 2013; Liu et al., 2013a, 2014]. A study of a Cu-phthalocyanine film on a
PTCDA monolayer adsorbed on Ag(111) has also been published recently [Egger et al.,
2013]. As a final comment, it is worth mentioning that along with our own developed
methodology to describe vdW interactions in adsorption phenomena, vdW-DF-type
functionals with empirically optimized exchange have emerged which seem to be able
to achieve accurate results in describing inorganic/organic adsorption systems [Klimeš
et al., 2010; Liu et al., 2012; Carrasco et al., 2014].

We shall continue by presenting a detailed description of the DFA+vdWsurf method.
We start in section 4.2 by reviewing the general theory of vdW interactions followed by a
discussion regarding the case of the atom-surface vdW interaction in section 4.3, where
we also discuss its relation to the vdW pairwise interactions. Finally, in section 4.4 we
show how this relation determines the development of the DFA+vdWsurf method.

4.2 The van der Waals interaction between polarizable
fragments

As a starting point, we consider the case of two neutral polarizable fragments Sa and
Sb in the well-separated regime, that is, separated at large distances where there is no
wave-function overlap between fragments. If we treat the inter-fragment Coulomb inter-
action vab as a perturbation, expressions (2.103) and (2.105) become particularly useful
in relating the ACFD-RPA approach described in section 2.4.4 with a formal perturbative
description of the dispersion energy [Dobson, 1994; Lu et al., 2010]. If χaa and χbb corre-
spond to the fully interacting intra-system response function of each isolated fragment
and vab is the inter-fragment Coulomb interaction treated as a perturbation, the total
inter-fragment response function can be written in terms of the sum of the individual
interacting responses plus a correction term δχ [Dobson, 1994; Lu et al., 2010]

χ=χaa +χbb +δχ, (4.1)

where δχ≃ δχaa +δχab +δχbb +δχba at the lowest order of vab . By including first order
changes to the cross responses [Dobson, 1994; Lu et al., 2010]

δχab ≃ χaa vabχbb ,

δχba ≃ χbb vbaχaa ,

and second order changes to the intra-responses

δχaa ≃ χaa vabχbb vbaχaa ,

δχbb ≃ χbb vbaχaa vabχbb ;
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the contribution to the correlation energy (2.105), keeping only second order (n = 2)
terms and using (4.1), can be expressed as [Dobson, 1994, 2006; Lu et al., 2010]

E (2)
vdW =− 1

2π

∫∞

0
dω

∫
. . .

∫
dr a dr ′

a dr b dr ′
b χa(r a ,r ′

a , iω)v(r ′
a ,r b)χb(r b ,r ′

b , iω)v(r ′
b ,r a),

(4.2)
where χa and χb are the linear density response functions of fragments Sa and Sb re-
spectively and v(r ,r ′) =

∣∣r −r ′∣∣−1 is the bare Coulomb interaction. Position vectors r a
and r ′

a are restricted to fragment Sa , while r b and r ′
b are restricted to fragment Sb . Ex-

pression (4.2) corresponds to the Zaremba-Kohn [Zaremba and Kohn, 1976] (ZK) for-
mula which was derived following second-order perturbation theory. The ZK expres-
sion corresponds to the dispersion energy between two neutral polarizable fragments in
terms of the charge fluctuations of each fragment. Within the ACFD-RPA formalism of
section 2.4.4, Dobson [1994] showed that the ZK formula is obtained when the response
function is formulated in terms of the RPA.

We consider now the response function of each fragment Si to be characterized by
an isotropic point dipole polarizability αi (iω) located at R i [Dobson, 1994]

χi (r i ,r ′
i , iω) =−αi (iω)∇r i

δ3(r i −R i )⊗∇r ′
i
δ3(r ′

i −R i ), (4.3)

where δ3(r − r ′) is the three-dimensional (3D) Dirac delta function and ⊗ corresponds
to the tensor (outer) product. Given (4.3) for χa and χb , the vdW interaction for two
well-separated fragments given by (4.2) becomes [Dobson, 1994]

E (2)
vdW ≃− 3

πR6

∫∞

0
dω αa(iω)αb(iω) =−

C ab
6

R6 , (4.4)

where the Casimir-Polder formula [Casimir and Polder, 1948; McLachlan, 1963] has been
used to calculate C ab

6 from the dipole polarizabilities of each fragment and R = |R a −
Rb |. The equation above corresponds to the pairwise formula known since the work
of London [1930, 1937] and, as it has been summarized by Dobson [2006] can be de-
rived in several ways. For the general case of N polarizable dipoles in the well-separated
regime, Tkatchenko et al. [2013] showed that the second-order expansion of the correla-
tion energy given within the ACFD-RPA scheme leads, in the dipole approximation, to
[Tkatchenko et al., 2013; DiStasio Jr. et al., 2014]

E (2)
vdW = E (2)

c,RPA =−1
2

∑

i

∑

j

C i j
6

R6
i j

. (4.5)

The reader will note that (4.5) corresponds to the expression for the pairwise dispersion
energy of N atoms as used in the DFT-D [Grimme, 2004, 2006; Grimme et al., 2010] and
DFA+vdW [Tkatchenko and Scheffler, 2009] methods.

4.3 Atom-surface van der Waals interaction
(Lifshitz-Zaremba-Kohn theory)

The vdW interaction between a semi-infinite crystalline solid and a neutral atom can be
derived starting from (4.2) in the limit where there is no wave-function overlap between
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FIGURE 4.2: Geometry of the atom-surface system.

the atom and the surface [Zaremba and Kohn, 1976]. Figure 4.2 features the geometric
arrangement of the atom-surface system. In this arrangement, fragment Sa is the atom
located at a distance Z from the topmost layer of the surface, which corresponds to frag-
ment SS . The origin of the coordinate system is chosen to lie in the plane of the topmost
surface atoms. For the case of the atom-surface interaction, the ZK formula (4.2) corre-
lates the charge fluctuations between adsorbate and substrate and does not rely on any
specific model for the involved fragments [Bruch et al., 1997].

In this case, the Coulomb potential between fragments can be expressed in terms of
two-dimensional (2D) Fourier decompositions in order to incorporate the symmetry of
the planar semi-infinite substrate as

v(r ) =
∫

dq
2π
q

ei q ·ρ−qz , (4.6)

where q is a 2D wave vector that lies parallel to the plane of the surface and the 3D posi-
tion vector is r = (ρ, z). After expressing the Coulomb potential in terms of q and incor-
porating the complex wave vector κ= q + i q ẑ , the atom-surface dispersion interaction
takes the following form [Zaremba and Kohn, 1976; Bruch et al., 1997]

E (2)
vdW =− 1

2π

∫∞

0
dω

∫
d2q

(2π)2

∫
d2q ′

(2π)2

2π
q

2π
q ′ e−Z (q+q ′)ei R ·(q−q ′) A(x , x ′, iω)S(r ,r ′, iω).

(4.7)
A(x , x ′, iω) represents the adsorbate response function and is given by

A(x , x ′, iω) =
∫

dx
∫

dx ′ eiκ·x−iκ∗·x ′
χa(x , x ′, iω), (4.8)

where the position vector x is taken relative to the center of the adatom located at R =
(0,0, Z ), that is x = r −R . The surface response function S(r ,r ′, iω) is the analog to (4.8)
and is given by

S(r ,r ′, iω) =
∫

dr
∫

dr ′ eiκ·r−iκ∗·r ′
χS(r ,r ′, iω). (4.9)
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4.3. Atom-surface van der Waals interaction (Lifshitz-Zaremba-Kohn theory)

Due to the periodicity of the surface, the integral over q ′ in (4.7) is restricted to q ′ =
q +G , where G is a reciprocal lattice vector in the plane of the surface. Only the terms
where G = 0 give rise to a power-law dependence characteristic of the vdW interaction
[Zaremba and Kohn, 1976]. Taking only the G = 0 terms, (4.7) reduces to [Bruch et al.,
1997]

E (2)
vdW =− 1

2π

∫∞

0
dω

∫
d2q

(2π)2

2π
q

e−2q Z A(q, iω)S(q, iω). (4.10)

The factor e−2q Z appearing in (4.10) cuts off the sum of q values to q " 1/Z . Therefore,
it is sufficient to determine only the small-q behavior of functions A(q, iω) and S(q, iω).
A(q, iω) contains the fluctuations in the density of the adsorbate due to the dipole and
higher-multipole moments of the atom. It can be expanded in terms of even powers of
q as [Zaremba and Kohn, 1976; Bruch et al., 1997]

A(q, iω) = 2αa
1 (iω)q2 + 2

3
αa

2 (iω)q4 +O (q6)+ . . . , (4.11)

where αa
1 and αa

2 are the frequency-dependent dipole and quadrupole polarizabilities
of atom a, respectively, evaluated at imaginary frequency. Higher-multipole polarizabil-
ities correspond to higher even powers of q .

The surface response function S(q, iω), which has the form of

S(q, iω) = 2π
q

∫
dz

∫
dz ′ eq(z+z ′) χS(z, z ′, iω), (4.12)

contains all the information of the substrate, that is, its structure and the response given
by its electronic structure. S(q, iω) can also be formulated as [Zaremba and Kohn, 1976;
Persson and Zaremba, 1984]

S(q, iω) =
∫

dz eqzδn(z, q, iω), (4.13)

where δn(z, q, iω) is the surface electron density induced by an external charge of the
form ρext(r , t ) = δ(z−Z )ei q ·ρeωt [Zaremba and Kohn, 1976; Persson and Zaremba, 1984].
The surface response function gives the relative amplitude of the induced electrostatic
potential. It can also be seen, according to (4.13), as an exponentially weighted integral
of the surface charge density [Persson and Zaremba, 1984]. It includes effects due to
the diffuseness of the surface charge density and the nonlocal dielectric response of the
surface and the bulk. Expression (4.13) can be expanded in terms of q as [Bruch et al.,
1997]

S(q, iω) =σ0(iω)+qσ1(iω)+O (q2)+ . . . , (4.14)

where the term σ0, corresponding to the limit q = 0 of S(q, iω), is the total surface charge
density and can be expressed in terms of the bulk dielectric function ϵS(iω) of substrate
S as

σ0(iω) =
ϵS(iω)−1
ϵS(iω)+1

. (4.15)

The expansion of S(q, iω) in powers of q generates a series for E (2)
vdW which can be in

consequence given in terms of inverse powers of Z [Zaremba and Kohn, 1976; Bruch
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et al., 1997]. Given the expansions of (4.11) and (4.14), the vdW interaction of (4.10) can
be expressed as

E (2)
vdW ≃−

C aS
3

Z 3 −
C aS

4

Z 4 −O (Z−5)+ . . . , (4.16)

where

C aS
3 = 1

4π

∫∞

0
dω αa

1 (iω)σ0(iω), (4.17)

and

C aS
4 = 3

8π

∫∞

0
dω αa

1 (iω)σ1(iω). (4.18)

The leading term of (4.16) shows the characteristic Z−3 behavior of the atom-surface
vdW interaction [see London and Polanyi, 1930; Lifshitz, 1956; Zaremba and Kohn, 1976],
which depends on the dipole polarizability of the adsorbate and the surface charge den-
sity of the substrate [see (4.17)]. Higher-Z−n terms and their respective interaction coef-
ficients C aS

n correspond to complex expressions involving both adsorbate and substrate
response properties [Bruch et al., 1997].

With the identification of σ0 in terms of the macroscopic bulk dielectric function of
the substrate in (4.15), the interaction coefficient C aS

3 is given by

C aS
3 = 1

4π

∫∞

0
dω αa

1 (iω)
ϵS(iω)−1
ϵS(iω)+1

. (4.19)

Lifshitz [1956] originally gave a macroscopic formulation of the attractive vdW forces be-
tween two bodies. His formulation characterized each body in terms of spatially nondis-
persive (q = 0) frequency-dependent dielectric functions such as σ0 in (4.19) and re-
sulted in the same inverse third power dependence on the distance between bodies. The
approach of Zaremba and Kohn [1976] that yields the asymptotic expansion in (4.16) has
the advantage of taking into account the microscopic details of the surface in the atom-
surface vdW interaction. However, expression (4.16) cannot be applied directly to the
atom-surface vdW interaction since the choice of the origin of coordinates in the expan-
sion is not obvious considering the distances typically found in physisorption. The first
two terms in (4.16) can be recovered by writing [Zaremba and Kohn, 1976; Bruch et al.,
1997]

E (2)
vdW ≃−

C aS
3

(Z −Z0)3 , (4.20)

where Z0 is the position of the reference plane for the atom-surface vdW interaction and
is defined as

Z0 ≡
C aS

4

3C aS
3

. (4.21)

The vdW reference plane Z0 can be understood as a consequence of the spatially disper-
sive character found in the density-response function of the substrate as its definition in
terms of C aS

4 indicates [Zaremba and Kohn, 1976; Bruch et al., 1997]. The physical im-
portance of C aS

4 lies in its dependence on σ1 in (4.18), which corresponds to the linear
term in q found in the expansion of the surface response function S(q, iω). We note that
the relationship among the Lifshitz theory, the ZK theory, and the RPA approximation
within the ACFD formalism is discussed by Dobson and Gould [2012].
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4.4. Density-functional approximations with screened van der Waals interactions to model
adsorption phenomena

4.3.1 Atom-surface van der Waals interaction as a sum of interatomic
pairwise potentials

In order to give a theoretical basis to Polanyi’s potential theory of adsorption [Polanyi,
1932, 1963], London and Polanyi [1930] first proposed the inverse third power depen-
dence on the distance for the adsorption of particles in a gas on a flat surface. Based
on the work in dispersion forces between atoms by London [1930, 1937], their approach
consisted in the summation of pairwise vdW interactions between a single gas particle
and each of the atoms contained in the volume of the solid, yielding an inverse third
power dependence on the distance between particle and substrate.

Let us consider a homogeneous distribution of attractive forces within the substrate
between atom a and each of the atoms s constituting substrate S given by the leading
−C6R−6 term of the vdW interaction between two atoms. We can recover the inverse
third power dependence on the distance by integrating the pairwise interaction over the
volume of the substrate spanning the region SS [Hamaker, 1937; Cole et al., 2012]

E (2)
vdW ≃−

∫

SS

dV nS
C as

6

R6 , (4.22)

where dV is the volume element of substrate S and nS is the number of atoms per
unit volume in the bulk of the substrate. Starting from expression (4.22), the Lifshitz-
Zaremba-Kohn (LZK) formula given in (4.20) can be recovered exactly [Zaremba and
Kohn, 1976; Bruch et al., 1997; Patil et al., 2002] by setting

C aS
3 = nS

(π
6

)
C as

6 , (4.23)

and

Z0 =
d
2

, (4.24)

where d is the interlayer distance between equally spaced lattice planes parallel to the
surface. In the jellium model of a metal, d/2 corresponds to the position of the jellium
edge [Zaremba and Kohn, 1976; Bruch et al., 1997]. Deviations from this position occur
due to local-field effects in the dielectric function and reflect surface polarization. The
magnitude of these deviations also constitutes a measure of the importance of many-
body forces in the potential between the atom and the solid [Zaremba and Kohn, 1976].

4.4 Density-functional approximations with screened van der
Waals interactions to model adsorption phenomena

Our discussion of vdW interactions so far has emphasized the well-separated regime
where there is no wave-function overlap between the interacting fragments. This regime
is a natural starting point for vdW interactions as the origin of these lies in the induced
polarization which results from instantaneous fluctuations of the electronic density, ef-
fects which are part of the electronic correlation energy of the interacting system. How-
ever, in order to provide a quantitative account even in model adsorption systems –such
as the adsorption of noble gases on metal surfaces– it is necessary to incorporate the
(chemical) interactions that occur at the short-range regime where the wave-function
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hybridization becomes important. This can be understood in the context of electronic-
structure theory as treating the exchange and correlation energies on an equal footing.

We have mentioned in chapter 2 how DFT has become the primary tool for treating
exchange and correlation effects in electronic-structure calculations of condensed mat-
ter and molecular systems due to its good compromise between accuracy and efficiency.
Unfortunately, the subtle (and relatively weak)2 nature of vdW interactions introduces a
great deal of complexity for standard approximations in DFT –(semi)-local and hybrid xc
functionals– which are able to give a relatively good and quantitative account of covalent
bonds but fail to give even a qualitative account of bonds originated in vdW interactions.
Equally, we have briefly reviewed in section 2.5 the main strategies to include vdW in-
teractions in the context of DFT, but evidenced in section 4.1 the inaccuracy of these
methods to describe the structure and stability of realistic adsorption systems such as
HIOS due to the absence or inaccuracy of the non-local collective electron response of
the extended surface in the vdW energy.

It is evident that the main challenge in modeling the adsorption of atoms and mol-
ecules on surfaces is to develop methods that are able to capture both covalent and
non-covalent interactions in a reliable manner while at the same time being capable of
dealing with realistic adsorption systems in an efficient fashion. It is with these features
in mind that we present in this section a method to model screened vdW interactions
for the adsorption of atoms and molecules on surfaces: the DFA+vdWsurf method. The
DFA+vdWsurf scheme combines methods for molecules and solids with the purpose of
an accurate description of vdW interactions in modeling the adsorption of atoms and
molecules on surfaces. We accomplish this by linking the LZK theory of the vdW inter-
action between an atom and a solid surface to include the collective response of the
substrate electrons with the DFA+vdW method to include intermolecular interactions.
We illustrate this conceptual link in Figure 4.3.

The DFA+vdWsurf method consists in a vdW energy correction to the total DFT en-
ergy in the same spirit of (2.106), where the vdW energy of the system is calculated as a
sum of pairwise interaction terms

EvdW =−1
2

∑

a

∑

b
fdamp(Rab ,R0

a ,R0
b)

C ab
6

R6
ab

, (4.25)

where Rab is the distance between atoms a and b and C ab
6 is the corresponding C6 coef-

ficient given by the Casimir-Polder integral of (4.4). The damping function fdamp elimi-
nates the R−6

ab singularity found at small distances and is a function of the vdW radii R0
a

and R0
b . In analogy to the DFA+vdW method, we adopt a Padé approximant3 model [Tang

and Karplus, 1968] for the frequency-dependent dipole polarizability of atom i = {a,b}.

2The long-range vdW energy represents a small fraction of approximately 0.001% of the total electronic
energy of a system [Ferri et al., 2015]. Bonds originated from vdW interactions can be considered relatively
weak in magnitude in comparison to covalent bonds. However, research in the last few years has revealed
the quantitative importance of vdW interactions in bonding scenarios within the context of adsorption phe-
nomena and large extended molecular systems; even for the cases in which strong chemical interactions
are present [see for example the works by Liu et al., 2013b, 2014, or our discussion in inorganic/organic
systems present in chapter 7].

