Space Charge Transfer in Hybrid Inorganic/Organic Systems

Yong Xu¹,* Oliver T. Hofmann¹, Raphael Schlesinger², Stefanie Winkler³, Johannes Frisch², Jens Niederhausen², Antje Vollmer³, Sylke Blumstengel², Fritz Henneberger², Norbert Koch^{2,3}, Patrick Rinke¹, and Matthias Scheffler¹

¹ Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany

² Humboldt-Universität zu Berlin, Institut für Physik, 12489 Berlin, Germany

³ Helmholtz-Zentrum Berlin für Materialien und Energie GmbH-BESSY II, 12489 Berlin, Germany

The adsorption energy $(\Delta E_q^{\rm ads})$ of an adsorbate that receives q electrons from the electron reservoir with an electron chemical potential $\epsilon_{\rm F}$ can be written as

$$\Delta E_q^{\rm ads}(\epsilon_{\rm F}) = -E_q^{\rm surf/mol} + E_0^{\rm surf} + E_0^{\rm mol} + q\epsilon_{\rm F} + \Delta E^{\rm SC}.$$
(1)

 $E_q^{
m surf/mol}$ is the total energy of the adsorbate system computed in a supercell with q excess electrons. $E_0^{
m surf}$ and $E_0^{
m mol}$ are the total energies of the neutral bare substrate and the neutral molecule. This definition is similar to that used in calculations of defects in the bulk or at interfaces [1–3], but differs in the additional term $\Delta E^{
m SC}$ that represents the energy correction for describing the space-charge layer.

For the bare substrate, $E_0^{\rm surf}$ is related to $E_q^{\rm surf}$ (the total energy in the charged state) by the definition of the Fermi level $\epsilon_{\rm F}^{\rm surf}(q)=dE_q^{\rm surf}/dq$. We thus have

$$E_q^{\text{surf}} - E_0^{\text{surf}} - q\epsilon_F = \int_0^q dq' [\epsilon_F^{\text{surf}}(q') - \epsilon_F] = q\delta - q\Delta\epsilon_F,$$
(2)

where $\epsilon_{\rm F}$ can be referenced to energy levels of the bare substrate, for instance, the conduction band minimum $\epsilon_{\rm CBm}$ for electrons and the valence band maximum $\epsilon_{\rm VBM}$ for holes.

For electrons,

$$\Delta \epsilon_{\rm F} = \epsilon_{\rm F} - \epsilon_{\rm CBm},\tag{3}$$

and we obtain

$$\delta = \frac{\int_0^{\epsilon_F^{\text{surf}}(q) - \epsilon_{\text{CBm}}} ED(E) dE}{\int_0^{\epsilon_F^{\text{surf}}(q) - \epsilon_{\text{CBm}}} D(E) dE},$$
(4)

where D(E) is the density of states (DOS) of the bare substrate.

For holes,

$$\Delta \epsilon_{\rm F} = \epsilon_{\rm F} - \epsilon_{\rm VBM},\tag{5}$$

and we obtain analogously

$$\delta = \frac{\int_0^{\epsilon_F^{\text{surf}}(q) - \epsilon_{\text{VBM}}} ED(E) dE}{\int_0^{\epsilon_F^{\text{surf}}(q) - \epsilon_{\text{VBM}}} D(E) dE}.$$
 (6)

In the limit of small q, δ becomes zero. Combining Eq. (1) and Eq. (2), the adsorption energy becomes

$$\Delta E_q^{\rm ads}(\epsilon_{\rm F}) = (-E_q^{\rm surf/mol} + E_q^{\rm surf} + E_0^{\rm mol}) + (q\Delta\epsilon_{\rm F} - q\delta) + \Delta E^{\rm SC}.$$
(7)

Fermi level as a function of dopant concentration

The Fermi level position $\Delta \epsilon_{\rm F} = \epsilon_{\rm F} - \epsilon_{\rm CBm}$ of *n*-type semiconductors (ZnO here) is related by the bulk dopant concentration $N_{\rm D}$ by the relation [4]:

$$\frac{N_{\rm D}}{1 + 2\exp(\frac{\Delta\epsilon_{\rm F}}{k_{\rm B}T})\exp(\frac{E_{\rm d}}{k_{\rm B}T})} = N_{\rm C}\frac{2}{\sqrt{\pi}}F_{1/2}(\frac{\Delta\epsilon_{\rm F}}{k_{\rm B}T}).$$
(8)

 $E_{\rm d}$ is the donor binding energy and $N_{\rm C}$ the effective density of states in the conduction band, which is given by

$$N_{\rm C} = 2\left(\frac{2\pi m^* k_{\rm B} T}{h^2}\right)^{\frac{3}{2}}.$$
 (9)

Here m^* is the density of state effective mass for electrons, $k_{\rm B}$ the Boltzmann constant, T the temperature and h the Planck constant. $F_{1/2}$ is a function defined as

$$F_{1/2}(\eta_{\rm F}) = \int_{0}^{\infty} \frac{\eta^{1/2} d\eta}{1 + \exp(\eta - \eta_{\rm F})}.$$
 (10)

For ZnO we used the following parameters: $E_{\rm d}=30$ meV [5], $m^*=0.27~m_e~(m_e)$: mass of free electron) [4], $T=300~{\rm K}$.

^{*} yongxu@fhi-berlin.mpg.de

C. Weinert and M. Scheffler, Mat. Sci. Forum 10-12, 25 (1986)

^[2] M. Scheffler and J. Dabrowski, Phil. Mag. A 58, 107 (1988)

^[3] U. Scherz and M. Scheffler, in *Imperfections in III/V Materials*, Semiconductors and Semimetals, Vol. 38, edited by E. R. Weber (Academic, New York, 1993) p. 1

^[4] S. Sze and K. Ng, Physics of semiconductor devices (Wiley-interscience, 2006)

^[5] B. Meyer, J. Sann, D. Hofmann, C. Neumann, and A. Zeuner, Semicond. Sci. Technol. 20, S62 (2005)