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ABSTRACT

Peptides and proteins fulfil crucial tasks enabling and maintaining life. Their function is
directly correlated with their three-dimensional structure, which is in turn determined by their
chemical composition, the amino-acid sequence. Predicting the structure of a peptide based only
on its sequence information is of fundamental interest. A fully first-principles treatment free of
empirical parameters would be ideal. However, this presents an ongoing challenge, due to the
large system size and conformational space of most peptides.

In the present work, we address this challenge concentrating on the example of polyalanine-
based peptides in the gas phase. Such studies under isolated conditions follow a bottom-up
approach that allows one to investigate the intramolecular interactions important for secondary
structure separate from environmental effects. Furthermore, direct benchmarks of theoretical
structure predictions against experiment are facilitated.

The peptide series Ac-Ala,,-Lys(H"), (n = 6), forms a-helices in the gas phase due to a
favorable interaction of the helix dipole with the positive charge at the C-terminal lysine residue.
Using this design principle as a template, we explore the impact of increased structural flexibility
on the conformational space due to (i) sequence length [Ac-Ala,,-Lys(H*), n = 19], (ii) charge
placement [Ac-Ala;o-Lys(H™) versus Ac-Lys(H™)-Ala;g], and (iii) backbone elongation of the
monomer units as represented by -amino acids [Ac-3?hAlag-Lys(H™)]. To address the large
conformational space, we develop a three-step structure-search strategy employing an unprece-
dented first-principles screening effort. After pre-sampling of the conformational space using a
force field, thousands of structures are optimized employing density-functional theory (DFT).
For this, the PBE functional is used, coupled with a pairwise correction for van der Waals inter-
actions. For the best few structure candidates, ab initio replica-exchange molecular-dynamics
simulations are performed in order to refine the local structural environment. It is shown
that these can yield lower-energy conformations and lead to rearrangements of the hydrogen-
bonding network. In order to connect to experiment, collision cross sections are calculated that
link to ion mobility-mass spectrometry. Furthermore, infrared spectra are derived from ab initio
Born-Oppenheimer molecular-dynamics simulations accounting for anharmonicities within the
classical-nuclei approximation.

As expected, the 20-residue peptide Ac-Ala;o-Lys(H™) forms helical structures. In contrast,
placing the charge at the N-terminus [Ac-Lys(H™)-Alajo], leads to several different compact
structures, which are close in energy. Such small energy differences present a challenge to the
theoretical approach. Incorporating exact exchange and many-body van der Waals effects pre-
dicts the presence of only one dominant conformer, which is compatible with both experimental
datasets.

In comparison to Ac-Alag-Lys(H"), the S-peptide Ac-5%hAlag-Lys(H™) exhibits increased
conformational flexibility due to an extended monomer backbone. Out of the almost 15,000
structures optimized with DFT, no helical conformers are found in the low-energy regime. This
is changed when considering vibrational free energy (300 K, harmonic approximation), which
strongly favors helical conformations due to softer vibrational modes. One possible structure
candidate is the H16-helix, which is compatible with both experiments. It is a unique structure
as it exhibits a hydrogen-bonding pattern equivalent to the a-helix of natural peptides.

The systems considered here highlight the advances of current DFT functionals to address
the large conformational space of peptides, but also the need for further development.






ZUSAMMENFASSUNG

Proteine und Peptide erfiillen wichtige Aufgaben im Stoffwechsel lebender Zellen. Ihre Funktion ist
direkt an ihre dreidimensionale Struktur gekoppelt, die wiederum von der chemischen Zusammen-
setzung (der Aminosduresequenz) bestimmt wird. Die Vorhersage der Struktur eines Peptides mittels
allein dieser Information ist von fundamentalem Interesse. Ideal wire eine Beschreibung nur basierend
auf “ersten Prinzipien” und damit frei von empirischen Parametern. Allerdings stellt dies aufgrund
der grofien Konformationsraume und Systemgrsfien der meisten Peptide eine schwierige Aufgabe dar.

In der vorliegenden Arbeit wird dieses Problem am Beispiel Polyalanin-basierter Peptide in der Gas-
phase angegangen. Derartige Studien unter isolierten Bedingungen ermdglichen es, die intramoleku-
laren Wechselwirkungen, die kritisch fiir die Sekundéarstruktur sind, getrennt von Einfliissen der
Umgebung zu untersuchen und damit von Grund auf zu verstehen. Weiterhin werden direkte Ver-
gleiche von theoretischen Strukturvorhersagen mit experimentellen Ergebnissen ermoglicht.

Aufgrund einer gilinstigen elektrostatischen Wechselwirkung des Helixdipols mit der positiven
Ladung am C-terminalen Lysinrest bildet die Peptidserie Ac-Ala,-Lys(H"), (n 2 6), a-Helizes in
der Gasphase. Ausgehend von diesem Designprinzip wird der Einfluss erhohter struktureller Flexi-
bilitit auf den Konformationsraum aufgrund von (i) Sequenzlinge [Ac-Ala,-Lys(H'), n = 19], (ii)
Ladungsposition [Ac-Alajo-Lys(H™) versus Ac-Lys(H™)-Ala19] und (iii) Riickgratverldngerung der
Monomereinheiten [3-Aminosduren, Ac-3?hAlag-Lys(H™)] untersucht. Fiir die Konformationssuche
wird eine dreistufige Strategie entwickelt, die auf ersten Prinzipien beruht und von ernormem Umfang
ist. Anschlieffend an eine Struktursuche mit einem Kraftfeld werden Tausende von Strukturen auf
Basis von Dichtefunktionaltheorie (DFT) optimiert. Hierfiir wird das durch eine paarweise van der
Waals-Korrektur erweiterte PBE Funktional benutzt. Um die Strukturvorhersage zu verfeinern, werden
fur die niedrigst-energetischen Strukturen anschliefSend ab initio replica-exchange Molekulardynamik-
Simulationen durchgefiihrt. Es wird gezeigt, dass hierdurch das Wasserstoffbriickennetzwerk verdandert
werden kann und Strukturen mit niedrigerer Energie gefunden werden konnen. Die gewonnenen
Ergebnisse konnen iiber Kollisions-Wirkungsquerschnitte direkt mit experimentellen Ionenmobilitéts-
daten verglichen werden. Weiterhin werden Infrarot-Spektren aus ab initio Born-Oppenheimer Mole-
kulardynamik-Simulationen berechnet. Hierdurch werden anharmonische Effekte in der Naherung
klassischer Atomkerne berticksichtigt.

Wie erwartet bildet das Peptid Ac-Ala;o-Lys(H™) mit 20 Aminosdureresten a-Helizes. Im Gegensatz
dazu fiihrt die Positionierung der Ladung am N-Terminus [Ac-Lys(H*)-Ala 9] zu einer Vielzahl
verschiedener kompakter Strukturtypen, die alle in einem sehr engen Energiebereich liegen. Derartig
kleine Energiedifferenzen stellen eine Herausforderung fiir die theoretische Methode dar. Nur unter
Berticksichtigung von exact exchange und einem Vielteilchenansatz fiir die van der Waals-Korrektur
wird die Existenz einer einzigen Struktur vorhergesagt, die mit beiden experimentellen Datensétzen
kompatibel ist.

Die Verlangerung des Monomerriickgrats vergrofiert den Konformationsraum des 3-Peptids Ac-
B%hAlag-Lys(HT) im Vergleich zu Ac-Alag-Lys(H™). Unter den 15.000 DFT-optimierten Strukturen
werden im niederenergetischen Bereich keine helikalen Konformere gefunden. Dies andert sich bei
Berticksichtigung freier vibronischer Energie (300 K, harmonische Nédherung), da hierdurch Helizes
aufgrund von weicheren Vibrationsmoden stark stabilisiert werden. Ein moglicher Strukturkandidat
ist die H16-Helix, die mit den Ergebnissen beider Experimente kompatibel ist. Es ist hervorzuheben,
dass diese Struktur dasselbe Wasserstoffbriickennetzwerk aufweist wie die a-Helix in nattirlichen
Peptiden.

Die hier betrachteten Systeme stellen zum einen die Fortschritte aktueller DFT Funktionale fiir
die Beschreibung des Konformationsraums von Peptiden heraus, heben zum anderen aber auch die

Notwendigkeit weiterer Entwicklungsarbeit hervor.
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1 INTRODUCTION

Proteins are biomolecules that play a key role in virtually all biochemical processes in the cells
of living organisms. They are the molecular machines that carry out the versatile and essential
tasks encoded in genes: As enzymes they catalyze biochemical reactions and as ion pumps they
govern the transport of ions through membranes. They are involved in signaling processes,
e.g., as receptor proteins on the outside of cell membranes or as antibodies of the immune
system recognizing and tagging foreign targets for destruction. Apart from that, they transport
molecules within a cell or through the body to the places where they are actually needed and
also have structural functions, e.g., in the cytoskeleton, the scaffold of the cell. The reason why
proteins can carry out these vast and versatile amounts of tasks stems from their ability to adopt
well-defined, specific shapes, where the functional groups are arranged in such a way that they
can selectively interact with other molecules. Understanding the mechanisms behind this and
the physical code that links the chemical formula of a protein to its actual function is an active
field of research[1-3], equally challenging to biologists, chemists, and physicists.

The molecular building blocks of proteins are the amino acids, each containing an amino
and a carboxy group (see Fig. 1.1a). They enclose a carbon atom that is linked to a side chain
specific to each of the 20 natural amino acids. When the amino and the carboxy group of two
amino acids react with each other, a peptide bond is formed. The linear polymers arising by the
linkage of amino-acid residues via such peptide bonds are called (poly)peptides or proteins (see
Fig. 1.1b). The continuous sequence of covalently bound atoms is referred to as the backbone of
the protein, where the sequence of amino acids is known as the primary structure.

In his landmark experiments in the early 1960s, Anfinsen[4, 5] found that folding, the process
that takes the protein from the denatured to its three-dimensional, functional shape, is reversible.
On these grounds, he formulated his thermodynamic hypothesis[5, 6] that the three-dimensional
native structure of a protein is the state where the system’s free energy has its global minimum

(a) a-amino acid (b) a-peptide
J?f @
H
R O R

Figure 1.1: A schematic representation of (a) a natural a-amino acid with side chain R and (b) a peptide
with two amino-acid residues linked by a peptide bond. The color coding (nitrogen: blue, hydrogen: white,
carbon: cyan, oxygen: red) will be used throughout this thesis.

Peptide bond
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Figure 1.2: Schematic examples of the (free) energy landscape of (a) a structure seeker, (b) a glass former,
and (c) a conformational ensemble.

and thus, is determined by its amino-acid sequence in a given environment. This structure
should be unique, stable (against small changes of the environment), and accessible within
biological time scales. Today it is accepted that folding is guided by a funnel-shaped (free)
energy landscape, with the process of protein structure formation governed by the free-energy
gradient[7]. The case of a structure seeker, with only one steep folding funnel pointing to one
ordered native state, is but one limiting case[8] of possible free-energy landscapes (see Fig.
1.2 a). The other extreme would be a sawtooth-shaped landscape with many local minima
that are similar in energy, yielding an unstructured glass former[8] (Fig. 1.2 b), depending
on the temperature and the barrier heights separating the local minima. Another scenario is
the conformational ensemble (Fig. 1.2 c) with a relatively flat free-energy surface exhibiting
several low-energy conformers separated by barriers that are distinct but not insurmountable.
Conformers that are higher in energy than the lowest-energy state, but that are still thermally
accessible, may be of importance in the context of molecular recognition[9].

Experiments observing protein folding suffer from the problem that high structural resolution
is very difficult to obtain together with sufficient temporal resolution. However, folding simula-
tions based on molecular dynamics (MD) provide high-resolution temporal and structural data
of the evolved trajectories[1]. On the other hand, reliable folding simulations have to deal with
three basic challenges: sufficient sampling of the conformational space, a high-accuracy descrip-
tion of the potential-energy surface (PES) and robust data analysis[3]. While average folding
times lie in the range of milliseconds,' to obtain accurate trajectories, the equations of motions
have to be integrated with time steps of the order of femtoseconds leading to ~ 10'? time steps
in total. Furthermore, to obtain good statistics many folding events have to be sampled. This
results in an excessive computational demand paired with the problem of large system sizes
(approximately 10° atoms using explicit-solvent simulations)[3]. Recently, due to initiatives
such as Folding@Home[10], a distributed-computing project where (private) people share idle
computer time of their (private) resources, or ANTON, a computer specifically designed for
molecular-dynamics simulations, millisecond simulations have become possible[3, 11, 12]. These
simulations, and in general most of the simulations for protein-related problems, are performed
using force fields. Force fields are empirical functions with fitted parameters that describe
the PES of a system based on the knowledge of the nuclear positions. However, the fitting

IThere are also proteins that fold much slower, while there are also fast folders, which obtain their native state on the
order of microseconds.



[3-amino acid
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Figure 1.3: A schematic representation of a f-amino acid. The additional methylene CH> group in the
backbone is highlighted with a light pink background.

process and the use of standard functional forms can lead to problems of limited accuracy and
transferability[13, 14]. To resolve subtle energy differences such as present, e.g., in conforma-
tional ensembles (see dotted red line in Fig. 1.2c), a first-principles method based on the solution
of the many-body Schrodinger equation would be desirable, treating all conformations on an
equal footing. However, such approaches are computationally much more demanding.

In this work, we assess the challenging problem of predicting the structure or structural
ensemble of a peptide on a quantitative level, employing an unprecedented first-principles
screening effort. For this, we use density-functional theory (DFT) with the PBE[15] exchange-
correlation functional explicitly corrected for long-range dispersion interactions[16] (PBE+vdW).
Given the huge conformational space of peptides, an efficient and reliable search technique has to
be developed. We obtain global sampling of the structure space by performing replica-exchange
molecular dynamics (REMD) simulations with a force field. Then we follow up with a local
refinement, relaxing thousands of structures with the PBE+vdW functional. In order to find the
lowest-energy structures of the respective basins, we perform PBE+vdW REMD simulations. For
validation purposes, we compare our structure predictions to experimental ion mobility-mass
spectrometry (IM-MS) and infrared multiphoton dissociation (IRMPD) data.

Specifically, we focus on two challenging application cases:

(i) We examine a 20-residue peptide system that is big enough to partially show tertiary
structure. In contrast to previous studies in our group[17], this peptide is not only much
larger, but also presents a very complex landscape with no a priori knowledge about its
structural preferences existing.

(ii) We further investigate the impact of backbone elongation of the amino-acid building blocks
as represented by S-peptides.

Just as the natural a-peptides, 3-peptides belong to the group of homologous peptides, which
are composed of the homologous amino acids. A homologous series, in organic chemistry,
consists of compounds that differ in length by one methylene (CH;) group. As illustrated in
Fig. 1.3, a S-amino acid has one additional methylene group between the amino and the carboxyl
group compared to a natural (a)-amino acid [cf. Fig. 1.1(a)]. This backbone extension makes
a B-peptide more flexible as it yields one additional torsional degree of freedom per residue,
resulting in an even more complex conformational space. Another effect of this modification
is that, compared to a-peptides, S-peptides are more stable against proteases[18-20], which
are enzymes that cleave peptide bonds. This is interesting with respect to the possible use of
B-peptides for pharmaceutical purposes. In fact, it has already been shown that 3-peptides are
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able to modulate native protein-protein interactions[18, 19, 21-24]. In this thesis, we investigate
how the conformational space of a -peptide is influenced by its increased flexibility. For this,
we focus on a comparison between a natural a-peptide and its equivalent S-peptide obtained by
exchanging the a-amino acids with the corresponding $-amino acids.

For both the flexible S-peptides and the large natural peptides (20 residues), we clearly face the
limit of what can be achieved by first-principles electronic-structure methods today. Compared
to empirical methods such as force fields, probably the most important advantage of DFT is its
wider range of validity due to its quantum-mechanical foundation. Still, the exchange-correlation
functional is only approximately known. We assess the exchange-correlation functional applied
(PBE+vdW) and, along these lines, point out directions in which the theory can be improved.