3The Padé approximant P (N , M) to a function F (x) is the ratio of two polynomials of degree N and M ,
P (N , M) = PN (x)/QM (x). The polynomial coefficients are chosen so that the series expansion of P (N , M)
agrees with the first N +M +1 terms in the expansion of F (x) [taken from Tang and Karplus, 1968].
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FIGURE 4.3: Conceptual link between the LZK theory and the DFA+vdW leading to
the DFA+vdWsurf method. The DFA+vdWsurf method combines vdW-inclusive DFT for
the intermolecular interactions (the DFA+vdW method) together with the collective re-
sponse of the electrons (the LZK theory) to model screened vdW interactions in the ad-
sorption of atoms and molecules on surfaces.
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Taking the leading term of the Padé series leads to

αi
1(ω) =

αi
0

1− (ω/ηi )2 , (4.26)

where αi
0 is the static dipole polarizability of atom i and ηi is an effective excitation

frequency [Tang, 1969; Tkatchenko and Scheffler, 2009]. The Casimir-Polder integral
can be solved analytically with α1(iω) given by (4.26) leading to a London-type formula
[Tang, 1969; Tkatchenko and Scheffler, 2009]

C ab
6 = 3

2

(
ηaηb

ηa +ηb

)
αa

0α
b
0 , (4.27)

with the effective frequency of atom i given when a = b as [Tkatchenko and Scheffler,
2009]

ηi =
4
3

C i i
6

(αi
0)2

. (4.28)

With expressions (4.27) and (4.28), a simple combination rule for C ab
6 is found

[Tkatchenko and Scheffler, 2009]

C ab
6 =

2C aa
6 C bb

6
αb

0
αa

0
C aa

6 + αa
0

αb
0

C bb
6

. (4.29)

Expression (4.29) gives the interaction coefficient C ab
6 between atoms a and b in terms

of the homonuclear parameters C i i
6 and αi

0. We will refer to these in the following as vdW
parameters.

Each atom conforming a molecule or material is subject to a dynamical internal elec-
tric field that depends on both local and non-local fluctuations associated with the sur-
rounding atoms. Effects due to the environmental screening and anisotropy are absent
from a description of the polarizabilty given by expression (4.26) [DiStasio Jr. et al., 2014].
Incorporating local effects due to the chemical environment is the goal of the DFA+vdW
method of Tkatchenko and Scheffler [2009] with the assumption of a system with a fi-
nite electronic gap and, therefore, the possibility of an atomic partition scheme. The
frequency-dependent polarizabilities defined in the DFA+vdW method yield C6 coeffi-
cients that are accurate to 5.5% when compared to reference experimental values for
small molecular dimers. For a system with a finite electronic gap, the long-range elec-
trodynamic response screening and anisotropy effects are taken into account for the po-
larizabilities in the MBD method [see Tkatchenko et al., 2012; Ambrosetti et al., 2014b;
DiStasio Jr. et al., 2014]. The environmental effects due to free-electron screening in
metallic systems are, however, strictly absent from the atomic definition found in both
the DFA+vdW and MBD methods. We shall now address how to take into account this
effect in the definition of the reference vdW parameters.

4.4.1 Reference van der Waals parameters

For the case of free-atom reference vdW parameters, accurate values are given in the
database of Chu and Dalgarno [2004] [see also Tkatchenko and Scheffler, 2009]. In the
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case of solids, the reference vdW parameters for an atom must be determined taking
into account the environmental effects that an atom-in-a-solid is subject to [Zhang et al.,
2011]. We rely on the LZK theory to achieve this. We start by noting that for the atom-
surface vdW interaction, we can recover the LZK formula (4.20) exactly starting from
a summation of pairwise potentials between the adsorbate and each of the atoms in
the solid. The pairwise C as

6 coefficient between atom a and atom s in the solid can be
obtained from (4.23) and (4.19) as

C as
6 = 1

nS

(
6
π

)
C aS

3

= 1
nS

(
3

2π2

)∫∞

0
dω αa

1 (iω)
ϵS(iω)−1
ϵS(iω)+1

. (4.30)

The effective vdW coefficient C as
6 given in (4.30) inherits the many-body collective re-

sponse (screening) of the solid as indicated by its dependence on the dielectric function
ϵS . In this context, the adsorbate corresponds to a free atom in the gas phase, which
allows us to evaluate αa

1 (iω) with (4.26) using the values of C aa
6 and αa

0 given by Chu and
Dalgarno [2004]. Expression (4.30) can then be determined by calculating the dielectric
function ϵS(iω) of the solid. We use the Kramers-Kronig relation to determine ϵS(iω) in
terms of the absorptive part of the dielectric function ϵ2 at real frequencies. We mainly
take data from reflection energy-loss spectroscopy (REELS) experiments by Werner et al.
[2009] for this purpose. In the case of Rh and Ir, optical constants were taken from the
reflectance measurements of Windt et al. [1988]. Finally, in the case of Ru, the optical
measurements were taken from Choi et al. [2006]. We may note in passing that the de-
termination of the dielectric function as input for the coefficients in the present method
is not limited to experimental results. It may also be accurately computed from first-
principles as demonstrated by Werner et al. [2009] whose DFT calculations agree rea-
sonably well with REELS results within the experimental uncertainties involved.

Having determined C as
6 , the reference vdW parameters C ss

6 and αs
0 for the atom-in-

a-solid can be calculated by a system of two equations like (4.29) with b = s and two
different adsorbing atoms a. Take, for example, Cu interacting with Ne and Ar. Two
equations of the type given by (4.29) with s = Cu can be set for C NeCu

6 and C ArCu
6 where

C CuCu
6 and αCu

0 are the only two unknown parameters. We take any two atoms from
the list: H, C, Ne, Ar, and Kr and solve the set of two equations for C ss

6 and αs
0 for a

given substrate. The resulting vdW reference parameters of different substrate atoms
are displayed in Table 4.1. For comparison, the reference parameters of the free atoms
are presented as well. The vdW radius for the atom-in-a-solid R0

s is obtained via the
relation

R0
s =

(
αs

0

αs
0,free

)1/3

R0
s,free, (4.31)

where R0
s,free corresponds to the vdW radius of the same species s but as a free atom. We

use the TS ansatz to determine the free-atom vdW radii.4

The values in Table 4.1 for the screened vdW parameters for an atom-in-a-solid show
that the environmental effects in a solid cannot be neglected in the calculation of vdW

4For the (spherical) free atoms, the electron density contour value corresponding to the vdW radius
can be determined for the rare-gas atoms and then used to define R0

free free for other elements in the same
row of the periodic table [Tkatchenko and Scheffler, 2009].
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Table 4.1: Screened vdW parameters as used in the DFA+vdWsurf method. For compari-
son, the free-atom parameters as used in the DFA+vdW method are also shown. C6 (in
hartree·bohr6), α0 (in bohr3), and R0 (in bohr) denote the dispersion coefficient, polar-
izability, and vdW radius respectively. The experimental lattice constants [King, 2015]
have been employed to calculate nS in (4.23).

Substrate
Screened Free atom

C6 α0 R0 C6 α0 R0

Ti 116 16.8 2.51 1044 98.0 4.51
V 80 13.3 2.40 832 84.0 4.44
Fe 61 11.0 2.46 482 56.0 4.23
Co 55 10.5 2.50 408 50.0 4.18
Ni 59 10.2 2.28 373 48.0 3.82
Cu 59 10.9 2.40 253 42.0 3.76
Zn 62 12.9 2.76 284 40.0 4.02
Ru 53 13.6 2.36 610 65.9 4.00
Rh 84 13.0 2.42 469 56.1 3.95
Pd 102 13.9 3.07 158 23.7 3.66
Ag 122 15.4 2.57 339 50.6 3.82
Ir 98 13.2 2.71 359 42.5 4.00
Pt 120 14.5 2.80 347 39.7 3.92
Au 134 15.6 2.91 298 36.5 3.86

interactions. The inclusion of the collective response of the solid in the determination
of the vdW parameters for transition metals can lead to pronounced differences with
respect to the free-atom reference values by reducing the vdW C6 coefficients up to an
order of magnitude (in the cases of Ti and V for example). Significant effects can be
observed in static polarizabilities (α0) and vdW radii (R0) as well. The sensitive depen-
dence of the dielectric screening on the substrate is manifested clearly by these results.
We note that the parameters here calculated can be considered as intrinsic properties of
the bulk as they are essentially invariant to the nature of the adsorbed atom.

4.4.2 Hybridization and interface polarization effects

A set of accurate reference vdW parameters has been established so far for both free
atoms and atoms inside a solid. However, the effects of charge polarization that an atom
in a molecule or an interface would experience are not included yet. In the case of ad-
sorption phenomena, there will be effects related to the polarization of the interface.
These effects are manifested as the spatial dispersion in the dielectric function close to
the surface of the system. They are included in higher q−dependent terms of the sub-
strate response function given by (4.14).

The effects of charge polarization are included in the case of molecules in the
DFA+vdW method by renormalizing the vdW parameters using the ground-state elec-
tron density obtained from DFT calculations [Tkatchenko and Scheffler, 2009]. We
adopt the same strategy to account for interface polarization in adsorption phenomena
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4.4. Density-functional approximations with screened van der Waals interactions to model
adsorption phenomena

by defining an effective volume vi
eff for species i as

vi
eff =

V eff
i

V ref
i

=
(∫

dr r 3wi (r )n(r )
∫

dr r 3nref
i (r )

)

, (4.32)

wi (r ) =
nref

i (r )
∑

j nref
j (r )

, (4.33)

where r 3 is the cube of the distance from the nucleus of atom i , wi (r) is the Hirshfeld
atomic partitioning weight of the species i [Hirshfeld, 1977], n(r) is the total electron
density, nref

i (r) is the reference electron density for atom i , and the sum goes over all
atoms of the system [Tkatchenko and Scheffler, 2009; Johnson and Becke, 2005]. For the
solid, the reference corresponds to the spherical electron density of an atom in the bulk,
and for a molecule, it corresponds to the free-atom electron density. By exploiting the
direct relation between polarizability and volume [Brink et al., 1993; Tkatchenko and
Scheffler, 2009], the effective C6,eff coefficient, the effective polarizability αeff, and the
effective vdW radius R0

i ,eff are determined as [Tkatchenko and Scheffler, 2009]

C i i
6,eff =

(
vi

eff

)2
C i i

6,ref, (4.34)

αi
eff =

(
vi

eff

)
αi

ref, (4.35)

R0
i ,eff =

(
αi

eff

αi
ref

)1/3

R0
i ,ref. (4.36)

Effects beyond the pairwise approximation are achieved by the inclusion of semi-
local effects through the dependence of the vdW parameters on the electron density as
given by (4.34)–(4.36). For example, we have reported significant interface polarization
in systems such as PTCDA on Ag(111) and benzene on Pt(111) manifested in the value
of the C6 coefficients in the region of the metal-molecule interface [Ruiz et al., 2012; Liu
et al., 2013b].

4.4.3 Empirical short-range damping function

The fact that we adopt an interatomic pairwise expression as (4.25) in order to compute
vdW interactions leads to the presence of a R−6

ab singularity at small distances. We couple
the vdW energy to a given semi-local xc functional via a short range damping function.
The damping function fdamp in the DFA+vdWsurf method follows the same strategy as
the DFA+vdW method, having the following form [Tkatchenko and Scheffler, 2009]

fdamp(Rab ,R0
ab) = 1

1+exp
[
−d

(
Rab

sR R0
ab
−1

)] , (4.37)

where R0
ab = R0

a +R0
b , d = 20 determines the steepness of the damping, and sR deter-

mines the range of the damping. The range parameter sR is the only parameter that is
determined empirically. This is done by fitting sR for each underlying xc functional to
the S22 data set of Jurečka et al. [2006]. The S22 data set contains binding energies of
22 different weakly bound systems, calculated using the coupled-cluster method with

71
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single, double, and triple excitations, where triple excitations are treated perturbatively
[CCSD(T)] [see Tkatchenko and Scheffler, 2009; Marom et al., 2011].

In the DFA+vdWsurf method, the inclusion of the LZK theory leads to a set of effective
C6 coefficients -see Table 4.1- that are determined by the dielectric screening of the bulk
and the electronic environment of each atom, yielding a smaller long-range vdW energy.
On the other hand, the DFA+vdWsurf method also carries a larger relative weight of the
vdW contributions at shorter range due to the effect that the reduction of the vdW radii
has on the damping function. The non-trivial coaction of these effects and the underly-
ing xc functional enables an accurate treatment of complex interfaces where the inter-
play of different interactions is present. We also mention that the DFA+vdWsurf method
does not depend on the nature of the substrate, and in principle it is equally applicable
to insulators, semiconductors, and metals.

4.5 Metal bulk lattice constants with density-functional
approximations including screened van der Waals
interactions

Liu et al. [2013b] have calculated the bulk lattice constant of several transition metals
in a previous work using the DFA+vdWsurf method with the PBE approximation as un-
derlying xc functional, which we refer to as PBE+vdWsurf. As we have discussed above,
the PBE+vdWsurf method includes the screening due to metallic bulk electrons in the
computation of the long-range vdW energy tail. However, since the PBE functional is
reduced to the local-density approximation (LDA) for homogeneous electron densities,
the metallic electrons are already accurately described within the PBE functional. This
fact results in a partial “double counting” of the interaction between metallic electrons
with the PBE+vdWsurf method, leading to an overestimation of the vdW energy inside
the metal bulk. This effect yields a slight increase of the lattice constants compared to
the PBE functional in some transition metals while decreasing it in some other cases
[see Liu et al., 2013b]. But, even if the present method can actually lead to an improve-
ment in the bulk lattice constant for some of the transition metals here studied, there is
no straightforward way to quantify the overestimation effects. On the other hand, these
effects do not pose a problem in the adsorption of molecules on surfaces because the
adsorbate interacts both with the localized ions and the delocalized metallic electrons.
Further improvement of the lattice constants requires a full microscopic treatment of
the polarizability due to localized ions and metallic electrons.
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CHAPTER

5
Adsorption-potential energies
with density-functional
approximations including
screened van der Waals
interactions

A major part of our motivation to develop efficient vdW-inclusive methods for mod-
eling adsorption phenomena is the treatment of realistic adsorption systems such as
HIOS. We have presented in section 4.1 an analysis on the performance of vdW-inclusive
DFT methods regarding the adsorption of one of the best experimentally and theoreti-
cally characterized HIOS: PTCDA on Ag(111). Our analysis has shown the limited power
of standard vdW-inclusive DFT methods to predict the structure of PTCDA on Ag(111)
mainly due to the absence of the many-body collective electron response of the extended
surface in the long-range vdW energy. Our proposal to solve this problem was the sub-
ject of chapter 4, namely the DFA+vdWsurf method. In this chapter we begin with the
applications of the DFA+vdWsurf method taking the adsorption potential energies of
PTCDA on Ag(111) and Au(111) as our first study cases. Because of the analysis pre-
sented in section 4.1, we first revisit the adsorption-potential energy of PTCDA on Ag(111)
in section 5.1 as first example of performance with the DFA+vdWsurf method. In sec-
tion 5.2 we show the adsorption-potential energy of a single PTCDA molecule on Au(111)
and conclude by analyzing some of the aspects in the DFA+vdWsurf method that lead to
the characteristics of the observed adsorption potential energy. This chapter is based on
our own previously published work [Ruiz et al., 2012, 2016].

5.1 3,4,9,10-Perylene-tetracarboxylic dianhydride on Ag(111)
revisited

We revisit the adsorption of PTCDA on Ag(111) in Figure 5.1, where we reproduce the
adsorption potential energy curves discussed in section 4.1 (see Figure 4.1) with the
inclusion of the curve calculated with the DFA+vdWsurf method using PBE [Perdew
et al., 1996] as underlying xc functional. The calculations have been performed with
the all-electron/full-potential electronic-structure code FHI-AIMS which uses numerical
atomic-orbital (NAO) as basis sets [Blum et al., 2009]. We employ tight numerical basis
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FIGURE 5.1: Adsorption energy Eads as a function of vertical distance d for PTCDA on
Ag(111) employing different vdW-inclusive DFT methods including the DFA+vdWsurf

method using the PBE xc functional. The estimated adsorption energy for the system
of −2.4 ± 0.2 eV [Tkatchenko et al., 2010] and the experimental adsorption distance of
2.86 ± 0.05 Å [Hauschild et al., 2010] are indicated by shaded intervals. These error bars
correspond to typical experimental error estimates.

settings, which include the tier 1 standard basis set for the metallic substrate and the tier
2 basis set for C, H, and O1. The adsorption potential energy curve was calculated using
a

(
6 1
−3 5

)
surface unit cell in accordance to experimental results [Glöckler et al., 1998]. For

reasons of computational tractability, the PBE calculations have been performed with a
Ag(111) surface slab with three metallic layers generated with the PBE bulk lattice con-
stant (4.149 Å), a vacuum gap of 50 Å, and a Monkhorst-Pack grid of 4× 4× 1 k points
in the reciprocal space.2 For the vdW and vdWsurf calculations on top of PBE, we have
used a Ag(111) surface slab consisting of five metallic layers to converge the vdW binding
energy. All binding curves have been calculated using unrelaxed structures.

The adsorption energy per adsorbed molecule in the monolayer was calculated us-

1Further convergence criteria include 10−5 electrons for the electron density and 10−6 eV for the total
energy of the system. Relativistic effects were included via the atomic scalar zeroth-order regular approxi-
mation [van Lenthe et al., 2000].

2We note that a surface slab of three layers is not enough to reproduce the electronic properties of a
Ag(111) surface. However, in this section we are only interested in calculating the structural and energetic
features of the system and compare them with results available from other density-functional approxima-
tions. We leave the full structural relaxation of the system with a surface slab of five layers as a matter of
analysis for chapter 7.
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ing

Eads =
1
N

[
EAdSys −

(
EMe +E ml

PTCDA

)]
, (5.1)

where EAdSys is the energy per unit cell of the system (PTCDA + metallic surface), EMe

is the energy per unit cell of the bare metal slab, E ml
PTCDA is the energy per unit cell of of

the PTCDA monolayer, and N is the number of molecules in the monolayer. In this case,
N = 2 because there are two molecules per unit cell in our model, corresponding to a cov-
erage of one monolayer as defined in experiments [Glöckler et al., 1998]. The unrelaxed
surface and a planar PTCDA monolayer were employed for all the calculated points. The
vertical distance d was defined as the difference of the position of the monolayer with
respect to the position of the unrelaxed topmost metallic layer.

The first interesting observation comes from comparing the binding curves calcu-
lated with the PBE+vdWsurf and PBE+vdW methods in Figure 5.1. The reduced effec-
tive C6 coefficient, determined by the dielectric screening of the bulk and the elec-
tronic environment of each atom in the PBE+vdWsurf method, yields a smaller long-
range vdW energy. However, the vdW radius of the Ag atoms is also reduced in the
PBE+vdWsurf method leading to larger values of the damping function at shorter dis-
tances, which produces a larger relative weight of the vdW contributions at shorter range
in the PBE+vdWsurf method in comparison to the PBE+vdW method. The coaction of
these effects causes a non-trivial reduction of both the adsorption energy and the ad-
sorption distance, which modifies the binding-energy curve of PTCDA on Ag(111) as
observed in Figure 5.1. The improved description of the binding with the PBE+vdWsurf

method leads to an adsorption distance of 2.89 Å and an adsorption energy of approx-
imately −2.5 eV. These results are in an excellent agreement within 0.1 Å with respect
to experiment regarding the adsorption distance, and within 0.2 eV in the adsorption
energy with respect to the estimated (still uncertain) experimental value. Geometry re-
laxations , missing in these adsorption potential energy calculations, induce relatively
small differences in the binding energy and the adsorption height of the perylene core
(see section 7.3.1).

5.2 Adsorption-potential energy of
3,4,9,10-perylene-tetracarboxylic dianhydride on Au(111)

Experimental studies observe that PTCDA is physisorbed on Au(111), hence its bonding
interaction is governed mainly by vdW forces [Henze et al., 2007; Tautz, 2007; Wagner
et al., 2012; Ziroff et al., 2009]. Wagner et al. [2012] studied the system based on single-
molecule manipulation experiments. By combining scanning tunneling microscopy and
frequency-modulated atomic force microscopy, they reported an adsorption energy of
about −2.5 eV per molecule of PTCDA and an adsorption distance of approximately 3.25
Å, a value which is displayed as a blue shaded region in Figure 5.2. The case of PTCDA
on Au(111) has also been measured using the NIXSW technique by Henze et al. [2007]
and Hauschild et al. [2010], where they found an approximate adsorption distance of
3.31 Å for the PTCDA monolayer. In addition, TPD experiments performed to study the
adsorption of the monolayer reveal an adsorption energy of approximately −1.94 eV per
molecule [Stremlau, 2015]. For these reasons and the experimental information that is
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available, PTCDA on Au(111) serves as an interesting example of physisorption in an
organic/inorganic interface.

