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1. Introduction

The purpose of this chapter is to provide a basic and general introduction to the physical

properties and electronic structures of elemental crystalline solids and their surfaces. Its

main aim is to set the stage for what follows in the rest of this volume by providing an

overview of our present understanding of the physics of solids and their surfaces, in general,

and the underlying state-of-the-art theory, in particular.

Due to its very nature as an introductory text we shall, in most circumstances, refrain

from going in to details, but hopefully present an up-to-date perspective (as of summer

2007). And, on the basis that one must understand elemental (i.e., one component) systems

before one can understand compounds and other binary materials, elemental solids and

surfaces will be considered only. On a similar basis the surfaces we discuss will mostly

be flat, clean, and defect free. In addition, for reasons of space or because it is covered

elsewhere in this volume many interesting aspects of solids and their surfaces will not

be covered here. Specifically, vibrations or any other dynamic properties will not be

considered; more often than not the electrons we discuss will be sitting happily in their

ground state; magnetic and relativistic effects will largely be ignored; and our periodic

table will exclude elements with unfilled shells of f electrons. Setting this list of exclusions

aside, there remains, as we will see, still much to be said about the fundamental physical

properties and electronic structures of elemental solids and their surfaces.

The chapter shall begin with a brief discussion of a few basic concepts of crystalline solids,

such as an introduction to the common crystal types and a brief discussion of the cohesive

properties of solids. Following this, the most widely used electronic structure technique for

interrogating the properties of solids and their surfaces, namely density-functional theory

will be introduced. We then discuss cohesion in bulk metals and semiconductors in more

depth before reaching the main body of the chapter which involves a discussion of the

atomic structures of crystalline solid surfaces, their energies, and their electronic structures

in turn. We close with some general conclusions and perspectives for future work.

2. Some Basics
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2.1 Crystalline solids are crystalline

The crystalline nature of materials such as salt or diamond is clearly apparent to the

naked eye. It turns out, however, that crystals occur more often than expected in nature

and many other materials which are not obviously crystalline in appearance possess a long

range crystalline structure. Indeed metals, semiconductors, and many other insulators

(aside from just diamond and salt) adopt crystalline structures.

The key property of crystalline solids is their inherent symmetry which arises because

of the regular arrangement of their nuclei. It is interesting to note, however, that the

actual definition of the term crystal provided by the International Union of Crystallography

(IUC) is somewhat broader than a discussion based on periodicity of the atoms would

imply. Specifically, IUC define a crystal as “any solid having an essentially discrete

diffraction diagram”. This definition, which is clearly somewhat ill-defined, has arisen

mainly to account for the observations, from the 1980s, of quasiperiodic crystals, so-called

“quasicrystals” [1]. Thus periodic crystals, which we will focus on here, are just a subset.

How the nuclei are arranged leads to the crystal structure which is the unique arrangement

of atoms in a crystal composed of a unit cell: a set of atoms arranged in a particular way

which is periodically repeated in three dimensions on a lattice. The unit cell is given in

terms of its lattice parameters, the length of the unit cell edges and the angles between them.

Crystallographers are adept at categorizing, counting, and systematizing crystal types

according to their symmetry and crystal system. We will not venture into the world of

crystallography except to say that for a general crystal structure in which objects of arbitrary

symmetry are translated on a so-called Bravais lattice that there turn out to be 230 different

symmetry groups that a lattice can have, known as the 230 space groups. When the object

to be translated (the “basis”) is completely symmetric, such as a single atom is, there turn

out to be fourteen space groups (the fourteen Bravais lattices) falling into seven crystal

structures (cubic, tetragonal, orthorombic, monoclinic, triclinic, trigonal, and hexagonal).

Fortunately, for present purposes, we do not need to worry about all 230 space groups or

even all fourteen Bravais lattices since elemental solids under standard conditions adopt a
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very small number of structures. Indeed more than 70% [2] of all elemental solids adopt one

of the following four crystal structures:

• Body-Centered Cubic (bcc): This is a simple cubic structure with atoms at the corner

of a cube along with an additional atom at the center of the cube (Fig. 1(a)). The

alkali metals and many early transition metals adopt this structure;

• Face-Centered Cubic (fcc): Again this is a simple cubic structure but now with an

additional atom at the center of each square face (Fig. 1(b)). Most late transition

and noble metals adopt this structure as well as the inert gas solids and some of the

alkaline earth elements;

• Hexagonal Close Packed (hcp): This consists of two interpenetrating simple hexagonal

lattices as shown in Fig. 1(c). Several transition metals adopt this structure;

• Diamond: This consists of two interpenetrating face-centered cubic lattices (Fig. 1(d)).

The group IV elements (C, Si, Ge, and Sn) often crystalize in this structure.

All the elements we discuss in the following will be in one of these four crystal structures.

Figure 1: Illustration of the four types of crystal structure most commonly adopted by elemental

solids. Certain atoms are shaded differently for clarity.

2.2 Cohesive energies

Another central property of solids is their cohesive energy, Ecoh. This is the energy

needed in order to rip a sample apart into a gas of widely separated atoms, as illustrated

schematically in Fig. 2. If V denotes some structural parameter characteristic of a given
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crystal, such as, for example, the unit cell volume, and Vo represents the value at the

equilibrium crystal structure, we thus have

Ecoh = −
(
E({Vo})
M

− E({V } → ∞)

M

)
. (1)

Here E is the energy of the solid, and M the number of atoms in the crystal. The energy

that is used in (1) is the total energy (neglecting the zero point energy in this definition).

The total energy is a large negative number, which leads to a positive Ecoh in the definition

above. Cohesive energies of elemental solids range from little more than a few meV per

atom for the inert gases to just under 9 eV per atom for tungsten.

If one considers the variation of the energy with volume then, since both energy and

volume are state functions, what we have is an equation of state (EOS) for the crystal.

Equations of state for elemental solids are very often represented by a sketch like the one

in Fig. 2. The difference between one material and the other is determined by variations in

the depth, location, and curvature of the minimum. Many useful analytic expressions for

the functional form of the EOS for solids have been developed. The most popular of them

being the EOS due to Murnaghan [3], which is given by:

E(V )

M
− E(Vo)

M
=

BoV

B′o(B
′
o − 1)

[
B′o

(
1− Vo

V

)
+

(
Vo
V

)B′
o

− 1

]
, (2)

where the new quantities above are, Bo, the bulk modulus, and, B′o, its pressure derivative.

The bulk modulus of a substance essentially measures its resistance to uniform compression

and is defined as:

Bo = V
∂2E(V )

∂V 2

∣∣∣∣
V=Vo

. (3)

We shall have more to say about cohesive energies and bulk moduli below.

2.3 The “types” of bonds in solids

It is useful to ask what “types” of bonds characterize solids in general and elemental

solids in particular. In answering this question it is common to decompose the physical

continuum of interactions that hold nature’s many and varied solids together and conclude

that there are five idealized types of bonding interaction, namely van der Waals, ionic,

covalent, metallic, and hydrogen bonding. Let’s now consider each briefly in turn:
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Figure 2: Schematic illustration of a typical energy-volume equation of state for a solid. The

cohesive energy, Ecoh, is indicated.

• Van der Waals Bonding: These are the weakest bonding interactions and arise through

the instantaneous induced dipole-induced dipole (dispersive) forces between atoms [4].

The elements most commonly held together by van der Waals bonds are the rare gases

Ne, Ar, Kr [5], and Xe [6]. These are the elements that have so-called filled valence

shells. van der Waals forces also hold the layers of C in the graphite structure together

and contribute to the binding in certain other solids (e.g. noble metals [7, 8]). The two

overriding features of van der Waals forces are that they are: i) non-directional; and

ii) weak (compared to the other types of bonding that we shall discuss). This leads in

most cases to close-packed structures with cohesive energies that rarely exceed a few

hundred meV per particle.

• Ionic Bonding: These are much stronger bonds than van der Waals bonds and arise

through electrostatic attraction between oppositely charged ions. Typically this is

realized in so-called ionic crystals such as the alkali halides in which an electropositive

group I atom transfers an electron to an electronegative group VII atom resulting in

two oppositely charged ions (in rather stable closed-shell configurations) which strongly

attract each other. The resulting crystal structures that arise are those which offer

optimal packing of differently sized ions.

• Covalent Bonding: Whilst ionic bonding is based on complete electron transfer between

the atoms involved in a bond, covalent bonding is realized through the somewhat op-
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posite scenario (still in our idealized pictures) in which electrons are equally shared

between the bonding partners through the overlap of orbitals on adjacent atoms. In-

trinsic to covalent bonding is therefore a strong directionality as opposed to the non-

directional ionic or van der Waals bonds. As a result such materials do not necessarily

adopt structures that arise from optimal packing. Instead the diamond and zincblende

lattices are often favored.

• Metallic Bonding: The conceptual idea behind metallic bonding is that the valence

electrons are highly delocalized; shared among the “community” of atoms in the solid

and not localized on one particular atom or pair of atoms. In most abstract terms,

such metals can thus be perceived as atomic nuclei immersed in a featureless electron

glue. Thus metallic bonds are largely non-directional and close-packed structures are

mostly adopted.

• Hydrogen Bonding: Generally hydrogen bonds occur when a covalently bound hy-

drogen atom forms a second bond to another element. Schematically the hydrogen

bond is often represented as A-H...B. Invariably both A and B will be electronegative

species (for example N, O, F, Cl). Compared to covalent or ionic bonds hydrogen

bonds are weak with strengths ranging from about 100 meV to 500 meV. Generally it

is believed that hydrogen bonds are mostly mediated by electrostatic forces; stabilized

by the Coulomb interaction between the (partial) positive charge on hydrogen and the

(partial) negative charge on the electronegative elements A and B. However, hydrogen

bonds likely contain some covalent and van der Waals character too [9, 10].