The peptides dealt with in this thesis are based on polyalanine, where alanine (Ala) is a
relatively simple amino acid with a methyl group (CH3) as the side chain R (cf. Fig. 1.1). Addi-
tionally, the peptides contain lysine (Lys) residues, whose side chains have a protonated amino
group (CH,-CH-CH,-CH,-NHZ ). All simulations are performed under isolated conditions.
This allows for a direct benchmark of first-principles simulations for feasible system sizes against
sufficiently detailed experiments under the exact same conditions.

This thesis is divided into three parts. Part I (Polypeptides and (free) energy surfaces) details
the theoretical background: After giving a general introduction about (non)natural polypeptides
(Chapter 2), we discuss methods to describe the PES (Chapter 3) and methods to explore it
(Chapter 4). Chapter 5 deals with the computation of infrared (IR) spectra and the calculation of
free energies.

In the second part, we focus on natural polyalanine-based peptides (Large polyalanine-based
peptides: structure and spectroscopy). In Chapter 6, we present benchmarks for IR spectra
obtained from first-principles MD simulations and in Chapter 7, we explain experimental
techniques relevant to this work and how to connect our theoretical results to the experimental
data. Chapters 8 and 9 focus on the conformational search and the comparison of Ac-Ala;o-
Lys + H versus Ac-Lys-Ala;g + HT, where the lysine residue is located at the C- and the
N-terminus, respectively. The position of the protonated lysine residue has a critical impact on
the structure. While Ac-Alajg-Lys + HT is clearly a-helical[25-28], Ac-Lys-Ala;g + H favors
a rather compact conformation. We also show how sensitive the specific conclusion is to the
details of the theoretical approach employed, including the results of more advanced methods
in targeted calculations.

Part I1I of this thesis (Dealing with conformational flexibility: homologous peptides) describes
the comparison of the structure space of natural versus non-natural S-peptides with an extended
backbone. More specifically, we compare Ac-Alag-Lys(H") and Ac-$%hAlag-Lys(H*). While
Chapter 10 focuses on the conformational search for Ac-3%hAlag-Lys(H™), in Chapter 11, we
compare the results for the two peptides and connect the findings to experiment in Chapter 12.

Chapter 13 gives the conclusions and an outlook.
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2 PEPTIDES AND PROTEINS

As mentioned in the introduction, proteins are biopolymers with amino acids as their monomeric
unit. As the name implies, amino acids are (carboxylic) acids containing an amino group.
A schematic representation of an amino acid was given in the introduction in Fig. 1.1a. At
physiological pH values, the carboxyl and the amino group of an amino acid are both ionized
(zwitterionic form), whereas in the gas phase they are neutral. Figure 1.1a depicts an amino
acid in its non-zwitterionic form. The Ca atom has four different substituents, which makes it
chiral. As a result, the same amino acid can adopt two configurations that differ in the spatial
arrangement of the atoms around the chiral center Ca. These two configurations constitute
mirror images (see Fig. 2.1) called enantiomers. The two enantiomers of amino acids are denoted
as L- and D-amino acids by convention, where in nature almost exclusively the L-type occurs.

The amino group of one amino acid and the carboxyl group of another amino acid can
formally react with each other as schematically illustrated in Fig. 2.2.! The amino acids form a
bond between the amide nitrogen and the carbonyl carbon atom. It is called amide bond and
links two amino-acid residues. Formally, a water molecule is released upon the reaction. The
group of atoms C(=0)-N(H) is referred to as a peptide link or the peptide group. The linear
polymers obtained by the linkage of amino acids via amide bonds in a head to tail fashion are
called peptides. In this case, the amide bond is also referred to as peptide bond. Peptides with up
to ~ 10 amino-acid residues are known as oligopeptides. Larger peptides are typically referred
to as polypeptides and polypeptides of more than 50-100 residues are denoted as proteins.

The covalently bound atom series - - - -C(=O)-N(H)-Ca— - - constitute the peptide’s backbone.
As the amino acids in a peptide are all linked in the same way, a peptide has two defined termini.
One terminus comprises an amino group and is referred to as the N-terminus, while the other
one involves a carbonyl group and is consequently denoted as the C-terminus.

In the cells of living organisms, the synthesis of proteins takes place at the ribosomes.? We

!In practice, the formation of a peptide bond is much more complicated and needs to be catalysed. We will get back to
this question later in this chapter.

2There also exists non-ribosomal peptide synthesis, which is catalysed by special enzymes called synthetases. The
peptides produced in this way are typically very short (up to 50 residues).

OH OH Figure 2.1: A schematic illustration of the two enan-
tiomers for amino acids: L- and D-configuration.

L-amino acid D-amino acid
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LGACK L AMING . Acid Figure 2.2: Schematic illustration of the formal re-
: action of two amino acids forming a peptide bond.
| ” | ” Upon this reaction a water molecule is released.

Peptide group

will only give a brief account here. More details can be found in virtually any biochemistry
textbook, e.g., in the book by Voet and Voet[29]. According to the central dogma of molecular
biology[30]° the flow of information corresponds to DNA — RNA — protein. In the first step,
a process known as transcription, the nucleotide sequence of the DNA strand is copied to an
mRNA molecule. The mRNA is transported to the ribosomes, which catalyze the synthesis
of the proteins. The genetic code is a dictionary that relates the nucleotide sequence of the
DNA/mRNA to the polypeptide amino-acid sequence. It has a triplet character with three
nucleotides forming a codon that specifies one particular amino acid. Although there have
been many amino acids found in living organisms (more than 700[29]), proteins are composed
of only 20 amino acids referred to as standard amino acids.*® They are depicted in Fig. 2.3
together with their three- and one-letter code, by which they are frequently referred to. Their
side chains have different properties, which play an important role for protein function. The
amino acids depicted in the first row of Fig. 2.3 have a charged side chain at physiological pH
values: arginine, histidine, and lysine are positively charged, while aspartic acid and glutamic
acid are negatively charged. The second row of Fig. 2.3 illustrates amino acids whose side chain
is polar, but not charged at physiological pH values. The so-called special cases are shown in the
third row. Glycine’s side chain is a hydrogen atom, which makes it the only non-chiral amino
acid. The side chain of proline is cyclic and involves the imine nitrogen atom, restricting its
conformational freedom. The side chain of cysteine contains a thiol group. The thiol groups of
two cysteines can form disulfide bonds, which have an important impact on protein structure:
they can link two individual peptide chains or create a cross-link within the same chain[29]. The
fourth row of Fig. 2.3 illustrates amino acids with a hydrophobic side chain.

The flexibility of peptides originates mostly from rotations around single bonds, involving
changes of dihedral angles. A dihedral or torsional angle involves 4 atoms, A-B—-C-D, and
is defined as the angle between the two planes spanned by the atoms A, B, C' and B, C, D,
respectively, as depicted in Fig. 2.4. When looking along the rotational axis, the dihedral angle is

3This term was coined by Francis Crick, who was awarded the Nobel Prize in medicine in 1962 for his model of the
DNA structure (together with James Watson and Maurice Wilkins). He used the word dogma due to a misconception.
Later he said that he rather meant a hypothesis than a (religious) doctrine that is unquestionable.

4The genetic code ciphers the 20 standard amino acids. There are two additional aminoacids occuring in proteins of eu-
karyotes, selenocysteine and pyrrolysine, which are coded by different mechanisms. After the translation, proteins often
undergo posttranslational modifications. These include attaching other molecules (sugars, lipids, ...) or modifications
of the amino acids.

5In the laboratory, peptides can be synthesized by a technique known as solid-phase peptide synthesis (SPPS). A
detailed account of this method can be found in standard textbooks, e.g., Ref. [31].
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Figure 2.3: Summary of the 20 standard proteinogenic amino acids. Carbon atoms (and their attached
hydrogen atoms) are not shown explicitly, but represented by kinks.
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Figure 2.4: Dihedral angle between the two planes Figure 2.5: Backbone dihedral angles for natural
spanned by atoms A, B, C, and B, C, D. a-peptides.

positive (negative) by standard convention if the end atom D in the back lies in a clockwise (anti-
clockwise) direction from the front reference atom A. The dihedral angles of a peptide’s backbone,
termed ¢, v, and w, are illustrated in Fig. 2.5. The torsional angle w denotes the rotation about
the peptide bond. However, the partial double-bond character of the peptide bond prohibits
free rotation about the bond axis and renders the peptide group rigid and planar. Thus, w has
only two distinct values: cis (0°) and frans (180°). Due to steric hindrance, the cis conformation
occurs only very rarely and almost all peptide residues assume the trans conformation[32]. The
only exception is proline, where about 5% of the residues take the cis conformation[32, 33]. This
is owed to the cyclic nature of its side chain: in both cis and trans conformations, the C5 atom of
the preceding side chain encounters a carbon atom of the proline residue (either the Ca atom
in the cis conformation or the Cd atom of the ring in the trans conformation) yielding a smaller
energy difference between the two states than for other residues[29].

Due to the restrictions for w, the structure of peptides is most importantly characterized by
the dihedral angles ¢ and 1. However, due to steric clashes not all (¢ /1) angle pairs are possible.
This was first analytically determined in the seminal work by Ramachandran in 1963. In his
original paper[34], he varied the ¢ and 1 angles of dipeptides searching for steric interferences
between all atoms. For this, he considered the atoms as hard spheres and a steric clash was said
to occur when two atoms that are not covalently bound come closer than the sum of their van der
Waals radii. Obviously, this depends on the choice of the van der Waals radii. Ramachandran
used two datasets in his original work: normally allowed and outer limit distances. From
his results he could then define normally allowed and outer limit regions separated from
prohibited regions in a plot of the (¢/1)) space that became known as the Ramachandran plot
or Ramachandran diagram. These regions coincide remarkably well with the ¢ and ¢ data
angle pairs for known peptides[34]. The Ramachandran plot has been revisited and refined
in various efforts, e.g., in Ref. [35-37]. Figure 2.6 A) shows a Ramachandran plot based on
experimental data from Ref. [36] and Fig. 2.6 B) illustrates a Ramachandran diagram for > 4000
conformations of a polyalanine-based peptide relaxed based on density-functional theory (DFT)
using the PBE+vdW functional (see Chapter 3) in this work. The white regions denote forbidden
regions in the (¢/1))-space. The most important backbone conformations of proteins, helices and
B-sheets, are highlighted. They will be explained in more detail in Section 2.3.
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Figure 2.6: A) Ramachandran contour plot based on experimental data for 500 proteins provided with
Ref. [36]. The graph was generated using the scripts by Peter Cock[38]. The inner contour defines the
“favored” region (dark grey), which includes 98% of the data and the outer contour specifies the “allowed”
region (light grey), which contains 99.95% of the data. The position of typical secondary-structure backbone
conformations (see section 2.3) of proteins, namely helices and S-sheets are given. B) Ramachandran
plot for alanine-based polypeptide conformations relaxed with density-functional theory (PBE+vdW, see
Chapter 3) overlaid on the contour plot shown in A. The data comprises more than 4000 structures of the
20-residue peptide Ac-Lys-Alaig + HT, where each red dot represents one dihedral angle pair.

The Ramachandran plots for different amino-acid residues differ only slightly. The diagrams
for residues with a side chain that is branched at C3 generally exhibit smaller allowed regions
than the diagrams for residues that are unbranched at CS. Due to its cyclic side chain, proline is
the most conformationally restricted amino-acid residue, while glycine, which exhibits only a
hydrogen atom as side chain, has the largest conformational freedom with the largest allowed
regions in the Ramachandran plot. Furthermore, the Ramachandran plot of glycine is symmetric

in (¢/1)) space.

2.1 INTERACTIONS SHAPING THE STRUCTURE OF
POLYPEPTIDES

The amino-acid sequence describes the covalent topology of a polypeptide. For the actual
three-dimensional structure, however, also non-covalent interactions play a crucial role. Apart
from steric hindrance and intermolecular interactions, such as between peptide and solvent,
there are many intramolecular interactions that play an important role for the formation and
stabilization of peptide structure. Among these are (intramolecular) electrostatic interactions,
which are ubiquitous. Charged residues, e.g., can form ion pairs (or salt bridges). Dipole-dipole
interactions are important as well, since many constituents of a polypeptide exhibit a permanent
dipole, most importantly the peptide group (approximately 3.5 Debye[39]). In helices, e.g., the
C(=0)-N(H) groups are aligned with their dipole moments summing up to a significant macro
dipole moment. Furthermore, permanent dipole moments induce dipole moments in other

molecules or atoms leading to an attractive interaction.
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Figure 2.7: Hydrogen bond between a carbonyl group and
an NH group in the backbone of an a-helical peptide.

Due to quantum effects, atoms have an instantaneous fluctuating electron density. The as-
sociated dipole (and higher) moment(s) polarizes neighboring atoms yielding an attractive
interaction known as London dispersion forces[40] or van der Waals interactions.® The interac-
tion is very subtle. However, due to the large number of interatomic contacts, they play a crucial
role for structure formation and stability. Sometimes, especially in the chemistry community, the
term van der Waals interactions is also used to refer to interactions between permanent dipoles
as well as permanent and induced dipoles. However, in this thesis, we use the definition that is
common in physics, in which van der Waals interactions exclusively correspond to the London
dispersion forces.

Another class of important interactions are hydrogen bonds or H-bonds. Hydrogen bonds are
formed between a hydrogen atom, which is covalently bound to a donor D, and an acceptor A,
which has a lone-pair electron cloud. They are assigned a direction that points from the donor
to the acceptor. The donor group D-H is weakly acidic, while the acceptor A is weakly basic.
In polypeptides, most importantly nitrogen, oxygen and sometimes sulfur atoms act as donors
and as well as acceptors in hydrogen bonds. A hydrogen bond is represented as D-H- - - A. An
example of a hydrogen bond between a carbonyl group and an NH group in the backbone of an
a-helical peptide is illustrated in Fig. 2.7. A hydrogen bond is more directional than a purely
electrostatic interaction but less than a pure covalent bond. Hydrogen bonds (D-H- - - A) are
often linear, with the donor group D-H oriented in the direction of the lone-pair electron orbital
of the acceptor, but deviations from this ideal are common. In this thesis, unless stated otherwise,
a hydrogen bond is considered to be present if the distance between a hydrogen atom and an
acceptor is less than 2.5 A.

Hydrogen bonds show significant cooperativity phenomena[41-44]. For example, it was
found that hydrogen bonds in an infinite a-helical chain are strengthened by a factor of two
compared to an isolated hydrogen bond[41].

2.2  STRUCTURE HIERARCHY

The structure of proteins can be classified into four levels. This nomenclature was introduced by
Linderstrom-Lang in 1951[45].

¢ The primary structure is the sequence and number of amino acids of a polypeptide, i.e.,

the covalent scaffold of the protein.

6Named after the Dutch physicist Johannes Diderik van der Waals.
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Figure 2.8: Different levels of protein structure formation: primary structure, secondary structure, tertiary
structure, and quaternary structure. The example illustrated in this picture is human hemoglobin taken
from the protein database (PDB ID: 1GZX). The primary and secondary-structure illustration comprise
residues 54 to 72. The ribbon runs along the polypeptide backbone as a guide to the eye, with a thicker
representation for helical segments. For clarity, the tertiary and quaternary structure are illustrated without
atoms in a cartoon representation. The blue subunit is chain A. Each subunit/chain is colored differently to
show the arrangement of the subunits in the quarternary structure.

¢ The secondary structure denotes the local three-dimensional backbone conformation of
the polypeptide, not considering the conformation of the side chains. The three main
secondary-structure elements are helices, pleated sheets, and turns. They are the building
blocks of the tertiary structure and will be discussed in more detail in Section 2.3. Helices
and pleated sheets are usually linked by turns, or by segments of the backbone that are
less easy to describe (although not necessarily less structured), often referred to as loops.