System specifications and calculational details. The DFT calculations were per-
formed using the electronic-structure code FHI-AIMS [Blum et al., 2009]. As in sec-
tion 5.1, we have used the PBE [Perdew et al., 1996] xc functional and tight settings for
the calculations. Further convergence criteria include 10−5 electrons for the electron
density and 10−6 eV for the total energy of the system. Relativistic effects were included
via the atomic scalar zeroth-order regular approximation [van Lenthe et al., 2000]. The
system consisted of a single molecule adsorbed on a Au(111) surface modeled with three
metallic layers using the repeated-slab method in-line with previous investigations [Ruiz
et al., 2012; Romaner et al., 2009; Hauschild et al., 2005; Rohlfing et al., 2007; Rohlfing and
Bredow, 2008]. The surface unit cell was modeled with a

(
6 −6
1 10

)
supercell and a vacuum

width of 40 Å in order to minimize the interactions between neighboring molecules. We
used a Monkhorst-Pack grid of 2×2×1 k points in the reciprocal space for the DFT cal-
culations.

Adsorption potential energy curve. We have calculated the adsorption potential en-
ergy curve of a single PTCDA molecule on Au(111) using the PBE, PBE+vdW, and
PBE+vdWsurf methods, which are displayed in Figure 5.2(a). The adsorption energy per
adsorbed molecule was calculated using (5.1) with N = 1 since the monolayer in this
case is composed of one molecule per unit cell, which consists of a larger super cell
in comparison to the case of Ag(111) to minimize the interactions between neighbor-
ing molecules (see above). The calculations correspond to the unrelaxed system where
the metal slab was generated using the experimental lattice constant of Au in order to
have a direct comparison with the single-molecule experimental results of Wagner et al.
[2012]. From Figure 5.2(a), it is clear that the PBE functional cannot accurately describe
the adsorbate-substrate interaction as it leads to an exceptionally small adsorption en-
ergy. Both PBE+vdW and PBE+vdWsurf calculations show a stronger interaction due to
the inclusion of vdW interactions. Figure 5.2(a) shows that a single molecule of PTCDA
adsorbs at a height of approximately 3.44 Å with an adsorption energy of approximately
−2.69 eV per molecule with the PBE+vdW method. On the other hand, the PBE+vdWsurf

curve yields an adsorption distance of approximately 3.23 Å and an adsorption energy
of approximately −2.23 eV per molecule. We have performed the same calculation us-
ing the PBE lattice constant of Au [4.159 Å, in accordance to our previous work, see Liu
et al., 2013b] to generate the surface slab. The adsorption potential curve yields in this
way an adsorption distance of 3.21 Å and an adsorption energy of −2.17 eV with the
PBE+vdWsurf method. These values do not change considerably with respect to the lat-
tice constant used so we proceed now to compare the values that we obtain when the
experimental lattice constant is used.

We observe differences in the adsorption distance predicted by the PBE+vdW and
PBE+vdWsurf methods, resulting in a larger distance with the PBE+vdW method by ap-
proximately 0.21 Å with respect to its PBE+vdWsurf counterpart. The PBE+vdW adsorp-
tion distance result is overestimated if we consider the values of 3.25 and 3.31 Å found
in experiments for the single molecule and monolayer respectively [Wagner et al., 2012;
Henze et al., 2007]. These values are, on the other hand, in remarkable agreement with

78



5.2. Adsorption-potential energy of 3,4,9,10-perylene-tetracarboxylic dianhydride on Au(111)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
-4.0

-3.0

-2.0

-1.0

0.0

E a
ds

(e
V

)

(a)

PBE
PBE+vdWsurf

PBE+vdW

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
d (Å)
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FIGURE 5.2: Adsorption energy Eads as a function of vertical distance d for PTCDA on
Au(111). The distance d is evaluated with respect to the position of the unrelaxed top-
most metal layer. The blue shaded region corresponds to the experimental adsorption
distance of 3.25 ± 0.1 Å as determined by Wagner et al. [2012]. The error bar corresponds
to typical experimental error estimates. (b) Contribution of vdW interactions to the ad-
sorption energy as a function of vertical distance d for PTCDA on Au(111), which is de-
fined as the difference between either the PBE+vdWsurf or the PBE+vdW energy and the
PBE energy.

the PBE+vdWsurf calculations. With respect to the binding strength, the PBE+vdW ad-
sorption energy also seems overestimated with respect to the experimental values of
−2.5 and −1.9 eV measured for the single molecule and monolayer respectively [Wagner
et al., 2012; Stremlau, 2015]. Regarding the PBE+vdWsurf adsorption energy for the single
molecule, its value of −2.23 eV lies in between these two experimental results.

The effect of dielectric screening on the vdW parameters. The differences in these
results reflect the impact of the vdW parameters on the accuracy when it comes to
the structure of organic/inorganic interfaces. As we have mentioned above, the set of
screened C6 coefficients in the PBE+vdWsurf method yields a smaller long-range vdW
energy. We show this effect in Figure 5.2(b) where we display the contribution of vdW
interactions to the adsorption potential energy curve, showing how the reduced C6 coef-
ficient of Au yields a smaller vdW energy in the PBE+vdWsurf method. This feature modi-
fies the adsorption-potential energy in a non-trivial manner, with particular relevance at
the range of the adsorption distance. In addition, the coefficients are effectively changed
by the electronic environment of each atom reflecting the interface polarization due to
local hybridization effects. Taking PTCDA on Au(111) as example, Figure 5.3(a) demon-
strates how the C6 coefficient between a C atom of the adsorbate molecule and a Au
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FIGURE 5.3: (a) Changes in the C6 coefficient between Au and C with respect to the
adsorption distance d for a single PTCDA molecule on Au(111) calculated with the
PBE+vdWsurf method. (b) Variations of the damping function fdamp with respect to the
adsorption distance d when using the PBE+vdW and PBE+vdWsurf methods. The onset
of fdamp occurs at a smaller distance in the PBE+vdWsurf method.

atom of the surface changes as the adsorption distance d does. It displays the variations
in the average effective C6 coefficient between C atoms and the topmost layer of the
Au(111) surface as the adsorption distance d is changed. The changes occurring at each
distance are a consequence of variations in the electronic environment of each atom.
Furthermore, the reduction of the vdW radii in the surface atoms leads to a larger rela-
tive weight of the vdW contributions at shorter range with the PBE+vdWsurf method in
comparison to the PBE+vdW method. This can be observed in Figure 5.3(b) as the onset
of the damping function fdamp in the PBE+vdWsurf method occurs at smaller adsorption
distances due to the reduced vdW radius of Au. The coaction of the effects in the C6 co-
efficients and the vdW radii causes a non-trivial reduction of both the adsorption energy
and the adsorption distance, which modifies the potential energy curve of PTCDA on
Au(111) as observed in Figure 5.2.
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CHAPTER

6
Structure and stability of Xe on
metal surfaces

6.1 Introduction

We have developed in chapter 4 a method within KS-DFT that includes screened vdW
interactions for treating adsorption phenomena. We have also performed a preliminary
test of the method in chapter 5 by reproducing the adsorption potential energy curves
of a couple of experimentally well characterized organic/inorganic interfaces and com-
paring the results from the curves directly with experiments. We now present a more
thorough analysis of the application of the methodology in model adsorption systems.

Before addressing in more detail the case of HIOS in chapter 7, the effects of mod-
eling vdW interactions within KS-DFT in adsorption phenomena can be evaluated by
investigating the interaction between noble gases and metallic surfaces. The adsorp-
tion interaction in these prototypical physisorption systems is the result of a balance
between attractive vdW interactions and Pauli repulsion. We shall address in this chap-
ter the energetics and structure of the adsorption of Xe on selected transition-metal sur-
faces.

6.1.1 Experimental perspective

The adsorption of noble gases on metal surfaces has been extensively studied as pro-
totypical example of physisorption. A historical perspective of these studies can be
found in the works, for example, by Diehl et al. [2004] and Da Silva [2002]. An exhaus-
tive historical survey is out of the scope of this disseration, so we restrict the discussion
to the experimental data on structure and adsorption energetics for the adsorption of
Xe on metal surfaces. From this perspective, the most important fact is the paradigm
shift that occurred 25 years ago with respect to the preferred adsorption site of Xe. The
general assumption prior to 1990 was that the adsorption potential of noble gases on
surfaces would be more attractive in high-coordination sites than those with lower co-
ordination. In the case of Xe, for instance, experimental studies using spin-polarized
low-energy electron diffraction (LEED) suggested the hollow site as the preferred adsorp-
tion site on close-packed metal surfaces [Potthoff et al., 1995; Hilgers et al., 1995]. This
changed with the dynamical LEED studies of adsorbed Xe on Ru(0001) Narloch and Men-
zel [1997], Cu(111) [Seyller et al., 1998], Pt(111) Seyller et al. [1999], and Pd(111) [Caragiu
et al., 2002]; which showed that Xe atoms reside on top of the substrate atoms instead
of higher-coordination sites [Diehl et al., 2004]. The other important experimental find-
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ing is that Xe adopts the (
)

3×)
3)R30° structure on Cu(111), Pt(111), and Pd(111). In

the case of Xe on Cu(110), a (12×2) structure can be formed at low temperature, which
consists of rows of adatoms that are commensurate with the substrate, having higher-
order commensurate periodicity along the substrate rows of the surface and a spacing
between the rows that is equal to the Cu row spacing [Caragiu et al., 2003; Diehl et al.,
2004]. Most importantly, the LEED studies by Caragiu et al. [2003] indicate that Xe rows
are located on top of the Cu substrate rows.

For our analysis, we take the review papers by Diehl et al. [2004] and Vidali et al.
[1991] as our guidelines for the experimental data on the adsorption of Xe on transition-
metal surfaces. The details of each experiment can be found in the original references.
The adsorption distances in these systems were mainly obtained using with the low-
energy electron diffraction technique. This technique uses electrons of a few hundred
eV to penetrate an adsorbed layer generating diffraction peaks corresponding to the sub-
strate surface and to the adsorbed layer; from which the adlayer-substrate separation
can be inferred [Bruch et al., 1997]. The experimental adsorption energies are mostly a
result of TPD experiments. These experiments report exponential prefactors for desorp-
tion of the order of 1012−1013 s−1, which are in the expected range for simple adsorbates
and small molecules [Fichthorn and Miron, 2002; Tait et al., 2005].

6.1.2 Theoretical perspective

Even if the experiments have identified the low-coordination top site as the preferred ad-
sorption site for Xe on transition-metal surfaces, they have not been able to identify the
origin of this preference. It is in this regard that first-principles calculations have the po-
tential to contribute to the atomistic understanding of the origin of this preference. For
an extensive review of first-principles simulation of the adsorption of nobel gases, we
point the interested reader to the works of Diehl et al. [2004], Da Silva [2002], and Chen
et al. [2012]. The study of noble gases on metal surfaces using KS-DFT is an intricate task
because (semi-)local approximations to the exchange-correlation energy in KS-DFT do
not include vdW interactions properly, which represent the governing mechanism of at-
traction in these systems. In general, before the advent of several vdW-inclusive DFT
based methods in the last years, LDA had been used extensively to study the adsorption
of Xe on metals [Müller, 1990; Da Silva et al., 2003, 2005], where it has been found that
the top site is energetically more stable by, at most, 50 meV with respect to the hollow
adsorption site. In addition, Da Silva and Stampfl [2008] also studied the adsorption of
additional noble gases on metal surfaces using GGAs as xc functional, where they found
that these other noble gases also prefer the top adsorption site with the exception of Ar
and Ne on Pd(111) [Da Silva et al., 2005; Chen et al., 2012]. In general, Chen et al. [2012]
mention that GGA xc functionals tend to underestimate the adsortion energy of these
systems by a great margin whereas LDA yields equilibrium adsorption distances that are
too short in comparison to experiments.

In this respect, it is currently well established that GGA functionals such as PBE can-
not describe systems that are dominated by vdW interactions in an accurate manner.
The studies performed by Chen et al. [2011, 2012] report the performance of several vdW-
inclusive DFT methods, such as vdW-DF, vdW-DF2, and DFT-D2, on the adsorption of
noble gases on metal surfaces. In this chapter, we analyze the structure and stability
of the adsorption of Xe on selected transition-metal surfaces with the PBE+vdW and
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PBE+vdWsurf methods. We have presented some of these results previously [Ruiz et al.,
2012] but here we extend the analysis by including PBE+vdW calculations and studying
the perpendicular-vibrational energy of Xe in each case to probe the curvature around
the minimum of the potential-energy curves calculated with the PBE+vdWsurf method
[see also Ruiz et al., 2016]. We also present a preliminary assessment of the performance
of the PBE+vdWsurf method for adsorption on non-close-packed surfaces. For this, we
analyze the differences between the adsorption of Xe on Cu(111) and Cu(110).

We start this chapter by describing the specifications of the systems and the compu-
tational details of our calculations. We continue by analyzing the adsorption of Xe on
selected transition-metal surfaces using the PBE+vdW and PBE+vdWsurf methods, dis-
cussing the differences between the two methods while taking into consideration that
the latter includes the collective response of the substrate electrons in the determina-
tion of the vdW parameters.

6.2 System specifications and calculation details

We performed DFA+vdW and DFA+vdWsurf structure optimizations for Xe on five
transition-metal surfaces. The DFT calculations were performed using the all-
electron/full-potential electronic-structure code FHI-AIMS. The FHI-AIMS code provides
a hierarchy of predefined settings which give access to basis set levels and other settings
at which fast relaxations can be safely performed. For all calculations in this chapter, we
used tight settings, which include the tier 1 standard basis set for the transition metals
and Xe. The convergence criteria in the calculations were 10−5 electrons for the electron
density and 10−6 eV for the total energy of the system. For all structure relaxations, 0.01
eVÅ−1 was established as convergence criterion for the maximum final force. Relativis-
tic effects were included via the atomic scalar zeroth-order regular approximation [van
Lenthe et al., 2000]. We used the repeated-slab method to model all the systems together
with the PBE xc functional [Perdew et al., 1996].

The PBE+vdWsurf method includes the screening due to metallic bulk electrons in
the computation of the long-range vdW energy tail. However, since the PBE functional
is reduced to the LDA for homogeneous electron densities, the metallic electrons are al-
ready accurately described with the PBE functional. This fact results in a partial “double
counting” of the interaction between metallic electrons with the PBE+vdWsurf method,
leading to an overestimation of the vdW energy inside the metal bulk. Even if the present
method can lead to an improvement in the bulk lattice constant for some of the transi-
tion metals here studied [see Liu et al., 2013b], there is no straightforward way to quan-
tify the overestimation effects. For this reason, we have used the PBE optimized lattice
constant to generate most of the metal slabs: 4.149, 3.631, 3.971, and 3.943 Å for Ag, Cu,
Pt, and Pd, respectively [Liu et al., 2013b].

For the adsorption structure of the systems, we adopted the experimentally reported
(
)

3×)
3)R30◦ structure with top and fcc hollow adsorption sites for the (111) surface of

Pt, Pd, and Cu. For the case of the Cu(110) surface, we present the results for a 2 × 2
surface unit cell. We used a Monkhorst and Pack [1976] grid of 15×15×1 k points in the
reciprocal space and six metallic layers to perform the calculations, except for Cu(110),
where we used seven metallic layers. The width of the vacuum gap was 20 Å. For the
relaxation of the systems, the Xe atom and the atoms in the topmost and first subsurface
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Table 6.1: Comparison of adsorption energies Eads between PBE+vdW and PBE+vdWsurf

for the top adsorption site of Xe on transition-metal surfaces. PBE+vdWsurf calculations
for the fcc hollow adsorption sites are also presented. Experimental data, shown for
comparison, are taken from Diehl et al. [2004]; Vidali et al. [1991]; Seyller et al. [1998];
Caragiu et al. [2003]; Pouthier et al. [1998]; Zhu et al. [2003]; Caragiu et al. [2002]; Hilgers
et al. [1995]; Widdra et al. [1998]; Seyller et al. [1999]; Bruch et al. [1998]; Hall et al. [1989];
Braun et al. [1998]; Zeppenfeld et al. [1994]; and Ramseyer et al. [1997].

Eads [meV]
top fcc hollow

Exp.
PBE+vdW PBE+vdWsurf PBE+vdWsurf

Xe/Pt(111) −331 −254 −253 −260 to −280
Xe/Pd(111) −325 −276 −272 −310 to −330
Xe/Cu(111) −335 −248 −249 −173 to −200
Xe/Cu(110) −326 −249 −239 −212 to −224
Xe/Ag(111) −244 −237 −232 −196 to −226

layers of the surface slab were allowed to relax. As we generated the substrates using
the PBE lattice constant, we did not consider vdW interactions between metal atoms in
order to avoid an artificial relaxation of the surfaces. The vdW interactions were taken
into consideration only in final adsorption energy calculations.

6.3 Results

6.3.1 Adsorption energies

Figure 6.1 and Table 6.1 show the adsorption energies calculated with PBE+vdWsurf for
both the top and fcc hollow adsorption sites. The adsorption energies were computed
using

Eads = EAdSys −
(
EMe +EXe

)
, (6.1)

where EAdSys is the total energy of the adsorption system (gas + metal surface) after re-
laxation, EMe is the energy of the bare slab after relaxation, and EXe is the energy of the
isolated Xe gas atom. In all cases, we find that both adsorption sites, top and fcc hollow,
are nearly degenerate within vdW-inclusive DFT. Using the PBE+vdWsurf method, the
top adsorption site is energetically favored in the cases of Pd(111), Cu(110), and Ag(111)
by approximately 5 meV for Pd(111) and Ag(111), and 10 meV for Cu(110). Both adsorp-
tion sites are virtually degenerate within our calculation settings in the cases of Pt(111)
and Cu(111). Figure 6.1 also displays the contribution to Eads coming from PBE and vdW
interactions upon relaxing the system. More specifically, the PBE contribution destabi-
lizes the fcc hollow adsorption site in the Cu substrates upon relaxation, as it becomes
more positive for both surface orientations. The same finding holds for Ag(111). Al-
though the differences in energy between adsorption sites are too small –a few meV–
to regard them as definitive, it is clear that an accurate determination of exchange and
correlation effects (particularly related to vdW interactions) is essential in the structural
and energetic features of these systems.
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FIGURE 6.1: Adsorption energies Eads calculated with PBE+vdWsurf for Xe on transition-
metal surfaces. The contributions of PBE and vdW interactions after relaxing the system
with the PBE+vdWsurf are shown in red and blue, respectively. Total adsorption energies
after relaxation are displayed in green. Top sites are displayed with plain color filled bars,
whereas fcc hollow sites are displayed with pattern-filled bars.

The fact that both adsorption sites in the adsorption of Xe on transition-metal sur-
faces are nearly degenerate within KS-DFT methods has also been addressed most re-
cently by Chen et al. [2011], who reported differences of a few meV in their PBE and
vdW-DF2 calculations between top and fcc hollow adsorption sites. They found, how-
ever, that results from experiments cannot be explained by energy differences between
top and fcc hollow adsorption sites. Instead, by examining the 2D potential energy sur-
face (PES) of Xe on Pt(111), they found that the fcc hollow adsorption sites correspond
to local maxima in the PES, while top sites correspond to a true minimum. Hence, fcc
hollow sites are transient states and thus not easily observed in experiments [Chen et al.,
2011, 2012; Bruch et al., 1997]. This result is general, according to their calculations, for
the adsorption of noble gases on transition-metal surfaces. They further showed that
this fact holds no matter the xc functional that is employed. In the case of Xe/Pt(111), ex-
perimental measurements by Seyller et al. [1999] indeed showed that Xe adsorbs on top
sites of the Pt(111) surface at T = 80 K. Furthermore, measurements also showed that at
low coverage, the diffusion barrier for lateral movement of the Xe atoms on the surface
is less than 10 meV [Ellis et al., 1999].

