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In this document we provide brief descriptions of the ice structures and details

of the simulations with DFT, vdW corrected DFT, and DMC. Details of additional

calculations done to ensure the accuracy of the results in the main manuscript are

reported. We also report results illustrating the sensitivity of the lattice energies

of certain ice phases to the percentage of Hartree-Fock exchange used in the hybrid

DFT calculations.
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A. Calculations with Density-Functional Theory and van der Waals Correction

1. Polarizability of Isolated Water

The polarizabilities and dipole moments of an isolated water molecule are calculated with

the all-electron FHI-aims code [1]. This code uses numeric atom-centered orbitals (NAO) as

a basis set and in the polarizability and dipole moment calculations a so-called tier3 basis

set was used for H and a so-called tier4 basis set was used for O. A comparison with DFT,

CCSD, and experimental polarizabilities is shown in Table S1.

2. Ice Structures, K points, Codes, Basis Sets Used for Periodic Calculations

The primary structures of all the proton ordered phases of ice are obtained from various

scattering experiments [2–7]. Brief descriptions of the unit cells are given in Table S2 and

Fig. S1. The structure of proton disordered ice Ih is modelled with the 12 water unit

cell proposed by Hamann [8]. This model provides sufficiently accurate bulk properties

(lattice energy, volume, and bulk modulus) when compared to those obtained with a much

larger unit cell with 96 water molecules (taken from Ref. [9]). Specifically, the lattice

energies obtained from 12 and 96 water molecule unit cells are within 1 meV/H2O and the

equilibrium volumes differ only by <0.01 Å3/H2O with PBE. For all unit cells the spacing

in the k point grid in each direction of reciprocal space is within 0.05 Å−1 to 0.08 Å−1. Such

spacing is sufficient for GGA PBE calculations to ensure fully converged results for each of

the ice phases considered. For the hybrid functional (PBE0) calculations a much finer k

point mesh is required. Fig. S2 shows the convergence of the PBE0 lattice energies with

respect to the number of k points for all the ice phases. These tests show that doubling the

number of k points used in the PBE0 calculations compared to what was used for PBE is

sufficient to provide total energies converged to within <1 meV/H2O.

Calculations with PBE, and the PBE0+vdWTS scheme were performed with the all elec-

tron localized basis code FHI-aims [1]. Sufficiently large basis sets (tier2 for H and tier3 for

O) were employed to calculate total energies and to optimize structures. Hybrid xc PBE0

calculations were performed with the VASP 5.2 code [10, 11]. The hardest projector aug-

mented wave (PAW) potential together with a 1000 eV energy cut off was employed. With

VASP the energy of the water monomer was calculated within a 20 Åcubic cell, which is
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sufficiently large to obtain an accurate energy for an “isolated” water monomer. We have

ensured that the results obtained from FHI-aims and VASP are in satisfactory agreement.

A comparison is shown in Fig. S3.

3. Obtaining Equilibrium Lattice Energies and Volumes

In order to obtain theoretical equilibrium lattice energies (U0) and volumes (V0) lattice

parameters were varied isotropically in the range of ±6%. This means that the ratios among

the lattice parameters are kept fixed to the experimental value. This approximation is rea-

sonable since it has been shown before for ice Ih that the equilibrium c/a ratio is very similar

(within ∼0.4%) to the experimental value when calculated with various xc functionals [12].

Also a thorough test was performed here on ice VIII by varying the c/a ratio. This shows

an insignificant change of <0.5 meV/H2O in the U0 and <0.02 Å3/H2O in the V0 when com-

pared to the results obtained by fixing the c/a ratio at the experimental value. In each unit

cell the atoms are fully relaxed with all of the xc functionals (except PBE0+vdWTS) with-

out any symmetry constraints until all forces are less than 0.01 eV/Å. The energy-volume

curves of each ice phase with PBE0+vdWTS were produced by performing single point en-

ergy calculations on the PBE0 optimized geometries at different volumes. The resultant

energy-volume curves are fitted to the Murnaghan equation of state to obtain equilibrium

volumes and lattice energies at zero pressure [13]. Note that the effect of variations of the

lattice constants on the lattice energies are small. For example, with the PBE0+vdW(TS)

approach at the DMC volumes the lattice energies are -667, -664, and -595 meV/water for ice

Ih, II, and VIII, respectively. The corresponding values at the equilibrium PBE0+vdW(TS)

lattice constants given in Table I of the main manuscript are -672, -666, -596 meV/water

for ice Ih, II, VIII, respectively.

4. Sensitivity of Lattice Energies to Hartree-Fock Exchange

As mentioned in the main manuscript the lattice energies are sensitive to the percentage of

Hartree-Fock exchange (HFx) used in the hybrid functional DFT calculations. We performed

these calculations with varying percentages of HFx because it is not obvious what the most

appropriate percentage of HFx should be for a solid such as ice. Fig. S4 shows the variation
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in the lattice energies with increasing percentage of HFx within the PBE0 form. The most

evident trend is that the lattice energies decrease with increasing percentage of HFx. Note

that this trend affects more to the stronger H bonded phases like ice Ih than it does the

weaker H bonded phases like ice VIII. So compared to ice Ih the relative stabilities of the

high pressure phases increase with the increasing percentage of HFx. However, the errors in

the relative stabilities of the low and high pressure phases remain, and are still large even

with 75% HFx.