¢ The tertiary structure is the overall three-dimensional structure of a single polypeptide
chain. It arises through the association of the secondary-structure building blocks along
with the spatial arrangement of the side chains.

* Different separate polypeptide chains can associate together via non-covalent interactions
or disulfide bonds in a defined spatial arrangement. This is referred to as the quaternary
structure, where the individual polypeptide chains are called subunits.

Figure 2.8 illustrates the four different structure levels of proteins, based on the example of
human hemoglobin. The sequence of residues 54 to 72 (primary structure, Fig. 2.8a) forms a
helix (secondary structure, Fig. 2.8b). This helix is one of the secondary-structure building blocks
that makes up the three-dimensional structure (tertiary structure, Fig. 2.8c) of chain A, one of
the four subunits of hemoglobin. The assembly of the four individual subunits is referred to as
the quaternary structure (Fig. 2.8d).

2.3  SECONDARY STRUCTURE

The term secondary structure refers to the local three-dimensional conformation of the back-
bone of a polypeptide without considering the spatial arrangement of the side chains. There
are three main elements of secondary structure, namely helices, sheets, and turns. They are
called secondary-structure building blocks as they constitute the building blocks for the three-
dimensional overall shape of the polypeptide (tertiary structure).
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Helices are periodic structures, which are stabilized by (periodic) hydrogen bonds between
the carbonyl and NH groups in the backbone of the peptide. Examples of different helices are
depicted in Fig. 2.9. We note that in this thesis, we follow the CPK coloring convention named
after Robert Corey, Linus Pauling, and Walter Koltun[46]. Red spheres denote oxygen atoms,
white spheres are used for hydrogen and blue denotes nitrogen. The color used for carbon differs
in different visualization programs. In this thesis, the VMD program[47] is used for rendering in
most cases, which uses cyan for carbon by default.

The most prominent helix type, the a-helix, was predicted by Pauling, Corey, and Branson in
1951[48, 49]. They discovered it by systematically searching for all possible hydrogen-bonding
patterns of a single polypeptide chain based on four assumptions: (a) all residues are equivalent
(without regard to the side chains), (b) the planarity of the peptide group, (c) a distance of
2.72 A between the acceptor (oxygen) and the donor (nitrogen) of the hydrogen bond, and (d)
a deviation from the linear arrangement of D-H- - - A with <(N,H,0)=180° by less than 30°.
The a-helix is characterized by a hydrogen-bonding pattern with hydrogen bonds periodically
formed between every ¢ and ¢ + 4 residue. The approximate dihedral angles are ¢ = —57° and
1) = —47°. An alternative way to denote helices is by giving the number of atoms involved in the
hydrogen-bonded pseudocycle as a subscript together with the number of residues comprised
in one turn. In the a-helix every hydrogen-bonded pseudocycle involves 13 atoms. One turn of
the helix comprises 3.6 residues with a rise along the helix axis per turn (pitch) of 5.4 A. Thus, the
a-helix is also denoted as a 3.613-helix. A helix is chiral, i.e., it can be either left or right handed.”
For L-amino-acid residues the a-helix is right-handed due to sterical hindrances of the side
chains in the corresponding left-handed helix. In turn D-amino-acid residues form a left-handed
helix. The chirality of the helix thus depends on the chirality of the amino-acid residues.

Apart from the a-helix, Fig. 2.9 also shows other helix types and a scheme which illustrates
the corresponding hydrogen bond patterns. In the 2.2;-helix each residue i forms a hydrogen
bond with residue i + 2. One turn is comprised of 2.2 residues and the hydrogen-bonded
pseudocycles contain 7 atoms. The 3;¢-helix comprises 3 residues per turn and 10 atoms in the
pseudocycles formed by the hydrogen bonds between every i and ¢ + 3 residue. It has a pitch
of 6.0 A and a smaller helix diameter than the a-helix. The 7n-helix, on the other hand, has a
larger helix diameter than the a-helix. Here, hydrogen bonds are periodically formed between
the i and the i + 5 residue. While the a-helix makes up about 31% of the secondary structure
of proteins[29], the 3;¢-helix is only occasionally found, mostly at the termini of a-helices. The
m-helix occurs very rarely and the 2.27-helix has never been observed. As illustrated in the
scheme in Fig. 2.9, in all helix types, the direction of the hydrogen bonds (defined to point from
the donor to the acceptor) points from the C- to the N-terminus of the peptide. This leads to
a helix dipole pointing in the same direction — due to the alignment of the hydrogen-bonded
C(=0)-N(H) groups along the helical axis, the individual dipole moments sum up to an overall
dipole moment of the helix, which points from the C- to the N-terminus (see Fig. 2.9). For steric
reasons, helical structures with periodic hydrogen bonds pointing in the opposite direction, i.e.,
from the N- to the C-terminus do not occur. However, as we shall see in the next section, for
peptides with an artificially extended backbone (homologous peptides) such types of helices
have been observed.

7The helix is called right (left) handed, if the helix spiral follows the direction of the remaining fingers when the right
(left) thumb is pointing along the helical axis.



2.3 Secondary structure 15

C-terminus

o
o
=
[a]
X
°
T

P

+
2.24-helix 340-helix a-helix m-helix N-terminus
m-helix< =2
a-helixj< 3 I«
10 i<i+3

310-helixi:

|2. 2,-helixg<! 1 ~i*2
o)

T T
e d |
3
% o} H o}

Figure 2.9: A schematic example of different helix types: 2.27-, 310-, a- and 7-helix. The backbone of the
polypeptide chain is highlighted by a yellow ribbon. Hydrogen bonds are indicated by dashed blue lines
and hydrogen atoms that are attached to carbon atoms are omitted for clarity. The lower panel shows a
scheme of the corresponding hydrogen-bonding patterns. Each kink represents a carbon atom (with its
attached hydrogen atoms).
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The other basic secondary-structure type, the 8 pleated sheet, was likewise discovered by
Pauling and Corey in 1951[49, 50]. In contrast to helices, it involves hydrogen bonds between
separate individual polypeptide chains. There are two types of 3 pleated sheets: (a) the parallel
3 sheet, where the two strands that are hydrogen bonded extend in the same direction, and (b)
the antiparallel 8 sheet, where the two strands that are hydrogen bonded extend in opposite
directions. Schematic examples of both types of 3 sheets are illustrated in Fig. 2.10. In the
antiparallel sheet, the hydrogen bonds are perpendicular to the chain direction, while for the
parallel 3 sheet they are diagonal. For both types, the side chains of the residues on adjacent
chains extend in the same direction, pointing alternately along opposite sides of the strand. The
dihedral angles of the individual residues of the strands are not 180°, but (in an ideal sheet)
rather ¢ = —119° and ¢ = 113° for the parallel sheet and ¢ = —139° and ¢y = 135° for the
antiparallel sheet[29]. Hence, when viewed from the side, the sheets are not flat, but look rather
pleated, which is where the name “pleated sheet” originates from. The number of strands found
in sheets ranges between 2 to 22 with an average of 6[29].

The third basic class of secondary-structure elements are turns. They are non-repetitive
and reverse the direction of a polypeptide chain. Turns come in different flavors. The most
important type of turns is the 3-turn, which involves 4 consecutive residues ¢, i + 1, ¢ + 2, and
i + 3. The original classification of g-turns goes back to Venkatachalam[51]. He categorized
them according to the dihedral angles of residues i 4 1 and 7 + 2. Based on solely theoretical
considerations, he determined three general classes. They split into six categories 51, 5I’, 811,
BIT', BI11, and BIIT'[51], with the categories denoted with a prime being the corresponding
mirror images of the backbone conformation. In S-turns, the Ca: atoms of residue ¢ and ¢ + 3 are
in close contact (< 7 A[52-54]), often coming along with a hydrogen bond formed between the
C(=0) of the i and the N(H) of the i + 3 residue. Other turn types exhibit analogous features:
a turns usually exhibit a hydrogen bond between the ¢ and i + 4 residue and 7 turns between
the i and i + 5 residue. However, the H-bond in turns is often disrupted and its existence is
not necessary for the segment to be characterized as a turn. The most widely occurring motifs
are the 8I- and SII-turn, which differ by a flip of 180° of the central peptide group. They are
schematically illustrated in Fig. 2.11. In proteins 8-turns are often found in antiparallel 5 pleated
sheets reversing the direction of the strand. This constellation is called S-hairpin.

2.4 PEPTIDIC FOLDAMERS

Despite the versatility of sequence, structure, and function that proteins feature, biology spans
only a small part of the chemical space. It is a longstanding idea to increase the biological toolbox
by synthetic polymers with unique functions. Since the mid-1990s, non-natural polymers that
obtain a compact fold (foldamers[55, 56]) have more and more entered the scientific spotlight.
This was initiated from materials science, especially the interest in nylon and nylon deriva-
tives [57-64]. Nylon (derivatives) and peptides are chemically related as they both consist of
monomers that are linked by amide bonds. Nylon-2, e.g., corresponds to a polyglycine chain. A
schematic representation of the chemical formula of nylon-(m+1) is given in Fig. 2.12. If one (or
more) of the carbon atoms is substituted with a side chain, one speaks of a nylon derivative.
The pivotal trigger for the promotion of foldamers into an active field of research, however,
were the findings from Seebach’s[65, 66] and Gellman’s groups [55, 67], who showed that



2.4 Peptidic foldamers 17

H Figure 2.12: Schematic representation of the chemical formula of nylon-
] (m+1). Nylon is a polymer, where the monomer units are linked by
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oligomers composed of non-natural amino acids can adopt defined helical structures. The term
foldamer was coined by Gellman[55, 56] and describes “any polymer with a strong tendency to
adopt a specific compact conformation”[56]. With respect to proteins, the term “compact” rather
refers to the three-dimensional (tertiary) structure. However, the building blocks of the tertiary
structure are the secondary-structure elements. Thus, the first step in constructing a foldamer
has to be to identify synthetic oligomers that have a conformational preference similar to a
regular secondary-structure element (helices, turns, or sheets)[56]. The field of foldamer research
rapidly branched out (see Ref. [18, 68-78] and many references therein). This work, however,
specifically deals with peptidic foldamers, i.e., foldamers with monomeric units that can formally
be derived from natural amino acids. There are various possibilities to derive new monomers
from a natural a-amino acid such as exchanging atom types and altering or shifting the side
chain. Alternatively, one could imagine a building block with an extended backbone. Insertion
of methylene (CH;) groups between the amino group and the carboxylic acid results in the
class of homologous amino acids since, in organic chemistry, a series whose members differ in
length by one CH; group is known as a homologous series. Natural amino acids occurring in
native proteins are the first members of such a homologous series. They have an amino group
attached to the a-carbon (Ca) and are thus denoted as a-amino acids. Amino acids exhibiting
one additional CH; group have the amino group linked to the C/ atom and, hence, are referred
to as f-amino acids. Analogously, v- and -amino acids have 2 and 3 additional methylene
groups, and so on. They are commonly referred to as w-amino acids[74]. Correspondingly,
oligomers composed of these amino acids are referred to as w-peptides. In this thesis, the focus
is primarily on 3-peptides. As depicted in Fig. 2.13, there are two different substitution patterns
for homologous -amino acids. The side chain can be either substituted at the second or at the
third carbon position, leading to a 42- and 33-amino acid, respectively. For example, a 4%-amino
acid derived from alanine (Ala) by backbone homologation is denoted as 3?hAla following the
nomenclature in the literature[69, 79], where “h” stands for “homo”.

Of the homologous series, S-amino acids are the closest relatives to the natural a-amino acids
and have become the figurehead of foldamer research[77]. The additional methylene group in the
backbone yields one additional torsional degree of freedom per residue compared to the natural
a-amino acids making the S-peptide’s backbone more flexible. The backbone dihedral angles of
[-peptides are illustrated in Fig. 2.14 with the additional torsional angle denoted as ¢ (see Fig. 2.5
for a comparsion with a-peptides). Various secondary structure motifs have been found in
B-peptides and also hybrid «/S-peptides, covered in many reviews[18, 19, 69, 70, 72, 73,77, 79—
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O R4 R3 (@) Figure 2.14: Backbone dihedral angles for 5-peptides.

81] (see also many references in Ref. [74]). Besides turn and sheet motifs[18, 79], different
helical patterns have been experimentally observed[69, 77, 79] in solution (mostly in MeOH,
but also in HyO[82, 83]) and in the solid state based on X-ray crystallography, nuclear magnetic
resonance (NMR), and circular dichroism (CD) spectroscopy. For small isolated (gas-phase)
o/ B-peptides and [-peptides, combined ultra violet-infrared (UV-IR) techniques have also been
used to elucidate the structure and identify single conformers[84-88]. This method will be
further described in Section 7.1.2.

Along with experimental studies many computational studies on S-peptides have been
performed, as reviewed in Ref. [74]. The group of van Gunsteren has conducted numerous
force-field based studies (see, e.g., Ref. [78, 89-100]) often in close collaboration with the Seebach
group[79, 89, 95-97, 99]. One of the first first-principles based studies was published in 1996
by Aleman and co-workers using Hartree-Fock calculations (see Chapter 3) to investigate -
aspartate[63], which is a nylon-3 derivative. After this, many conformational studies were
conducted based on Hartree-Fock, MP2, and DFT calculations for various types of 5-peptides[68,
101-104], also specifically investigating helices with H-bonds alternatingly pointing in opposite
directions (mixed helices)[68, 103, 105, 106]. In the following, we shall describe in more detail
which kinds of helices in 3-peptides have been experimentally found or theoretically predicted.

Figure 2.15 illustrates schematic examples of different S-peptidic helix types and their cor-
responding hydrogen-bonding patterns. The helices are denoted by the number of atoms in
the hydrogen-bonded pseudocycles. As mentioned earlier, by convention, a hydrogen bond
D-H. - - A has a direction, which points from the donor to the acceptor (D—A). The upper part of
the scheme in Fig. 2.15 shows helical patterns where the H-bonds point in opposite sequence
direction. In the corresponding helices this leads to a helix dipole pointing in opposite sequence
direction as well. This is analogous to the helices found in natural a-peptides (described in
Section 2.3). Hydrogen bonds between the i and the ¢ + 2 residue result in 8-membered pseu-
docycles (H8-helix). A H12-helix has periodic H-bonds between the i and the i + 3 residue,
a H16-helix between the i and the 7 + 4 residue, and a H20-helix between the ¢ and the i + 5
residue.

In 3-polypeptides, helices with hydrogen bonds pointing in the other direction, namely along
the strand direction, have also been found[69, 77, 79]. This yields a helix dipole, which points
from the N- to the C-terminus. Such helices are illustrated in the lower part of the scheme in
Fig. 2.15. Hydrogen bonds between the i and the i + 1 residue lead to 10-membered pseudocycles
(H10-helix). The H14-helix has H-bonds between the i and i + 2 residue, and the H18-helix has
H-bonds between the i and ¢ + 3 residue.