Because of the aforementioned reasons, we now discuss the results for the top ad-
sorption site. For comparison, Table 6.1 also presents PBE+vdW adsorption energies for
the top adsorption site as well as the available experimental results. The mentioned Ta-
ble 6.1 shows that the PBE+vdWsurf adsorption energies are in very good agreement with
experimental results. These calculations slightly underestimate the adsorption energy in
the case of Pt(111) and Pd(111), while slightly overestimating in the case of both Cu sur-
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faces and Ag(111). Nevertheless, these discrepancies amount to approximately 50 meV
out of the range of experimental results in the worst case. The PBE+vdW method yields
larger adsorption energies with respect to PBE+vdWsurf calculations, this result stems
from the free-atom nature of the vdW reference parameters employed in the PBE+vdW
method.

6.3.2 Adsorption distances

Table 6.2 shows the vertical adsorption distances calculated with the PBE+vdW and
PBE+vdWsurf methods. The results correspond to the top adsorption site and are re-
ported with respect to the average position of the atoms in the topmost metal layer after
relaxation of the system. Experimental results are shown for comparison as well. In
general, the calculated adsorption distances with both methods are within 0.10 Å of ex-
perimental results except for Xe/Cu(111), in which the agreement is within 0.15 Å of
the experimental value. We did not find significant differences between PBE+vdW and
PBE+vdWsurf calculations with the exception of Xe on Cu(110), in which the distance pre-
dicted by the PBE+vdW method is 0.12 Å shorter than the PBE+vdWsurf result. Overall,
we find that the PBE+vdWsurf results are in closer agreement (within 0.10 Å) to exper-
imental results than those calculated with other vdW inclusive DFT methods such as
those benchmarked in the work of Chen et al. [2011, 2012]. We note that the experimen-
tal adsorption distances that we report in Table 6.2 follow the analysis presented by Diehl
et al. [2004] in their review of the topic.

6.3.3 Perpendicular vibrational frequencies of Xe

We have also computed the perpendicular vibrational frequencies of Xe on the metal
surfaces to probe the curvature of the potential energy curves around the minimum in
each case. For this, we have calculated the adsorption potential energy curve for Xe re-
siding on top sites of each transition-metal surface. We take the case of Xe on Pt(111) as
an example: Figure 6.2 shows its adsorption potential energy Eads as a function of ver-
tical distance d of the Xe monolayer employing the PBE and the PBE+vdWsurf method-
ologies. The adsorption energy per adsorbed atom was calculated using (6.1) where the
unrelaxed system was employed for all the calculated points. The vertical distance d was
defined as the difference of the position of the atom in the monolayer with respect to the
position of the unrelaxed topmost metallic layer. The experimental adsorption distance
and energy are displayed in blue shaded regions. The adsorption distance and energy
observed in the potential curve of Figure 6.2 agree very well with the ones presented in
Table 6.2, which shows a summary of the PBE+vdWsurf results for Xe on metal surfaces
after relaxing each system. This fact holds also for the case of the other metal surfaces
here studied. It shows that, in the case of Xe on metal surfaces, the adsorption potential
energy curves provide relevant information on the adsorption process. Based on them,
we have calculated the perpendicular vibrational energy of Xe in each adsorption case.

Following previous works [Bruch et al., 1997; Da Silva et al., 2005; Chen et al., 2011,
2012], we have modeled the gas-surface adsorption potential energy with the following
function given by the sum of repulsive and attractive vdW interactions

E(d) =α1e−α2d − C3

(d −Z0)3 +Eml, (6.2)
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Table 6.2: Summary of results for the adsorption of Xe on transition-metal surfaces including the equilibrium distances dXe−Sub, adsorption
energies Eads, and perpendicular vibrational energies Evib of Xe. Experimental results are also displayed for comparison. The distances dXe−Sub
are reported with respect to the average distance of the topmost metal layer and correspond to the top adsorption site on each system. Both
adsorption distances and energies correspond to the system after relaxation. The values of dXe−Sub and Eads for Ag(111) correspond to the
best estimates by Vidali et al. [1991]. The experimental data are taken from Diehl et al. [2004]; Vidali et al. [1991]; Seyller et al. [1998]; Caragiu
et al. [2003]; Pouthier et al. [1998]; Zhu et al. [2003]; Caragiu et al. [2002]; Hilgers et al. [1995]; Widdra et al. [1998]; Seyller et al. [1999]; Bruch
et al. [1998]; Hall et al. [1989]; Braun et al. [1998]; Zeppenfeld et al. [1994]; Ramseyer et al. [1997]; and Gibson and Sibener [1988].

dXe−Sub [Å] Eads [meV] Evib [meV]
PBE+vdW PBE+vdWsurf Exp. PBE+vdW PBE+vdWsurf Exp. PBE+vdWsurf Exp.

Xe/Pt(111) 3.39 3.46 3.4 ± 0.1 −331 −254 −260 to −280 3.9 3.5, 3.70
Xe/Pd(111) 3.13 3.12 3.07 ± 0.06 −325 −276 −310 to −330 4.2 –
Xe/Cu(111) 3.48 3.46 3.60 ± 0.08 −335 −248 −173 to −200 3.8 2.6
Xe/Cu(110) 3.17 3.29 3.3 ± 0.1 −326 −249 −212 to −224 4.0 2.5, 2.6
Xe/Ag(111) 3.60 3.57 3.6 ± 0.05 −244 −237 −196 to −226 3.8 2.79
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FIGURE 6.2: Potential-energy curve as a function of vertical distance d of a Xe monolayer
on top of Pt(111) with different approximations within DFT. The blue shaded regions cor-
respond to the experimental adsorption distance [Seyller et al., 1999] of 3.4 ± 0.1 Å and
to the interval of experimental adsorption energy [Diehl et al., 2004] that ranges from
−260 to −280 meV.

where E(d) is the adsorption potential energy between Xe and the metal substrate at a
distance d from the surface and Eml is a constant that corresponds approximately to the
formation energy of the Xe monolayer. We have determined the parameters α1, α2, C3,
Z0, and Eml by fitting (6.2) to the PBE+vdWsurf calculations. The resulting curve of the
fit is depicted with a solid line in Figure 6.2 for the case of Xe on Pt(111). The vibrational
energy Evib is then given by

Evib = hν= h
2π

√
ke

mXe
, (6.3)

where ν, h, and mXe are the vibrational frequency, Planck’s constant, and the mass of
an atom of Xe, respectively. The force constant ke corresponds to the second derivative
evaluated at the minimum of the potential given by (6.2). Following this procedure, the
results for Evib are given in Table 6.2.

To the best of our knowledge, experimental measurements for the perpendicular vi-
brational energy exist for Xe/Pt(111), Xe/Cu(111), Xe/Cu(110), and Xe/Ag(111). In the
case of Pt(111), the values of 3.5 and 3.70 meV have been reported [Bruch et al., 1998;
Hall et al., 1989]. The PBE+vdWsurf calculations yield a perpendicular vibrational energy
of 3.9 meV which is in fair agreement to the experimental results. In the cases of Cu(111),
Cu(110), and Ag(111), the PBE+vdWsurf values overestimate the experimental values by
1.2, 1.4, and 1.0 meV respectively [Braun et al., 1998; Ramseyer et al., 1997; Gibson and
Sibener, 1988]. With the exception of Pt(111), the results show that the PBE+vdWsurf

method overestimates the curvature around the minimum, yielding higher perpendicu-
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lar vibrational energies by approximately 1.2 meV with respect to experiment and other
vdW inclusive DFT methods such as vdW-DF2 [Chen et al., 2011, 2012]. The overestima-
tion of the curvature with the PBE+vdWsurf method is probably related to an overestima-
tion of the adsorption energy with the PBE+vdWsurf due to the absence of many-body
dispersion effects as we have found in recent work [Maurer et al., 2015]. On the other
hand, Carrasco et al. [2014] has observed that the vdW-DF2 method yields underesti-
mated C3 coefficients that are approximately two times smaller than the ones obtained
in methods such as the PBE+vdWsurf or (the empirically optimized vdW-DF-type func-
tional) optB88-vdW [Klimeš et al., 2010], thus yielding smaller perpendicular vibrational
energies with vdW-DF2.

We present a summary of the PBE+vdWsurf results for Xe on metal surfaces in Table
Table 6.2. The noticeable agreement of both adsorption distances and energies with
respect to experimental values indicates the importance of the inclusion of the nonlocal
collective effects present in the surface when calculating vdW interactions. With the
exception of the vibrational energies, we find that the PBE+vdWsurf results are in closer
agreement to experimental results than those calculated with other vdW inclusive DFT
methods such as the ones benchmarked in the work of Chen et al. [2011, 2012]. We
must mention that accurate results might also be achieved by vdW-DF-type functionals
with empirically optimized exchange [Klimeš et al., 2010; Liu et al., 2012; Carrasco et al.,
2014].

In spite of the essential difference between the PBE+vdWsurf and PBE+vdW meth-
ods, our calculations show that the PBE+vdW adsorption distances are also in very good
agreement with experimental results –see Table 6.2– in the case of the adsorption of
Xe on transition-metal surfaces. Regardless of this agreement, the PBE+vdW scheme
leads to an overestimation of the adsorption energy as the input vdW parameters for
the metal atom correspond to the free atom, neglecting the effects of the collective re-
sponse of the solid (see Table 4.1). Of particular relevance is the fact that we have ob-
served that neglecting the environmental effects of the solid in the determination of the
vdW parameters can lead to inaccurate equilibrium structures and an overestimation
of the binding strength with respect to experiments in more complex systems such as
organic/inorganic interfaces [Ruiz et al., 2012].

6.3.4 Comparison between close-packed and non-close-packed surfaces: Xe
on Cu(110) and Cu(111)

So far we have analyzed the performance of the PBE+vdWsurf method in the case of the
adsorption of Xe on close-packed (111) surfaces of some transition metals. Here, we an-
alyze the case of a non-close-packed surface. We compare the case of a Xe monolayer on
the Cu(110) and Cu(111) surfaces. The adsorption potential energy of Xe on Cu(110) is
depicted in Figure 6.3. In the blue shaded region, the adsorption distance of 3.3 ± 0.1 Å is
shown as measured by Caragiu et al. [2003] using LEED. The excellent agreement of the
PBE+vdWsurf curve within 0.1 Å of the experimental result is evident from Figure 6.3.

The vdW parameters used as an input for the PBE+vdWsurf method are calculated
according to the dielectric function of the bulk material. As a consequence, the input pa-
rameters for a given surface are the same no matter the orientation of the surface termi-
nation. The method relies on the differences in the electronic environment given as a re-
sult of different surface terminations, which are reflected in the reevaluation of the vdW
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-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

E a
ds

(e
V

)

PBE
PBE+vdW
PBE+vdWsurf

FIGURE 6.3: Potential-energy curve as a function of vertical distance d of a Xe monolayer
on top of Cu(110) with different approximations within DFT. The blue shaded region
corresponds to the experimental adsorption distance of 3.3 ± 0.1 Å [Caragiu et al., 2003].

parameters based on the Hirshfeld partitioning scheme [see expressions (4.34)-(4.36)].
As an example of this, Figure 6.4(a) shows the effective C6 parameters for the interaction
Xe-Cu as calculated in the PBE+vdWsurf method for the adsorption of a Xe monolayer on
both the Cu(110) and Cu(111) surfaces. It displays the variations in the average effective
C6 coefficient between Xe and the topmost Cu layer as the distance d is changed. The
differences in the electronic environments result in slightly different values for the C6 co-
efficients, which gives rise to surface termination sensitivity. This has a contribution in
the adsorption potential energies shown in Figure 6.4(b) and the adsorption distances
reported in Table 6.2. It is worth mentioning that greater differences may be found in
more complex systems like the case of inorganic/organic interfaces. For instance, Al-
Saidi et al. [2012] found significant surface sensitivity in the adsorption of 2-pyrrolidone
on Ag(111) and Ag(100) which was better understood when including vdW interactions
with the PBE+vdWsurf method. We shall address the case of inorganic/organic systems
in section 7.3.2.
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FIGURE 6.4: (a) Changes in the C6 coefficient between Xe and Cu with respect to the
adsorption distance d for Xe on Cu(110) (blue) and Cu(111) (red) calculated with the
PBE+vdWsurf method. (b) Potential-energy curve as a function of vertical distance d of
Xe on top of Cu(110) (blue) and Cu(111) (red) calculated with the PBE+vdWsurf method.
The blue dashed line corresponds to the experimental adsorption distance of 3.3 ± 0.1
Å corresponding to Xe on Cu(110) [Caragiu et al., 2003]. The red dashed line corresponds
to the experimental adsorption distance of 3.60 ± 0.08 Å corresponding to Xe on Cu(111)
[Seyller et al., 1998].
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CHAPTER

7
Structure and stability of
inorganic/organic systems

7.1 Introduction

We have discussed the importance of understanding interfacial electronic properties in
hybrid inorganic/organic systems (HIOS) from both a basic science and a technologi-
cal perspective. Among the possible HIOS, the interfaces formed between an organic
material and a metal have received much attention. Besides of the possible emergence
of novel collective phenomena –as we have mentioned in section 1.1– at these inter-
faces, these systems have the potential of being relevant in promising technologies such
as electronic and opto-electronic devices (transistors and light-emitting diodes for in-
stance) and organic photovoltaics [see for example Kronik and Koch, 2010; Forrest and
Thompson, 2007].

The role that these interfaces might play in the future of these potential technolo-
gies depends on the eventual control of their functionality, which is clearly related to the
properties of the interface. We have already discussed the fact that the interface geom-
etry of these systems has a strong influence on their electronic properties [Duhm et al.,
2008; Tkatchenko et al., 2010], so that a balanced description of both their structural and
electronic properties is critical for their modeling and understanding. An essential part
in the structure and stability of HIOS is played in particular by vdW forces [Tkatchenko
et al., 2010; Atodiresei et al., 2009; Mercurio et al., 2010; Stradi et al., 2011; Olsen et al.,
2011; McNellis, 2010]. It is therefore evident that the prediction and understanding of
the functionalities in HIOS involve as a first step the prediction and understanding of
the structural features of the interface as these features will determine the electronic
properties. It is in this regard where the accurate prediction of vdW forces becomes dis-
tinctively relevant since their role in the determination of the structural features and
stability is crucial.

Within the large variety of HIOS, the interfaces formed by the adsorption of PTCDA
on coinage metals are among the best experimentally and theoretically characterized
systems. PTCDA is a chemical compound formed by an aromatic perylene core (Cperyl)
terminated with two anhydride functional groups, each of them containing two carbon
atoms (Cfunc), two carboxylic oxygens (Ocarb) and one anhydride oxygen (Oanhyd) [see
Bauer et al., 2012, and Figure 7.1(b)]. Due to their accurate experimental characteriza-
tion, the adsorption of PTCDA on coinage metals arise as a relevant study case to an-
alyze the influence of dispersion interactions between an organic (aromatic) molecule
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and a metallic substrate while testing the predictive power of vdW-inclusive theoretical
methods. In regard to the adsorption of organic molecules on close-packed metal sur-
faces, the adsorption geometries of a PTCDA monolayer on Ag(111), Au(111), Cu(111)
have been studied and determined by using the NIXSW technique [Gerlach et al., 2007;
Henze et al., 2007; Hauschild et al., 2010; Stanzel et al., 2004; Stadler et al., 2007]. The
NIXSW experimental studies have also been extended to the study of a PTCDA mono-
layer adsorbed on non-close-packed Ag surfaces, namely on the Ag(100) and Ag(110)
surfaces [Bauer et al., 2012; Mercurio et al., 2013a].

In addition, as we have discussed in section 4.1, extensive theoretical work has also
been performed on the adsorption of PTCDA on Ag(111) showing the essential role that
vdW interactions –including molecule-molecule and molecule-substrate– play in this
system [Tkatchenko et al., 2010; Romaner et al., 2009; Hauschild et al., 2005; Rohlfing
et al., 2007; Rohlfing and Bredow, 2008; Ruiz et al., 2012]. Furthermore, a recent theo-
retical study with vdW-inclusive DFT methods on the adsorption of PTCDA on Ag(100)
and Ag(110) analyze, along with experimental findings, the existing trends in the bond-
ing mechanism of PTCDA on Ag(111), Ag(100), and Ag(110) [Bauer et al., 2012]. These
studies were very helpful to the analysis that we present here.

In chapter 5, we have shown the adsorption potential energies of a monolayer
of PTCDA on Ag(111) and a single PTCDA molecule on Au(111) calculated with the
PBE+vdWsurf method. Despite the remarkable results in the adsorption height of the
perylene core observed in these curves, experiments show that the PTCDA molecule is
significantly distorted upon adsorption on Ag(111) and Cu(111). Moreover, NIXSW stud-
ies on Ag surfaces performed by Bauer et al. [2012] show that the adsorption structure of
the PTCDA monolayer also present differences according to the surface termination.

In this context, we demonstrate in this chapter the importance of the inclusion of
screened vdW interactions in density-functional theory (DFT) to reproduce the struc-
tural distortion and energetic features of HIOS. For this purpose, we start with a study
of the structure of PTCDA on Ag surfaces in section 7.3. Here, we first do an in-depth
analysis of the structural features and the adsorption energy of a PTCDA monolayer on
Ag(111) addressing the effects of the basis set and the lattice constant of the substrate.
In order to analyze the influence of the surface termination in the structure of the mono-
layer and test the sensitivity of the DFA+vdWsurf method, we conclude section 7.3 with
a comparative study of the interfaces formed by the adsorption of a PTCDA monolayer
on Ag(111), Ag(100), and Ag(110).

The structure of the adsorbate in any HIOS is clearly dependent on the chemical
nature of the surface. As we have just mentioned above, several experimental studies
have also been performed on the adsorption of PTCDA on the close-packed surfaces of
coinage metals: Ag(111), Au(111), and Cu(111). Two different aspects of the existing in-
teraction between substrate and molecule in these systems are related to: i ) the adsorp-
tion height of the perylene core with respect to the metal substrate and i i ) the distortion
of the internal structure of the two inequivalent molecules in the monolayer. Consid-
ering that the DFA+vdWsurf method takes into account screened vdW interactions, we
study these aspects in the adsorption of a PTCDA monolayer on Au(111) and Cu(111) in
section 7.4 and section 7.5 respectively. We also include in these studies an estimation of
the adsorption energy of each system with the DFA+vdWsurf method and compare them
to available experimental results.

Finally, we must mention that many of the results that we analyze and present in this
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chapter follow a similar format to the ones presented by Rohlfing et al. [2007] and Bauer
et al. [2012]. That is, we employ similar definitions to study the distortion and structural
features of the interfaces that we study in this chapter. The work we present here has
been previously published [see Ruiz et al., 2016].

7.2 General calculation settings

We present the general calculation settings for the DFT calculations analyzed in this
chapter, particular settings are mentioned throughout the text. All calculations were per-
formed using the all-electron/full-potential electronic-structure code FHI-AIMS [Blum
et al., 2009]. This chapter comprises calculations with both light and tight settings,
where light settings include the tier 1 NAO basis set for C, H, O, and the metal substrate;
while tight settings include the tier 1 NAO basis set for the metal substrate and the tier
2 NAO basis set for C, H, and O. The convergence criteria were 10−5 electrons for the
electron density and 10−6 eV for the total energy of the system in all calculations. For
all structure relaxations, we used 0.01 eV Å−1 as convergence criterion for the maximum
final force. Relativistic effects were included via the atomic scalar zeroth-order regular
approximation [van Lenthe et al., 2000]. We used the repeated-slab method to model all
the systems together with the PBE xc functional [Perdew et al., 1996].