No real solid can be classified 100% into any one of the above categories. Nonetheless,

the division proves useful when seeking a qualitative understanding of the largely varying

cohesive properties of materials. For elemental solids only three of these types of bonding

interaction are found, namely metallic, covalent, and van der Waals. Since relatively

little is known about the surfaces of pure van der Waals bonded solids, van der Waals

bonding will not be discussed in the following. Instead we restrict our discussion on bond-

ing in solids to metallic and covalent bonding. But, first we discuss density-functional theory.

3. The ABC of DFT
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3.1 Theoretical Framework

Density-functional theory (DFT) is presently the most popular and robust theoretical

approach available for solving the electronic structures of solids and their surfaces. Al-

though far from a panacea for all physical problems in this domain (or any other) DFT has

proven capable of computing a host of properties of condensed matter and their surfaces to

reasonable accuracy. What “reasonable” accuracy is and what properties can be determined

will be discussed. But before this we briefly introduce the theoretical framework that lies

behind DFT, and the approximations that must be made to make it work in practice. We

limit this introduction to the very basics of DFT since this is, after all, a surface physics

book and several excellent and detailed texts on the subject exist [11, 12]. The reader

already schooled in the basics of DFT may jump to section 4.

The Hamiltonian within the Born-Oppenheimer approximation is

H = T e + V nuc−nuc + V e−nuc + V e−e . (4)

T e is the kinetic energy of each of the N electrons given by,

−1

2

N∑
i=1

∇2
i , (5)

where ∇2
i is the Laplacian operator acting on each of the i electrons. For simplicity and

brevity in this section we use atomic units so that

e2 = h̄ = m = 1 , (6)

where e is the electron charge, h̄ is Planck’s constant, and m is the electron mass. V nuc−nuc

describes the electrostatic interaction between the M ions (or nuclei) with fixed coordinates

RJ,...N and charges ZJ...N

1

2

M,M∑
I 6=J

ZIZJ
|RI −RJ |

. (7)

V e−nuc is the electron-ion interaction energy,
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−
N,M∑
i,I

ZI
|ri −RJ |

, (8)

with electrons at positions ri, and V e−e is the electron-electron interaction energy given

by,

1

2

N,N∑
i 6=j

1

|ri − rj|
. (9)

The Hamiltonian can be written in one simple line as done above and slotted neatly into

the Schrödinger equation,

HΨ = (T e + V nuc−nuc + V e−nuc + V e−e)Ψ = EΨ , (10)

to deliver us the total energy of the system. The total energy of a given system at

its ground-state, designated as E0, is a highly sought after quantity. Many, if not most,

physical properties of solids (or materials, in general) can be related to total energies or to

differences in total energies.

However, solving the many-body Schrödinger equation is much easier said than done,

and it is impossible to solve exactly for anything but the simplest model systems with 1, 2,

or perhaps 3 electrons, or an infinite “jellium” system, the homogeneous electron gas (see

section 4.1.2). Since solids contain lots (� 1023) of electrons and the potential due to the

nuclei is far from the constant of jelium we have a challenge. The root of the problem is

well known. It is the quantity V e−e, the electron-electron interaction, which contains all

the many-body physics of the electronic structure problem. It depends on (at least) 3N

spatial coordinates which are all coupled by the operator V e−e.

There are many strategies for obtaining accurate approximate solutions to the many-

body Schrödinger equation such as Green-function self-energy theory, quantum Monte

Carlo, configuration interaction (CI), coupled cluster, and effective single-particle theories

such as Hartree-Fock and DFT. The defining characteristic of DFT is that it aims to

determine the ground state electron density distribution, n0, of a system instead of the

many-body wavefunction itself. Since real space is only 3 dimensional, regardless of the
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number of electrons in the system, the required minimization is with respect to a function

that depends only on 3 variables and not 3N variables [13]. In principle DFT is thus

most useful for many electron systems. Indeed density-functional simulations of systems

with thousands of electrons are now common and calculations with tends of thousands of

electrons are not unheard of.

Approaches for tackling the many body problem based on the density have been around

since the 1920s [14, 15]. The birth of modern DFT for the electronic structure problem,

however, came with the realization and associated proof by Hohenberg and Kohn in 1964

[16] that the ground state electronic wavefunction, Ψ0, is a unique functional of the ground

state electron density, n0, i.e.,

Ψ0 = Ψ0[n0] . (11)

We don’t reproduce the proof of this theorem here since the original paper is of

unimprovable brevity and clarity. However, we do point the interested reader in the

direction of ref. [17] for a subsequent more general formulation.

From the Hohenberg-Kohn theorem it follows that all observables are also functionals

of the ground state density. The ground state density determines (unambiguously) the

many-body Hamiltonian. And the latter, obviously, determines everything. In particular

the ground state electronic energy, Ee
0, for a given configuration of the ions, is a functional,

with a one to one correspondence, of n0

Ee
0 = Ee[n0] = min

n(r)
〈Ψ[n]|T e + V e−nuc + V e−e|Ψ[n]〉 , (12)

where the electron-nuclei interaction, which in this context is usually referred to as the

“external potential”, can be written explicitly in terms of the density as

V e−nuc[n] =

∫
V (r)n(r)d3r . (13)

A variational principle, sometimes called the second Hohenberg-Kohn theorem, tells us that

a successful minimization of the energy functional will yield the ground state density and
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the ground state total energy [18].

A critical problem with eqn. (12), however, is the evaluation of the kinetic energy func-

tional. Although in principle T e is a function of the density an explicit closed expression

does not exist. Thus a direct evaluation is not feasible, at least not without introducing sig-

nificant errors. A practical method for obtaining Ee[n] and thus minimizing the functional

came from Kohn and Sham with the application of the Lagrangian method of undetermined

multipliers [19]. Hereby, one uses the fact that the functional in eqn. (12) can be written as

a fictitious density functional of a non-interacting reference system

Ee[n] = T es [n] +

∫
V (r)n(r)d3r + EHartree[n] + Exc[n] (14)

where T es [n] is the kinetic energy functional of non-interacting electrons of density n.

EHartree is the Hartree energy describing the (classical) electron-electron Coulomb repulsion

given by

EHartree[n] =
1

2

∫∫
n(r)n(r′)

|r− r′|
d3rd3r′ . (15)

And the final term, Exc, is the exchange and correlation energy of DFT, into which all

the complicated quantum-mechanical many-body effects are placed. The next step in this

electronic structure problem is to define an effective potential,

V eff(r) =
δ
{∫

V (r)n(r)d3r + EHartree[n] + Exc[n]
}

δn(r)

= V (r) +

∫
n(r′)

|r− r′|
d3r′ +

δExc[n]

δn(r)
. (16)

From this one then obtains the single-particle Schrödinger equation:

{
−1

2
∇2 + V eff(r)

}
ϕoi(r) = εoiϕoi(r) , (17)

which yields the orbitals that reproduce the density of the original many-body system

n(r) =
N∑
i=1

|ϕoi(r)|2 . (18)
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This is an effective single-particle equation, because V eff depends on the solutions

that we are seeking. The Hartree and exchange-correlation potentials depend on n(r),

which depends on the orbitals ϕ, which in turn depend on V eff . Thus the problem of

solving the Kohn-Sham equations (eqns. (16)-(18)) has to be done in a self-consistent

(iterative) way. Usually one starts with an initial guess for n(r), then calculates the corre-

sponding V eff and solves the Kohn-Sham equations for the ϕ. From these one calculates

a new density and starts again. This procedure is then repeated until convergence is reached.

3.2 Approximations for Exchange and Correlation

So far, within the Born-Oppenheimer approximation, the theory is exact. However, we

do not know the precise form of Exc[n] and V xc(r) = δExc[n]
δn(r)

into which we have placed all

the complicated many-body physics. As the name suggests Exc[n] arises from a combination

of two quantum mechanical effects: electron exchange and correlation. Briefly, electron

exchange arises because a many-body wave function must by antisymmetric under exchange

of any two electrons since electrons are fermions. This antisymmetry of the wave function,

which is simply a general expression of the Pauli exclusion principle, reduces the Coulomb

energy of the electronic system by increasing the spatial separation between electrons of

like spin [20]. Likewise electron correlation further reduces the Coulomb energy between

electrons of unlike spin because the motion of each individual electron is correlated with the

motion of all others, helping also to keep electrons of unlike spin spatially separated. The

sum of these two quantum mechanical effects as embodied in Exc is incredibly difficult to

describe. Indeed it is unclear if this functional can be given in a simple closed form at all.

And so to get something useful out of DFT in practice one needs to approximate Exc. There

is no shortage of ways to do this, and as usual with a large number of anything, the anything

gets categorized. Exchange and correlation functionals are no exception, being most often

grouped in evolutionary terms (generations) or in biblical terms (the rungs of Jacob’s

ladder) [21]. Let’s now look at some of the most popular types of exchange-correlation

functional currently in use:

(a) The local-density approximation (LDA): This is the simplest approximation, and can

be written as
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Exc−LDA[n] =

∫
n(r)εxc−LDA (n(r)) d3r , (19)

where εxc−LDA is the exchange-correlation energy per particle of the homogeneous

electron gas of density n, i.e., the exchange-correlation energy density is taken to be that

of a uniform electron gas of the same density. The exchange energy is known exactly and

the correlation energy is obtained by fitting to studies of Wigner, Gell-Man and Brueckner,

and Ceperly and Alder [22–24]. Modern LDA functionals tend to be exceedingly similar,

differing only in how their correlation contributions have been fitted to the many-body

free electron gas data. The Perdew-Zunger (PZ) [25], Perdew-Wang (PW) [26] and

Vosko-Wilk-Nusair (VWN) [27] functionals are all common LDA functionals [28].