The most studied helical structure found in S-peptides is the H14-helix[69, 77, 79]. It has
been observed in the solid state by X-ray crystallography, but also in solution by NMR and CD
spectroscopy, mostly in methanol (MeOH), but also in water[82, 83]. Seebach and co-workers
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even found a H14-helix for an icosapeptide comprising all 20 different proteinogenic amino-acid
side chains[107]. A helix with 12-membered hydrogen-bonded pseudocycles (see Fig. 2.15), the
H12-helix, was discovered by Gellman and co-workers[67] for a conformationally restricted
B-peptide, where both the Ca and the Cf3 are involved in a five-membered ring. Similar
conformationally restricted -peptides have been shown to form H10-helices[108] and H8-
helices[109]. Recently, Fiilop and coworkers experimentally observed a H18-helix and confirmed
it by Hartree-Fock calculations[110]. The H20-helix has not been found, yet. For the H16-helix
there are hints from fibre diffraction studies of a nylon derivative[62, 111] and a Hartree-Fock
study[74]. In sequences with alternating 32- and 33-units, Seebach and co-workers[112, 113]
found a mixed helix, comprised of alternating 10- and 12-membered hydrogen-bonded rings
with the hydrogen bonds pointing in alternating directions. Such mixed helices are also referred
to as 3-helices due to the similarities of their hydrogen-bonding pattern with a 5-sheet. A well-
known example of a $-helix occuring in a-peptides is Gramicidin A[114-116] with alternating
20- and 22-atom membered hydrogen-bonded pseudocycles.®

As illustrated in the introduction, proteins, and also peptides, play a key role in virtually all
biochemical processes in the body. They are able to adopt very specific and diverse tasks, making
them extremely interesting for medical application. However, the use of natural peptides as

drugs suffers from several problems[117]:
1. their instability against proteases, which are enzymes that cleave peptide bonds,

2. their poor oral bioavailability, i.e., only a small fraction of the actual dose is eventually
absorbed after oral ingestion (e.g., due to too large molecular masses or/and the lack of
appropriate transport mechanisms),

3. their short excretion life times through kidney and liver, and

4. their interaction with multiple receptors due to their conformational flexibility (and not
only the ones that would be intended).

On the contrary to natural peptides, non-natural peptides seem to be promising candidates for
drug design. It could be shown that the stability against proteases is increased for homologous
peptides (see Refs. [18-20] and references therein). There are hints that small S-peptides
are orally bioavailable and have excretion times that are larger than for natural peptides[18].
Furthermore, several studies showed that S-peptides and heterogeneous «/3-peptides can be
used to modulate native protein-protein interactions[18, 19, 21-24, 118]. Based on a combined
experimental and theoretical study (force fields), Michel et al.[23] have identified a S-peptide that
has the potential to prevent the inhibitation of a cancer suppressor protein (p53) by oncoproteins.

2.5 ENERGY LANDSCAPES

As mentioned in the introduction, in their pioneering experiments in the early 1960s, Christian
Anfinsen and co-workers found that the folding of proteins is reversible[4]. Proteins can fold
into their native structure, denature and then re-fold again to the same state[4, 6]. From these
findings, Anfinsen inferred that the native state of a protein is coded in its amino-acid sequence

8This peptide consists of alternating L- and D-residues. It is not synthesized at the ribosomes, but by non-ribosomal
peptide synthesis.
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(a) Ideal Funnel (b) Golf-course Potential Figure 2.16: Schematic represen-
tation of different energy land-
scapes: (a) an idealized funnel
and (b) Levinthal’s golf-course
potential.

Native State Native State

in a given environment (pH value, temperature, solvent, ...)[4-6]. He furthermore deduced that
the native state has to be the global minimum of the system’s free energy. It is unique, stable
(against small changes of the environment), and accessible on biological time scales[5]. This
statement became known as the thermodynamic hypothesis.

Cyrus Levinthal[119, 120] argued that if a protein randomly searches its possible conforma-
tions for the native state, it will never find it, just like finding a needle in the haystack[7]. This
can be put into a mathematical framework (see, e.g., Ref.[121]): If there is a protein sequence
comprised of 101 amino acids with 3 microstates per peptide linkage, this would lead to 3'%°
possible conformations. Even if the protein was able to sample the conformations very fast, say
at a speed of 10" per second, it would still take the protein 10?7 years to sample all of them,
i.e., longer than the age of the universe. However, proteins do fold on biological time scales —
otherwise life would be impossible. This became known as Levinthal’s paradox[121, 122]. As
a solution to this paradox, Levinthal suggested the existence of folding pathways, which are
defined as a unique sequence of steps that take the protein from its denatured state to its folded
state[120]. Various efforts have been undertaken to identify folding pathways. These efforts are
reviewed, e.g., in Ref.[7]. However, Levinthal’s paradox is inherently flawed as it assumes all
conformations to be searched with the same probability, i.e., randomly. If an energy bias for
the conformations is introduced, it can be shown that folding times reduce to biological time
scales[121]. In the mid-nineties a new view[123, 124] of protein folding emerged, moving away
from folding pathways to an energy-landscape perspective[7, 125-127]. This was decisively
triggered by the Letter to Nature by Karplus® and co-workers[128] who were the first to give a
detailed account on the free-energy surface of a protein. They used a 27-bead polymer model
and performed Monte Carlo simulations to fold the protein. Their results showed that not all
conformations were sampled upon folding. This means that folding times (measured in Monte
Carlo steps) are smaller than the times estimated by Levinthal. Furthermore, there are various
folding pathways that take the denatured protein to the native state instead of one unique
pathway[123, 128]. This resolves Levinthal’s paradox — Dill and Chan describe it with the picture
of skiers on a mountainside: although all of them start from different points on the mountain,
they will all eventually reach the same valley[7](see Fig. 2.16a). Folding is not guided by one
single unique pathway, but there exists a folding funnel, exhibiting multiple parallel pathways.
In contrast, Levinthal’s picture can be compared to a golf-course potential[7](see Fig. 2.16b), a
flat surface (all conformations having the same energy) with only one deep dip (the native state).
On such a landscape, the golf ball would idle around endlessly before finding the hole. However,
the landscape is not flat and thus, the search of the protein is not random, but directed to the

9Martin Karplus was awarded the Nobel Prize for chemistry in 2013.
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native state by the change in energy upon changing the atomic coordinates. Energy-landscape
theory has nowadays developed into a general theory focusing not only on proteins, but rather
unifying different research fields such as proteins, glasses, and molecular clusters[129]. Many
details that go beyond the scope of this summary here are covered in the textbook by David
Wales[130].

The potential-energy surface (PES) denotes the potential energy of a system, e.g., a protein,
as a function of all its atomic coordinates: V = V({R;}) with R; denoting the positions of the
atomic nuclei and I = 1... N,;, where Ny is the number of atoms. Considering a (3N + 1)-
dimensional space, V({R;}) is a surface in this space, depending on 3N,; coordinates with the
(3N, + 1)th dimension being the value of the potential energy. Local minima of the PES are
points where the gradient of the potential energy vanishes and where every infinitesimally small
variation of the coordinates will lead to an increase of V ({R;}). The lowest-energy minimum is
denoted as the global minimum of the PES. Methods to calculate V ({ R;}) will be addressed in
Chapter 3.

At physiological conditions, the quantity that the protein or peptide aims to minimize is the
free energy. In order to understand and describe the thermodynamic properties of proteins and
peptides the PES is thus often projected onto the free-energy surface (FES) using a set of (reaction)
coordinates or order parameters {X;}. The FES is the actual surface that is explored during
the folding or structure formation process. In contrast to the PES, which is a high-dimensional
function depending on 3V, coordinates, the FES is typically described by only one or two order
parameters { X;} (at least less than 3N, ). All other degrees of freedom enter the FES as averages
for fixed values of the order parameters. Frequently chosen order parameters { X;} include the
number of hydrogen bonds, the radius of gyration, the electric dipole moment, or the root mean
square deviation (RMSD) of different conformations.

The free energy F({X;}) of a specific state { X} is related to the probability P({X;}) that this
state is occupied via[131-133]:

FX:}) — F(IX) = —keTInP{X.}) —mP(XD)] 21)

with {X/} being a reference state. We here denote the free energy with F' as we refer to the
Helmholtz free energy[131]
F(T,V)=U-TS , (2.2)

where U is the internal energy averaged over all states of the ensemble, T is the temperature,
and S is the entropy. If the pressure p instead of the volume V is kept constant, the relevant
thermodynamical potential is the Gibbs free energy

G(T,p)=U—TS+pV . 2.3)

In this thesis, we use the Helmholtz free energy as the experiments of polypeptides in the gas
phase (as discussed in Chapter 7) are performed at p ~ 0. Moreover, we are concerned with
energy differences, where for different conformers the term pAV can be neglected due to the
extreme dilution of the peptides, so that AG = AF.



3 THEORETICAL METHODS TO DESCRIBE
THE ENERGY LANDSCAPE

This chapter intends to give a tutorial overview of the different theoretical methods used in this
work to describe the potential-energy surface (PES) of peptides and proteins. Within the scope
of the present thesis, this overview neither claims, nor aims for completeness. The interested
reader is referred to one of the many textbooks giving in-depth descriptions of the field, e.g.,
Refs. [134-137].

The present chapter starts with a description of empirical models of the potential-energy
function, called force fields. Force fields are classical models that do not take into account the
electronic structure explicitly with the advantage of being computationally cheap compared
to first-principles methods, which are described in the subsequent sections. First principles
(or ab initio) means that the quantum-mechanical many-body problem is solved based only
on the fundamental physical laws [Dirac or Schrodinger equation (SGE)], possibly including
physically motivated approximations, but without using model Hamiltonians or relying on
empirical parameters. First-principles methods enable us to obtain a much more reliable PES

than force fields. However, at the same time, they are much more computationally expensive.

3.1 FORCE FIELDS

Empirical potential-energy functions, called “force fields”, are widely used in computer simula-
tions of peptides and proteins|[1, 2, 138]. A force field is constituted by a functional expression
used to describe the potential energy and the corresponding parameters that enter it. The
latter are determined by fitting to a set of experimental and/or theoretical data from quantum-
mechanical calculations. In fact, there are many different force fields. However, most of the
widely used force fields employ a similar form for the energy expression and similar techniques
for determining the parameters. For a more detailed description, we thus concentrate on one
representative of the standard force fields, namely the OPLS-AA force field[139] as it is used in
the present thesis. The given formulae follow Ref. [139].

The molecular interactions are divided into non-bonded interactions and bonded interactions,
where the latter comprise contributions from bonds, angles, and torsions. The overall potential-

energy function is given as:
Eiot = Epond + Eangle + Eorsion + Enon—bonded . (31)
The potential-energy term for the non-bonded interactions contains a Coulomb term accounting

23
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for electrostatic interactions and a Lennard-Jones potential term accounting for dispersion
interactions and Pauli repulsion:

on Aon B 62 0_}3 O'?J
Enon— onde: AB) = f |:q qj—— + 4e < — >:| . 3.2
bonded (AB) ; 2 17|04 IJ RIZ %, (3.2)

The sum runs over all atoms I on molecule A and all atoms J on molecule B. For intramolecular
non-bonded interactions, the same expression is employed with I < J to avoid double counting.
The scaling factor fr; is 0 if I and J are separated by less than three bonds, 0.5 if they are
separated by three bonds and 1 otherwise. The charges of the atomic units are denoted by ¢
and R; is the distance between atom / and J. The parameters ¢;; and o;; describe the shape
of the Lennard-Jones potential. As a first step in the development of the OPLS-AA force field,
most of the parameters were adopted from the OPLS-UA force field[139-141], the predecessor
of OPLS-AA. UA stands for “united atom” and means that not all atoms are treated explicitly
[as it is done in the OPLS-AA (all-atom) approach]. In fact, the hydrogen atoms attached to
aliphatic carbon atoms are treated implicitly by adjusting the parameters for the carbon atoms
accordingly. For the OPLS-AA force field, the parameters that were adopted from the OPLS-UA
force field were refitted to the properties of organic liquids[139].

The bonded interactions include contributions associated with bond stretching, angle bending
and dihedral-angle rotations. Bond and angle deformations are described by harmonic springs
connecting the atoms, with K, and Ky denoting the corresponding spring constants:

Ebond = Z KT‘(R - ch)2 5 (33)
bonds

Eangle = Z KB (6 - eeq)Q 3 (34)
angles

R is the distance between the bonded atoms and R., denotes the equilibrium distance. Anal-
ogously, 0 is the angle between the atoms with 6, being the equilibrium angle. Most of the
force constants K, and Ky were adopted from the (pre-existing) Amber force field[139, 142]. The
energy as a function of the dihedral angles is represented by a Fourier series:

Frasson = Y -1+ cos(6)] + 2 [1 — cos260)] + 1 +eos3o)] . (39
where the sum runs over all torsional angles ¢;. The parameters V}, Vi, and Vi were obtained
from fitting to MP2 data for the alanine dipeptide[143] (see Section 3.3 for a description of the
MP2 method).

As well as the OPLS force field, other popular and widely used standard force fields include
Amber[142, 144] and CHARMM][145-147]. The Amoeba force field, which is developed in
the group of Jay W. Ponder[148], is a “next generation” force field moving away from the
fixed-charge model to a description that takes polarization effects into account.

Due to the high computational cost of first-principles methods, force fields are currently
the only feasible approach to sample the conformational space of large peptides or whole
proteins. However, their reliability is generally restricted by two limitations[138]: additivity

and transferability. Additivity is related to the potential-energy function, where it is assumed
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Figure 3.1: Top: Structural representation of the alanine dipeptide and its dihedral angles ¢ and .
Bottom: Contour maps of the alanine-dipeptide Ramachandran (¢,1))-surface computed with the OPLSAA,
Amber99sb, AmoebaPro13 force fields and at the density-functional theory (DFT) level of theory using the
PBE+vdW functional. A grid spacing of 10° was used. Contour lines are drawn every 20 meV. The color
code gives the energy relative to the respective global minimum. For the PBE+vdW plot, we increased the
grid spacing to 5° for ¢ between -180° and -120° and for ) between -80° and 0° to obtain a better resolution

However, as slight changes in the angles involve large changes in energy, there are still some small artifacts
visible in this region.
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that, for all systems, the potential energy can be expressed as a sum over different contributions
with a rather simple physical interpretation. Transferability refers to the parameters. They are
determined based on a (necessarily limited) set of systems and structures and it is questionable
to what extent they can be used to describe a much wider range of systems. In fact, it is well
known that the detailed PES of different force fields differ (manifested, e.g., in Ramachandran
plots[13, 14]), and that larger-scale conformational properties can also deviate[149-152]. We
illustrate this here based on the example of the Ramachandran surface of the alanine dipeptide
that we computed with the OPLSAA[143], Amber99sb[153] and the higher-level polarizable
AmoebaPro13[154] force fields (see Fig. 3.1). For a comparison, we also calculated the same at a
first-principles level of theory (density-functional theory (DFT) with the PBE+vdW functional,
explained in more detail in Section 3.5). We explored the (¢, 1) dihedral-angle space using a two-
dimensional grid with a spacing of 10° for both dihedrals. For each of the 1296 grid points, we
performed a geometry relaxation with constrained ¢ and 1) values using the respective method.
For the force-field part, version 6.2 of the Tinker program[155] was used and for the PBE+vdW
calculations, we employed the “Fritz Haber Institute ab initio molecular simulation” (FHI-aims)
code with the PLUMED][156] interface (see Section 3.6 for more details on FHI-aims).

The contour plots of the Ramachandran surface obtained with the different methods are
depicted in Fig. 3.1. While they look qualitatively similar, they indeed show differences, e.g., in
the position of the local minima and maxima. The local minimum at around (¢ = —110°,3) = 10°)
of the PBE+vdW surface is not found by any of the force fields. Still, both the OPLSAA and
the AmoebaProl3 data resemble more closely the PBE+vdW results than Amber99sb, with
PBE+vdW being the highest-level theoretical method tested here. In this context, it is interesting
to note that both the torsional parameters of the OPLSAA and the AmoebaPro13 force field
have been determined by fitting to the Ramachandran surface of the alanine dipeptide obtained
using (single-point) MP2 calculations (the MP2 method will be explained in Section 3.4). The
torsional parameters are traditionally determined as the last step in the parametrization process
so that the total force-field energy is effectively fitted to reflect the training data, in this case the
Ramachandran surface of the alanine dipeptide. On the other hand, for the parametrization of
the torsional parameters of the Amber99sb force field, no alanine dipeptide data was used, but
MP2 energy differences of alanine and glycine tetrapeptide conformers. Together with the fact
that the OPLSAA and the AmoebaProl3 data are more similar to the higher-level PBE+vdW
results this highlights once again the transferability problem of force fields. They perform well
for the set of structures they were actually parametrized for, but transferability to different sets
of structures can not be guaranteed. In the following, we will discuss first-principles methods
for describing the PES of molecules based on the solution of the SGE. Such approaches have a
wider range of validity due to their more rigorous quantum-mechanical footing.
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3.2 THE QUANTUM-MECHANICAL MANY-BODY PROBLEM

The properties of a piece of matter, composed of nuclei and electrons, are determined by the
fundamental laws of quantum mechanics. The SGE[157] in its time-independent form reads:!