7.3 3,4,9,10-Perylene-tetracarboxylic dianhydride on Ag
surfaces

7.3.1 3,4,9,10-Perylene-tetracarboxylic dianhydride on Ag(111)

Adsorption model and calculation details

PTCDA forms a commensurate monolayer structure on the Ag(111) surface with a her-
ringbone structure having two molecules per unit cell in non-equivalent adsorption con-
figurations [Glöckler et al., 1998; Kraft et al., 2006]. We have modeled the system using
a

(
6 1
−3 5

)
surface unit cell consisting of thirty three Ag atoms per substrate layer and two

inequivalent PTCDA molecules with the adsorption site chosen in agreement with ex-
perimental results [see also section 7.3.2 and Glöckler et al., 1998; Ikonomov et al., 2008,
for detailed information]. The calculations were performed using a slab with a vacuum
gap of 50 Å, five metallic layers, and a Monkhorst and Pack [1976] of 4×4×1 k points in
the reciprocal space, including both tight and light settings (as described in section 7.2).
To generate the surface slab, we used both the PBE lattice constant of 4.149 Å and the
PBE+vdWsurf lattice constant of 4.007 Å in accordance to the previous work by Liu et al.
[2013b]. We have taken the experimental configuration as starting point for each struc-
tural optimization, allowing the PTCDA molecule and the atoms in the topmost two
metal layers to relax. Considering vdW interactions between metal atoms in the slabs
built with the PBE lattice constant would result in artificial relaxations within the sur-
face. Hence, in the cases in which the PBE lattice constant was used to generate the
surface slab, the vdW interactions between metal atoms were not considered when per-
forming the structural relaxation. They were taken into consideration only in final ad-
sorption energy calculations. A brief discussion of the differences between the PBE and
the PBE+vdWsurf lattice constant was given in section 4.5.
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Table 7.1: Comparison of results after performing a structural relaxation of PTCDA on
Ag(111) with the PBE+vdWsurf method using light and tight settings. The PBE lattice
constant was employed to generate the slab. Experimental results are also shown for
comparison [Hauschild et al., 2010]. We use dTh/Exp to denote the averaged vertical
adsorption heights of the specific atoms obtained from PBE+vdWsurf calculations and
NIXSW studies. The adsorption height is given in Å with respect to the topmost un-
relaxed metal layer for a direct comparison to NIXSW experiments. The specification
of the atoms can be seen in Figure 7.1(b). The carbon backbone distortion is given as
∆C = d(Cperyl)−d(Cfunc) and the O difference as ∆O = d(Oanhyd)−d(Ocarb).

dTh dExp
light tight

C total 2.82 2.80 2.86 ± 0.01
Cperyl 2.83 2.80 –
Cfunc 2.79 2.78 –
∆C 0.04 0.02 –

O total 2.72 2.73 2.86 ± 0.02
Ocarb 2.68 2.68 2.66 ± 0.03

Oanhyd 2.82 2.83 2.98 ± 0.08
∆O 0.14 0.15 0.32 ± 0.09

Structural features

Influence of the basis set. We performed a structural relaxation with two levels of nu-
merical hierarchy defined in FHI-AIMS, namely light and tight settings using the PBE
lattice constant for the Ag(111) slab. Table 7.1 shows the general structural features ob-
tained from PBE+vdWsurf calculations, where we use dTh to denote the averaged verti-
cal adsorption heights of each of the atoms forming the molecule. All distances were
calculated with respect to the unrelaxed topmost substrate layer to have a direct com-
parison with NIXSW experiments. The carbon backbone distortion is given as ∆C =
d(Cperyl)−d(Cfunc) and the O difference as ∆O = d(Oanhyd)−d(Ocarb). The adsorption
height of the monolayer, measured in terms of the vertical distance of the carbon atoms
(C total), shows an absolute difference of 0.02 Å when comparing both predefined set-
tings. The carbon backbone of the molecules in the monolayer is given mainly by the
aromatic perylene core, which differs in 0.03 Å when comparing both settings. Regarding
the position of the oxygen atoms, Table 7.1 shows a small absolute difference of 0.01 Å.
Finally, the distortion of the monolayer, given by ∆C and ∆O, takes the values of 0.02 and
0.01 Å, respectively. The results show that light settings are sufficient for reproducing the
structural features of the system to an accurate level.

Influence of the lattice constant. The lateral ordering found in the room temperature
(RT) structure of PTCDA on Ag(111) has been revealed by Kilian et al. [2008] to be a conse-
quence of attractive intermolecular interactions between neighboring molecules. To ob-
tain more information regarding the influence of the lattice constant on this particular is-
sue, we performed an additional relaxation of PTCDA on Ag(111) using the PBE+vdWsurf

lattice constant for Ag (4.007 Å) including vdW interactions between metal atoms. We
show the results in Figure 7.1(a) and Table 7.2. We observe an increase of 0.08 Å in the
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Table 7.2: Comparison of results after performing a structural relaxation with
PBE+vdWsurf for the adsorption geometry of PTCDA on Ag(111) under tight settings,
using the PBE and PBE+vdWsurf lattice constants of Ag (4.149 Å and 4.007 Å, respec-
tively) to generate the Ag(111) slab. Experimental results are also shown for compar-
ison [Hauschild et al., 2010]. We use dTh/Exp to denote the averaged vertical adsorp-
tion heights of the specific atoms obtained from PBE+vdWsurf calculations and NIXSW
studies. The adsorption height is given in Å with respect to the topmost unrelaxed
metal layer for a direct comparison with NIXSW experiments. The specification of
the atoms can be seen in Figure 7.1(b). The carbon backbone distortion is given as
∆C = d(Cperyl)−d(Cfunc) and the O difference as ∆O = d(Oanhyd)−d(Ocarb).

dTh
Lattice constant dExp

PBE PBE+vdWsurf

C total 2.80 2.88 2.86 ± 0.01
Cperyl 2.80 2.88 –
Cfunc 2.78 2.84 –
∆C 0.02 0.04 –

O total 2.73 2.77 2.86 ± 0.02
Ocarb 2.68 2.71 2.66 ± 0.03

Oanhyd 2.83 2.89 2.98 ± 0.08
∆O 0.15 0.18 0.32 ± 0.09

adsorption height (C total) of the monolayer and an increase of 0.04 Å in the distance
of the oxygen atoms when the surface slab was generated with the PBE+vdWsurf lattice
constant. In addition, the results show the attraction of the carboxylic oxygen atoms to
the surface –as found in experiments– independently of the lattice constant used, with
an increase of 0.03 Å when we adopted the PBE+vdWsurf lattice constant.

In terms of the comparison with experiments, Table 7.2 shows that the adsorption
height of the monolayer calculated with the PBE+vdWsurf method is within 0.1 Å of the
experimental results regardless of which lattice constant we used for generating the sur-
face slab. A closer look at the results, however, reveals that the adsorption geometry of
the structure with the PBE+vdWsurf lattice constant is closer to the values found in exper-
iments. The distances of the perylene core and the oxygen atoms are closer to the results
observed in experiments, yielding an adsorption height of the monolayer which is just
0.02 Å larger than the one reported by Hauschild et al. [2010]. Although the results that
we have found with the PBE+vdWsurf lattice constant are in better agreement with ex-
periments, the distortion of the molecule remains relatively unchanged. This becomes
clear if we examine ∆C and ∆O in Table 7.2, as the differences in these two quantities are
of 0.02 Å and 0.03 Å, respectively, between both cases.

A more profound insight into the origin of these differences can be obtained by ob-
serving the resolved structural features for each of the structurally inequivalent mole-
cules that conform the monolayer. The experimental unit cell of PTCDA on Ag(111) has
an area of 238.7 Å2, deviating from the rectangular shape by just 1°. These lattice pa-
rameters match almost perfectly (deviating by less than 2%) to those of the (102) plane
of the β-bulk phase of PTCDA, while its area is smaller only by 0.67% [Glöckler et al.,
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FIGURE 7.1: (a) Geometry of PTCDA adsorbed on Ag(111). The equilibrium distances d
for each chemically inequivalent atom calculated with the PBE+vdWsurf method are dis-
played. Two cases are presented: i ) the structure using a surface slab generated with the
PBE lattice constant of Ag and i i ) the structure using a surface slab generated with the
PBE+vdWsurf lattice constant (see text). Experimental values by Hauschild et al. [2010]
from NIXSW studies are also shown for comparison. The distinction between chemically
inequivalent atoms is displayed. (b) Chemical structure of PTCDA. The distinction be-
tween carbon atoms belonging to the perylene core (Cperyl, black) and to the functional
groups (Cfunct, dark gray) is also displayed. In a similar fashion, oxygen atoms are shown
in red for the case of the carboxylic oxygen (Ocarb) and blue for the anhydride oxygen
(Oanhyd). Images of the structures were produced using the visualization software VESTA
[Momma and Izumi, 2011].

1998; Kilian et al., 2004]. This almost perfect match allows the possibility of the growth
of a commensurate monolayer of PTCDA on the Ag(111) surface with two molecules per
unit cell in non-equivalent adsorption configurations [Glöckler et al., 1998; Kraft et al.,
2006]. Both molecules are adsorbed on bridge position, molecule A is practically aligned
with the substrate in the [101̄] direction with its carboxylic oxygen atoms on top position
and the anhydride oxygen atoms located on bridge sites. Molecule B, on the other hand,
is rotated with respect to the [011̄] direction with most atoms in its functional groups
located closely to adsorption bridge positions [Kraft et al., 2006; Bauer et al., 2012]. Fig-
ure 7.2 depicts how this configuration is well reproduced in our calculations after relax-
ing the system regardless of the lattice constant used to generate the substrate. Table 7.3
shows the structural features of each molecule after relaxing with PBE+vdWsurf for each
lattice constant used to generate the substrate.

In contrast to experiments, the unit cells for PTCDA on Ag(111) in our calculations
have an area of 245.9 Å2 and 229.4 Å2 corresponding to the PBE and PBE+vdWsurf lattice
constants, respectively. The PBE+vdWsurf lattice constant, being smaller than its PBE
counterpart, leads to a reduction of the unit cell area. This reduction causes an increase
in the adsorption height of the monolayer, a slight misalignment of molecule A with
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FIGURE 7.2: Top view of the relaxed structure of PTCDA on Ag(111) with a surface slab
generated with the PBE lattice constant of Ag (a) and a surface slab generated with the
PBE+vdWsurf lattice constant (b). Both inequivalent molecules of the structure are la-
beled A and B. The distinction between chemically inequivalent atoms is displayed in-
cluding hydrogen atoms in green [see also Figure 7.1(b)]. The bond distances between
carboxylic oxygen atoms of molecule A and hydrogen atoms of molecule B are labeled
as Ocarb(A)-H(B). The bond distances between carboxylic oxygen atoms of molecule B
and hydrogen atoms of molecule A are labeled as Ocarb(B)-H(A). The bond distances be-
tween carboxylic oxygen atoms of molecule A (B) and hydrogen atoms of a neighboring
molecule A (B) are labeled as Ocarb(A)-H(A)

(
Ocarb(B)-H(B)

)
. Images of the structures

were produced using the visualization software VESTA Momma and Izumi [2011].

99



7. STRUCTURE AND STABILITY OF INORGANIC/ORGANIC SYSTEMS

Table 7.3: Results after performing a structural relaxation with PBE+vdWsurf for the ad-
sorption geometry of PTCDA on Ag(111) using tight settings. We show the structural fea-
tures resolved for each of the non-equivalent adsorbed molecules A and B in the PTCDA
monolayer. The PBE and PBE+vdWsurf lattice constants of Ag (4.149 Å and 4.007 Å, re-
spectively) were used to generate the Ag(111) slab. Experimental results are also shown
for comparison [Hauschild et al., 2010]. We use dTh/Exp to denote the averaged vertical
adsorption heights of the specific atoms obtained from PBE+vdWsurf calculations and
NIXSW studies. The adsorption height is given in Å with respect to the topmost un-
relaxed metal layer for a direct comparison to NIXSW experiments. The specification
of the atoms can be seen in Figure 7.1(b). The carbon backbone distortion is given as
∆C = d(Cperyl)− d(Cfunc) and the O difference as ∆O = d(Oanhyd)− d(Ocarb). The car-
boxylic oxygen atoms with one and two hydrogen bonds are labeled as Ocarb 1 H-bond
and Ocarb 2 H-bond respectively.

dTh dTh
Molecule A Molecule B

dExpLattice constant Lattice constant
PBE PBE+vdWsurf PBE PBE+vdWsurf

C total 2.80 2.88 2.80 2.87 2.86 ± 0.01
Cperyl 2.80 2.88 2.80 2.88 –
Cfunc 2.77 2.87 2.80 2.82 –
∆C 0.03 0.01 0.00 0.06 –

Ocarb 2.68 2.74 2.69 2.69 2.66 ± 0.03
Ocarb 1 H-bond 2.67 2.76 2.70 2.78 –
Ocarb 2 H-bond 2.72 2.71 2.65 2.59 –

Oanhyd 2.80 2.92 2.84 2.86 2.98 ± 0.08
∆O 0.12 0.18 0.15 0.17 0.32 ± 0.09

respect to the topmost surface layer –see Figure 7.2(b)–, and a slight increment in the
distortion of the oxygen atoms within each molecule as shown by the oxygen difference
∆O in Table 7.2 and Table 7.3.

In addition to a different adsorption site depending on the position of the molecule,
the distortion of the carboxylic oxygen atoms is also influenced by the number of hy-
drogen atoms surrounding each of them, giving rise to either 1 or 2 hydrogen bonds (H-
bond) for each carboxylic oxygen atom. As a consequence of the reduction of the unit
cell area with the PBE+vdWsurf lattice constant, the O-H bond lengths between neigh-
boring molecules also become smaller –see Figure 7.2. This reduction seems to have an
opposite effect on each type of carboxylic oxygen atom. In the case of the carboxylic oxy-
gen atoms with 1 H-bond, the Ag-O bond length increases by approximately 0.09 and
0.08 Å in molecules A and B, respectively, in comparison to the substrate generated with
the PBE lattice constant. This fact suggests a stabilizing effect (hindering a further dis-
tortion) driven by a shorter O-H bond length in both molecules A and B as seen when
we look at the values of Ocarb(A)-H(A) and Ocarb(B)-H(B) in Figure 7.2(b).

However, we can also notice a stronger distortion on the carboxylic oxygen atoms
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of molecule B when the substrate is built with the PBE+vdWsurf lattice constant as we
observe a difference of approximately 0.19 Å between carboxylic oxygen atoms with 1
H-bond and 2 H-bond in molecule B. The latter fact comes along, due to the reduction
of the unit cell area, with a significant decrease in the O-H bond distances when the sub-
strate is generated with the PBE+vdWsurf lattice constant. In particular, the O-H bonds
between carboxylic oxygen atoms of molecule B and hydrogen atoms of molecule A, la-
beled as Ocarb(B)-H(A) in Figure 7.2, are slightly smaller than 2.00 Å (1.93 and 1.96 Å); in
comparison to the same O-H bonds when the PBE lattice constant is used to generate
the substrate (2.16 and 2.23 Å). These facts suggest that the proximity of neighboring
molecules may contribute, not just to a H-bond stabilization, but also to a distortion of
the carboxylic oxygen atoms; thus leading to a smaller Ag-O bond length in the case of
the carboxylic oxygen atoms with 2 H-bond in molecule B.

From this analysis, we can extract some general recommendations and conclusions.
In the first place it is essential to have a consistent adsorption model at the moment of
performing the structural optimization of the system. In this particular case, this refers
to the fact that including vdW interactions between metal atoms, but modeling the sub-
strate with the lattice constant of an exchange-correlation approximation which is not
vdW-inclusive, leads to an inconsistent model with respect to the forces in the system.
Certainly, the optimized lattice constant obtained with an exchange-correlation approx-
imation such as PBE (or any other GGA) does not take into consideration (beyond the
model of the homogeneous electron gas) that metal atoms within the substrate surface
also experience the effects of vdW forces. As a consequence, an artificial relaxation of the
system can occur, which would result in notable uncertainties regarding the accuracy of
the calculations along with the related conclusions. From this perspective, our analysis
of the structural features involving the influence of the lattice constant in this section is
consistent. Moreover, our analysis shows that the adsorption height of the monolayer
obtained with both the PBE and PBE+vdWsurf optimized lattice constants lie within 0.1
Å of the experimental results.

Nevertheless, our analysis also shows that it is necessary to keep in mind that inter-
molecular forces may also play an important role in the formation and structure of the
monolayer, depending on the particular chemical structure of the molecules involved.
In this sense, the packing density of the monolayer in the calculations is also dependent
on the area of the surface unit cell used in the adsorption model. In our particular case,
hydrogen bonding is a major influence in the formation of the monolayer and its struc-
ture. This influence also extends to the distortion, both of the carbon backbone and the
oxygen difference, found in the molecules forming the monolayer. These considerations
must be taken into account for the analysis of similar inorganic/organic interfaces.

Adsorption energy

We have reviewed how several theoretical methods perform on predicting the adsorp-
tion energy in section 5.1. From an experimental perspective, the adsorption energy is
unavailable because PTCDA breaks down upon thermal desorption in TPD experiments
[Zou et al., 2006]. Nevertheless, the adsorption energy of 1.16 ± 0.1 eV has been mea-
sured from TPD experiments for the adsorption of 1,4,5,8-naphthalene-tetracarboxylic-
dianhydride (NTCDA) on Ag(111) by Stahl et al. [1998]. NTCDA is related to PTCDA since
both molecules are terminated with two anhydride functional groups, however NTCDA

101



7. STRUCTURE AND STABILITY OF INORGANIC/ORGANIC SYSTEMS

has a smaller aromatic backbone of approximately 40% less molecular surface area than
PTCDA. Based on this information and comparative studies of the adsorption of PTCDA
and NTCDA on Au(111), we have recently estimated the adsorption energy of PTCDA on
Ag(111) to be between −1.4 and −2.1 eV [see Maurer et al., 2015, for detailed informa-
tion]. This estimation is more reasonable than the one we have used in section 4.1 and
section 5.1 since it is based on more experimental information and takes into consider-
ation the actual differences in size between NTCDA and PTCDA.

We now analyze the adsorption energy of PTCDA on Ag(111) with the PBE+vdWsurf

method. We have calculated the adsorption energy per molecule for a coverage Θ of 1.0
monolayer (ml). In our model, Θ= 1.0 ml corresponds to the adsorption of two PTCDA
molecules per surface unit cell. As we have mentioned above, the surface unit cell here
studied is characterized by an area of 246 Å2 with the PBE lattice constant and 229 Å2

using the PBE+vdWsurf lattice constant (see also Figure 7.2). The adsorption energy per
molecule in the monolayer was calculated using

EΘ(ml)
ads = 1

2Θ

[
EΘ

AdSys −
(
EMe +EΘ

PTCDA

)]
, (7.1)

EΘ(gas)
ads = 1

2Θ

[
EΘ

AdSys −
(
EMe +2Θ ·E gas

PTCDA

)]
, (7.2)

where EΘ
AdSys is the energy of the complete system formed by the monolayer and the slab,

EMe is the energy of the slab, and EΘ
PTCDA corresponds to the energy of the monolayer in

periodic boundary conditions. Expression (7.1) considers the adsorption energy with
the monolayer in periodic boundary conditions as a reference. On the other hand, the
adsorption energy calculated with expression (7.2) considers the formation of the mono-
layer from gas phase by incorporating E gas

PTCDA, term which corresponds to the energy of
a single PTCDA molecule in gas phase after relaxation, thus incorporating the stabilizing
formation energy of the monolayer into the adsorption energy E gas

PTCDA.
All terms in (7.1) and (7.2) are calculated at the coverage Θ= 1.0 ml. Considering all

quantities after relaxation of the system, the adsorption energies with PBE+vdWsurf are
shown in Table 7.4. In the case of the substrate generated with the PBE+vdWsurf lattice
constant, the herringbone structure of the free monolayer in periodic boundary con-
ditions is not stable for the structural optimization performed under the calculations
settings employed. This fact alters EΘ

PTCDA in (7.1) leading to an adsorption energy with

the monolayer as reference
(
EΘ(ml)

ads

)
which is not comparable to the case in which the

PBE lattice constant was used to generate the surface slab. For this reason, we only re-
port in Table 7.4 the adsorption energy with the gas phase molecule as reference for
the case in which the slab was generated with the PBE+vdWsurf lattice constant. The
fact that the herringbone structure of the free monolayer in the unit cell generated with
the PBE+vdWsurf lattice constant is not stable during the structural optimization is most
probably due to the proximity of the neighboring molecules, consequence of the smaller
surface unit cell. The closer proximity of the neighboring molecules may be contributing
to the destabilization of the herringbone structure of the free monolayer.