Strictly, the LDA is valid only for slowly varying densities. Experience with calculations

of atoms, molecules, and solids shows that eq. (19), i.e., the LDA works surprisingly

well, and much current understanding of surfaces comes from LDA calculations. A partial

rationalization of the success of LDA is provided by the observation that it satisfies a

number of so-called sum rules [29–32].

(b) The generalised gradient approximation (GGA): These are the second generation

functionals (sitting on the second rung of Jacob’s ladder) in which the gradient of the

density, ∇n(r), at each coordinate is taken into account as well as the density itself:

Exc−GGA[n] =

∫
nεxc−LDA (n(r))∇n(r) d3r . (20)

Thus GGAs are “semi-local” functionals, comprising corrections to the LDA while

(again) ensuring consistency with known sum rules. For many properties, for example

geometries and ground state energies of molecules, GGAs can yield better results than

the LDAs. Although, as we will see, for the properties of metals and their surfaces, GGA

results are not necessarily superior to LDA results. The most widely used GGAs in surface

physics are the PW91 [26] functional, and its close relative PBE [33]. PBE by now has

several off-spring [34], revPBE [35], RPBE [36], PBE-WC [37], MPBE [38], RPBEsol [39],

optPBE [40], etc, etc... Some of the off-spring (by restoring the density-gradient expansion

for exchange) as well as AM05 [41] offer improved performance for some solids and surfaces,
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as we briefly discuss below.

(c) The meta-GGAs : These are the third generation functionals (third rung of Jacob’s

ladder) and use the second derivative of the density, ∇2n(r), and/or kinetic energy densities,

τσ(n) = 1/2Σi|∇ϕi(n)|2, as additional degrees of freedom. In gas phase studies of molecular

properties and solids meta-GGAs such as TPSS [42] and, in particular, revised TPSS [43]

have been shown to offer improved performance over LDAs and GGAs.

(d) The hybrid functionals : These fourth generation functionals add “exact exchange”

calculated from Hartree-Fock (HF) theory to some conventional treatment of DFT exchange

and correlation [44]. The most widely used, particularly in the quantum chemistry commu-

nity, is the B3LYP [45] functional which employs three parameters, a1−3 (determined through

fitting to experiment [21]) to control the mixing of the HF exchange and density functional

exchange and correlation. It takes the following form:

Exc = Exc−LDA + a1(Ex−HF − Ex−LDA) + a2∆Ex−GGA + a3∆Ec−GGA . (21)

Reformulating this to eliminate two parameters leads to an equation of the form

Exc = Exc−GGA + a(Ex−HF − Ex−GGA) , (22)

and setting a = 1/4 (at one stage justified on the grounds of perturbation theory)

leads to a class of functionals with only as many parameters as their underlying GGAs.

If PBE is the GGA used in eqn. (22) we arrive at the hybrid PBE0 functional [46]. Such

functionals have been shown to offer noticeably improved performance over LDA and GGA

functionals for the calculation of gas phase properties of molecules and band gaps in solids.

Applications of hybrid functionals and screened hybrid functionals [47] to solids have

gradually begun to appear over the last few years [48], although not-unexpected problems

with metals have been identified and discussed (e.g. [49–53]).

(e) The last few years have seen some very exciting developments on yet higher rungs

of the ladder of exchange-correlation functionals. In particular approaches which explicitly

account for correlation have emerged such as the random phase approximation (RPA)
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within the adiabatic connection fluctuation dissipation theorem. Very recently RPA has

been applied to solids and surfaces with some very encouraging results (e.g. [54–58]).

3.3 Other Approximations and Practicalities of Condensed Phase DFT

calculations

Before we can take our electronic structure theory with our chosen exchange-correlation

functional off to compute a solid or a surface there are several other issues to deal with

and approximations to make. Good reviews exist on what it takes to perform a reliable

condensed matter DFT simulation (see for example, refs. [59–61]), so we don’t go into the

details here, instead merely point out some of the relevant issues necessary to appreciate

the discussion that comes later.

(a) Periodicity and simulation cells: A finite chunk of crystal contains many atoms;

1023 is not a large number when discussing the number of atoms in a crystal. Fortunately,

crystalline solids have, by definition, periodicity. This periodicity introduces important

elements of simplicity. Notably Bloch’s theorem can be applied, allowing the electronic

structure problem for infinite solids to be tackled in periodic 3D simulation cells, primitive

or otherwise. Surfaces, although only periodic in two dimensions, can nonetheless be

computed within periodic 3D simulation cells by introducing a vacuum region into the

unit cell. In particular the introduction of a vacuum region along just one dimension, for

example along the z axis in Fig. 3, partitions the unit cell into regions of solid (slab) and

vacuum. The periodic boundary conditions ensure that the slab is infinite in the x and y

directions, and also along the z direction the slab and vacuum stack extends infinitely. It

is common to use this periodic slab model in simulations of solid surfaces and results from

such slab model simulations will be discussed frequently throughout this chapter [62].

(b) Basis sets and electron-ion interactions: The primary computational task in a DFT

calculation is the solution of the Kohn-Sham equations for a given atomic structure and

chemical composition. Invariably for a condensed phase system this requires the use of a

set of basis functions with which to expand the Kohn-Sham orbitals ϕ. This choice of basis

set is of critical importance to the accuracy of an electronic structure calculation; so much
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Figure 3: Illustration of the supercell approach to model surfaces: the surface is represented by a

periodic stack of slabs separated by vacuum.

so that first-principles methods are often named according to the basis functions they employ.

Basis sets are constructed from either atom-centered functions or from non-atom-centered

functions or a combination of both. For condensed phase simulations non-atom-centered

basis sets such as plane waves are currently the most popular scheme. Often the choice

of basis set goes hand in hand with the choice of electron-ion interaction and indeed

if one chooses to use purely a plane-wave basis set one must replace the full and deep

electron-ion potential of nuclei plus core electrons with some approximate potential that

can be described with a tractable number of plane waves. Hiding the core electrons in,

for example, a pseudopotential (PP) or something similar like a projector augmented wave

(PAW) potential are two possibilities [61, 63, 64]. And, indeed, the plane-wave plus PP

or PAW recipe is currently the most popular one for electronic structure simulations of

solids and their surfaces [61, 65]. Alternatively, one may choose to use a mixed basis set in

which the computational cell is partitioned in to distinct regions, each of which is described

with different functional forms for the basis. One particular scheme we mention here is the
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full-potential linearized augmented plane-wave (FP-LAPW) method [66]. In this scheme

plane waves are used to describe a predefined interstitial region between the atoms in the

solid and the regions close to the cores of the atoms, within predefined “muffin-tin” spheres,

are described by radial functions and spherical harmonics. The FP-LAPW approach is

more computationally expensive than the plane-wave plus PP or PAW approach, but has

the advantage of being a truly all-electron approach. In many cases in solid state systems

FP-LAPW calculations thus provide the benchmark “gold standard” theoretical data with

which to compare other methods. Where possible in the following we will thus discuss

results from FP-LAPW calculations. However, it is worth noting that in the last few

years accurate full potential all-electron calculations for solids using numeric atom-centred

orbitals have seen a rise in popularity [67, 68].

4. Bonding in Solids

We now introduce some simple models for bonding in metals and semiconductors such as

jellium and hydridization and at the same time assess our theoretical tool of choice, DFT,

at predicting some of the central cohesive properties of solids.

4.1.1 Bonding in Metals

The essential characteristic of metallic bonding is that the valence electrons are

delocalized among a lattice of metal atoms. Delocalization is the consequence of heavy

overlap between the individual valence wavefunctions resulting in the valence electrons

being shared by all the atoms in the “community”. In most abstract terms, metals can thus

be perceived as atomic nuclei immersed in a featureless sea (or “glue”) of electrons. This

electron sea leads to bonding that is generally not directional, resulting in close-packed

crystal structures being often favored, such as the fcc and hcp structures. Because of the

strong overlap of the orbitals the resultant electronic wavefunctions or bands of a metal

will thus exhibit a strong dispersion in reciprocal space, k space. As an example we show

in Fig. 4(a) the band structure of bulk Cu.

A useful quantity for interpreting the characteristics of chemical bonding, that we will

17



Figure 4: Band structure (a), density of states (DOS) (b), and partial DOS (PDOS) (c) for bulk

Cu as computed from a plane-wave pseudopotential DFT calculation within the LDA. In (c) the

PDOS are projected onto Cu s, p, and d orbitals. The energy zero is the Fermi level (computed

by the authors).

use throughout to examine metals, is the density of states. It is defined as

N(ε) =

∫
n(r, ε)dr =

∞∑
i=1

δ(ε− εi) , (23)

where the sum goes over all eigenstates (orbitals) with eigenvalues, εi, of the Kohn-Sham

Hamiltonian. Cutting through this DOS is the Fermi level (EF ): the energy below which

the one-electron levels are occupied and above which they are not, in the ground-state of a

metal. Again we illustrate these concepts with the example of Cu, displayed in Fig. 4(b).

For future reference, we note that for metals the Fermi level is equivalent to the chemical

potential of the electrons at 0 K.