\I}n({Rl}v{wz}) = gnqln({RI}v{wz}) ) (3.6)

where ¥, are the eigenvectors and &, the corresponding eigenvalues, with n = 0 corresponding
to the ground state. ¥,, is a many-body wave function depending on the set of coordinates of
the nuclei ({R;},I =1... N, ) and the set of spatial coordinates r; and spin coordinates o; of
the electrons with {x;} = {(7;,0;)} withi = 1... No. Ng is the number of electrons and N,; the
number of atoms in the system. H denotes the Hamiltonian operator, here written in atomic

units?:
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3.7)
Mj is the mass and Z; the atomic number of the corresponding nucleus. 7}, is the kinetic energy
operator for the nuclei and 7., the electronic kinetic energy operator. V.. denotes the electron-
electron interaction, V,,, the nuclear-nuclear interaction, and Ven the electron-nuclear interaction.
Although we can write down a mathematical correct framework that determines the properties
of the system under study, the critical point is to find the many-body wave function, which is a
complex object depending on all nuclear and electronic coordinates. In order to solve the SGE
for realistic systems, it is thus crucial to find suitable approximations. The first approximation
usually applied is the Born-Oppenheimer approximation, which is discussed in the next section.

3.2.1 THE BORN-OPPENHEIMER APPROXIMATION

The physical reasoning behind the Born-Oppenheimer approximation[160] is based on the huge
mass difference between electrons and nuclei. The lightest nucleus, a single proton, has a mass
mp that is about 1800 times larger than the mass of an electron m.. This suggests that electronic
and nuclear motion can be (approximately) decoupled. Upon a possible motion of the nuclei,
the electrons — or strictly speaking the electronic wave function — will instantaneously adjust
to the new nuclear positions. Meanwhile, they will always stay in the same electronic state;
the movement of the nuclei does not induce electronic transitions. This is the “adiabatic” or
Born-Oppenheimer approximation. Mathematically, this decoupling of electronic and nuclear
motions can be realized by a product ansatz of the total wave function:

Ypo({Ri}, {zi}) = O{Ri})®n({Ri}, {zi}) (3.8)

10ne should bare in mind that the universal equation naturally accounting for the spin of the electrons and relativistic
effects is the Dirac equation[158, 159]. However, solving the SGE is suitable for the problems treated in this thesis.
2We will use Hartree atomic units throughout the rest of this thesis, unless explicitly stated differently.
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where ®,,({R;}, {z;}) denotes the electronic part of the wave function and ©({ R;}) indicates
the nuclear wave function. ®,,({R;}, {x;}) is a solution to the electronic SGE

o, ({Ri}, {zi}) = EL({Ri})2n({Ri ) {=i}) (3.9)
with the electronic Hamiltonian
He =T+ Vet Ven . (3.10)

@, ({R;}, {x:}) defines the electronic wave function for a fixed configuration of the nuclei, where
the eigenvalues ES({R;}) depend on the nuclear positions. As # does not direcly act on the
nuclear coordinates { R; }, they are solely parameters in ®,,({R;}, {x:}).

If the ansatz Upo({ R}, {x:}) (Eq. 3.8) is put into the SGE, one finds:

(T + Van + HO)O{ R )P, ({ R}, {=:}) (3.11)
= ®,({Ri}.{=:}) - VinO({Rs})

+on({ R}, {zi}) - E ({Ri}) ({R:})
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The assumption of the Born-Oppenheimer approximation is to neglect the last two terms. They re-
sult from the nuclear kinetic-energy operator acting on the nuclear coordinates in ®,,({R;}, {x;})
and decrease with - [1 36]. Thus, in the limit of infinite proton mass the approximation becomes
exact. In this case, the nuclei move in an effective potential

V({RI}) = Vnn({RI}) + Ei({RI}) : (3'12)

For n = 0, i.e., for the electronic ground state, E§({R;}), this effective potential is called the
Born-Oppenheimer surface or potential-energy surface (PES) V3. A more detailed account of
the Born-Oppenheimer approximation can be found, e.g., in the book by J. Kohanoff[136].

The Born-Oppenheimer approximation reduces the quantum many-body problem in Eq. 3.6
to an electronic-structure problem that involves solving the electronic time-independent SGE,
Eq. 3.9. The following sections focus first on wave function-based approaches, which aim at
finding accurate approximations to the electronic wave function. Subsequently, density-based
approaches are discussed, where not the wave function is the focus of interest, but the electronic
density.

3.3 HARTREE-FOCK METHOD

The electron-electron interaction Ve, = D Nen Z; 4i Tri—r;] couples the spatial coordinates of
J

\r
the electrons. Thus, a simple product ansatz of one-electron wave functions generally does
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not yield a solution to the SGE. However, one can pursue such an approach to find an upper
boundary for the ground-state energy Ey of the system (Hartree method[161, 162]). According
to the variational principle the expectation value of the energy for any trial wave function (not
equal to the ground-state wave function) is always larger than the ground-state energy Ey:

EO < EHartree = <(I)Hartree

| Prtaviree) (3.13)

where ®pariree is the product function of one-particle wave functions yielding the lowest energy
under the contraint of (Pyartree| Prartree) = 1. However, electrons are fermionic particles;
according to the Pauli principle their wave function has to be antisymmetric, i.e., it has to change
sign upon the exchange of two particle coordinates:

CI)(...,$Bi,...,:I§j,...)=—@(...,.’1}]’7...7.’Bi,...) . (314)

An extension to the Hartree-method is the Hartree-Fock method, where the wave function is
written as a Slater determinant of single-electron orbitals[163, 164]. The mathematical form of a
determinant naturally yields the antisymmetry of the wave function with

pir(x1)  p2(x1) o N, (T1)
cDHF({mi}): ]1[1! <P1(.$2) 902(‘332) @Nol.(a:2) ’ (3.15)
e1(@ng)  p2(2N,) 0 eNa(TNg)

where {x;} = {(r;,0;)} again captures the spatial and spin coordinates for electron ¢, while {¢;}
indicate a set of orthonormalized one-electron spin orbitals. The Hartree-Fock energy can then
be written as

Nei

2
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Exchange integral K;;
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The first term can be associated with the kinetic energy of the electrons. The second term involves
the electron-nuclei interaction, i.e., the Coulomb energy of the electronic charge density in the
electric field generated by the nuclei. The third term is denoted as the Hartree energy and is
composed of a sum over the so-called “Coulomb integrals” as highlighted in the equation. Its
physical interpretation is a classical Coulomb energy between two charge distributions. The only
difference to the fifth term, the exchange energy, is that the coordinates of the spin orbitals in the



30 Theoretical methods to describe the energy landscape

integrals are exchanged. Hence, the name ”exchange integrals”. The exchange enerqy associated
with the exchange integrals is a quantum phenomenon, which does not have a classical physical
explanation. It arises through the ansatz of the wave function as an antisymmetrized product of
one-electron spin orbitals and couples only electrons in the same spin state.> Thus, the energy
increases if electrons with the same spin come closer to each other. This fulfils Pauli’s principle,
which in a single-particle picture states that two electrons with the same spin cannot occupy
the same state. The self-interaction, namely the case j = ¢, exactly cancels in the Coulomb and
exchange integrals. Thus, i = j can be included in both sums, where the Hartree-Fock method
itself remains self-interaction free by construction. With the expression for the energy at hand,
the variational principle can be applied to find the Slater determinant yielding the lowest energy.
The variational expression reads:

s | prF _ ZZAU (/ of (x;)pj(x;)da; — 5”) =0 . (3.17)

The variation of the energy with respect to infinitesimal small changes of the spin-orbitals
d¢f (xz;) needs to be zero under the additional constraint of ortho-normalized spin orbitals.
The latter is accounted for by employing Lagrange multipliers. When this is explicitly carried
out, one arrives at a set of single-particle equations for the spin orbitals, termed the “Hartree-
Fock equations”. In this way, the many-body problem is reduced to a set of coupled effective
one-particle equations[136]*:

) vz Yo g
Fipi(zi) = <—2Z - Z 1“,—11%]|> wi(x;) (3.18)

+Z (/ ©j(x;) Zirj%(wj)dwj) piai)

jij%(mi)

_iii (/ ‘/’;(mj)mirj%(wj)dwj> ©;j(i)

f(ijsw(fﬂi)

= gipi(x;)

The Hartree-Fock equations constitute a self-consistency problem; the solution to the equations,
i.e., the orbitals, depends on the orbitals in turn. One approach to solve this self-consistency
problem is to expand the single-electron spin orbitals into a suitable basis set and solve the
equations based on an initial guess for the Slater determinant or an initial guess for the effective
potential. Using the solutions the equation can be set up and solved again. This procedure is
repeated until the solution does not change anymore, i.e., when self consistency is reached.

3This can be seen if the exchange integral is explicitly carried out: [ dx = [ dr®3"_, where r are the spatial and o the
spin coordinates. ; can be separated into a spatial and a spin part ¢;(x) = Ai(r) - x;(0) with 3°_ X7 (o)xi(0) = dsj,
i.e., the exchange integral is zero if ; and ¢; are not associated with the same spin state.

“The orbitals can be chosen to fulfil Eq. 3.18. In principle, € is a matrix. For details, see e.g., Ref. [136].
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The Hartree-Fock energy in terms of the eigenvalues ¢; reads:

Nei 1 Ne1 Ne
BT =3 ei- 3 DX Uy —Ky) (3.19)
i i i

where J;; and K;; are the Coulomb and exchange integrals, respectively, defined in Eq. 3.16.
The eigenvalues ¢; can be interpreted in terms of (approximate) ionization energies (Koopmans’
theorem[165]). Assuming that the remaining orbitals do not change upon removing one electron
from orbital i, the ionization energy I can be calculated as I; L EFF(Ng — 1) — EYF(Ny) ~ —¢;.

3.4 BEYOND HARTREE-FOCK THEORY: ELECTRON
CORRELATION

By construction, the Hartree-Fock method yields the best approximation to the many-body
wave function solution of the SGE based on a single-determinant ansatz. The exchange integral
couples electrons with the same spin state. However, also electrons with different spin states are
correlated via the non-local two-body Coulomb operator ; .

ri—r;|”

Due to the single-determinant
ansatz in the Hartree-Fock method, the electron “sees” only the mean field of the other electrons.
Quantum correlation (with the exception of Pauli correlation) is not captured. In fact, the
quantum-chemical definition of the correlation energy is the difference between the true ground-
state energy Fj associated with the correct many-body wave function and the Hartree-Fock
energy: Feor = Eg — E%F = E....[135, 136].

To capture the electronic correlations, one has to go beyond a single-determinant ansatz. As
the Hartree-Fock method usually captures about 99% of the total energy[136], this is often done
by using the Hartree-Fock solution as a starting point. If the Hartree-Fock problem is solved
by expanding the orbitals in a basis set of P (linear independent) basis functions, one obtains
Ne1 occupied and (P — Nej) unoccupied single-electron spin orbitals. Based on the Hartree-Fock
wave function, i.e., the ground-state wave function which involves all occupied orbitals, one can
construct determinants that involve unoccupied states, termed excitations. A Slater determinant,
where one electron is excited from an occupied to an unoccupied state is called a single excitation
or single in short and is usually referred to by the letter S. A determinant with two electrons
being promoted to unoccupied states is a double excitation, double or D. Analogously, one defines
triple excitations (triples, T), quadruple excitations (quadruples, Q) and so on and so forth. The
number of possible determinants involving excited states grows combinatorially with ( ]\i 1). If all
possible determinants are included in the ansatz for the many-body wave function the method
is referred to as full configuration interaction (CI). In the limit of a complete basis set, an ansatz
involving all possible determinants yields the true many-body wave function. However, due to
the combinatorial explosion, in practice normally a truncated CI version is used, i.e., only certain
excitations are included. CIS refers to an ansatz, where single excitations are involved, in CISD
singles and doubles are included and so on. The advantage of Cl is that it is variational at each
truncation level, i.e., the best wave function within the given ansatz always yields the lowest
energy. However, truncated CI methods are not size extensive, which means that the energy
does not scale linearly with the system size (number of particles). This is, e.g., a problem for the
calculation of binding energies.
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Another method to go beyond a single-determinant approach is to add correlation on top of
the Hartree-Fock solution in a perturbative way. This was performed first by Meller and Plesset

in 1934[166] and will be covered in the next section.

3.4.1 M@LLER-PLESSET PERTURBATION THEORY

If the Hamiltonian # of the underlying problem differs only by a small perturbation from a
Hamiltonian H°, where the solution is known, one can split the full Hamiltonian # into two
parts:

H=H '+ \AH (3.20)

where AA# is small. Furthermore, 720@50) = Ez-(o)q)EO), with Ei(o) and <I>Z(-O) denoting the unper-
turbed eigenvalues and eigenstates of H°. The eigenvalues and eigenstates of # can then be
expanded in terms of A

E = EY 4 ED +XEP 4. | (3.21)
o, = o 40V a0+ (3.22)
One finds that
BV = (ol |af|e”) (3.23)
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The sum in Eq. 3.24 runs over all eigenstates of #°. Perturbation theory is covered in all standard
quantum-mechanics textbooks. For further details see, e.g., Ref. [135, 167].

The idea of Mgller and Plesset in 1934[166] was to define the reference Hamiltonian as the
sum of Fock operators H#° = 3" Net £, where the Fock operators were defined in Eq. 3.18. The
actual Hamiltonian of the system is then H = H° + A with

Nei Nei
-3 POICEE O (29)

i jF£i

where K;; and J;; are the exchange and Coulomb operators defined in Eq. 3.18. The unperturbed
eigenstates of /" are the Hartree-Fock Slater determinants with the ground-state wave function

(O) = ®HF and the ground-state energy Eéo) = Zﬁvﬁl ¢;, where the sum runs over all occupied
orbltals. The unperturbed energy plus the first-order correction corresponds to the Hartree-Fock

energy:

EMPI +E (1) — 25 + = ZZ ij ZZ ij = z] EHF ) (3-26)

which is easily seen by comparing to Eq. 3.19. The second-order correction to the energy involves
all eigenstates of H°, i.e., all possible determinants that can be constructed from the Hartree-Fock
orbitals involving all possible excitations. Basically, these are all determinants that would be
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used in a full CI calculation. However, taking the Hartree-Fock determinant as the reference
state in Eq. 3.24, all matrix elements that involve excitations higher than second order are zero as
A7 is a two-body operator and the Hartree-Fock orbitals are orthonormal. Single excitations do
not contribute according to Brillouin’s theorem[135]. Thus, the second-order correction to the
energy includes only double excitations and reads

virtual virtual occ occ 0 ~ i
B | AH| 2|2

ZEED D ID D) I

v p<v i j<t

(3.27)
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with ®{/* denoting a determinant where two electrons have been promoted from occupied
states 4 and j to the virtual states ;» and v. The sum Eéo) + E(()l) + EéQ) is called the MP2 energy,
Enpe. If P again denotes the number of basis functions, the computational effort of MP2 scales
as P°. It is the most popular correlated method as it scales relatively well compared to other
methods (e.g., coupled-cluster theory, which will be explained below) and typically accounts for
80-90% of the correlation energy[136]. However, one drawback of the MP2 method is that it relies
on the quality of the approximation of the Hartree-Fock wave function to the real many-body
wave function. If HF does not yield a good approximation, MP2 will fail as well.