From the perspective of our calculations, the first feature that we note in Table 7.4
is that the vdW interactions are the bonding mechanism in this system since the contri-
bution of PBE is repulsive in all cases, confirming what we have already observed in the
adsorption potential energy of section 5.1 (see also Figure 5.1). Given the fact that our
calculations for the adsorption energy only included a coverage Θ of 1.0 ml, we cannot
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Table 7.4: Adsorption energies for PTCDA on Ag(111) calculated with the PBE+vdWsurf

method. EΘ(ml)
ads refers to the adsorption energy with the monolayer in periodic boundary

conditions as a reference while EΘ(gas)
ads has a single molecule in gas phase as reference,

thus incorporating the formation of the monolayer in the adsorption energy. EΘ(ml)
ads is

not shown for the case of the substrate generated with the PBE+vdWsurf lattice constant
because the herringbone structure of the free monolayer in periodic boundary condi-
tions is not stable during the structural optimization (see text). The contributions com-
ing from chemical (PBE) and vdW interactions after relaxing the systems are also shown.

EΘ(ml)
ads [eV] EΘ(gas)

ads [eV]
Lattice constant Total PBE vdW Total PBE vdW

PBE −2.86 0.61 −3.47 −3.77 0.01 −3.78
PBE+vdWsurf – – – −3.38 0.57 −3.95

estimate the adsorption energy in the limit of low coverage, that is, for a single molecule.
In the limit of low coverage, the adsorption energy for both reference states (monolayer
and gas phase molecule) should be virtually equivalent as well as the proper reference
value to compare with single-molecule experimental results. Recognizing that we would
need to investigate coverage effects in order to quantify the adsorption energy for a sin-
gle molecule, the PBE+vdWsurf method overestimates the adsorption energy indepen-
dently of the reference or the lattice constant employed to generate the substrate if we
take into consideration the above estimated interval in the adsorption energy. Our cur-
rent research efforts show that one reason for this overestimation, besides of the possible
coverage effects, is the absence of many-body dispersion energy effects, which decrease
the effective interaction between the monolayer and the substrate [Maurer et al., 2015].

7.3.2 3,4,9,10-Perylene-tetracarboxylic dianhydride on non-close-packed
Ag surfaces

Up to this point we have addressed the performance of the DFA+vdWsurf method in the
adsorption of PTCDA on the close-packed (111) surfaces of Ag (previous section and sec-
tion 5.1) and Au (section 7.4), but we are also interested in the performance and sensi-
tivity of the DFA+vdWsurf method when the adsorption occurs on non-close-packed sur-
faces. In this section, we address this aspect by doing a comparative analysis of the ad-
sorption of PTCDA on a surface with different orientations: PTCDA on Ag(111), Ag(100),
and Ag(110). The adsorption geometries of these systems have been investigated using
the NIXSW technique [Hauschild et al., 2010; Bauer et al., 2012; Mercurio et al., 2013a].
A novel feature in the studies including PTCDA on Ag(100) and Ag(110) is their higher
chemical resolution resulting in the extraction of the adsorption position of each of the
chemically inequivalent atoms in PTCDA, which offers us the invaluable opportunity of
comparing these results to the ones obtained with the PBE+vdWsurf method.

Adsorption model and calculation details

As we have mentioned above, PTCDA forms a commensurate monolayer structure on
silver surfaces. The lateral ordering of the molecules in the monolayer depends on the
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orientation of the surface (see section 7.3.1). The surface unit cells for the calculations
were modeled with a

(
6 1
−3 5

)
,
(

4 4
−4 4

)
, and a

(
3 2
−3 2

)
super cell for the case of Ag(111), Ag(100),

and Ag(110), respectively, in accordance to experimental results [Glöckler et al., 1998;
Ikonomov et al., 2008]. We generated all surface slabs with the PBE lattice constant of Ag,
which is 4.149 Å, in accordance with the work by Liu et al. [2013b]. The slabs consisted
of five layers for Ag(111) and Ag(100) and seven layers for Ag(110) each with a vacuum
gap of 50 Å. We used a Monkhorst and Pack [1976] grid of 4×4×1 for Ag(111) and 6×6×1
k points for Ag(100) and Ag(110) in the reciprocal space. We performed a structural re-
laxation of each of these systems where the molecule and the atoms in the topmost two
metal layers were allowed to relax using the PBE+vdWsurf method taking the experimen-
tal configuration as starting point for each structural relaxation. We did not take into
account vdW interactions between metal atoms in the structural relaxations in order to
avoid an artificial relaxation of the surface due to the fact that the surface slab was cre-
ated using the PBE lattice constant. They were taken into consideration only in final
adsorption energy calculations. All calculations were performed using tight settings as
described in section 7.2.

Adsorption structures

PTCDA forms a commensurate monolayer structure on silver surfaces. On Ag(111), it
forms a herringbone structure with two molecules per unit cell in non-equivalent ad-
sorption configurations [Glöckler et al., 1998; Kraft et al., 2006]. Both molecules are ad-
sorbed on bridge position, molecule A is practically aligned with the substrate in the
[101̄] direction with its carboxylic oxygen atoms on top position and the anhydride oxy-
gen atoms located on bridge sites. Molecule B on the other hand is rotated with respect
to the [011̄] direction, with most atoms in its functional groups located closely to ad-
sorption bridge positions [Kraft et al., 2006; Bauer et al., 2012]. Figure 7.3(b) depicts how
this configuration is well reproduced in our calculations after relaxing the system. On
Ag(100), a T-shape arrangement with two adsorbed molecules per unit cell can be ob-
served [Ikonomov et al., 2008]. Figure 7.3(c) shows the top view of the system after relax-
ation, showing that both molecules are aligned with the [110] direction of the substrate
with the center of each molecule adsorbed on top position. This result agrees very well
with experiments and previous DFT calculations [Bauer et al., 2012]. Finally, in the case
of Ag(110), PTCDA forms a brick-wall adsorption pattern with one molecule adsorbed
per surface unit cell [Glöckler et al., 1998]. The long axis of the molecule is located par-
allel to the [001] direction, while the center of the molecule is located on the bridge site
between the close-packed atomic rows parallel to the [1̄10] direction [Böhringer et al.,
1998]. This configuration is reproduced accurately by the PBE+vdWsurf calculations as
Figure 7.3(d) confirms.

The adsorption geometries of these systems have been determined by experiments
using the NIXSW technique. We compare these results with PBE+vdWsurf calculations
in Table 7.5 and illustrate them in Figure 7.4, in which the adsorption position of each
of the atoms is referred to the position of the topmost unrelaxed metal layer. Table 7.5
shows that the PBE+vdWsurf results for the vertical adsorption distance agree very well
with experimental results. With the exception of the anhydride oxygen in Ag(111), the
calculated distances for all atoms that form the molecule lie within 0.10 Å of the ex-
perimental results for all three surfaces. These results also reveal that our calculations

104



7.3. 3,4,9,10-Perylene-tetracarboxylic dianhydride on Ag surfaces

FIGURE 7.3: (a) Chemical structure of PTCDA. The distinction between carbon atoms
belonging to the perylene core (Cperyl, black) and to the functional groups (Cfunct, dark
gray) is also displayed. In a similar fashion, oxygen atoms are shown in red for the case of
the carboxylic oxygen (Ocarb) and blue for the anhydride oxygen (Oanhyd). (b) Top view of
the relaxed structure of PTCDA on Ag(111). Both inequivalent molecules of the structure
are labeled A and B. (c) Top view of the relaxed structure of PTCDA on Ag(100). (d) Top
view of the relaxed structure of PTCDA on Ag(110). The topmost metal layer is displayed
in dark gray while the sublayer is light gray. Images of the structures were produced
using the visualization software VESTA [Momma and Izumi, 2011].

105



7. STRUCTURE AND STABILITY OF INORGANIC/ORGANIC SYSTEMS

Table 7.5: Comparison of experimental and theoretical results for the adsorption geom-
etry of PTCDA on Ag(111), Ag(100), and Ag(110). We use dTh/Exp to denote the averaged
vertical adsorption heights of the specific atoms obtained from PBE+vdWsurf calcula-
tions and NIXSW studies. The adsorption height is given in Å with respect to the top-
most unrelaxed metal layer. The specification of the atoms can be seen in Figure 7.3(a).
The carbon backbone distortion is given as ∆C = d(Cperyl)−d(Cfunc) and the O differ-
ence as ∆O = d(Oanhyd)−d(Ocarb). Experimental results can be found in Hauschild et al.
[2010]; Bauer et al. [2012] and Mercurio et al. [2013a]. We cite here the results given by
Hauschild et al. [2010] and Bauer et al. [2012].

Ag(111) Ag(100) Ag(110)
dTh dExp dTh dExp dTh dExp

C total 2.80 2.86 ± 0.01 2.75 2.81 ± 0.02 2.54 2.56 ± 0.01
Cperyl 2.80 – 2.76 2.84 ± 0.02 2.56 2.58 ± 0.01
Cfunc 2.78 – 2.67 2.73 ± 0.01 2.43 2.45 ± 0.11
∆C 0.02 – 0.09 0.11 ± 0.02 0.13 0.13 ± 0.11

O total 2.73 2.86 ± 0.02 2.59 2.64 ± 0.02 2.33 2.33 ± 0.03
Ocarb 2.68 2.66 ± 0.03 2.54 2.53 ± 0.02 2.29 2.30 ± 0.04

Oanhyd 2.83 2.98 ± 0.08 2.69 2.78 ± 0.02 2.39 2.38 ± 0.03
∆O 0.15 0.32 ± 0.09 0.15 0.25 ± 0.02 0.10 0.08 ± 0.05

reproduce the experimental trends observed in the sequence of Ag(111), Ag(100), and
Ag(110) [Bauer et al., 2012; Mercurio et al., 2013a]. The overall vertical adsorption height
–taken as an average over all carbon atoms– given by the calculations decreases in the
sequence of Ag(111), Ag(100), and Ag(110) by 0.26 Å, in comparison to the value of 0.30 Å
observed in experiments for the same sequence. The calculations reproduce the tran-
sition from a saddlelike adsorption geometry of PTCDA on Ag(111) to the archlike ad-
sorption geometry that can be found in the more open surfaces according to experi-
ments (see Figure 7.4). Finally, for the above mentioned sequence we find an increase
in the carbon backbone distortion ∆C = d(Cperyl)−d(Cfunc) and a decrease in the O dif-
ference ∆O = d(Oanhyd)−d(Ocarb). For ∆C, the calculations yield 0.02, 0.09, and 0.13 Å
for Ag(111), Ag(100), and Ag(110), respectively, values which are in excellent agreement
with experiments [Bauer et al., 2012; Mercurio et al., 2013a]. In the case of Ag(111), the
carbon backbone distortion has not been determined experimentally, but the saddlelike
adsorption geometry suggests a minimum distortion of the carbon backbone [Hauschild
et al., 2010; Bauer et al., 2012] which we observe in our calculations as well. The carbon
backbone distortion in Ag(100) and Ag(110) is then remarkably well reproduced by the
calculations.

With respect to the oxygen difference (∆O), the resulting values are 0.15 Å for Ag(111)
and Ag(100), and 0.10 Å for Ag(110). These values reproduce the relative decrease in
the distortion of the oxygen atoms in the sequence of Ag(111), Ag(100), and Ag(110) ob-
served in experiments but underestimate the absolute difference by 0.17 Å in Ag(111)
and 0.10 Å in Ag(100). This underestimation lies in the fact that the adsorption distances
for the anhydride oxygen obtained with the calculations are also underestimated in the
cases of Ag(111) and Ag(100). On the other hand, the calculated distance for the anhy-
dride oxygen in Ag(110) agrees well with experiments, leading to a good agreement with
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(a) PTCDA on Ag(111)

c

Ag(111)

o oco

d [Å]
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PBE+vdWsurf Exp.
C total 

Ocarb 

2.86 (0.01) 2.80

 2.68 2.66 (0.03)

2.98 (0.08) 2.83

d

(b) PTCDA on Ag(100)
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2.84 (0.02) 2.76

 2.67

 2.54
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(c) PTCDA on Ag(110)
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2.58 (0.01) 2.56

 2.43

 2.29

2.45 (0.11)

2.30 (0.04)
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FIGURE 7.4: Geometry of PTCDA when adsorbed on (a) Ag(111), (b) Ag(100), and (c)
Ag(110). The equilibrium distances d for each chemically inequivalent atom calculated
with the PBE+vdWsurf method are displayed. Experimental results by Bauer et al. [2012]
from NIXSW studies are also shown for comparison. The distinction between carbon
atoms belonging to the perylene core (Cperyl, black) and to the functional groups (Cfunct,
dark gray) is also displayed. In a similar fashion, oxygen atoms are shown in red for the
case of the carboxylic oxygen (Ocarb) and blue for the anhydride oxygen (Oanhyd). Images
of the structures were produced using the visualization software VESTA [Momma and
Izumi, 2011].
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Table 7.6: Adsorption energies EΘ(ml)
ads for PTCDA on Ag(111), Ag(100), and Ag(110) cal-

culated with the PBE+vdWsurf method. The contributions coming from chemical (PBE)
and vdW interactions after relaxing the systems are also shown.

EΘ(ml)
ads [eV]

Total PBE vdW
Ag(111) −2.86 0.61 −3.47
Ag(100) −2.93 −0.01 −2.92
Ag(110) −3.39 −0.90 −2.49

the experimental result of 0.08 ± 0.05 Å in the oxygen difference [Bauer et al., 2012].

Adsorption energies

We have computed the adsorption energy EΘ(ml)
ads of the systems at Θ= 1.0 ml using (7.1),

where all the quantities are taken after relaxation of each subsystem. Table 7.6 sum-
marizes the results. The binding strength increases in the above mentioned sequence,
yielding the values of −2.86, −2.93, and −3.39 eV for Ag(111), Ag(100), and Ag(110), re-
spectively. The vdW interactions are essential in these systems as they are the larger
contribution to the adsorption energy, representing 73% for Ag(110) and the only stabi-
lizing energy in Ag(111) and Ag(100). The chemical interactions become only relevant
in Ag(100) and Ag(110). Only in the case of Ag(110) they contribute to the adsorption
energy, representing 27% of the binding energy. In Ag(111), the effect is the opposite
as a repulsion energy of 0.61 eV is found. We note that the adsorption energy EΘ(ml)

ads is
calculated with respect to the PTCDA monolayer, the binding strength will become even
larger when calculated with respect to the molecule in gas phase due to the stabilizing
formation energy of the monolayer (see for example the case of PTCDA on Au(111) in
section 7.4.3). The accuracy of these results confirms the sensitivity to the surface termi-
nation that the DFA+vdWsurf scheme is able to achieve.

7.4 3,4,9,10-Perylene-tetracarboxylic dianhydride on Au(111)

7.4.1 Adsorption model and calculation details

PTCDA does not form commensurate monolayers on the Au(111) surface but rather ex-
hibits a very close situation to a point-on-line growth on the (22×)

3) reconstructed
surface, situation which is not accessible to any type of state of the art modeling [Fen-
ter et al., 1997; Kilian et al., 2006; Mannsfeld et al., 2001; Schmitz-Hübsch et al., 1997].
We generated the surface slab with the PBE lattice constant of Au, which is 4.159 Å, in
line with a previous investigation [Liu et al., 2013b]. As a reasonable approximation [see
Romaner et al., 2009], we have modeled the system using a

(
6 1
−3 5

)
surface unit cell con-

sisting of five layers each with thirty three Au atoms. The adsorbed monolayer consists
of a herringbone lateral arrangement of two PTCDA molecules per unit cell. We chose
the size of the vacuum gap to be approximately 50 Å and a Monkhorst and Pack [1976]
grid of 4×4×1 k points in the reciprocal space. We performed the structural relaxation
of the system using the PBE+vdWsurf method by fixing the Au atoms in the three bottom
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layers. For the structural relaxations, we did not take into account vdW interactions be-
tween metal atoms in order to avoid an artificial relaxation of the surface due to the fact
that the surface slab was created using the PBE lattice constant. They were taken into
consideration only in the calculation of the final adsorption energies. All calculations
were performed using tight settings as described in section 7.2.

We have calculated the adsorption energy per molecule for two different coverages Θ
of 1.0 and 0.5 ml. In this model, Θ= 1.0 ml corresponds to the adsorption of two PTCDA
molecules per surface unit cell while Θ = 0.5 ml corresponds to the adsorption of one
molecule per surface unit cell. The adsorption energy per molecule was calculated using

EΘ(ml)
ads = 1

N

[
EΘ

AdSys −
(
EAu +EΘ

PTCDA

)]
, (7.3)

EΘ(gas)
ads = 1

N

[
EΘ

AdSys −
(
EAu +N ·E gas

PTCDA

)]
, (7.4)

where EΘ
AdSys is the energy of the complete system formed by the monolayer and the

slab, EAu is the energy of the slab, EΘ
PTCDA corresponds to the energy of the monolayer

in periodic boundary conditions, and N corresponds to the number of molecules in the
model of the system. Expression (7.3) does not consider the formation of the monolayer
in its definition of adsorption energy, while (7.4) considers the formation of the mono-
layer from gas phase by using E gas

PTCDA, term which corresponds to the energy of a single
PTCDA molecule in gas phase after relaxation. Hence, at Θ= 1.0, the difference between
expressions (7.3) and (7.4) corresponds approximately to the formation energy of the
monolayer. All terms in (7.3) and (7.4) are calculated at the given coverage value of Θ.

For the calculations with Θ of 0.60, 0.45, 0.30, and 0.15 ml, we have modelled the
system with a larger surface unit cell with area of 824 Å2 and a slab consisting of three
layers each with 110 atoms of Au. The surface unit cell in this model is rectangular with
unit cell vectors of magnitude a = 32.352 Å and b = 25.471 Å. At Θ = 0.60, the coverage
corresponds to the adsorption of four molecules in a herringbone arrangement on top of
the surface unit cell, thus being consistent with our above-given definition of monolayer
coverage (Θ= 1.0). Coverages of 0.45, 0.30, and 0.15 ml thus correspond to the adsorpi-
ton of 3, 2, and 1 molecule(s) on the same surface unit cell. For these calculations, we
chose the size of the vacuum gap to be approximately 50 Å and a Monkhorst and Pack
[1976] grid of 2×2×1 k points in the reciprocal space. We performed the structural re-
laxation of the system using the PBE+vdWsurf method only at Θ = 0.60 ml by fixing the
Au atoms in the two bottom layers. For this structural relaxation, we did not take into
account vdW interactions between metal atoms and used light settings. The remaining
model systems with Θ of 0.45, 0.30, and 0.15 ml were built from the system at Θ = 0.60
ml. Van der Waals interactions were taken into consideration only in the calculation of
the final adsorption energies using tight settings and expressions (7.3) and (7.4).