Another useful quantity, which is not readily accessible in any simple manner from ex-

periment, is the state-resolved DOS, also called the projected DOS (PDOS):

Nα(ε) =
∞∑
i=1

|〈φα|ϕi〉|2δ(ε− εi) , (24)

where φα is a properly chosen localized function whose overlap with the Kohn-Sham

orbitals is determined. Often it proves useful to pick individual atomic orbitals or groups

of atomic orbitals as localization functions upon which to project the electron density. For

example, we have done this for Cu in Fig. 4(c) from where it can be seen that the Cu

valence band is comprised of s, p, and d states.
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4.1.2 Simple Metals and Jellium

It turns out that for the s and p block metals a simple model, namely the jellium model

provides useful insight. In this model the discrete nature of the ionic lattice is replaced with

a smeared out uniform positive background exactly equal to that of the valence electron

gas. In jellium, each element is completely specified by just the electron density n = N/V ,

where N is the number of electrons in the crystal and V is its volume. Often the electron

density is given in terms of the so-called Wigner-Seitz radius, rs, where rs = (3/4πn)1/3

which corresponds to the spherical volume in Bohr atomic units available to one valence

electron. The rs of real metals range from ∼ 2 (high density) to ∼ 6 (low density).

For the completely smeared out constant ion density of jellium, the electron-ion (Ee−nuc)

and ion-ion (Enuc−nuc) energies cancel exactly with the Hartree energy (EHartree), i.e.,

Ee−nuc + Enuc−nuc + EHartree = 0. This then leaves

E/N = Ts + Exc , (25)

where, à la DFT, Ts is the kinetic energy of the non-interacting electron gas and Exc is

the exchange and correlation energy. It is easy to show that the kinetic energy of the free

electron gas is, in atomic units, Ts = 2.21
r2s

[2, 69]. The exchange energy per particle can also

be computed exactly from HF theory and together with accurate parameterizations of the

correlation energy, the binding energy of jellium (in atomic units) is

E/N =
2.21

r2
s︸︷︷︸ −

0.916

rs
− 0.115 + 0.0313 ln rs︸ ︷︷ ︸ . (26)

Ts Exc

The kinetic energy contribution to eqn. (26) is, of course, positive and repulsive,

whereas the contribution from electron exchange and correlation is attractive. The latter

is the glue that holds metals together and arises from the formation of the so-called

exchange-correlation hole. This is a region of charge depletion around each electron due

to the fact that electrons of like spin keep apart primarily because of the antisymmetry
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condition and the motion of electrons of like and unlike spin is correlated due to the

Coulomb repulsion between electrons (section 3.2). The main consequence of this region

of charge depletion around each electron for the present discussion is that each electron

feels an attractive potential from the surrounding positive jellium background. Therefore

the equilibrium bound state of minimum total energy results from a balance between

the kinetic energy of the valence electrons, which tries to push the atoms apart, and

the exchange-correlation energy, which tries to pull them together. The minimum in

this binding energy curve for jellium occurs at an rs = 4.2 with a binding energy of 2.2

eV/atom. This is quite close to the cohesive energy, Ecoh, of real sp metals which fall

at around 1-2 eV/atom [70] and quite good agreement considering the simplicity of the

model. Indeed jellium can be modified [2, 71–73] to do better and to describe a range of

properties (for example, phonon spectra, optical absorption, superconducting transition

temperatures, and equations of states) by replacing our initial approximation of a uniform

positive background with something less extreme, like, for example, a weak pseudopotential.

4.1.3 Transition Metals and Tight-Binding

The transition metals belong to three series in the periodic table which correspond to

the progressive filling of 3d, 4d, and 5d states. The presence of the d electrons changes the

picture of bonding in these metals considerably from the simple metals and the jellium

description of metallic bonding no longer suffices. Notably the cohesive energies rise to

significantly more than the 1-2 eV/atom of the simple metals and follow a roughly parabolic

variation across the transition metal series. For example, Ecoh goes from 4.36 to 6.66 to

3.92 eV/atom from Y to Ru to Pd [74].

To understand this variation in Ecoh it is useful to recognize that the electronic structure

of the transition metals is comprised of two largely separate contributions: a broad free-

electron-like sp band; and a considerably narrower d band. We saw this already with the

PDOS plot of Cu (Fig. 4) and we illustrate it again schematically in the top part of Fig. 5(a).

The d band is narrower than the sp band simply because the d valence orbitals are more

localized and thus the overlap between them is more directional and shorter ranged. For

example, the peak maximum of the 3d radial distribution for the 3d transition metals is
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Figure 5: (a) Schematic illustration of the relative filling of the d and sp densities of states as one

moves from left to right across the transition metals. (b) Computed d and sp partial densities

of states for several 4d transition metals, as obtained from a plane-wave pseudopotential DFT

calculation within the LDA (computed by the authors).

typically >2 times closer to the core than the peak maximum of the 4s radial distributions

[75]. This is a consequence of the fact that the 3d orbitals do not have lower energy d states,

but the 4s orbitals need to be orthogonal to the 1,2, and 3s states. For such systems where

there is small overlap between orbitals a tight-binding description in which the system is

described by a simple linear combination of atom centered d orbitals can be used. The

simplest version of this applied to the transition metals is the so called rectangular d band

model of Friedel, where the d PDOS is assumed to be rectangular and Ecoh takes the following

form

Ecoh ∝ W

20
Nd(Nd − 10) , (27)

where W is the width of the d band and Nd is the number of d electrons. As one

can see from eqn. (27) this model leads to a parabolic shape for the cohesive energy

over the transition metal series and suffices at catching the basic chemical behavior that

as one moves from left to right across the transition series one gradually fills up the d

band, which, of course, involves filling the bonding, non-bonding and then anti-bonding
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states until finally at the end of the transition metal series, the d band is completely filled.

We illustrate this progression schematically in Fig. 5(a). This crude model captures the

qualitative cohesive trend over a large number of elements and with a suitable choice of the

parameter W and the introduction of an (empirical) proportionality constant to account

for repulsion between the ions in the solid, also the absolute cohesive energies come out

quite well. For the interested reader a detailed discussion on this topic can be found in the

book by Desjonquères and Spanjaard [76].

We will see when we move to surfaces that the rectangular d band model helps to

explain trends in surface electronic structures also. However, it must be recognized that

this is merely a highly simplified model of the electronic structures of transition metals.

In reality the DOS results from an integration over the Brillouin zone and so points

that occur often and where the bands are relatively flat will give rise to a high density

of states. This implies that the detailed shape of the d DOS is more complex than

the simple rectangular model assumes and reflects the lattice type of the crystal rather

than the filling. This can be seen in Fig. 5(b) where PDOS from self-consistent DFT

calculations are shown for four 4d metals (Zr, Mo, Ru, and Pd). The d PDOS of the fcc

metal Pd is rather similar to the d PDOS of Cu (also fcc) (Fig. 4). The two hcp metals

Zr and Ru exhibit similar d PDOS and the bcc metal metal Mo, exhibits a large dip

in the center of the d PDOS characteristic of bcc metals [77]. Indeed these “canonical”

shapes of the DOS of hcp, bcc, and fcc structures explains the trend through the periodic

table, e.g. from Y to Ag. Despite the added complexity of the DOS, however, it can be

seen from Fig. 5 that the trend embodied in the rectangular d band model with regard

to d band filling holds, which is, of course, the reason for the qualitative success of the model.

4.1.4 DFT for the Cohesive Properties of Metals?

Simple models aside, if we choose to perform a self-consistent DFT calculation in which

we explicitly treat the ionic lattice with, for example a pseudopotential or full potential

treatment, what level of accuracy can we expect to achieve? As always the answer depends

on the properties we are interested in and the exchange-correlation functional we use.

DFT has been used to compute a whole host of properties of metals, such as phonon
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dispersion curves, electronic band structures, solid-solid and solid-liquid phase transitions,

defect formation energies, magnetism, super-conducting transition temperatures, and so on.

However, to enable a comparison between a wide range of exchange-correlation functionals,

we restrict ourselves here to a discussion of only three key quantities, namely (i) Ecoh; (ii)

a0, the equilibrium lattice constant; and (iii) B0, the bulk modulus.

Table 1 lists a number of DFT and experimental values for a simple metal Al, two noble

metals Cu and Ag, and a transition metal with an unfilled d shell Pd. One example from

each of the first four generations of exchange-correlation functional is given so as to provide

a flavor of the current state of DFT for the cohesive properties of metals. In addition to

the LDA we show results from the PBE (GGA), TPSS (meta-GGA), and PBE0 (hybrid)

functionals. Let’s consider each functional in turn and see what general conclusions can be

drawn:

(a) LDA predicts the smallest lattice constants, the largest bulk moduli, and the largest

cohesive energies. Moreover, compared to experiment the LDA lattice constants are smaller

(∼ −2 %), the bulk moduli are larger (∼ +10 %), and the cohesive energies are larger

(∼ +20 %) for these four materials. These quantities are naturally all related and reflect

the now well-established fact that LDA generally overbinds metals (and other solids and

molecules). See ref. [80].

(b) The PBE (GGA) functional results are generally closer to experiment than LDA.

The average errors for these metals are +1.3 % for the lattice constants, and -5 % for both

the bulk moduli and cohesive energies. Naturally this improvement leads to larger lattice

constants, smaller bulk moduli, and smaller cohesive energies. Indeed it is now clear that

performance is very sensitive to the solids considered [80].

(c) The TPSS (meta-GGA) functional is somewhat difficult to assess. For lattice

constants it is significantly better than LDA and GGA with an error of only 0.5 %, getting

all four metals within 0.04 Å. For the bulk moduli, however, it is not as accurate with

an error of 11 %, and we for Ecoh we are not aware of any reported values. There is now

a revised-TPSS functional which for many properties improves over the original TPSS
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Table I: Bulk properties of Al, Cu, Pd, and Ag, as computed from DFT with the LDA, PBE, TPSS,

and PBE0 exchange-correlation functionals. All data is taken from Refs. [78], [48], and [79]. Ref.