3.4.2 COUPLED-CLUSTER THEORY

Another method to introduce correlation beyond the Hartree-Fock level is coupled-cluster theory.
Originally formulated for problems in nuclear physics[168], it has been used in the realm of
quantum chemistry since the mid 1960s[169]. Its truncated version CCSD(T) (explained in more
detail below) is often referred to as the “gold standard” of quantum chemistry as it yields very
high accuracy, while still being computationally feasible with a scaling of P7[170-172]. In fact,
based on CCSD(T) calculations chemical accuracy or even subchemical accuracy, i.e., errors
lower than ~1 kcal/mol or 43 meV, can be obtained for the interaction energies of molecules
with usual system sizes of up to ~ 30 light atoms[171]. CCSD(T) calculations are often employed
for benchmarks[173, 174] and would be the ultimate goal for the (large) molecules dealt with
in the present thesis. However, the unfavorable scaling makes it infeasible for the system sizes
treated in this work (108 to 440 atoms). Nevertheless, a brief account is given in the following.
The wave function in coupled-cluster theory reads[136]

POC = TP (3.28)
where ®HF is the Hartree-Fock Slater determinant and 7 is the cluster operator (not to be
confused with the kinetic-energy operator), which is composed of a series of operators T},

T=Ty+To+Ts+Ty+--+Tn . (3.29)

The operators T, create all possible excitations up to a certain order N. T} generates single
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excitations, 75 generates double excitations and so on:

virtual occ
ne" = Y N e (3.30)

virtual virtual occ occ
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where t denote the excitation coefficients. The exponential function can be expanded yielding

o Z it <T2 ; ;Tl) ; (Tg B+ éTf”) S (3.31)
where the terms producing the same order of excitations are grouped together. The first term
reproduces the Hartree-Fock wave function and the second term generates all single excitations.
The terms in the first bracket generate double excitations, where T3 produces connected double
excitations and 77 disconnected double excitations, and so on. By generating the wave function
in this way, coupled-cluster theory and also all truncated versions of 7' become size extensive,
i.e., the computed energy scales properly with the system size.

In practice, only truncated versions of the cluster operator 7' are computationally feasible. The
method based on 7" = Ty + 75 is called CCSD and scales with PS. CCSDT, i.e., T =Ty + 1o + 15,
scales with P®. Often the triple excitations are treated perturbatively, referred to as CCSD(T),
which reduces the scaling to P7. For further details, the reader is referred to Refs. [135, 170, 175].

3.5 DENSITY-FUNCTIONAL THEORY

The quantum-chemistry methods discussed in the previous sections focus on the wave func-
tion as the central quantity. As the name density-functional theory (DFT) implies, here, the
fundamental quantity is the electronic density, which is defined as

q>> : (3.32)

The electron density is real-valued and positive. It depends on three spatial coordinates, which
is a large simplification compared to the many-body wave function ®, which is a complex
function of 4N coordinates (spatial and spin coordinates). The formal foundation of DFT is the
Hohenberg-Kohn theorem[176]. It contains two statements:

1. The ground-state electron density ng(r) uniquely defines the external potential v***(r),
except for an additive constant (v***(r) corresponds to the electron-nuclei interaction

_ Zﬁvm o —ZII?,I\ plus possible other external fields). This implies that no(r) also defines the
many-body wave function (ground and excited states) and thus, that all observables of the
system are unique functionals of the ground-state density.

2. The energy of the system can be written as a functional of the density £ = E[n| =
Fuk[n] + [v®**(r)n(r)dr for any external potential. Fux[n] = T'[n] + Eee[n] is a universal
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functional, which contains the kinetic-energy functional T'[n] and the electron-electron
interaction energy functional Eee[n]. The ground-state energy Ej is the global minimum of
E[n], which is obtained by the exact ground-state density no, i.e., E[n] > Ey = E[ng].

Proofs for these theorems can be found in the literature, e.g., in Ref. [137]. The original
proofs by Hohenberg and Kohn[176] were conducted for systems with non-degenerate ground
states. However, it can be shown that the Hohenberg-Kohn theorem is also valid for systems
with degenerate ground states[177, 178]. The second part of the theorem states that there is a

variational principle for E[n] and thus provides a recipe how to obtain the ground-state density.

5 {E[n] .y (/n(’r)dr _ Nel> } —0 (3.33)

where ;1 is a Langrange parameter that ensures the conservation of the particle number N.

For any variation on(r)

However, the universal functional F[n] is not known such that Eq. 3.33 does not provide
a practical solution. The most widely used approach, which allows for a practical use of the
Hohenberg-Kohn theorem, was introduced in 1965 by Kohn and Sham[179] and will be discussed

in the next section.

3.5.1 KOHN-SHAM EQUATIONS

The basic idea of the Kohn-Sham ansatz[179] is to map the interacting system of electrons onto an
auxiliary system of non-interacting electrons with the same electronic density. The solution of the
SGE for a non-interacting system of particles at 7' = 0K is a Slater determinant of one-electron
orbitals ¢; with the electron density

Nei
n(r)=>_lel* (3.34)

The kinetic energy for this non-interacting system is known and reads
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where the subscript s stands for single particles. The complete ansatz from Kohn and Sham for
the energy functional is

E[n] = Ti[n] + /ve"t(r)n(r)dr + EYn] + EXC[n] . (3.36)
E"[n] is the Hartree-energy term, which describes the classical Coulomb interaction of two

1 n(r)n(r’) /
EY = 3 / / Wdrdr : (3.37)

The exchange-correlation functional

charge distributions

E*® = Fux[n] — T.[n] — E[n] (3.38)
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captures everything that is not accounted for by approximating the kinetic-energy functional
as the kinetic-energy functional of non-interacting particles and by approximating the electron-
electron interaction with the Hartree energy. This means the exchange-correlation energy
contains the kinetic correlation, the exchange energy (arising from Pauli’s principle), the correla-
tion energy, and the self-interaction correction. The latter is the error in the Hartree energy term
that arises by the electrons interacting with themselves, which is easily seen when considering a
one-electron system: even for a one-electron system, the Hartree energy would incorrectly yield
a non-zero contribution. Hartree-Fock theory, on the other hand, is self-interaction free as the
self-interaction term arises in the exchange term with the opposite sign and thus exactly cancels
with the self-interaction term in the Hartree energy. Applying the variational principle to the
Kohn-Sham energy functional (see Eq. 3.33) yields

0T3[n]

eff
= 3.39
67’7/(7') + v (T) /J’ ’ ( )
with the effective potential v°f (r):
ft t n(r’) . xc
v (1) = v (p) +/ = 7a,|dr + 0™ (r) , (3.40)
where the exchange-correlation potential is defined as vX¢(r) = 5?:5 [)”] . As T[n] is the kinetic

energy of a system of non-interacting particles, this equation corresponds to the case of single
particles moving in an effective potential v (r). The single-particle orbitals ¢; satisfy one-

particle Schrodinger equations

2
{v2 + veﬁ(r)} pi(r) =cipi(r) (3.41)

which are known as the Kohn-Sham equations. The Kohn-Sham equations are effective single-
particle equations as v° () depends on the electron density, i.e., they constitute a self-consistency
problem similar to the Hartree-Fock equations (Eq. 3.18).

After solving the Kohn-Sham equations, the density of the interacting system can be calculated
using Eq. 3.34 as the auxiliary non-interacting system was chosen to have the same density as
the interacting system. The Kohn-Sham energy in terms of the eigenvalues reads:

Nei
Egsn] =Y & — E" — / vXC(r)n(r)dr + EXCn] . (3.42)

However, the problem that remains is that the exact expression for the exchange-correlation
potential is unknown and approximations have to be found.

3.5.2 APPROXIMATIONS TO THE EXCHANGE-CORRELATION FUNCTIONAL

Since the beginnings of Kohn-Sham DFT there has been a great effort to find the best approx-
imation to the exchange-correlation functional. Perdew classified this zoo of functionals in a
Jacob’s ladder picture[180], where the Hartree approach is located on earth and the functional
that yields results with chemical accuracy (i.e., with errors that are smaller than ~1 kcal /mol
or 43meV) placed in heaven. The different rungs of the ladder are constituted by functionals
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with increasing levels of complexity. However, one should bear in mind that a higher level of
complexity does not necessarily imply a more accurate description. There can be functionals on
a higher rung that perform worse for a certain set of systems than a functional on a lower rung.

The functionals on one rung itself can be divided into two philosophical directions: non-
empirical and empirical. In the former, free parameters are chosen in a way that satisfies physical
constraints, while in the latter the free parameters are fitted to reference data.

3.5.2.1 LOCAL-DENSITY APPROXIMATION

The first rung of Perdew’s ladder is the local-density approximation (LDA), which was already
proposed in the original paper by Kohn and Sham[179]. The idea behind this approximation
is to reduce the problem of the unknown exchange-correlation functional to a well-known
model system, the homogeneous electron gas (HEG), as a starting point. One can rewrite the
exchange-correlation (XC) energy

EXCln(r)] = / Xl n(rydr (3.43)

in terms of the energy density per particle X¢[n].

In the LDA the system is divided into bins, where the electron density is assumed to be
constant. In all bins the exchange-correlation energy density is then taken to be the energy
density of the homogeneous electron gas with the corresponding electron density. In the limit of
infinitesimal small bins this reads:

EXS\[n(r)] = / XSa(n) n(r)dr . (3.44)

The exchange-correlation energy of the homogeneous electron gas can be divided into an
exchange and a correlation part:
elfc = fhec teHEe - (3.45)
The exchange part is known analytically[181, 182] with e, [n] o< n!/3. For the correlation part
the low-density limit was determined by Wigner[183] and the high-density limit was determined
by Gell-Mann and Brueckner[184]. For the intermediate range, very accurate quantum Monte
Carlo data exists from Ceperley and Alder [185]. Different types of LDA parametrizations
basically differ in the way how this data was interpolated. The most common parametrizations
are the Perdew-Zunger[186], Perdew-Wang[187], and Vosko-Wilk-Nusair[188] forms of LDA.
LDA generally performs well for “well-behaved” solids, i.e., covalently bonded, ionic or
metallic systems. This is partly due to an error-cancellation effect: While the exchange energy
is typically underestimated, the correlation energy is typically overestimated in LDA[181].
Generally, LDA tends to overbind, i.e., lattice parameters are too small and cohesive energies
are too large[136]. Approximating the exchange-correlation energy at each point in space by
the exchange-correlation energy of a homogeneous electron gas presumes that the density of
the system varies only slowly. For systems with rapidly varying densities, i.e., for instance
molecules or atoms, LDA fails to correctly describe their properties. The next generation of
exchange-correlation functionals, which occupy the second rung of Perdew’s Jacob’s ladder,
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tries to account for this.

3.5.2.2 GENERALIZED GRADIENT APPROXIMATION

The most evident way to improve on LDA is to take into account the information of the inhomo-
geneity of the density. The first effort in that direction was the gradient-expansion approximation
(GEA) usually written as

X0 = XS0 n(r)] - FXCn(r), Vn(r),...] , (3.46)

where FXC

is the so-called enhancement factor, which represents an expansion in terms of the
gradient and higher-order derivatives. However, high-order expansion coefficients are hard to
calculate and lower-order expansions were found to not necessarily improve on LDA. On the
contrary, they often yield worse results because they violate physical constraints [136, 189-193].

It turned out that choosing a general type of FXC

as a function of n(r) and Vn(r) instead of a
Taylor expansion yields much better results[136]. These types of approximations are referred
to as generalized gradient approximations (GGAs). The GGA-type functionals occupy the
second rung of Perdew’s Jacob’s ladder. The generalized form of FXC offers flexibility for
parametrization. Correspondingly, there exist many different GGA functionals. The first GGA
functional was proposed in 1981 by Langreth and Mehl[194]. In the physics community the
most widely used GGA is the PBE functional[15], which is named after its developers Perdew,
Burke, and Ernzerhof. Its parameters were determined by imposing physical constraints, i.e., it
is non-empirical. On the other hand, B88, named after its developer Becke and the year when it
was proposed (1988)[195], is a formulation of the exchange energy where the parameters were
fitted to Hartree-Fock calculations. It is very often used together with the correlation energy
proposed by Lee, Yang, and Parr (LYP), which then goes by the name BLYP[196].

Due to the dependence on the gradient of the density Vn(r), GGA functionals are often
referred to as semi-local. In general, they make up for many of the deficiencies of LDA. Cohesive
energies, atomization energies, and lattice parameters are improved, where the latter are typically
slightly overestimated. Additionally, GGAs yield better results for the energetics of hydrogen-
bonded systems[197, 198].

3.5.2.3 HYBRID FUNCTIONALS

In Hartree-Fock theory, the exchange energy is described exactly and the self-interaction is
completely cancelled. However, the Hartree-Fock approach lacks the correlation energy and
adding correlation corrections on top of Hartree Fock (see Section 3.4) has an unfavorable scaling
with system size. On the other hand, one critical point of the semi-local exchange-correlation
functionals in DFT is the insufficient cancellation of the self-interaction error. It is thus a
promising route to couple Hartree Fock theory and density-functional approximations in order
to reduce the self-interaction error present in the latter[199]. Those efforts result in the class of the
so-called hybrid functionals, where a certain fraction of exact exchange in the spirit of Hartree-
Fock is mixed into the exchange-correlation functional. In contrast to Hartree-Fock theory, where
the Hartree-Fock orbitals are used, in DFT the exact-exchange (EX) integral (see Eq. 3.16) is
written in terms of the Kohn-Sham orbitals. Becke[199] showed that the construction principle
of hybrid functionals can be rationalized based on the adiabatic-connection formula[200-203],
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which gives an exact description for the exchange-correlation energy. Approximating the latter
yielded the ansatz[204]:

Eﬁ(y%rid = aE™ + (1 — ) ESpa + Eppa ) (347)
where DFA stands for density-functional approximation. The best choice for a should depend
on the system. However, the best single value for most molecules was determined to be v = 0.25
based on perturbation-theory considerations[204]. When using the PBE functional[15] in Eq. 3.47,
one arrives at the PBEO hybrid functional[205, 206].

The DFT workhorse hybrid functional in the chemistry community is B3LYP[207, 208], where
the exchange-correlation energy is expressed as follows:

Ex§ixp = 0B + (1 — a0) Efpa + a1 (Efgs — Eipa) + (1 — a2) B¢y + a2 Efyp . (348)

The parameters o = 0.20, a; = 0.72, and a; = 0.81 were determined by fitting to a database of
atomization energies, proton affinities, ionization potentials, and total atomic energies[207, 209,
210]. EX;q denotes the exchange energy functional proposed by Becke in 1988[195], ES,p is the
GGA-type correlation energy by Lee, Yang, and Parr[196], and E{y,y is the parametrization of
the LDA correlation energy by Vosko, Wilk, and Nusair[188].

3.5.3 DISPERSION CORRECTIONS TO THE XC-FUNCTIONAL
APPROXIMATIONS

Van der Waals (vdW)?’ or dispersion interactions are ubiquitous in nature and, as discussed in
Section 2.1, it is crucial to take them into account when studying peptides and proteins[211].
They arise through quantum-mechanical fluctuations in the electron density of the atoms, which
lead to instantaneous dipole moments (and higher-order multipole moments). The instantaneous
multipole moments on one atom induce multipole moments on a second atom in turn. The
interaction of these multipoles results in an attractive force, known as London dispersion
forces in honor of Fritz London[40]. This is the definition of van der Waals interactions that
is common in physics and, as mentioned in Section 2.1, which we will use here. One has to
bear in mind, though, that in chemistry the term “van der Waals” forces refers not only to the
dispersion interactions, but includes also permanent dipole-dipole interactions and permanent
dipole-induced dipole interactions.

In a classical picture, the electric field of a dipole p; decreases with E; « p;/ R3, ie., the
dipole moment of an induced dipole in an atom at position R is p» = aE7 « ap:/ R3. The
potential energy of the first dipole in the field of the second dipole, i.e., the interaction energy
between the two dipoles, then reads E = —p; - B3 oc —ap?/RS. The magnitude of the interaction
depends on the polarizability « of the atoms, which is the proportionality factor between the
induced dipole moment of an atom and the external field causing the dipole moment.