7.4.2 Adsorption geometry

Table 7.7 shows the average vertical distance of each species in the PTCDA molecule
with respect to the topmost unrelaxed substrate layer using the PBE+vdWsurf method af-
ter relaxation of the system. Figure 7.5(a) shows a schematic view of these results, while
Figure 7.5(b) depicts the structure of the monolayer after relaxation showing the posi-
tion of each of the two inequivalent molecules in the unit cell. The bonding distance
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Table 7.7: Experimental and theoretical results for the adsorption geometry of PTCDA
on Au(111). We use dTh/Exp to denote the averaged vertical adsorption heights of the
specific atoms obtained with PBE+vdWsurf calculations and NIXSW studies respectively.
The adsorption height is given in Å with respect to the unrelaxed topmost metal layer
for a direct comparison to NIXSW experiments. The specification of the atoms can be
seen in Figure 7.5. The carbon backbone distortion is given as ∆C = d(Cperyl)−d(Cfunc)
and the O difference as ∆O = d(Oanhyd)−d(Ocarb). Experimental results for the adsorp-
tion distance can be found in Henze et al. [2007]. An estimated experimental adsorption
height, which takes into account an estimated outward relaxation of the topmost metal
layer by 3%, reduces the adsorption height of the carbon backbone to 3.27 Å. The posi-
tion of the O atoms was not determined in the experimental studies (see text).

dTh dExp

C total 3.19 3.34 ± 0.02
Cperyl 3.18 –
Cfunc 3.23 –
∆C −0.05 –

O total 3.23 –
Ocarb 3.21 –

Oanhyd 3.28 –
∆O 0.07 –

of a PTCDA monolayer on Au(111) was studied by Henze et al. [2007] using the NIXSW
technique. They found the monolayer, in terms of the carbon backbone of the molecule,
located at a distance of 3.34 ± 0.02 Å with respect to the substrate. Their results are also
presented in Table 7.7 and Figure 7.5 for comparison. Based on single-molecule manip-
ulation experiments, by combining scanning tunneling microscopy and frequency mod-
ulated atomic force microscopy, Wagner et al. [2012] proposed a method to quantify the
binding energy contributions to an organic-metal bond experimentally. They reported
an adsorption distance of approximately 3.25 Å for PTCDA on Au(111).

Calculations with the PBE+vdWsurf method result in an adsorption height of 3.19 Å
for the carbon backbone, underestimating the experimental result [Henze et al., 2007]
of 3.34 Å by approximately 0.15 Å. The position of the oxygen atoms were not measured
in experiment due to an overlap of Au Auger lines with the O 1s core level. The results
suggest a minor distortion of the carbon backbone as shown by ∆C = d(Cperyl)−d(Cfunc)
= −0.05 Å. The negative sign in ∆C indicates that the carbon atoms belonging to the
functional groups are located at a higher position than those of the perylene core. This
fact is also reflected in the average position of the oxygen atoms which is around 0.04 Å
higher than the average carbon backbone position. The results also show a distortion
in the oxygen atoms of ∆O = d(Oanhyd)−d(Ocarb) = 0.07 Å. In particular, the anhydride
oxygen atoms are located around 0.09 Å higher than the carbon backbone. This behavior
suggests a weaker attraction between the functional groups present in the molecule and
the Au(111) surface. Overall, the large adsorption height of the monolayer confirms a
relatively weak interaction of the molecule with the surface, namely physisorption.

The adsorption of a single PTCDA molecule has also been studied by Mura et al.

110



7.4. 3,4,9,10-Perylene-tetracarboxylic dianhydride on Au(111)

FIGURE 7.5: (a) Geometry of the structure of PTCDA adsorbed on Au(111) where the
equilibrium distances d for each chemically inequivalent atom calculated with the
PBE+vdWsurf method are displayed. Experimental results by Henze et al. [2007] from
NIXSW studies are also shown for comparison. The distinction between chemically in-
equivalent atoms is displayed. (b) Top view of the relaxed structure of PTCDA on Au(111).
Both inequivalent molecules of the structure are labeled as A and B. (c) Chemical struc-
ture of PTCDA. The distinction between carbon atoms belonging to the perylene core
(Cperyl, black) and to the functional groups (Cfunct, dark gray) is also displayed. In a sim-
ilar fashion, oxygen atoms are shown in red for the case of the carboxylic oxygen (Ocarb)
and blue for the anhydride oxygen (Oanhyd). Images of the structures were produced
using the visualization software VESTA [Momma and Izumi, 2011].
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[2010] using the vdW-DF method [Dion et al., 2004] in its self-consistent (scf) version.
They performed a full relaxation of the system and obtained an adsorption distance of
3.3 Å, in good agreement with the experimental data. However, Romaner et al. [2009] re-
vealed that when applying the vdW-DF to the adsorption of PTCDA on Ag(111), Au(111),
and Cu(111), the substrate has a very small impact on the bonding distances; thus con-
tradicting experimental and theoretical results [Tkatchenko et al., 2010; Ruiz et al., 2012].
Hence, the reliability of the vdW-DF method in the treatment of these systems still re-
mains unclear.

The discrepancy of around 0.15 Å between the results here presented and experi-
ment can be attributed to several factors related to both approaches. In the case of the
Au(111) surface, PTCDA does not form a commensurate monolayer but rather exhibits a
situation very close to a point-on-line correspondence with the (22×)

3) reconstructed
surface [Fenter et al., 1997; Kilian et al., 2006; Mannsfeld et al., 2001; Schmitz-Hübsch
et al., 1997]. Kilian et al. [2006] reported an adsorbate structure at equilibrium condi-
tions (grown at high substrate temperatures and small deposition rates) that suggests an
optimal point-on-line relation on each of the three reconstruction domains of the sub-
strate, which results in azimuthal domain boundaries –with an angular misfit of around
2.5◦– in the PTCDA monolayer. The adsorbate structure consists of a rectangular unit
cell with an area of approximately 232 Å2 and two PTCDA molecules per surface unit cell.
The area of the surface unit cell here studied is 247 Å2, which is larger than the area of the
experimental surface unit cell by more than 6%. On the other hand, Henze et al. [2007]
reported an adsorption height that corresponds most probably to the square phase of
PTCDA on Au(111) [Mannsfeld et al., 2001; Schmitz-Hübsch et al., 1997], which does not
conform the (majority) herringbone type phases observed by LEED [Fenter et al., 1997;
Mannsfeld et al., 2001]. Furthermore, neither theory nor experiments take initially into
consideration the surface relaxation in the determination of the adsorption height of the
carbon backbone. An estimated experimental adsorption height of 3.27 Å [as found in
Henze et al., 2007], which takes into account an estimated outward relaxation of the top-
most metal layer by 3% reduces the difference between theory and experiment to less
than 0.1 Å. Although the correct superstructure of the monolayer including the domain
boundaries cannot be achieved by any state-of-the-art modeling, the very good agree-
ment between theory and experiment suggests that the lateral arrangement of the mol-
ecule is strong due to the intermolecular interactions and the effect of the exact super-
structure of the monolayer on the adsorption height should be minimal; thus yielding
the results that we present as relevant. This fact has also been indicated by experimental
results [Henze et al., 2007; Kilian et al., 2006].

7.4.3 Adsorption energy

The binding of a single PTCDA molecule on Au(111) was investigated by Wagner et al.
[2012], where they reported an adsorption energy of approximately −2.5 eV per mole-
cule; while TPD experiments performed to study the adsorption of the monolayer re-
vealed an adsorption energy of approximately −1.94 eV per molecule in the limit of
residual coverage [Stremlau, 2015]. The adsorption energy of PTCDA on Au(111) was
also studied by Mura et al. [2010] by using DFT methods. They found a value of −1.88 eV
employing the vdW-DF in its scf version and a value of −2.03 eV when using a classical
potential. Romaner et al. [2009] reported a value of −2.0 eV based on binding energy
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Table 7.8: Adsorption energy EΘ
ads for PTCDA on Au(111) at a coverage Θ= 1.0 ml and Θ=

0.5 ml using the PBE+vdWsurf method. E (ml)
ads is the adsorption energy calculated with the

PTCDA monolayer as reference whereas E (gas)
ads is the adsorption energy calculated with

respect the molecule in gas phase as reference [expressions (7.3) and (7.4) with N =2].
The structure corresponds to the structural relaxation, obtained with the PBE+vdWsurf

method, of the system modeled with a
(

6 1
−3 5

)
surface unit cell consisting of five layers

each with thirty three Au atoms.

Θ [ml] EΘ(ml)
ads EΘ(gas)

ads

1.0 −2.15 −3.05
0.5 −2.27 −2.50

curves using the vdW-DF with the correction due to nonlocal vdW forces added a poste-
riori on top of the semi-local xc functional. Based on potential-energy curves using the
PBE+vdWsurf method, we have estimated a value of approximately −2.4 eV per molecule
for the case of the adsorbed monolayer [Ruiz et al., 2012] and a value between −2.23 and
−2.15 eV for the case of a single adsorbed molecule (see section 5.2).

Given the above mentioned experimental results for the adsorption energy, we now
analyze the adsorption energy of PTCDA on Au(111) with the PBE+vdWsurf method. Un-
der the calculation settings mentioned in section 7.4.1, we have calculated the adsorp-
tion energy per molecule for two different coverages Θ of 1.0 and 0.5 ml. In our model,
Θ= 1.0 ml corresponds to the adsorption of two PTCDA molecules per surface unit cell
while Θ= 0.5 ml corresponds to the adsorption of one molecule per surface unit cell. As
we have mentioned above, the surface unit cell here studied is characterized by an area
of 247 Å2 and consists of thirty three Au atoms in its topmost layer –see Figure 7.5(b).
The adsorption energy per molecule in the monolayer was calculated using expressions
(7.1) and (7.2) with all terms given a the coverage value of Θ. Considering all quantities
after relaxation of the system, the adsorption energies with PBE+vdWsurf are shown in
Table 7.8.

The calculated energies reveal a dependence on the coverage of the monolayer inde-
pendently of the reference state. In the case in which the reference is the PTCDA mono-
layer, the adsorption energy EΘ(ml)

ads per molecule for Θ= 0.5 ml increases with respect to
the case of Θ = 1.0 ml by around 6%. On the other hand, considering the formation of
the monolayer from gas phase, EΘ(gas)

ads the adsorption energy per molecule for Θ = 0.5
ml decreases with respect to Θ = 1.0 ml by around 18%. It is clear that the adsorption
energy calculated in the limit of low coverage for both reference states should be virtu-
ally equivalent and the proper reference value to compare with the TPD experimental
result. With this in mind, we have included calculations with Θ of 0.60, 0.45, 0.30, and
0.15 ml in order to compare the calculated value of the adsorption energy in the limit
of low coverage with the experimental result. For these results, we have modeled the
system using a larger unit cell with an area of 824 Å2 and a slab with three Au layers as
we have described above. We present these results in Table 7.9. The results demonstrate
that the adsorption energy tends to a converged value as the coverage of the monolayer
is reduced to the limit of the single molecule. Notably, at Θ = 0.15, the difference be-
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Table 7.9: Adsorption energy EΘ
ads, given in eV, for PTCDA on Au(111) at a coverage Θ of

1.00, 0.60, 0.45, 0.30, 0.15 ml, and the limit of residual coverage with the PBE+vdWsurf

method. The details of the adsorption model and the structural relaxation are found in
section 7.4.1. The experimental result by Stremlau [2015] is also shown for comparison.

Θ [ml] EΘ(ml)
ads EΘ(gas)

ads
Exp.

1.00 −2.07 −2.97 –
0.60 −2.05 −2.59 –
0.45 −2.14 −2.40 –
0.30 −2.16 −2.26 –
0.15 −2.17 −2.13 –

limΘ→ 0 −2.15 −1.93 ± 0.04

tween EΘ(ml)
ad and EΘ(gas)

ad amounts to just 0.04 eV. We take this value as the limit of low

coverage for our calculations. Taking the average value between EΘ(ml)
ad and EΘ(gas)

ad at
Θ = 0.15, the adsorption energy at the limit of the single molecule is −2.15 eV with the
PBE+vdWsurf method. This value will be slightly more negative if we consider a small
correction due to the number of layers in the surface slab. Nevertheless, it lies, in prac-
tical terms, within the interval of our own prediction for the case of a single adsorbed
molecule with calculations from a potential-energy curve in section 7.4. In compari-
son to the experimental result of Stremlau [2015], the PBE+vdWsurf adsorption energy
is overestimated by approximately 0.20 eV. Our current research indicates that this over-
estimation is probably related to the absence of many-body dispersion effects [Maurer
et al., 2015, see]. The inclusion of many-body dispersion effects reduces the overbinding
found in pairwise vdW-inclusive methods, yielding an improvement, for instance, in the
adsorption energy.

7.5 3,4,9,10-Perylene-tetracarboxylic dianhydride on Cu(111)

7.5.1 Adsorption model and calculation details

In the case of PTCDA on Cu(111), a larger unit cell in comparison to Ag and Au is required
due to the smaller lattice constant of Cu. We used three models, derived by Romaner
et al. [2009], which are based on experimental data [Wagner et al., 2007]: structure 1,
2, and 3. The three structures have two inequivalent PTCDA molecules per unit cell and
were modeled with slabs consisting of three metallic layers. All slabs were generated with
the PW91 lattice constant which is 3.638 Å [Romaner et al., 2009]. Structure 1 consists of
a

(
6 2
−4 6

)
surface unit cell with 44 metal atoms per layer and a unit cell area of 252 Å2, while

structure 2 and 3 are conformed by a
(

5 0
−5 10

)
and a

(
7 2
−4 6

)
surface unit cell, respectively;

both conformed with 50 atoms per metallic layer and a unit cell area of 286 Å2. We chose
the size of the vacuum gap to be approximately 25 Å and a Monkhorst and Pack [1976]
grid of 2×2×1 k points in the reciprocal space. We performed the structural relaxation
of the system using the PBE+vdWsurf method by fixing the Cu atoms in the two bottom
layers. For the structural relaxations, we did not take into account vdW interactions be-
tween metal atoms in order to avoid an artificial relaxation of the surface due to the
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Table 7.10: Specifications for the unit cell of each structure investigated for PTCDA on
Cu(111).

Structure
Surface Area

Unit Cell
[
Å2]

1
(

6 2
−4 6

)
252

2
(

5 0
−5 10

)
286

3
(

7 2
−4 6

)
286

fact that the surface slab was created using the PW91 lattice constant. They were taken
into consideration only in final adsorption energy calculations. All relaxations were per-
formed using light settings as described in section 7.2. Final adsorption energies were
calculated with tight settings, a Monkhorst-Pack grid of 4×4×1 k points in the reciprocal
space, and taking into account vdW interactions between metal atoms.

7.5.2 Adsorption structures

The bonding distance of a PTCDA monolayer on Cu(111) was studied by Gerlach et al.
[2007] using the NIXSW technique. They found the monolayer, in terms of the carbon
backbone of the molecule, located at a distance of 2.66 ± 0.02 Å with respect to the sub-
strate. Their studies also include the adsorption distances of the oxygen atoms in PTCDA.
The adsorption unit cell of the system was characterized by Wagner et al. [2007] by STM
experiments. However, the lateral arrangement of the molecules in the monolayer has
not been yet clearly established beyond the herringbone arrangement. In this context,
we investigated three possible adsorption structures –labeled as 1, 2, and 3– with differ-
ent surface unit cells and lateral position of the molecules. The features of these struc-
tures were mentioned above and are summarized in Table 7.10. Structure 1 corresponds
to a smaller surface unit cell than the one proposed by Wagner et al. [2007]. Structure 2
corresponds to the experimental surface unit cell [found in Wagner et al., 2007] whereas
structure 3 corresponds to a different (however possible) surface unit cell with the same
area as structure 2.

Table 7.11 shows the average vertical distance of each species in the PTCDA mole-
cule with respect to the topmost unrelaxed substrate layer after relaxation of each of the
structures studied. We show a schematic view of these results in Figure 7.6. The max-
imum difference in the adsorption distance of the carbon backbone among the three
structures is approximately 0.07 Å, which is found between structures 1 and 3; while a
similar difference of 0.06 Å is found between structures 2 and 3. The calculations show,
however, that the adsorption distance in structure 3 agrees remarkably better (slightly
larger by 0.02 Å) with the NIXSW results. On the other hand, the final position of the
oxygen atoms disagree with the experimental results regardless of the structure of the
substrate. The averaged position of the carboxylic oxygen atoms are below the carbon
backbone in contrast to the findings of Gerlach et al. [2007]. This takes us to discuss
the lateral arrangement of the molecules in the monolayer. Figure 7.7 and Figure 7.8
show the top view of each structure after relaxation where two inequivalent molecules
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Table 7.11: Comparison of PBE+vdWsurf results after relaxation for the three studied
structures of PTCDA on Cu(111). Experimental results are also shown for compari-
son Gerlach et al. [2007]. We use dTh/Exp to denote the averaged vertical adsorption
heights of the specific atoms obtained with PBE+vdWsurf calculations and NIXSW stud-
ies respectively. The adsorption height is given in Å with respect to the unrelaxed top-
most metal layer for a direct comparison to NIXSW experiments. The specification
of the atoms can be seen in Figure 7.5. The carbon backbone distortion is given as
∆C = d(Cperyl)−d(Cfunc) and the O difference as ∆O = d(Oanhyd)−d(Ocarb).

dTh dExpStructure
1 2 3

C total 2.75 2.74 2.68 2.66 ± 0.02
Cperyl 2.74 2.75 2.68 –
Cfunc 2.79 2.69 2.68 –
∆C −0.05 0.06 0.00 –

O total 2.75 2.61 2.62 2.81 ± 0.03
Ocarb 2.70 2.55 2.56 2.73 ± 0.06

Oanhyd 2.86 2.73 2.75 2.89 ± 0.06
∆O 0.16 0.18 0.19 0.16 ± 0.08

per unit cell are present in each. Label A corresponds to the molecule which is aligned
with the topmost layer of the substrate and label B corresponds to the molecule that is
misaligned. A comparison among the structures reveal differences in the relative lateral
position of each molecule after relaxation. We now mention the main features of each
structure.

Structure 1

Figure 7.7(a) shows the top view of structure 1 after relaxation. The effect of a smaller sur-
face unit cell in structure 1 leads to a larger adsorption height of the carbon backbone
in comparison to the other structures. Table 7.12 shows the results corresponding to the
structure of each molecule in the unit cell, where it can be seen that the adsorption dis-
tance and internal distortion of molecule A agree remarkably well with the NIXSW exper-
iments [Gerlach et al., 2007], including the placement of the carboxylic oxygen above the
carbon backbone. On the other hand, molecule B resides at approximately 0.13 Å higher
than molecule A. This results in the averaged adsorption height of 2.75 Å as observed
in the monolayer. As seen in Figure 7.7(a), the central aromatic ring of both molecules
resides just on top of a substrate atom. The smaller area of the unit cell results in shorter
O-H bonds between neighboring molecules. Because of the latter fact and a very similar
adsorption surface site, the carboxylic oxygens in the monolayer do not experience any
further distortion. As another result of the similar adsorption site, just one structurally
equivalent type of carboxylic oxygen with respect to the substrate can be found in the
structure, located at an average height of 2.70 Å. This carboxylic oxygen is labeled as
Ocarb #1 in Figure 7.7(a).
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FIGURE 7.6: Geometry of PTCDA adsorbed on Cu(111). The substrate corresponds to (a)
structure 1, (b) structure 2, and (c) structure 3 as explained in the text. All substrates were
generated with the PW91 lattice constant of Cu (3.638 Å). The equilibrium distances d
for each chemically inequivalent atom calculated with the PBE+vdWsurf method are dis-
played. Experimental results from NIXSW studies by Gerlach et al. [2007] are also shown
for comparison. The distinction between carbon atoms belonging to the perylene core
(Cperyl, black) and to the functional groups (Cfunct, dark gray) is also displayed. In a sim-
ilar fashion, oxygen atoms are shown in red for the case of the carboxylic oxygen (Ocarb)
and blue for the anhydride oxygen (Oanhyd). Images of the structures were produced
using the visualization software VESTA [Momma and Izumi, 2011].