[78] is an all-electron study with a Gaussian basis set. Data from ref. [48] has been obtained with

the plane-wave plus PAW method and data from ref. [79] has been obtained with the FP-LAPW

method. The experimental values in parenthesis have been corrected for zero point effects.

a0(Å) B0 (Mbar) Ecoh(eV)

Ref. [78] Ref. [48] Ref. [79] Ref. [78] Ref. [48] Ref. [79] Ref. [78] Ref. [48] Ref. [79]

Al LDA 4.01 3.98 0.82 0.84 4.07

PBE 4.06 4.04 4.04 0.76 0.77 0.78 3.43 3.60

TPSS 4.04 0.85

PBE0 4.01 0.86 3.39

expt. 4.03 (4.02) 0.79 3.39

Cu LDA 3.53 3.52 1.88 1.92 4.57

PBE 3.64 3.64 3.63 1.50 1.36 1.42 3.48 3.51

TPSS 3.59 1.71

PBE0 3.64 1.30 3.05

expt. 3.60 (3.60) 1.42 3.49

Pd LDA 3.85 3.85 2.35 2.22 5.04

PBE 3.95 3.94 3.95 1.77 1.66 1.63 3.71 3.63

TPSS 3.92 2.00

PBE0 3.92 1.72 2.88

expt. 3.88 (3.88) 1.95 3.89

Ag LDA 4.00 1.49

PBE 4.13 4.15 1.06 0.89 2.52

TPSS 4.08 1.27

PBE0 4.14 0.87 2.33

expt. 4.07 (4.06) 1.09 2.95
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functional [43].

(d) The hybrid PBE0 functional does not appear to offer any clear improvement

over the other functionals. At an error of 1 % for the lattice constants PBE0 performs

worse than TPSS and is similar to PBE. Furthermore, errors for the bulk moduli and

cohesive energies, both of 10 % are rather disappointing; offering worse performance than

the regular GGA-PBE [81]. Since using functionals with exact exchange when treating

solids (or more precisely periodic systems) generally leads to a considerable increase

in computational effort (about a factor of 35 with a plane-wave basis set according to

one estimate [82]) it is difficult to justify their use if one is purely interested in deter-

mining properties such as the lattice constant, bulk modulus, and cohesive energy of

metals. In addition other hybrid functionals, such as B3LYP, can perform even worse [83],

with, for example, the computed Ecoh of Mg differing from experiment by almost 100 % [53].

In conclusion, of the few functionals discussed here, no single one stands out as being

significantly superior to the others for treating metals. All of them perform reasonably well

in capturing the large variation in lattice constants and bulk moduli. Periodic trends in Ecoh

are also reproduced. As for the quantitative determination of Ecoh, however, the situation

is far from satisfactory with the choice of exchange-correlation functional crucial to the

value obtained. Moreover, there is no convincing proof to tell us that, for example, GGA

will always be superior to LDA. We note, however, that since about 2007 some excellent

progress in state-of-the-art electronic structure methodologies for solids has been made with

the development of exchange-correlation functionals together with RPA for correlation.

The interested reader is referred to refs. [43, 54–57, 80, 84–86] for accounts of how these

various approaches perform. Notwithstanding this recent progress, the identification of a

functional, or, indeed any electronic structure method that is computationally efficient and

consistently able to calculate Ecoh for metals (and other solids) with an accuracy of, for

example, less than 5 % error remains an important unresolved issue in materials science.

4.2.1 Semiconductors and Covalent Bonding

The metallic bonding described in the last section is based largely on a delocalization of
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Figure 6: Illustration of the formation of sp3 valence and conduction bands in the tetrahedral

semiconductors. As one goes from C to Si to Ge to Sn the size of the atoms increase, which

increases the band widths and decreases the band gap (Egap).

electrons throughout the entire lattice, yielding, as we have said, a sea of electrons or struc-

tureless glue. In covalent bonding, on the other hand, electrons are shared between adjacent

bonding partners through the strong overlap of the wavefunctions on the adjacent atoms.

The extent of this overlap depends in part on the orbital character of the wavefunctions

involved, i.e., in which directions the bonding partners lie. Intrinsic to covalent bonding is

therefore a strong directionality as opposed to the largely non-directional metallic bonds.

When directionality matters the preferred crystal structures will not simply result from an

optimum packing of spheres but instead result from optimal orbital overlap and bonding

between the partners. Often this leads covalent solids to adopt tetrahedral structures such

as the diamond and zincblende structures; with the classic examples of such solids being the

tetrahedral group IV elements (C, Si, Ge, and α-Sn). A useful concept for understanding

such structures and indeed covalent materials in general is what is known as hybridization,

which we now briefly discuss.

Hybridization or hybrid orbital formation has proved to be an extremely helpful and

instructive concept for understanding the structure and bonding in many covalent materials

(solids and molecules). Here we introduce the basic ideas of hybrid orbital formation with

the single illustrative example of the group IV elements, C, Si, Ge, and Sn. All four elements

have four valence orbitals with the valence configuration ns2, np2 (A in Fig. 6). One finds

26



that it is possible to make linear combinations of these four valence orbitals to yield a new

set of hybrid orbitals. The particular set of hybrid orbitals relevant to the present discussion

are the sp3-hybrid functions. These four sp3 hybrid orbitals are linear combinations of the

original orbitals and can be written down as

φ1 =
1

2
(s+ px + py + pz) (28)

φ2 =
1

2
(s+ px − py − pz) (29)

φ3 =
1

2
(s− px + py − pz) (30)

φ4 =
1

2
(s− px − py + pz) (31)

yielding orbitals that point to the four corners of a tetrahedron (B in Fig. 6). This

set of hybrid orbitals corresponds to an excited state of the atom, i.e., this set of hybrid

orbitals is less stable than the original set of atomic orbitals, by an amount known as the

hybridization energy. In certain circumstances, however, it is possible for hybrid orbitals

on adjacent atoms to bond more effectively with each other than the atomic orbitals would

have done and in so-doing render the composite (molecule, solid) system more stable.

Or, in other words, the energy gain upon chemical bonding between the hybrid orbitals

outweighs the hybridization energy cost. For the present example of sp3 hybrid orbitals this

will be the case when the elements are arranged in a tetrahedral structure. Overlapping

hybrid orbitals on neighboring sites produce then bonding and anti-bonding levels (C in

Fig. 6), which in the solid broaden into semi-conductor valence and conduction bands

(D in Fig. 6). The fact that hybridization, which is essentially a mathematical construct

to change basis functions, provides a qualitative understanding of observed electronic

structures in real materials is where the real value of the concept lies. In the present

context, for example, hybridization can be used to rationalize the electronic structures of

the group IV elements and, in particular, the qualitative trend in the size of the band gap

in tetrahedral semiconductors. In C, Si, Ge, and Sn the splitting between the valence s

and p shells are all around 7 to 8 eV. In the solid, however, the measured gaps between the

valence and conduction bands are: C = 5.5 eV; Si = 1.1 eV; Ge = 0.7 eV; and α-Sn = 0.1

eV. This trend can be understood through sp3 hybrid formation, which in the solid leads to

sp3 bonding (valence) and sp3 antibonding (conduction) bands. The width of the bonding

and antibonding bands, and hence the band gap, depends upon the overlap between atoms
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in each solid. This is, of course, related to the “size” of the individual elements, i.e., the

band gap depends on the extent of orbital overlap. Carbon (in the diamond structure)

therefore exhibits the largest band gap (the strongest overlap of hybrids at adjacent atoms,

the strongest cohesive energy) and α-Sn the smallest. This trend can also be captured in

DFT calculations, although the quantitative value of the computed Kohn-Sham band gap

depends sensitively on the exchange-correlation functional employed, which brings us to

the question of the accuracy of DFT for covalently bonded elemental solids.

4.2.2 DFT for the Cohesive Properties of Elemental Covalent Solids?

As we asked before for metals, we now consider what level of accuracy to expect if we

choose to perform a self-consistent DFT calculation. The properties considered are again

Ecoh, a0, and B0. Table 2 lists the values obtained for each of these quantities for C, Si,

and Ge with the LDA, PBE, TPSS, and PBE0 functionals. As before, let’s consider each

functional in turn and see what general conclusions can be drawn:

(a) Like we saw for metals, LDA predicts the smallest lattice constants and the

largest cohesive energies. Compared to experiment the LDA lattice constants are

highly accurate. The cohesive energies are significantly larger (+14 to +22 %) and the

bulk moduli straddle the experimental values (being 5 % smaller for Si and 3 % larger for C).

(b) The PBE functional predicts lattice constants that are larger than experiment

(+0.7 % to +2.3 %), just as this functional did for metals. The bulk moduli are less than

the experimental values (-17 % to -5 %) and the cohesive energies are within about 4 % of

experiment, considerably improved compared to LDA. Note that the GGAs for solids tend

to yield better lattice constants for these covalent solids but worse values for Ecoh [39, 41].

(c) The TPSS functional appears to offer equivalent performance to PBE for lattice

constants and bulk moduli. For Ecoh, TPSS actually appears to be slightly inferior to

PBE, predicting cohesive energies that are 6 to 2 % smaller than the experimental values.