In fact, the term proportional to R~¢ is the first term in an expansion of the dispersion energy

5Named after the Dutch physicist Johannes Diderik van der Waals.
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between two atoms in terms of the interatomic distance R[40, 212]°

oo

Ci
Edisp = - Z E s (349)

i=6,8,10,...

where C; denote the dispersion coefficients. In practice, often only the first term is kept, which is
(normally) the dominant term and determines the long-range behavior. In the correct quantum-
electrodynamical description, the polarizability becomes frequency dependent and the C§'Z
coefficient for the dispersion interaction between two atoms A and B reads[213]:
C4P = % /OO ax(iw)ap(iw)dw . (3.50)
0

The accuracy of DFT with respect to the description of dispersion interactions depends greatly
on the XC functional. Along with the tendency of LDA to overbind, LDA yields too small binding
distances and too high binding energies for van der Waals-bonded systems, while semi-local
and hybrid functionals tend to yield purely repulsive behavior or at least underbind[214-218].
Despite differences in the exact description and performance, it is well established that present-
day semi-local functionals cannot describe the R~¢ decay of the long-range tail of the dispersion
interactions correctly[211].

There are several approaches to make up for this deficiency. Various (hybrid) meta-GGAs
(where besides gradient corrections also the kinetic-energy density is considered) developed in
the group of Truhlar were parametrized to implicitly account for dispersion interactions[219-
222]. They partially depend on more than 30 parameters. However, while they partly mimic
dispersion interactions for small separation distances between the atoms, they miss the correct
description of the long-range tail[223]. Another approach pursued by Langreth, Lundqvist
and co-workers is to directly construct a non-local correlation energy functional, known as
vdW-DEF[224] and an improved version vdW-DF2[225].

A widespread approach to correct present approximations to the exchange-correlation func-
tional for the long-range tail of van der Waals interactions is to use pairwise approaches of the
form[16, 211, 226-235]:

AB
CV6

6 )
RAB

1
Edisp = _55 Z fdamp(RAB7 R?47 R%) (351)

A,B

where the energy correction ;s is then added to the DFT energy in an a posteriori fashion. The
sum runs over all atom pairs AB and the factor 1/2 corrects for double counting. R 4p is the
distance between the atoms and R and RY, are the van der Waals radii of the corresponding
atoms. Sometimes an overall scaling factor s is also used. In most cases, the damping function
Jaamp(Rap, R%, R%) is chosen such that the expression goes to zero for small R in order to
avoid singularities of R~% and to match the long-range vdW interaction with the short-range
contributions in the functional. Different schemes mostly differ in the shape of the damping
function and the way to determine the C'Z coefficients.

Most of the methods employing pairwise corrections are purely empirical and rely on fixed Cs
coefficients irrespective of the environment of the atoms[226-230, 234], with the DFT-D2 scheme

®Fritz London described the dispersion energy based on second-order perturbation theory, using a multipole expansion
for the perturbation potential.
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of Grimme[230] being one of the most widely-used approaches. However, the environment
of an atom crucially influences its polarizability. The Cy coefficient for carbon, for instance,
can vary by as much as about 50% for different hybridization states sp, sp?, and sp®[227].
Recently, Grimme and co-workers have suggested a new scheme called DFT-D3[231], where
atom-pairwise Cg coefficients are calculated based on first principles (time-dependent DFT).
They take system dependency into account by applying a concept of (fractional) occupation
numbers[231]. However, the dispersion coefficients do not depend on the electronic structure.
In this thesis, we use a method, where the C{'Z coefficients explicitly depend on the electronic
density. It was proposed by Tkatchenko and Scheffler in 2009[16] and we will refer to it as the
TS scheme. A short account on this method is given in the following.

3.5.3.1 TS SCHEME
Starting from the Casimir-Polder integral (Eq. 3.50) one can derive[16]:

204 4CEs

CAB _
6 7 a% a4, 2% ~BB
G+ G

(3.52)

where o and o9 are the static polarizabilities of atoms A and B, respectively. Based on
this formula, heteronuclear C§'? coefficients can be calculated from the knowledge of their
homonuclear counterparts.

The effective coefficients Cg" 7 in a specific environment are calculated based on the values
for the free atoms C"**4 via

off, AA vefa 2 free, AA
CG ’ = Vfree,A 06 / (353)

_ ITSnCHVA(T)dr ? Cfroc,AA
- J r3pfree, A (r)dr 6

The C’éree’AA coefficients and the static polarizabilities of free atoms are taken from the database
of Chu and Dalgarno[236]. The effective density n°®4(r) is obtained through Hirshfeld

partitioning[237]:
nA,free (7‘)

ZB nB,free(r) ’

where the sum runs over all atoms B in the molecule. For the evaluation of the van der Waals

n°f (1) = n(r) (3.54)

energy, Eq 3.51 is used (with no overall scaling factor s). The damping function employed takes

the form: )

1+ exp {fd (sfng _ 1)}

As mentioned earlier, RY s are the van der Waals radii with R% 5 = RY + RY,. The effective van

fdamp (RABa R%B) = (355)

der Waals radius of an atom in a molecule can be obtained from its free-atom van der Waals

) Vcﬁ' 1/3 )
RO — (Vﬁee> ROMree (3.56)

radius via:

The parameter d was set to 20 as it was found to have only a minor influence on the results in the
range between 12 and 45. The parameter sp controls the distance R4, at which the damping
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function approaches zero, and hence defines the onset of the dispersion correction. The best value
of sp thus depends on the functional that is employed. It was determined for several exchange-
correlation functionals using the S22 database[173].” The latter contains the accurate binding
energies of 22 non-covalently bonded dimers based on CCSD(T) calculations extrapolated to
the complete basis set limit. The 22 dimers are sorted into groups with predominant vdW-
bonded character, predominant H-bonded character and “mixed” complexes. Recently, Marom
et al.[223] assessed the performance of several XC functionals for these dimers with and without
including vdW interactions based on the TS scheme. For all functionals tested, the inclusion
of vdW interactions (TS scheme) improved the mean absolute error (MAE) to CCSD(T) for
all three groups of dimers. The performance of the PBE functional[15] coupled to the TS-
scheme (PBE+vdW) was explicitly benchmarked against CCSD(T) energy differences for 32
conformations of the alanine di- and tetrapeptide (see supplementary information of Ref. [44]
and Ref. [17]). It could be shown that the PBE+vdW functional yields very good results for such
systems, with a MAE of only 18 meV for the tested conformers.

3.5.3.2 MANY-BODY VAN DER WAALS INTERACTIONS

Obviously, pairwise schemes, such as the TS method, lack a description of non-additive many-
body effects that go beyond the pairwise contributions. As mentioned earlier, the influence of
the local environment on the polarizabilities is taken into account in the TS scheme by involving
the ground-state electronic density through Hirshfeld partitioning. However, the polarizability
of an atom is also influenced by the fluctuating dipoles originating at atom sites located at larger
distances (electrostatic screening). Recently, Tkatchenko and co-workers[238, 239] proposed a
method, here referred to as MBD@rsSCS or MBD* for short, that accounts both for many-body
dispersion contributions and screening effects. This is achieved by modelling the atoms in the
molecule as a collection of spherical quantum harmonic oscillators (QHOs), which are coupled
to each other via dipole-dipole interactions [coupled fluctuating-dipole model (CFDM)[240]].
The Hamiltonian for this model system reads[238]:

N, N, N
1 at 1 at at
H=-3 > Vit B} Dowixg > WXy TraXa (3.57)
p=1 p=1 p>q

where x, = ,/m,§, with £, describing the displacement of the QHO ¢ from equilibrium and
mq = 1/[oqw?]. The key ingredients are the characteristic excitation frequencies w,, the polariz-
abilities oy, and 7,4, a dipole-dipole interaction tensor, which we will address in more detail
below. After diagonalizing the Hamiltonian, the many-body dispersion (MBD) energy can be

obtained via:
3Nt

Nat
1 3 —

Enmpp = 3 E VA — 5 E Wp , (3.58)
1=1 p:l

where \; denote the eigenvalues of the Hamiltonian.

As mentioned earlier in this chapter, the adiabatic-connection fluctuation-dissipation (ACFD)
theorem[200-203, 241] gives an exact expression for the exchange-correlation energy. One of
the most popular approximations to evaluate the correlation energy in this framework is the
random-phase approximation (RPA)[242]. In fact, in can be shown that for the model system of

7For PBE s is 0.94.
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QHGOs coupled via a dipole-dipole potential the correlation energy of ACFD-RPA corresponds
to the energy expression in Eq. 3.58[243]. From this, we can see that the Hamiltonian in Eq. 3.57
captures screening effects as well as many-body energy contributions.

Local or semi-local DFT exchange-correlation functionals already efficiently account for short-
range correlation. In order not to double count short-range correlation, in the MBD@rsSCS
method a range-separation approach is used (“rs” stands for range separated). This is realized
by range-separating the dipole-dipole interaction tensor 7 into a long-range part 7r,r and a
short-range part 7sgr, where in the many-body Hamiltonian (Eq. 3.57) only the long-range part
is employed. In this way, the many-body Hamiltonian will include long-range screening, but
lack short-range screening effects. To account also for short-range screening effects, short-range
screened polarizabilities a;sSCS (and characteristic excitation frequencies) are obtained, which
are then used as input in the many-body Hamiltonian. This is done by again modelling each
atom in the molecule as a spherical QHO and employing the self-consistent screening (SCS)
equations from classical electrodynamics[244-246]:

N,

a;fSCS (iw) = ags (iw) + ags(iw) Z %R’pqagsscs (iw) , (3.59)
a7#p
where o715 (iw) denotes the frequency-dependent polarizability obtained from the TS scheme,

which already accounts for hybridization effects[16]. The positions of the atoms (QHOs) are

denoted by r, and r, with 7,, = |r, — r4|. By employing a short-range only dipole-dipole

rsSCS
p

are also obtained from the SCS equations described

interaction tensor 7sr, the polarizablities «

rsSCS
p

(iw) capture only short-range screening. The
characteristic excitation frequencies w
above.?

The short-range part of the dipole-dipole interaction tensor is given by

Tsrpg = (1= F(pg) Tpg (3.60)

where the dipole-dipole interaction tensor is defined as 7, = V,, @ V. W(ry). W(ry,) =
erf[r,q/(v/2R)]/rpq is the Coulomb potential for the interaction of two spherical Gaussian charge
distributions at distance 7,4, where R = | /R2 + R2 with R, = (1/2/ma;'5/3)!/3 being the width
of the Gaussian function. The function f(r,,) is the Fermi-type damping function as used also in
the TS approach (see Eq. 3.55). The parameter d in Eq. 3.55 is fixed to 6, while sy is determined
separately for each exchange-correlation functional by minimizing energy differences with
respect to the S66x8 database[174]. In principle, T1r is defined as Trr = T — Tsr. However,
T is frequency dependent,’ which is not computationally efficient. As only the long range
is described here, one can approximate 7rr as the product of the damping function and the
dipole-dipole interaction tensor of two point dipoles:

—3ra rb +72,0ab

Tir = f(rpq) = I;i
Pq

, (3.61)

8In more detail, the self-consistently screened characteristic excitation frequencies are calculated from the C§5¢S
coefficients, which are obtained by integrating the Casimir-Polder integral (see Eq. 3.50) using a"s5CS (see Refs. [16, 238]).
9The interaction potential is a function of the Gaussian width R, which depends on the polarizability, which is in turn
frequency dependent.
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where the indices a and b denote the Cartesian components of 7.
The evaluation of the MBD@rsSCS long-range correlation energy can now be summarized in

three steps:

1. In the first step, the polarizabilities are obtained in the TS scheme.

2. Then, the short-range (SR) range-separated self-consistently screened polarizabilites a5

are obtained using the SCS procedure defined in Eq. 3.59.

rsSCS

3. Using o and the long-range dipole-dipole interaction tensor 71, one can then evaluate

the many-body long-range correlation energy using Eq. 3.58.

The performance of the MBD@rsSCS method (MBD* for short) coupled with the PBE[15]
and PBE0[205, 206] exchange-correlation functionals (PBE+MBD*, PBEO+MBD*) was recently
benchmarked for peptides by Rossi and co-workers[247]. Additionally, the TS scheme was
assessed as well (PBE+vdW, PBEO+vdW). For the benchmarks, two test cases were addressed.
The first one was a set of 73 conformers of three-residue peptides, for which accurate CCSD(T)
energy differences exist in the literature[44, 248, 249]. The second test case was the larger and
experimentally extensively studied Ac-Phe-Alas-Lys(H™) peptide. For this peptide the presence
of four different conformers and tentatively their relative abundances have been experimentally
established[250, 251]. For the latter, the conformer-selective infrared-ultraviolet (IR-UV) double
resonance technique was used, which will be discussed in more detail in Section 7.1. Turning
to the first test case first, conformers of Gly-Phe-Ala (GFA), Gly-Gly-Phe (GGF), Phe-Gly-Gly
(FGG)[248], and Ac-Alaz-NMe[44, 249] were assessed yielding three conclusions[247]: (1) The
inclusion of dispersion corrections (both TS and MBD*) improves the performance of both PBE
and PBEQ. (2) For the peptides that contain a phenylalanine (Phe) residue, the PBEO functional
corrected for dispersion interactions (both TS and MBD*) performs better than the corresponding
dispersion-corrected PBE functional, while for Ac-Alaz-NMe the performance is similar. (3) The
performance of the TS scheme and the MBD* method are very similar. However, many-body
effects are expected to become more important with increasing system size.

For the second test case, the peptide Ac-Phe-Alas-Lys(H"), Rossi et al. found that the
PBEO+MBD* functional including zero-point energy corrections comes closest to explaining the
experimental findings of all methods tested including a recent study by Xie et al.[252], which
assessed 19 different semi-local and hybrid DFT exchange-correlation functionals.