Structures 2 and 3

Figure 7.8(a) and Figure 7.8(b) show the top view of structures 2 and 3 after relaxation re-
spectively. The main differences in both structures are the relative lateral position of the
molecules and the adsorption height of the carbon backbone. The central aromatic ring
of both molecules in structure 2 are located on top of copper atoms, while in structure
3, they are adsorbed on a threefold hollow surface site. Both structures present a sim-
ilar internal distortion. Three different carboxylic oxygen atoms, differing among each
other by at least 0.1 Å with respect to the adsorption height, can be found in each struc-
ture. They are labeled as Ocarb #1, #2, and #3 in Figure 7.8(a) and Figure 7.8(b). Structure
2 has four carboxylic oxygen atoms located at an adsorption height of 2.73 Å which re-
side on a bridge adsorption surface site. These are followed by two located at 2.50 Å and
two located at 2.24 Å, all four residing on a similar adsorption site. Structure 3 presents
three carboxylic oxygen atoms located at an adsorption height of 2.75 Å, followed by two
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FIGURE 7.7: (a) Top view of the relaxed structure of PTCDA adsorbed on Cu(111). The
substrate corresponding to structure 1 is shown. The substrate was generated with the
PW91 lattice constant of Cu (3.638 Å). Both inequivalent molecules in the monolayer are
labeled A and B. The distinction between chemically inequivalent atoms is displayed
[see also Figure 7.1(b)]. (b) Only one type of carboxylic oxygen atom, according to its
adsorption site (see text), is found in structure 1. It is labeled as Ocarb #1 (red) along with
its corresponding adsorption distance. Images of the structures were produced using
the visualization software VESTA [Momma and Izumi, 2011].

which are located at 2.66 Å and reside on a bridge adsorption surface site. The last three
are located at 2.29 Å from the surface and reside practically on top of a substrate atom.
Depending on the placement of each of the molecules, carboxylic oxygen atoms which
belong to the same molecule can reside in either top or bridge surface sites, giving rise
to structurally inequivalent carboxylic oxygens, fact which agrees with the low coherent
fraction observed in the NIXSW experiments by Gerlach et al. [2007] for the carboxylic
oxygen.

7.5.3 Adsorption energies

We investigated the stability of each structure by calculating the adsorption energy for
each case employing expressions (7.1) and (7.2) with Θ = 1 ml. The results are summa-
rized in Table 7.13, showing the contribution of vdW and chemical (PBE) interactions to
the adsorption energy after relaxation with PBE+vdWsurf. These results demonstrate that
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FIGURE 7.8: Top view of the relaxed structure of PTCDA adsorbed on Cu(111). The sub-
strate corresponds to (a) structure 2, and (b) structure 3 as explained in the text. All sub-
strates were generated with the PW91 lattice constant of Cu (3.638 Å). Both inequivalent
molecules in the monolayer are labeled A and B. The distinction between chemically
inequivalent atoms is displayed [see also Figure 7.1(b)]. (c) Three different carboxylic
oxygen atoms, differing in their adsorption site (see text), can be found in structures 2
and 3. They are labeled as Ocarb #1 (red), #2 (dark green), and #3 (light gray) and listed
along with their corresponding adsorption distances. Images of the structures were pro-
duced using the visualization software VESTA [Momma and Izumi, 2011].
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Table 7.12: Comparison of results after relaxing structure 1 of PTCDA on Cu(111) using
the PBE+vdWsurf method in which the structure of each inequivalent molecule (A and B,
see Figure 7.6) is shown. Experimental results are also shown for comparison [Gerlach
et al., 2007]. We use dTh/Exp to denote the averaged vertical adsorption heights of the
specific atoms obtained with PBE+vdWsurf calculations and NIXSW studies respectively.
The adsorption height is given in Å with respect to the unrelaxed topmost metal layer for
a direct comparison to NIXSW experiments. The specification of the atoms can be seen
in Figure 7.5. The carbon backbone distortion is given as ∆C = d(Cperyl)−d(Cfunc) and
the O difference as ∆O = d(Oanhyd)−d(Ocarb). Results for each of the molecules in the
unit cell corresponding to the structure 1 of PTCDA on Cu(111). Units are Å.

dTh dExp
Monolayer

Molecule
A B

C total 2.75 2.68 2.81 2.66 ± 0.02
Ocarb 2.70 2.73 2.67 2.73 ± 0.06

Oanhyd 2.86 2.87 2.85 2.89 ± 0.06
∆O 0.16 0.14 0.18 0.16 ± 0.08

Table 7.13: Adsorption energy of each investigated structure for PTCDA on Cu(111) cal-
culated with the PBE+vdWsurf method. The contributions coming from chemical (PBE)
and vdW interactions after relaxing the systems are also shown. E (ml)

ads is the adsorption

energy calculated with respect to the PTCDA monolayer and E (gas)
ads is the adsorption

energy calculated with respect to the molecule in gas phase [see expressions (7.1) and
(7.2)].

Structure
E (ml)

ads [eV]
E (gas)

ads [eV]
Total PBE vdW

1 −2.55 0.93 −3.47 −3.33
2 −2.48 0.94 −3.42 −3.12
3 −2.78 0.74 −3.52 −3.37

the vdW contribution is responsible for the stability of the systems since the energetic
contribution from PBE is repulsive regardless of the structure. Table 7.13 also shows that
structure 3 is the most favorable in accordance to the adsorption energy per molecule
E (ml)

ads with the monolayer as reference; while structures 1 and 2 are nearly degenerate.
Given all three structures, structure 3 presents the shortest adsorption distance of the
carbon backbone, which results in a larger vdW contribution to the adsorption energy.
However, Table 7.13 reveals that the vdW interaction energy is not the only factor deter-
mining the relative stability of structure 3, but also the smaller repulsive energy from its
PBE contribution.

An interesting fact is that structure 1 and structure 3 are nearly degenerate when the
molecule in the gas phase is the reference as the adsorption energy E (gas)

ads in the struc-
ture 1 is just 0.04 eV less stable than the adsorption energy in structure 3. The reason
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for this fact could be that the individual molecules are closer in structure 1 due to its
smaller surface unit cell; thus favoring the formation of the monolayer through stronger
intermolecular forces.

The fact that the formation of the monolayer from gas phase brings the adsorption
energy closer in the three cases and the structural differences observed in the structures
investigated are evidence that the influence of the lateral placement of the molecules
and its relation to the surface unit cell cannot be ignored. The structural and energetic
results also suggest that effects beyond the microscopic scale might be at play in the
monolayer formation of PTCDA on Cu(111), for example, the statistical average of or-
dered structures which have subtle structural differences.
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CHAPTER

8
Summary and outlook

8.1 Summary

We have presented a DFT-based method with the purpose of modeling screened vdW
interactions accurately for the adsorption of atoms and molecules on surfaces. This has
been accomplished via the development of the DFA+vdWsurf method by incorporating
the collective response of the substrate electrons in vdW-inclusive DFA for intermolecu-
lar interactions. The following conclusions can be drawn from our analysis after includ-
ing screened vdW interactions, within KS-DFT, in the determination of the structure and
stability of atoms and molecules on surfaces.

i. The noticeable improvement in the calculation of adsorption distances and ener-
gies with the DFA+vdWsurf method indicates the importance of including the col-
lective response of the substrate electrons in the calculation of vdW interactions
for adsorption systems. We have shown these effects in prototypical physisorption
systems such as the adsorption of a Xe monolayer on transition-metal surfaces;
and complex inorganic/organic interfaces such as those formed by the adsorption
of aromatic molecules on metal surfaces. In particular, we have emphasized the
importance of including screened vdW interactions in the determination of the
structure and stability of inorganic/organic interfaces.

ii. Based on our analysis of the structural and stability features of inorganic/organic
interfaces, the DFA+vdWsurf method has shown to be successful in dealing with a
wide range of interactions present at these interfaces, including chemical interac-
tions, electrostatic interactions, Pauli repulsion, and vdW interactions. Our anal-
ysis further shows that the method is also able to capture interface polarization
effects and to achieve surface-termination sensitivity as well.

iii. These results establish the DFA+vdWsurf method as a reasonable option for the
accurate treatment of realistic adsorption problems, with particular advantage in
the calculation of HIOS, due to its efficiency and affordability in terms of computa-
tional time. Furthermore, it can be, in principle, equally applied to any polarizable
solid with any surface structure.

From a general perspective, however, there are still many important aspects left to con-
sider in order to achieve both quantitative accuracy and predictive power in the simula-
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tion of the structure and stability of complex interfaces. Some of which we will address
briefly now.

8.2 Inclusion of many-body dispersion effects and full
treatment of the collective response of the system

The noticeable improvement in the calculation of adsorption distances and energies
with the DFA+vdWsurf method establishes the importance of including the non-local
many-body response of the substrate electrons for the calculation of vdW interactions,
in particular for inorganic/organic interfaces. In a more general perspective, however,
the full treatment of the collective response found in the combined system (adsor-
bate/substrate) would represent an essential step in the direction of improved accuracy
and increased reliability in computational studies of adsorption phenomena [Liu et al.,
2014]. High-level quantum-chemistry methods or many-body methods such as the RPA
for the correlation energy can be used for this purpose. Nevertheless, these approaches
either perform well for one of the two subsystems –the solid or the isolated adsorbate–
and not for the combined system, or their application to adsorption systems still awaits
increasing computer power and more efficient implementations in order to treat larger
super cells [Ren et al., 2012b].

An alternative in this regard is the recently developed method, termed as DFT+MBD
[Tkatchenko et al., 2012; Ambrosetti et al., 2014b], which consists of an efficient dipole
approximation to the RPA. The MBD method includes many-body effects in the long-
range correlation energy to all orders. Our current efforts are focused on including many-
body dispersion effects in the adsorption of molecules on surfaces with particular focus
on organic adsorbates on metal surfaces, systems in which many-body dispersion con-
tributions can play an essential role. In particular, we have studied the adsorption of
Xe and PTCDA on Ag(111) [Maurer et al., 2015] as well as the adsorption of PTCDA on
Au(111). These studies show that the inclusion of many-body effects in the vdW energy is
of great importance to achieve quantitative predictions regarding the stability and prop-
erties of HIOS. The inclusion of MBD effects reduces the overbinding typically found
in pairwise vdW-inclusive methods, yielding an improvement in the adsorption ener-
gies, geometries, and vibrational properties of molecules on surfaces. By using the MBD
method, we also capture anisotropic polarization effects and demonstrate strong non-
additive effects in the vdW energy of HIOS showing, for example, how these affect the
properties of atoms, molecules, and nanostructures adsorbed on metal surfaces.

The challenge that remains for any vdW-inclusive method to model HIOS consists
in including a simultaneous accurate description of localized and metallic states. The
quantum harmonic oscillators in the MBD calculation have a non zero excitation gap
and are initially localized. The coupling of the whole system however induces a delocal-
ization of the polarizability which is significantly closer to the correct metallic response
in comparison to a pairwise response. Furthermore, by using the screened vdW param-
eters generated for DFA+vdWsurf method, the initial response of the quantum harmonic
oscillators in the MBD can be parametrized in order to serve as a good starting point
to capture the response of the extended substrate [see Maurer et al., 2015]. Even if these
facts imply that the MBD method can capture many-body dispersion effects with reason-
able accuracy in metallic systems, the challenge still consists in extending the method to
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introduce both localized and delocalized oscillators for every atom. From this perspec-
tive, the question that remains is how to define the oscillators parameters directly from
the electron density and its gradient [DiStasio Jr. et al., 2014].

A potential approach to define certain regions in molecules and materials where the
characteristics of electrons could be close to those usually defined as free electrons in
solid-state physics is through the use of the electron localization functions, introduced
initially by Becke and Edgecombe [1990] in the context of quantum-chemistry methods,
and later by Savin et al. [1992] within KS-DFT. The electron localization function (ELF)
was introduced as a measure of the probability of finding an electron in the neighbor-
hood of another electron with the same spin. In this regard, the ELF is a tool created with
the intention to serve as a descriptor of the chemical bond. In the case of solids, similar
descriptors exist, known as localization and delocalization indices, with the intention of
partitioning the space into regions of either localized or mobile electrons [Ponec, 2005,
2011; Baranov and Kohout, 2011]. In particular, Ayers et al. [2002] have given an interest-
ing background to the original ELF in terms of the “thermodynamic” description of DFT.
In this interpretation, a concept of local temperature is introduced as a result of the vary-
ing electronic kinetic density within an inhomogeneous system. The temperature in this
interpretation measures the proximity of an electron pair. Therefore, a high local temper-
ature for a given density is associated with strong correlated electrons [Ayers et al., 2002].
These concepts seem attractive options to describe the localization and delocalization of
electrons in a material within KS-DFT. However, these descriptors generally depend on
the local kinetic energy density which cannot be uniquely defined. Furthermore, they
usually depend not only on the electron density and its gradient but also on its Lapla-
cian, which has no simple physical interpretation. Finally, it is clear that, even if there
seems to be a relation between them, there is no straightforward equivalence between
the concept of free electrons in solid-state physics and “localization” or “delocalization”
in electron localization functions. This is, nevertheless, an interesting research venue
that would also have potential applications beyond vdW interactions.

8.3 Treating realistic adsorption systems and the comparison
between theory and experiment

Along with our interest in adsorption phenomena from a basic science perspective, we
also aim to be able to describe and predict, from first principles, processes with tech-
nological relevance in which adsorption phenomena play an essential role (catalysis or
organic electronics, for example). For this purpose, it is obvious that beyond achieving
quantitative predictive level in model systems, we must also address realistic adsorption
systems as well as understand surface processes under realistic pressure and tempera-
ture conditions. Taking catalysis as an example, Sabbe et al. [2012] mention the proper
representation of the reactive surface and the treatment of coverage effects (at the elec-
tronic structure and mesoscopic level), among other aspects, as crucial. These include,
for example, adsorption occurring at multifaceted surfaces or at substrates with the pres-
ence of dopant atoms or defects. The addition of first-principles thermodynamic con-
siderations must also be taken into account as thermal effects can lead to restructured
surfaces, kinetic effects on adatoms, and vibrational effects on larger (and more flexible)
adsorbed molecules [Sabbe et al., 2012].
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It is also necessary to take into consideration that many experimental techniques to
identify the structure and the energetics of adsorption systems, such as those mentioned
in chapter 3, are based on probing the statistics of large adsorbed molecular ensembles,
situation which can lead to inconsistent comparisons between DFT and experimental re-
sults. Therefore, a correct interpretation of experiments is of vital importance. This takes
us full circle back to the introduction given to this dissertation in chapter 1, where we
mention how the emergence of novel single-molecule experiments, together with state-
of-the-art theoretical predictions, are part of the current context in adsorption studies
in which the goals are those of accuracy, further understanding, and consistent compar-
ison between theory and experiment [see also the discussion given by Liu et al., 2014].
Our work has contributed to get closer to these goals and our current efforts are focused
in the same direction.

Let us mention, for instance, that part of our ongoing research deals with the impor-
tance of coverage effects in adsorption systems as these reflect the complexity of compar-
ing theory and experiment in realistic adsorption systems. To this effect we are currently
extending our studies on the adsorption of a monolayer of PTCDA on Au(111). As we
have addressed in section 7.4, the energies calculated with the PBE+vdWsurf method in
this system reveal a dependence on the coverage of the monolayer independently of the
reference state. Its importance lies in the comparison between theory and experiment.
The TPD experiments for the adsorption of PTCDA on Au(111) have been performed
in the limit of low coverage, that is, the adsorption energy of a single PTCDA molecule
on Au(111). From this perspective, it is necessary to incorporate this fact in the atom-
istic adsorption model in order to make a consistent comparison between theory and
experiment. Some difficulties are associated to a situation such as this. For example,
the atomistic model of the adsorption system requires a larger unit cell, a surface slab
with more layers, leading to the possibility of simulations which can become computa-
tionally expensive even for a method with a relative good balance between accuracy and
efficiency such as DFT.

In relation to the study of molecular processes on imperfect surfaces, Camarillo-
Cisneros et al. [2015] have studied the adsorption, diffusion, and desorption of benzene
and naphthalene on a vicinal Cu(443) surface using the PBE+vdWsurf method, propos-
ing a three-step mechanism for the dynamics of these processes. In accordance to their
calculations, this mechanism consists in the migration of the molecules, upon strong ad-
sorption on step edges at low temperature, from the step to the (111) terraces, where they
can freely diffuse parallel to the step edge. The migration occurs at temperatures below
the onset of desorption. Their calculations also show that there is a stronger vdW attrac-
tion between the hydrocarbons and the step edges of the Cu(443) surface in compari-
son to the Cu(111) surface, fact that can explain an increase in the desorption tempera-
ture for the Cu(443) observed in experiments. With this, they propose a more complex
dynamical picture of the adsorption process in these systems than the one suggested
from TPD experiments. From this perspective, the authors emphasize the need of time-
resolved experiments to fully understand molecular adsorption on realistic surfaces at
finite temperatures.

These examples show that a consistent comparison and feedback between theory
and experiment are powerful tools, with the potential of leading joint efforts between
theory and experiment, to achieve a deeper understanding of realistic adsorption pro-
cesses with relevance in both fundamental science and technology.
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8.4 Additional remarks concerning electronic-structure theory

Another potential challenge for an accurate description of HIOS is the self-interaction
error present in semi-local xc functionals. This can lead to an inaccurate description of
charge transfer and electronic level alignment between the adsorbate and the substrate
[Liu et al., 2014]. This issue can be solved by adding a fraction of exact exchange as
done in hybrid functionals or, in a more general way, by employing orbital-dependent xc
functionals [Kümmel and Kronik, 2006]. However, these approaches are still not general
and many of them increase computational cost that can become prohibitive for larger
systems. The issue at hand is that the screening properties of molecules and solids are
rather different and characterized by distinct parameter ranges, leading to the need of a
reliable description of the electronic structure not only of the substrate or the adsorbate
but also of their coupling [Liu et al., 2014].

An interesting research venue that is just starting to attract attention is the influ-
ence of vdW interactions on the electronic properties of molecules and extended sys-
tems. Due to the fact that the vdW energy typically represents only a tiny fraction of
the total energy of a system [approximately 0.001% of the total energy, see Ferri et al.,
2015], the most widely used vdW-inclusive methods in KS-DFT approximate the vdW
energy as a perturbation to the total energy which is only added a posteriori. That is,
after a self-consistent solution of the KS equations has been found and the electronic
density n(r ) is known, which is the case of the DFA+vdW and the DFA+vdWsurf meth-
ods. Ferri et al. [2015] have recently reported a fully self-consistent implementation of
the TS DFA+vdW method [Tkatchenko and Scheffler, 2009] which is achieved by adding
the contribution of the electronic vdW potential to the xc potential to form the effective
potential in the KS equations. This implementation is consequently also valid for the
DFA+vdWsurf method. The most interesting finding of Ferri et al. [2015], in our context,
is that vdW interactions induce complex and sizable electronic charge redistributions at
organic/metal interfaces and in the vicinity of metallic surfaces. These findings affect
surface dipoles and work functions for inorganic substrates as well as charge transfer in
HIOS [Ferri et al., 2015], opening new interesting research venues in the context of HIOS.

In summary, we have contributed in this dissertation to the development of meth-
ods that are able to give a balanced description of adsorption structure and stability,
while treating realistic adsorption systems. The development of such methods is still
experiencing its early phases, but we expect that the inclusion of all relevant collective
many-body effects should take surface science in general, and modeling of HIOS in par-
ticular, to an unprecedented level of accuracy, enabling us to achieve a truly predictive
power in the simulation of the structure and stability of complex interfaces.
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