However, revised-TPSS does offer improvements [43].
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Table II: Bulk properties of C, Si, and Ge, as computed with the LDA, PBE, TPSS, and PBE0

exchange-correlation functionals. All data is taken from Refs. [87] and [48]. Ref. [87] is an

all-electron study with a Gaussian basis set. Data from ref. [48] has been obtained with the plane-

wave plus PAW method. The experimental values in parenthesis have been corrected for zero point

effects.

a0(Å) B0 (Mbar) Ecoh (eV)

Ref. [87] Ref. [48] Ref. [87] Ref. [48] Ref. [87] Ref. [48]

C LDA 3.54 4.54 8.83

PBE 3.58 3.57 4.22 4.31 7.62 7.71

TPSS 3.58 4.17 7.12

PBE0 3.55 4.67 7.59

expt. 3.57 (3.54) 4.43 7.37

Si LDA 5.43 0.95 5.26

PBE 5.49 5.47 0.89 0.88 4.50 4.56

TPSS 5.48 0.92 4.36

PBE0 5.43 0.99 4.56

expt. 5.43 (5.42) 0.99 4.62

Ge LDA 5.63 0.76 4.72

PBE 5.77 0.63 3.82

TPSS 5.73 0.66 3.78

PBE0

expt. 5.65 (5.64) 0.76 3.87

(d) For metallic systems the hybrid PBE0 functional did not appear to offer any

clear improvement over the other functionals. However, for C and Si (Ge has yet to be

treated with the PBE0 functional) PBE0 does, indeed, offer slightly improved performance

compared to the other functionals. PBE0 gets the lattice constants of both materials

correct to within 1 %, the bulk moduli to within 5 % and the cohesive energies to within
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3 % of the corresponding experimental values.

In conclusion, we again see that all functionals discussed perform reasonably well

in capturing the variation in lattice constants and bulk moduli for the small collection

of covalently bonded solids considered. As we observed for metals, the situation with

regard to the quantitative determination of Ecoh is far from satisfactory with the choice of

exchange-correlation functional crucial to the value obtained. Finally, before closing this

section we briefly discuss one further important aspect of DFT calculations of covalent

elemental solids, namely how the computed band gaps compare to the experimental

ones. We have indicated already that the computed Kohn-Sham band gap depends

sensitively on the exchange-correlation functional used and generally it is found that the

LDA and GGA functionals predict Kohn-Sham band gaps that are considerably smaller

than the experimentally observed optical band gaps. The LDA and PBE band gaps of

C in the diamond lattice, for example, are ∼4.2 and ∼4.8 eV, respectively, compared

to the corresponding experimental value of ∼7.3 eV [48, 88]. Moving to the hybrid

functionals such as PBE0 leads to increased band gaps through the inclusion of a fraction

of Hartree-Fock exchange and generally (but not always) this improves the band gap

compared to the pure DFT functionals. The PBE0 band gap for C, for example, is at ∼6.7

eV in much better agreement with experiment than either the LDA and PBE functionals [48].

5. Surface Structure

Knowledge of the atomic arrangement in the surface region is a prerequisite to un-

derstanding the properties of surfaces, and so let’s now briefly consider the structures of

surfaces. As we have said metals come most often in fcc, hcp, or bcc structures. Of the

many ways to cleave such metallic crystals to produce a surface the most interesting to us

here are those with low energy. These tend to be close-packed surfaces such as the (111),

(100) or (110) surfaces of fcc and bcc metals, or the (001), (100), and (101) surfaces of

the hcp metals. For orientation purposes we show the structures of the aforementioned

fcc and bcc metal surfaces in Fig. 7. Elemental semiconductors, on the other hand, most

often come in the diamond lattice. The three low-index faces of the diamond lattice are

the (111), (110), and (001) surfaces, which are shown in Fig. 8. Both the (111) and (110)
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fcc(111) fcc(100) fcc(110)

bcc(100) bcc(110)bcc(111)

Figure 7: Structures of some bulk-truncated (i.e., unreconstructed) low Miller index surfaces of fcc

and bcc metals. The surface unit cell is shown in each case. The density of surface atoms decreases

from left to right for the fcc surfaces and from right to left for the bcc surfaces.

surfaces of the diamond lattice have hexagonal symmetry, whereas the (010) surface has

square symmetry.

Because the atoms at the surface of a crystal have less neighbors than they do in the

bulk it is unlikely that they will remain at their “bulk truncated” positions. Rather, the

atoms are likely to move in response to their new environment, as discussed in great detail

in Chapter I of this book. Minor displacements in which the top few layers of atoms move

inward or outward along the surface normal, but retain their periodicity parallel to the

surface, are generally referred to as surface relaxations. More pronounced alterations of the

atoms in the surface region involving lateral displacements which alter their translation

symmetry parallel to the surface and/or changes in the surface layer atomic density are

generally known as surface reconstructions. We illustrate the distinction between surface

relaxations and surface reconstructions in Fig. 9 and now discuss some examples of each

type of behavior. In general, freshly cleaved metal and semiconductor surfaces are both

liable to undergo surface relaxations and/or reconstructions. However, because making a

surface in a covalent crystal involves breaking highly-directional bonds, the rearrangement

of the atoms at semiconductor surfaces often involves more substantial reconstructive
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Figure 8: Top and side views of the structures of the low-index bulk-truncated (i.e., unrecon-

structed) surfaces of the diamond lattice. In each sub-figure the size of the atoms decreases as one

moves deeper into the selvedge. The dangling bonds on the surface atoms (in a single unit cell) are

also indicated. For the (001) surface the dehybridized p states are also shown on the right. Note

that for the (111) surface two cleavage planes are possible. The one shown is the one that involves

cleavage along two widely spaced layers (as opposed to two narrowly spaced layers), leading to a

surface with one dangling bond per surface atom as opposed to three dangling bonds per surface

atom.

displacements of the atoms in the selvedge as opposed to minor relaxations.

5.1 Surface Relaxation

Simple surface relaxations in which only the interlayer spacings of the top layer or so

change are often observed for metal surfaces, as described in detail in Chapter I. For such

systems the well-known model of Finnis and Heine is applicable and used to rationalize

how the surface atoms can be expected to relax [89]. This model predicts: (i) a small

contraction for the first interlayer spacing; and (ii) that the contraction is more pronounced

for open surfaces than for close-packed ones.

The physical basis of the model is the Smoluchowski smoothing of the electron density

at the surface [90]. When a crystal is cut to form a surface, the electrons rearrange

in order to reduce the density corrugations and by this way their kinetic energy. This
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Figure 9: Schematic side views of: (a) a bulk truncated surface; (b) a relaxed surface; and (c) a

reconstructed surface.

Figure 10: Illustration of the Finnis-Heine model for electron density redistribution (Smoluchowski

smoothing) and interlayer relaxation at metal surfaces. See text for details (after ref. [89]).

leads to a displacement of the electrons left on top of the surface atoms downward to

the crystal resulting in an electrostatic attraction of the top layer ions toward the rest of

the crystal. This is illustrated schematically in Fig. 10. As electronic corrugations are

rather flat for close-packed surfaces, small contractions are expected in that case. For

more open surfaces larger contractions can be expected. Landman et al. [91] subsequently

expanded the model to show that the redistribution of electronic density extends over

several layers, giving rise to a tendency for a damped oscillatory nature to the relaxation.

Indeed for Al(110) subsequent low-energy electron-diffraction (LEED) analysis confirmed

the prediction of multilayer relaxation [92], thus representing an early success for the pre-

dictive nature of electronic-structure theories in their application to the structure of surfaces.

The model as outlined above, however, is obviously very simple and not as general as one

might be lead to expect, and not as widely applicable as it is often said to be [93, 94]. In

particular the closest packed hexagonal surfaces of the fcc and hcp metals often undergo an
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Table III: Percentage interlayer relaxations, ∆dij , for several (unreconstructed) close-packed hexag-

onal metal surfaces, as obtained from DFT (LDA and PBE) calculations and LEED analyses. All

data is from ref. [79].

Al(111) Ti(0001) Cu(111) Pd(111) Pt(111)

∆d12 LDA +1.35 -6.44 -1.58 -0.22 +0.88

PBE +1.35 -6.84 -1.19 -0.01 +1.14

LEED +2.2 ± 1.3 -2.1 -0.7 ± 0.5 +1.3 ± 1.3 +0.87

LEED +0.9 ± 0.5 -4.9 -0.3 ± 1.0 +2.4 ± 0.9 +1.20

LEED +1.7 ± 0.3 +1.0 ± 0.1

LEED +1.3 ± 0.8 +1.0

∆d23 LDA +0.54 +2.64 -0.73 -0.53 -0.22

PBE +0.54 +2.82 -0.65 -0.41 -0.29

LEED +0.5 ± 0.7 +1.4 -1.3 ± 1.3

LEED +0.7 ± 0.9

∆d34 LDA +1.04 +0.37 -0.43 -0.33 -0.17

PBE +1.06 -0.51 -0.24 -0.22 -0.21

LEED -1.1 +2.2 ± 1.3

LEED +0.7 ± 1.8

“anomalous” expansion of the first to second layer distance relative to the bulk interlayer

spacing. This is clear from Table 2 where measured interlayer relaxations at a number of

hexagonal close-packed metal surfaces are listed. This table includes the results of DFT

(LDA and PBE) calculations and LEED analyses for simple, noble, and transition metals

aiming at providing a broad and representative overview of the behavior of close-packed

metal surfaces. It can be seen from the table that LEED predicts an expansion of the first

to second interlayer spacing of Al(111), Pd(111), and Pt(111). For two of these surfaces (Al

and Pt) there is excellent agreement between theory and experiment suggesting that the

expansion is a real effect. For Pd(111) and some other surfaces not listed in Table 2, such as

Rh(111) and Ru(0001), how exactly the topmost layer relaxes is still under discussion [95–99].

5.2 Surface Reconstruction
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Figure 11: Illustration of three bulk truncated surfaces and typical types of reconstruction that

they undergo. (a) depicts the (1×1) to c(2×2) reconstruction of bcc W(100). The arrows indicate

the direction in which the top layer W atoms move upon reconstruction. (b) displays an example

of the “hex” reconstruction that the late 5d (fcc) transition metals undergo. The specific example

is the (1 × 1) to (1 × 5) reconstruction of fcc Ir(100). (c) displays the (1 × 1) to (1 × 2) “missing

row” reconstruction that occurs on the (110) surfaces of the late 5d (fcc) transition metals. The

rows of atoms removed by the reconstruction are indicated by the × at the edge of the unit cell.