This points to PBEO+MBD* being the most reliable functional for the peptide systems consid-
ered in this thesis. However, relaxation of 103-10* structures for systems with 108-220 atoms, as
needed for our conformational searches, is not computationally feasible with PBEQ as it involves
the calculation of the exchange integral (see Section 3.5.2). Furthermore, the forces for the MBD*
correction are only available in a finite-difference approach at present. For these reasons, we
employ PBE+vdW for the production calculations in this thesis. However, the limitations and
accuracy of PBE+vdW for the specific systems investigated in this work are assessed using
targeted calculations with PBE+MBD*, PBEO+vdW, and PBE0+MBD* for selected conformers.
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3.6 NUMERIC ATOM-CENTERED ORBITALS: FHI-ATIMS

The central problem of Kohn-Sham DFT is to solve the Kohn-Sham equations (Eq. 3.41). For this,

the Kohn-Sham orbitals ¢; are commonly expanded in an appropriate basis set {¢; }:

eil(r) = cjigi(r) (3.62)
J

where ¢;; denote the expansion coefficients. With the Hamiltonian 255 = —1/2V2 + v°f, the

Kohn-Sham equations can be written in the form of a generalized eigenvalue problem:
Z hijle =& Z SijCjl (363)
J J
with the Hamiltonian matrix elements
s = [ LS s (rar (69

and the matrix elements of the overlap matrix s;;

%=/@m%mw - (3.65)

A common choice for the basis functions are plane waves, used for instance in VASP[253] or
CASTEP[254]. Another option are localized basis functions. Gaussian-type orbitals, e.g., are a
preferred choice due to their convenient analytical properties and are used in a number of pro-
grams including NWChem[255] and TURBOMOLE[256]. The FHI-aims program package[257],
which is the DFT code used in this thesis, employs numeric atom-centered orbitals (NAOs).
FHI-aims is an all-electron/full-potential code that can treat both cluster-type and periodic
systems on equal footing. The NAOs take the form:

Vim(Q) . (3.66)

Y5, (€2) are the spherical harmonics and u;(r) is numerically tabulated. The latter is chosen to
satisfy Schrodinger-like radial equations:

1d> I1(1+1)

2 dr? r2

+0i(r) + veur (1) | wi(r) = iuq(r) , (3.67)

which are solved on a dense logarithmic radial grid. The potential v;(r) defines the shape of
u;(r) and is thus called the defining potential. The free choice of v;(r) renders u;(r) very flexible.
Specifically, in FEI-aims free-hydrogen like (v;(r) = Z°% /r with Z°% denoting the charge) and
self-consistent free-atom and free-ion (doubly-positive) radial potentials are used. Gaussian-type
functions can be employed as well. This is extremely valuable for direct comparisons with the
results of other DFT codes that use Gaussian basis sets. The potential vy is the so-called cut-off
potential, which ensures that u;(r) is exactly zero beyond a certain cut-off radius r¢y. It takes
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the form:
0 r < Tonset )
1
Ucut (T) - S exp (7 T’—;gnset) ' (r—rcut)? Tonset < 1" < Teut ’ (368)
8] T 2 Teut

The parameter s denotes a global scaling factor. Beginning with an onset at ropget, the cutoff
potential smoothly approaches infinity over a range w = rcut — Tonset-

The solution of the Kohn-Sham eigenvalue problem (Eq. 3.63) requires many numerical
integration steps, e.g., Eqs. 3.64 and 3.65. In FHI-aims, the integrand is broken down into
atom-centered fragments by using atom-centered partition functions[258]. The integration of
each fragment is then carried out individually on spherical atom-centered integration shells
[257, 259]. The specific choice of the basis functions in FHI-aims allows for an efficient scaling
of these integrations. As the basis functions vanish exactly beyond a radius 7y, these grid-based
operations (e.g., Egs. 3.64 and 3.65) scale with O(XV) in the limit of large system sizes (Where N
denotes the system size). Another advantage of the basis set choice is that due to the possibility
to choose the defining potential to be the potential of spherically-symmetric free atoms, the
(spherically-symmetric) free atom can be described exactly with only a small number of basis
functions. These are the occupied orbitals of the atom, called the minimal basis. This is beneficial
since the orbital shape close to the core does not change much even if the atoms bind and is thus
described almost exactly as well.

When using overlapping atom-centered basis functions, the so-called basis set superposition
error (BSSE) can arise through the overlap of basis functions centered at different atom sites.
When, e.g., considering atomization energies

Noat
AEatm _ Ecompound _ Z Eatom,i ; (369)

the full compound is described by a larger basis set than the individual atoms. This can improve
the energy for the full system compared to the free-atom energies, yielding wrong values for
AE*™ In FHI-aims, atomization energies (for DFT and non-spinpolarized spherical atoms)
do not suffer from BSSE as the free atoms are described exactly and any further basis functions
would not lower their energy. Molecular fragments, though, are not described exactly. However,
the fragmentation BSSE, i.e., the BSSE arising by comparing energies of different fragments such
as binding energies, is very small for DFT calculations using reasonably converged basis sets[257].
While DFT calculations only concern the occupied orbitals, explicitly correlated methods such as
MP2 involve sums over unoccupied states (cf. Eq. 3.27). In principle, they have to be summed
up to infinity, which presents a problem when using a necessarily limited basis set. This leads
to a slow convergence of energy (differences) with basis-set size and to large BSSEs even when
large basis sets are employed. Using the standard FHI-aims basis sets, Ren ef al.[260] found
that energy differences (e.g., binding energies) converge reasonably well with increasing basis
set size if a counterpoise correction is employed. In a counterpoise correction[261], the BSSE is a
posteriori removed by recalculating the energies of the fragments with the full basis set used to
calculate the energy of the whole system. Alternatively, Zhang et al. recently constructed NAO
basis sets that are suitable to converge total energies when using explicitly correlated methods
such as MP2.
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For a more detailed description, we will here focus on the standard FHI-aims basis sets.
In order to construct suitable and accurate basis sets for all elements in the periodic table, an
iterative procedure is used[257]. Starting from the minimal free-atom basis a single basis function
from a large pool of “candidate” functions is added. Then the LDA total-energy error for a
number of dimers at various separation distances is evaluated. The additional basis function,
which gives the largest improvement to the energy, is permanently added to the basis set. This
procedure is then repeated. In this way, hierarchical basis sets (for 102 elements in the periodic
table) have been constructed, which are organized into different tiers (levels) called tier1 to tier4.

In order to reach convergence of the target properties, not only the basis set has to be chosen
sufficiently accurately, but also the other computational parameters have to be set properly.
Distributed with the FHI-aims program package are a set of pre-constructed computational
defaults, categorized as light, tight, and really tight settings. For each element, these settings
define defaults for the size of the basis sets (in terms of the different tiers), but also specify
the integration grid and the accuracy of the calculation of the Hartree potential.!® Within each
default setting the basis-set size can be systematically increased or decreased by systematically
adding or removing tiers. Light settings allow for an initial assessment of energy hierarchies
and geometries, while tight settings should be used for “final” results.

In order to perform geometry relaxations, calculate normal-mode frequencies based on finite
differences or perform molecular dynamics (MD) simulations, total-energy derivatives (forces)
are needed:

Fi({R:}) = — 53 Voo({Ri}) (3.70)

The forces acting on a specific nucleus that originate from the electric field of the electrons and
the other nuclei are called Hellman-Feynman forces[262, 263]

N,
= Z[ZJ R]*T‘
FHF:E — == (R;j-R —/anidr . 3.71
! J;él‘RI*RJ‘S( 7= H) (r) ’\Rﬁr\?’ (371)

Due to the finite, atom-centered basis set and other approximations used in FHI-aims, two
classes of correction terms to the Hellman-Feynman forces have to be taken into account. One
correction term is arising from the truncation of the multipole expansion of the electronic
density used for the calculation of the Hartree potential. Another correction term is due to
the dependence of the basis functions on the atomic positions. They ‘'move” with R;, which
gives rise to the so-called Pulay forces[264]. Additionally, for GGAs a further correction term
has to be taken into account originating from the derivative of the density gradient. For more
details and the exact expressions implemented in FHI-aims, the interested reader is referred to
Refs. [257, 265].

10The Hartree potential is computed based on a multipole expansion of the electron density. The highest angular
momentum that is taken into account in this series determines the accuracy of the calculation and can be set explicitly by
the user.
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After having discussed methods for describing the potential-energy surface (PES) in the previous
chapter, this chapter is devoted to how molecules actually move on this surface and how it can
be sampled. We first give a description of molecular dynamics (MD) simulations and different
thermostats and then describe the sampling techniques used in this thesis.

4.1 MOLECULAR-DYNAMICS SIMULATIONS

In a usual MD simulation, the nuclei are treated as classical point particles, which move on the
potential-energy surface (PES) V({R;}), where { R;} denote the spatial coordinates of the nuclei
(see Section 3.2.1). The formulas discussed in the following are general with respect to the nature
of V({R;}). It can be the Born-Oppenheimer (BO) PES, but it can also refer to any empirical
energy function such as a force field.

The motion of the nuclei follows Newton’s equations of motion:
MRy = -V/V{Ri})=F (4.1)

where M7 is the mass of nucleus I and F7 is the force acting on nucleus I. In order to obtain the
trajectory that the nuclei follow, one has to integrate these equations. Starting from a position
R/ (t) for nucleus I at time ¢, the position of this nucleus at time ¢ + At can be written as a Taylor
expansion in terms of A¢[266]:

R;(t+ At)

Ri(t) + Ri(t) At + %Rl(t)AtQ + % (AP + O(AH) 42)

Fr(t)At? + lRl(t)At?’ +0(AtY)

= Ry(t) +vr(t) At + .

2M;

Truncating this expansion after the second order yields the Euler algorithm. However, due to
large errors (O[At?]) it is not used in practice for MD simulations. A better way is to write down
the analogous expansion for R;(t — At):

R;(t — At)

Ri(t) — Ri(t)At+ %Rl(t)AtQ _ % (AP + O(AH) 43)

Fi(t)At? — lRl(t)At?’ +oAathy

= R[(t) — ’U[(t)At + 31

2M7;
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and to sum up both equations

Rr(t+At)+Ri(t—At) = 2R(t)+ MLIFI(t)AtQ +0(AtY) (4.4)

2R;(t) — R;(t — At) + MLFI(t)At2 +0(AtY)
I

& Ri(t+ At)

This yields the Verlet algorithm, where the error for R;(t+ At) goes with O(At?). In this scheme,
the velocities are not needed to calculate the new positions of the nuclei. However, they can be
evaluated by subtracting Eq. 4.2 and Eq. 4.3 from each other:

R;(t+ At) — Ri(t — At) = 2v;(t)At + O(AL) (4.5)
s = M (t+ Atég tRI(t —AY O(A?)

In order to evaluate R (t+ At) and v;(¢) in the Verlet algorithm, one needs to know the positions
of the nuclei at t — At. However, this is not known for the starting point ¢ = ¢y. An alternative
algorithm is the “velocity Verlet algorithm”[267], which is the one implemented in FHI-aims.
It is equivalent to the standard Verlet algorithm (see, e.g., Ref. [266]), but it does not need any
knowledge about times ¢ — At in order to obtain the positions R; and velocities at time ¢ + At.

The update of the coordinates is the same as in the Euler algorithm, i.e.,

Ri(t+ At) = R;(t) + vi(t) At + Fi(t)At? (4.6)

2M7
and the velocities are calculated via:

Fy(t + At) 4 Fy(t)
2M;

vr(t + At) = vr(t) + At : 4.7)
Both Verlet algorithms are time reversible, i.e., when changing the time increment from At
to —At the trajectory is traced backward in time. In contrast, the Euler algorithm is not time
reversible. It only becomes time reversible in the limit of an infinitesimal small time step.

The choice of the time step is crucial for the accuracy of the simulations, where the largest
reasonable value is limited by the vibration with the largest oscillation period (or highest
frequency). Thus, the lighter the atoms the system contains, the smaller the time step generally
has to be chosen. For molecules that contain hydrogen atoms, as it is the case for the systems
considered in this thesis, the time step has to be of the order of At = 1fs. We will discuss this, as
well as the many other practical issues determining the accuracy of an (ab initio) MD simulation,
in more detail in Chapter 6.

When evolving the trajectories based on Newton’s equations of motion, the energy and the
momenta are conserved (apart from numerical inaccuracies). This corresponds to a simulation
in the microcanonical ensemble (NV E), where also the number of particles N stays constant
and the volume V — if it is possible to define one — is kept fixed. However, experiments are
often performed under conditions, where not the energy, but different thermodynamic variables
such as the temperature T' or the pressure p are held constant. This corresponds to other
statistical ensembles. The ensemble where the number of particles N, the volume V' and the
temperature 7" do not change (IVVT') is known as the canonical ensemble. In the isothermal-
isobaric ensemble (N PT) N, T, and the pressure P are constant. In order to carry out simulations
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in these ensembles the system has to be coupled to a (heat or/and a pressure) bath. Methods for
performing simulations in the canonical ensemble will be discussed in the following section.

4.1.1 MOLECULAR-DYNAMICS SIMULATIONS IN THE CANONICAL ENSEMBLE

Evolving the trajectories of the particles of the system by integrating Newton’s equations of
motion corresponds to a simulation in the microcanonical ensemble. In this subsection, we
shall describe several methods (called thermostats) that enable MD simulations in the canonical
ensemble, i.e., a simulation where the temperature 7" and the number of particles NV do not
change. Here we focus on the thermostats used in this thesis, while a more detailed account can
be found in textbooks such as Ref. [266].

According to the equipartition theorem[268] the kinetic energy in a canonical ensemble is
equally distributed over the momentum coordinates, each taking on average kg7'/2. For the
average kinetic energy! (K) of the molecule, it thus follows
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This relation can be used to calculate the instantaneous kinetic temperature Tx during a simula-
tion by
1 Nat
Ty = Mo} 4.9
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where the probability density for the velocity v; of particle I is described by the Maxwell-
Boltzmann distribution:

My \*? Mv?
P(U,)—<2ﬁk;T) exp(Qk;j{,) . (4.10)

The instantaneous kinetic temperature fluctuates during a simulation in the canonical ensemble.
Methods that maintain the instantaneous kinetic temperature as a constant during the simulation
or the simpler velocity rescaling methods, such as the Berendsen thermostat[266, 269, 270], are
not able to sample a canonical distribution.

One approach that generates a canonical ensemble is the Andersen thermostat[266, 271]. Here,
the nuclei undergo stochastic collisions with the heat bath. In practice, this consists of three

repeating steps.

1. The trajectories of all particles are evolved in time for At by integrating Newton's equations
of motion.

2. Particles that are to undergo a collision are chosen. The probability for a particle to be

selected is v - At, where v is the collision frequency, which is set by the user.

3. A new velocity is assigned to each particle that was selected to undergo a collision with
the heat bath. The new velocity is drawn from a Maxwell-Boltzmann distribution at the
target temperature 7. All other particles remain unaffected. Within the next time interval
all particles are evolved in time by integrating Newton’s equations of motion again.

Here we denote the kinetic energy with K in order to avoid confusion with the temperature 7.
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It can be shown that this procedure in fact generates a canonical distribution[271]. Unlike simu-
lations in the NVE ensemble, which conserve the total energy, simulations with the Andersen
thermostat do not have a conserved quantity. Such a conserved quantity is beneficial as it can be
used to monitor the accuracy of the simulation (and check, e.g., if an appropriate time step was
chosen).

One approach for performing deterministic and time-reversible simulations in the canonical
ensemble is the method known as the Nosé-Hoover thermostat[272, 273]. In this approach, the
Lagrangian (or the Hamiltonian) of the system is extended by introducing an additional degree
of freedom. The equations of motion (in Hoover’s formulation) read[272-274]:

R = ]I\% 411)

pr = —VIV({RI})—% (4.12)
Nat 2

Pr = > - —3NuksT (4.13)
1=
p

i = 5" . (4.14)

M7 is the mass of nucleus I and Ny is the number of atoms. The coordinate 7 is a fictitious
degree of freedom and p,, denotes its conjugated momentum. () can be understood as an effective
mass associated with a fictitious oscillator, which couples to the system. It acts as a (negative
or positive) friction to the momenta p;. From the Nosé-Hoover equations of motion follows a
conserved quantity:

S
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Nosé and Hoover[272, 273] showed that evolving the trajectories of this extended system by
integrating its equation of motion samples a canonical ensemble for the original system[272, 273]
provided that the dynamics are ergodic. A system is said to be ergodic if, in the limit of infinite
time, the average of a quantity over time is equivalent to the average of this quantity over the
phase space. In large (ergodic) systems, the Nosé-Hoover approach yields very good results and
is one of the most widely used thermostats.

The oscillator mass and its corresponding frequency are related via Q = 3N,kgT/w?. In
order for the system to couple efficiently to the thermostat, the frequency of the oscillator should
be chosen within a range where the system has (preferably delocalized) vibrational modes[274].
However, if the oscillator is in resonance with a specific localized very harmonic mode of the
system, the simulation can get stuck in a small part of the phase space[275]. It has been shown
that for too small or too harmonic systems the Nosé-Hoover dynamics suffer from ergodicity
problems so that the canonical distribution is not generated[273-275]. A possible solution is to
use a chain of Nosé-Hoover thermostats[274].

An alternative approach that does not exhibit the ergodicity problem, is a thermostat sug-
gested by Bussi, Donadio, and Parrinello[276], also referred to as the BDP thermostat. This
thermostat uses a stochastic rescaling of the velocities. The algorithm consists of four steps[276]:

1. The trajectories are evolved by integrating Newton's equations of motion.
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2. The instantaneous kinetic energy K is calculated.

3. The instantaneous kinetic energy is evolved f