5. Zero Point Energy

In order to estimate the role of zero point energies (ZPE) on the relative stabilities of the

various phases we calculated ZPEs within the harmonic approximation. The finite displace-

ment method is employed by displacing each atom ±0.005 Å in all 3 spatial dimensions and

then the ZPE is calculated by summing over all the phonon frequencies. In Fig. S5 we re-

port the change in the ZPE in the various ice crystals compared to that in an isolated water

monomer. It can be seen that in every phase considered there is about 115-125 meV/ H2O

more ZPE than in a gas phase water molecule and that overall ZPE has a minor influence

on the relative stability of the various phases. The ZPEs reported here have been obtained

with PBE using VASP 5.2 and with a 1000 eV energy cut off.

6. van der Waals Correction

vdW interactions are taken into account by the scheme of Tkatchenko and Scheffler (TS)

[14]. The TS scheme is a modified version of the nowadays widely used DFT-D approach

[15–18], where a pair-wise C6/R
6 type vdW interaction with a suitable damping function is

added explicitly to the DFT total energies. In this scheme the vdW interaction between a

group of atoms (EvdW ) is given by,

EvdW =
∑
ij

C6ij

R6
ij

fdamp(Rij, R
0
ij); fdamp(Rij, R

0
ij) =

1

1 + exp[−d(
Rij

SrR0
ij
− 1)]

, (1)

where C6ij are the C6 coefficients corresponding to atom pair i j, Rij is the distance between

the atoms, fdamp is the damping function, R0
ij is the sum of vdW radii of the atoms, d and

Sr are two parameters among which d can be fixed to a suitable value (here d=20). As
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reported in Ref. [14] Sr parameters are chosen to be 0.94 and 0.96 for PBE and PBE0,

respectively. The major improvement in the TS scheme comes from the fact that C6ij and

R0
ij coefficients can be derived from DFT electron density and allows subtle variation in the

coefficients depending on the molecular environment without empirical fitting. For all the

ice phases vdW interaction is added at least up to 40 Å.

B. Diffusion Quantum Monte Carlo Calculations

We have performed diffusion Monte Carlo (DMC) calculations on three phases of Ice:

VIII, II and the ambient pressure phase Ih. We used the CASINO code [19] within the

fixed node pseudopotential approximation and B-spline basis sets [20]. We have used Dirac-

Fock pseudopotentials [21]. The oxygen has a frozen He core with a radius of 0.4 Å and the

hydrogen pseudopotential a core radius of 0.26 Å. The trial wavefunctions were of the Slater-

Jastrow type, with a single Slater determinant. The single particle orbitals were obtained

from DFT-LDA plane-wave calculations usig the pwscf package [22], using a plane-wave

cutoff of 300 Ry, and were re-expanded in B-splines [20].

Initial time step tests were performed on the ice VIII and the ice II structures near their

equilibrium volumes, using the primitive cells in both cases. We have performed tests using

both the locality approximation [23] and the recent “t-move” scheme of Casula [24]. The t-

move scheme gives an upper bound for the exact DMC energy, in the limit of zero time step.

The locality approximation is non variational, and therefore can have errors either side of

the true energy. These errors are due, in both cases, to the use of non-local pseudopotentials

in combination with imperfect trial wavefunctions. The results of the tests are displayed in

Fig. S6 (top pannel).

The DMC energies evaluated with the t-move scheme are almost linear in the time step,

and they can be easily extrapolated to zero time step. In the case of the locality approxima-

tion the behavior of the DMC energy is not linear and it is more difficult to extract the zero

time step limit. However, it is clear that with a time step of 0.002 a.u. the energies of both

the II and the VIII phases appear to be converged to within ∼5 meV/H2O. Note, however,

that with the same time step of 0.002 a.u. the error in the DMC energies evaluated using the

t-move scheme is much larger, and significantly different in the VIII and the II structures.

This means that if we wanted to use this scheme we would not be able to rely on cancellation
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of errors between the two structures, and we would either have to use a much shorter time

step, or perform calculations at a number of different time steps and extrapolate to zero.

The other thing to notice about the two schemes is that they converge to different energies,

meaning that the t-move and locality errors are fairly large. However, the energy differences

between the VIII and the II structures are 17 ± 5 meV/H2O and 25 ± 5 meV/H2O with

the two schemes respectively, which indicates that the errors due to the use of a non-local

pseudopotential do cancel between the two structures. Because of the weaker time step

dependence of the DMC energy, we decided to use the locality approximation, and a time

step of 0.002 a.u.