For many surfaces the displacements of the atoms from their bulk truncated positions

are more pronounced than a simple relaxation in which only the interlayer spacings change.

These may involve lateral displacements of atoms within the surface layers and/or a change

in the surface layer atomic density. First we discuss some examples of reconstructions at

metal surfaces and then some examples at semiconductor surfaces.

5.2.1 Reconstructions of Elemental Metal Surfaces

In Fig. 11 we show three well-known examples of the common types of reconstructions

observed for clean metal surfaces. Following Titmuss et al. [100] we discuss these examples

as representative of three classes of reconstruction that may occur at metal surfaces:

(a) Displacive reconstructions at constant layer density : Some surfaces undergo displacive
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intralayer lateral relaxations within the surface layers, lowering the layer symmetry but

not the density. Within this class of displacive reconstructions the c(2 × 2) reconstruction

of W(100) is the most well characterized. As illustrated in Fig. 11(a) the top layer of W

atoms reconstructs from the ideal square lattice to a “zigzag” atomic arrangement. This

is achieved through a pair of symmetry breaking lateral displacements as indicated by the

arrows in the top part of Fig. 11(a). LEED structural analysis gives a lateral displacement

of the top layer W atoms of ∼ 0.2 Å [101–104]. Although not apparent from Fig. 11(a)

this reconstruction also involves displacements of the sub-surface W atoms as well as a

contraction of the topmost interlayer spacing of 6 %. The results obtained from DFT LDA

calculations are consistent with the experimentally determined structural model and point

to a coupling between one of the surface states of W(100) and a particular surface phonon

mode as the origin of the reconstruction [59, 105].

(b) Changes in surface layer atomic density : Large-scale surface reconstructions pro-

ducing changes in the surface layer density have been identified on several metal surfaces.

Notably, as described in Chapter I, the top layer of the (100) surfaces of Pt, Au, and Ir

reconstruct from their ideal square arrangements into quasi-hexagonal configurations known

as “hex” phases [106–114]. Because of the different symmetries of the reconstructed top

layer and the substrate, generally commensurate hex phases have rather long periodicities;

(5 × 1) and c(26 × 68) surface unit cells have been observed [112, 113]. Indeed the (5 × 1)

periodicity, which takes place on Ir(100), is the simplest of the hex reconstructions found

and the one displayed in Fig. 11(b). Again this reconstruction involves displacements of

subsurface atoms and a change in surface interlayer distances. Based on DFT calculations

Fiorentini et al. [115] established a correlation between reconstruction and the magnitude

of the surface stress and recently Havu et al. succeeded in performing full calculations

of some of these reconstructions [114] The reconstruction arises from a balance between

surface-substrate mismatch and stress-related energy gain. In the case of the 5d metals the

latter gain is large enough to drive the reconstruction against the substrate resistance to

misregistry, whereas for the 4d metals it is not. The origin of the surface stress was shown

to be d charge depletion at the surface, caused by enhanced sp hybridization and because

of relativistic effects this stress is particularly large for the 5d metals.
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Another surface reconstruction that fits perfectly into this class of reconstructions is the

so-called herring bone reconstruction of Au(111) [116–120]. Here a uniaxial contraction

along one of the 〈110〉 directions in the top layer leads to a layer with a higher density

of atoms in it than the unreconstructed (111) surface and a surface unit cell of (n ×
√

3)

(n = 22).

(c) Missing row reconstruction of fcc (110) surfaces : A well-known class of reconstruction

is the so-called missing row reconstruction of the fcc (110) surfaces [121–125]. The (110)

surface is the most open of the widely studied low Miller index fcc surfaces. Consequently,

it has the lowest surface layer atomic density and the highest surface energy, making

it the most likely to reconstruct. In the case of Ir, Pt, and Au the clean (110) surface

spontaneously reconstructs, giving rise to the (1 × 2) missing row reconstruction. As

the name suggests every second close-packed row along the (110) surface is removed

(Fig. 11(c)), resulting in a surface comprised of ribbons of (111)-like microfacets (see

Chapter I). On closer inspection, LEED as well as DFT find that each of the missing row

reconstructed surfaces show all three effects discussed above: a relaxation of the first to

second interlayer distance; a change in the surface layer atomic density; and a displacive

reconstruction of some of the surface layers parallel to the surface. For the interested reader

ref. [126] and references therein provides a more detailed discussion of this particular type

of reconstruction for the specific case of Pt(110).

5.2.2 Reconstructions of Elemental Semiconductor Surfaces

This is a huge issue and one that will be covered at length throughout this and subsequent

volumes. Very often elemental semiconductors exhibit a much richer variety of reconstruc-

tions than metal surfaces do [127, 128]. Fortunately, however, much of the qualitative

insight into semiconductor surfaces has been condensed into a series of general principles,

first laid down by Duke [129, 130] and discussed at length in several other places [128, 131].

A discussion of the relevant principles [132] along with a few examples is sufficient to

provide a flavor for how some of the most-common elemental semiconductor surfaces behave.

The first principle which we discuss here is often described as the basic or guiding
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principle of semiconductor surfaces and it states that “the surface structure observed will

be the lowest free energy structure kinetically accessible under the preparation conditions”.

This, rather obvious statement, is true of any surface. However, it is especially pertinent to

semiconductors since which surface is observed is known to depend sensitively on cleavage,

annealing, and growth conditions.

Stemming from the guiding principle are a series of other principles. Of relevance to

the present discussion on elemental semiconductors is one that basically implies that a

surface tends to minimize the number of dangling bonds by formation of new bonds and/or

rehybridization. The concept of the “dangling” bond is absolutely key to understanding

semiconductor surface reconstructions. In an elemental semiconductor, covalent bonds

between neighboring atoms contain two spin paired electrons in, for example, an sp3 hybrid

orbital. When a surface is created at least one such bond per surface atom is cut, leaving

some sp3 hybrid orbitals to stick out of the surface. These orbitals are called dangling bonds.

Dangling bonds are reactive and so the above principle is simply stating that real surfaces

will relax or reconstruct to reduce the number of dangling bonds they possess and, in so

doing, minimize the total energy of the system. Dangling bond states are surface-localized

orbitals that typically reside at an energy between the valence and conduction bands. Thus

these are surface states or resonances. Naturally, dangling bonds on neighboring atoms

interact and so the dangling bond levels get broadened into bands. As an example we show

in Fig. 12 the computed surface band structure of the unreconstructed (100), (110), and

(111) surfaces of Si. These are the prototype dangling bond systems; with the dangling

bonds clearly seen in the fundamental gap in each system.

The other principle relevant to elemental semiconductors (as well, by the way to the

surfaces of other classes of materials) is one that states that “...surfaces can lower their

energies by atomic relaxations leading to semiconducting (as opposed to metallic) surface

state eigenvalue spectra”. Basically this principle implies that a semiconductor surface

tends to be insulating or semiconducting but not metallic. In general, if there is a single

dangling bond per surface atom or when two or more dangling bond bands overlap then

the surface is metallic. Otherwise the surface is semiconducting. All three bulk-truncated

surfaces of the diamond lattice shown in Fig. 8 are metallic and thus liable to reconstruct.
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Figure 12: Surface band structures of the bulk-truncated (111), (110), and (001) surfaces of Si, as

obtained from empirical tight-binding calculations (after refs. [133, 134]). The labels D, B, and Br

stand for dangling bond, back bond, and bridge bond, respectively.

Let’s now consider how the (001) and (111) surfaces of the diamond lattice behave.

First, the (001) surface. This surface, in particular the (001) surface of Si, has been

examined in detail at least as much as any other solid surface; often being described as the

backbone of the semiconductor industry. The Si(001) surface undergoes a large number

of reconstructions, notably to p(2×1), p(2×2), and c(4×2) phases. We discuss the (2×1)

reconstruction, which is also observed for Ge and C. The atoms at the surface of the

non-reconstructed (001) surface are second nearest-neighbors and each is involved in just

two nearest-neighbor covalent bonds. As a result each surface atom is relatively unstable

with two dangling sp3 orbitals, as shown schematically in Fig. 8. Partly this situation is

remedied through dehybridization of the sp3 orbitals on the surface atoms back to the

original atomic s and p orbitals, since lacking their tetrahedral environment the incentive

to stay as sp3 hybrid orbitals is diminished. Dehybridization leaves the surface atoms

with p or sp orbitals parallel to and perpendicular to the surface, known in this specific

system as bridge bond and dangling bond states, respectively. These are the states that

are shown schematically on the right hand side of Fig. 13 and also the states labeled D and

B in Fig. 12 Unsaturated states on neighboring atoms can interact and in so-doing further

reduce the total energy of the system. Specifically this is achieved through the formation

of dimers between atoms on adjacent rows. In the simplest case this gives rise to a (2×1)
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Figure 13: Left: Bulk-truncated structure of the (001) surface of the diamond lattice. Right: the

(2× 1) reconstruction of the (001) surface within the symmetric dimer model (SDM).

reconstruction as indicated in Fig. 13.

In Fig. 13 the dimers are parallel to the surface in a symmetric configuration known as

the symmetric dimer model (SDM). However, the dimers need not necessarily lie parallel to

the surface but instead may buckle or tilt. The (2×1) reconstruction comprised of buckled

dimers is known as the asymmetric dimer model (ADM). For the particular case of Si(001)

in the (2×1) reconstruction the question of whether the dimers buckle or not was intensely

debated in the 1980s and early 1990s. It is now established that the ADM is favored for

the (2×1) reconstruction on Si(001), and likewise for the (2×1) reconstruction of the (001)

surface of Ge [136]. However, dynamical flipping between the two tilted orientations is pro-

nounced even at very low temperatures [137, 138]. On C(001), however, where the orbitals

are more localized and electron-electron repulsion of two electrons in the same orbital is

much larger, the dimers in the (2×1) phase do not buckle and the SDM is favored [139, 140].