The DMC calculations were performed on supercells of dimensions 1×1×1, 2×2×2 and

3×3×2 for the VIII structure, using the zone boundary k-point (0.5,0.5,0.5), and 1×1×1

and 2×2×2 for the ice II structure, using the Γ point. For the latter we have also performed

one calculation with the zone boundary k-point (0.5,0.5,0.5). We have employed the Model

Periodic Coulomb (MPC) technique to treat the electron-electron interactions, which helps

to significantly reduce DMC size errors [25]. The calculations show that using 2×2×2

supercells in both cases is enough to obtain energies converged to better than 5 meV/H2O.

In the case of ice II structure, the statement of convergence of the 2×2×2 supercell relies

on a comparison of the energies obtained with the Γ point and the (0.5,0.5,0.5) point. For

the ice Ih structure we only performed calculations using a 2×2×2 supercell. The results

for the three ice structures, VIII, II and Ih, are displayed in Fig. S6 (bottom pannel), with

the energy zero set to the energy of the isolated water molecule. Structural parameters

were obtained by fitting the results to a Birch-Murnaghan equation of state. The results are

reported in Table S3.
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[23] L. Mitáš et al., J. Chem. Phys. 95, 3467 (1991).

[24] M. Casula, Phys. Rev. B 74, 161102 (2006).

[25] L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996).

[26] J. R. Hammond et al., J. Chem. Phys. 131, 214103 (2009).

[27] G. D. Zeiss and W. J. Meath, Mol. Phys. 30, 161 (1975).

[28] S. A. Clough et al., J. Chem. Phys. 59, 2254 (1973).

[29] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[30] E. Whalley, J. Chem. Phys. 81, 4087 (1984).
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FIG. S1. Unit cells of the ice phases studied are shown here. Brief descriptions are given in Table

S2. The red spheres are oxygen atoms and the white spheres are hydrogen atoms.

TABLE S1. Isotropic polarizability (a.u.), anisotropic polarizability (a.u.), and dipole moment

(Debye) of an isolated water molecule with different methods. CCSD and CCSDT polarizabil-

ities are taken from Ref. [26], the experimental polarizability is taken from Ref. [27], and the

experimental dipole moment is taken from Ref. [28].

PBE PBE0 CCSD CCSDT Expt.

Isotropic Polarizability 10.66 9.69 9.54 9.55 9.63

Anisotropic Polarizability 0.23 0.50 0.59

Dipole Moment 1.80 1.85 1.86 1.855
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FIG. S3. Comparison of the results obtained from the all electron code FHI-aims and the PAW
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(B0) of all ice phases studied here (calculated with PBE). For all the phases studied here the mean
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TABLE S2. For the structures of all ice phases studied here the references (Ref.), the type of

Bravais lattice, the symmetry space group, lattice parameters (in Å and degrees), number of water

molecules in the unit cells (NH2O), and the number of k points used for the simulations (for the

PBE and PBE0 functionals) are given here. Gamma centred k points were used only for PBE0

calculations of Ih-12 and for the others a Monkhorst-Pack [29] mesh of k points was employed.

Ice Ref. Bravais Lattice Space Group Lattice Parameters NH2O k points

PBE PBE0

Ih-12 [8] Hexagonal P63cm a=b=7.78, c=7.33, γ=60 12 2×2×2 4×4×4

Ih-96 [9] Hexagonal a=13.26, b=15.31, c=14.43 96 1×1×1 2×2×2

IX [3] Tetragonal P41212 a=b=6.69, c=6.71 12 2×2×2 4×4×4

II [4] Trigonal R3̄ a=b=c=7.71, α=113.1 12 2×2×2 4×4×4

XIII [5] Monoclinic P21/a a=9.24, b=7.47, c=10.29, 28 2×2×2 4×4×4

β=109.1

XIV [5] Orthorombic P212121 a=8.35, b=8.13, c=4.08 12 2×2×4 4×4×8

XV [6] Triclinic P 1̄ a=6.23, b=6.24, c=5.79, 10 3×3×3 5×5×5

α=90.1, β=γ=89.9

VIII [7] Tetragonal I41/amd a=b=4.65, c=6.77 8 3×3×2 6×6×4
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TABLE S3. DMC equilibrium volumes (V0), bulk moduli (B0), and lattice energies (U0) of the ice

VIII, II, and Ih phases. Calculated DMC properties are reported at 0 K without ZPE corrections.

Experimental values at or near 0 K are given for comparison. Note that in the experimental lattice

energy ZPE contributions have been removed.

Ice Supercell V0 (Å3/H2O) B0 (GPa) U0 (meV/H2O)

DMC

VIII 1×1×1 20.43±0.04 34.8±0.2 -556±10

VIII 2×2×2 19.55±0.05 17.6±0.2 -570±5

VIII 3×3×2 19.46±0.02 23.8±0.5 -575±5

Expt. VIII 20.09a -577a

DMC
II 1×1×1 25.3±0.3 22.2±0.6 -585±5

II 2×2×2 24.7±0.2 20.1±0.4 -609±5

Expt. II 24.97a 12.1c -609a

DMC Ih 2×2×2 31.69±0.01 18.3±0.1 -605±5

Expt. Ih 32.05b 9.5d -610a

aRef. [30]; bRef. [31]; cRef. [32]; dRef. [33]