Important contributions to the understanding of the (001) surfaces of the group IV

elements in the diamond lattice have come from DFT, including an explanation as to why

the dimers buckle on Si and Ge but not on C [134, 135, 137] Specifically, by looking at

the underlying electronic structures for the buckled and symmetric dimer structures, DFT

reveals that on Si and Ge the buckling is required to split the energies of the dimers’
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Figure 14: Left: Section of the DFT (LDA) surface band structure of C, Si, and Ge (001)-(2× 1).

The circles and squares correspond to experimental photoemission data. Right: Side views of the

optimized DFT (LDA) structures of these surfaces. For C the symmetric dimer model (SDM) is

favored, whereas on Si and Ge the asymmetric dimer model (ADM) is favored. Bond lengths are

given in Å (from refs. [134, 135]).

bonding and anti-bonding states (in this context called the π and π∗ bands) to yield a

semiconducting rather than a metallic surface. For C(001)-(2 × 1) the splitting is already

large enough that the surface is insulting in the SDM anyway. This can be clearly seen in

Fig. 14 where partial band structures for the various (2 × 1) phases under discussion are

displayed as well as details of the optimized DFT (LDA) structures of each phase. This

study illustrates very clearly how with electronic structure theory it is possible to examine

both stable and unstable structures and in so-doing understand the underlying physics that

controls the structures which emerge. For a more detailed account of the chemical and

physical differences between the (001) surfaces of C, Si, and Ge the interested reader is

referred elsewhere [134, 135].
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Figure 15: Left: Bulk-truncated structure of the (111) surface of the diamond lattice. Right: the

(2× 1) reconstruction of the (111) surface within the π-bonded chain model. Reconstruction from

the (1 × 1) to the (2 × 1) structure involves cleavage of the bond between atoms 1 and 5 and the

formation of a new bond between atoms 4 and 5.

Moving now to the (111) surface of the group IV elemental semiconductors. For this

surface two distinct bulk-truncated terminations are possible. One involves cleavage

through one of the double-layers stacked along the [111] direction of the bulk yielding a

surface with three dangling bonds per surface atom. The other involves cleavage above or

below one of the double layers yielding a surface with one dangling bond per surface atom.

Not surprisingly the (111) termination with three dangling bonds per surface atom is less

stable than the (111) cleavage plane with one dangling bond per surface atom. It is the low

energy single dangling bond termination that is shown in Fig. 8 and Fig. 15.

As we have indicated already the bulk-truncated (111) surface of Si is unstable and

undergoes reconstruction, notably to (2×1) and (7×7) phases. We discuss here the simpler

(2×1) reconstruction and refer the interested reader to many of the other texts, including

Chapter I, which describe at length the nature of the (7×7) reconstruction, which is

indeed the most famous but also most complex reconstruction in surface physics (see. e.g.

[128, 130, 131, 141, 142]).

The bulk-truncated (111) surface of Si is comprised of hexagonal bilayer rings within
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the plane of the surface as well as 6-membered rings perpendicular to the surface. The

reconstruction into the (2×1) phase involves a specific rearrangement of the bonding pattern

between the surface bilayers and the subsurface atoms. With regard to Fig. 15 it can be seen

how this is achieved. Specifically, the bond between the atoms labeled 1 and 5 breaks and a

new one forms between the atoms labeled 4 and 5. Concomitant displacements of the atoms

leave atoms 1 and 2 in the first atomic sub-layer and atoms 3 and 4 in the second sub-layer.

This leaves the surface with zig-zag chains running along the [110] direction connected to

the subsurface atoms by 5- and 7-membered rings, as opposed to the 6-membered rings

of the bulk structure. This zig-zag chain model for the (2×1) reconstruction of the (111)

surface of the diamond lattice is known as the “π-bonded chain model ”. In the original

π-bonded chain model, due to Pandey [143, 144], all the top layer Si atoms in the π-bonded

chains reside at the same height. However, like the situation just discussed for the Si

dimers of the (100)-(2×1) reconstruction, the atoms in the π-bonded chains are liable to

buckle. Specifically one can generate two analogue structures by titling the two atoms

of the chain in clockwise or anticlockwise directions. How the two resulting structures,

the so-called “chain-high” or “chain-left” and “chain-low” or “chain-right” structures are

generated is illustrated in Fig. 16. For Ge(111)-(2×1) the anticlockwise chain-high isomer

is favored. For Si(111)-(2×1) both the chain high and chain low structure are almost

degenerate in energy and for C(111)-(2×1) no buckling is found. In arriving at these

structures for the Si(111) surface, electronic structure theory played an absolutely crucial

role by first showing that certain models were incompatible with experiment and that the

new chain models had lower energies [143, 144]. For a fuller discussion focussing on the

physical origin of the buckling the interested reader is referred to the book of Bechstedt [131].

5.3 Surface Structure Summary

To conclude our discussion on semiconductor and metal surface structures, these surfaces

tend not to retain their bulk-truncated structures and a huge variety of relaxations and

reconstructions are possible. The interested reader may wish to refer to Tables 2.3a and

2.3b of Somorjai’s textbook on surface chemistry for a more extensive overview of the many

and varied structures clean solid surfaces can adopt [93].
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Figure 16: Side view of the π-bonded chain model for the (111) surface of the group IV elements

in the diamond lattice and how it can be transformed in to two related structures known as the

“chain-left” or “chain-high” and “chain-right” or “chain-low” isomers. After ref. [131].

6. Surface Energetics

6.1 Introduction and Experimental Considerations

The energy to produce a surface at a given temperature and pressure is the Gibbs surface

free energy, GS. The Gibbs surface free energy will be different for different facets of a

crystal and is thus key to determining the equilibrium crystal shape of materials, crystal

growth, surface roughening, surface segregation in alloys, and many other properties. For

the elemental solids considered here, it can be defined by the relation

G = NG0 + AGS , (32)

where G is the total free energy of the finite solid, N is the number of atoms in it and

A is the surface area [93, 141]. G0 is the (reference) free energy of an atom in the idealized

infinite solid. Thus GS expresses the excess free energy that the finite solid with surfaces

has over an idealized crystal comprised exclusively of bulk atoms. Excess implies that GS

is a positive quantity, i.e., it costs free energy to produce more surface. For elemental

systems and in the absence of an applied electrical field this is always the case. For binary,

ternary or more complex materials and in the presence of gas phase environments, in which

the precise stoichiometry of bulk and surface phases becomes unclear, there have been
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suggestions that GS need not be positive under all conditions [145, 146].

The Gibbs surface free energy will usually be different for different facets of a crystal.

Such variations, often referred to as surface free energy anisotropies, are key to determining

the equilibrium crystal shape (as well as many other properties) of materials because at

equilibrium a crystal seeks to minimize its total surface free energy subject to the constraint

of constant volume.

To see exactly how variations in GS impact upon the equilibrium crystal shape of

materials let’s now examine a simple 2D model system. Consider the schematic (cubic

close-packed) crystal shown in Fig. 17(a). One can imagine different planes along which

to cleave this crystal to produce a surface. Some possible cuts are indicated in Fig. 17(a)

and are labeled by the angle, Θ, that they make with the [01] plane. Clearly, in this model

system, cuts along Θ = 0◦ and Θ = 90◦ will yield identical close-packed surfaces, cleavage

along the plane Θ = 45◦ will also yield a close-packed surface but with a lower density

of atoms in the top layer, and cleavage along the planes Θ = 22.5◦ and Θ = 67.5◦ will

produce the most corrugated (stepped) surfaces. Generally the surface energy increases

with the corrugation (openness) of the surface, something we will discuss in more detail

below, and thus one can expect that surfaces cut along the planes Θ = 0◦ and Θ = 90◦

will have the smallest surface energy and surfaces cut along the planes Θ = 22.5◦ and

Θ = 67.5◦ will have the largest surface energy with Θ = 45◦ coming somewhere in between.

A so-called polar surface energy plot provides a particularly convenient and concise way in

which to represent the dependence of GS on Θ, GS(Θ), and is a useful first step towards

determining the equilibrium crystal shape. In Fig. 17(b), the first quadrant of one such

plot for the model system shown in (a) is displayed. Such plots are constructed by drawing

radial vectors from the origin with a magnitude proportional to GS for each value of

Θ. Thus for the simple model in Fig. 17(a) the magnitude of
−→
GS(0) is relatively small,

−→
GS(22.5) and

−→
GS(67.5) are relatively large and

−→
GS(45) is somewhere in between. From

such a polar surface energy plot it is then straightforward to determine the equilibrium

crystal shape by applying the Wulff theorem or by, in other words, performing a Wulff

construction [147]. In practice, planes (or lines in this 2D example) are constructed at

the endpoints of and perpendicular to the radial GS vectors (Fig. 17(c)). The resultant
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Figure 17: (a) Schematic illustration of a 2D model crystal. Several possible cleavage planes of

this crystal, labeled by the angle, Θ, that they make with the [01] symmetry plane, are indicated.

(b) The first quadrant of a polar surface free energy plot for the model system sketched in (a),

and assuming a correlation between the corrugation of a surface and its surface energy. For each

value of Θ radial vectors are drawn from the origin of the plot with a magnitude proportional to

GS at that value of Θ, i.e., the function GS(Θ) is plotted. (c) and (d) The Wulff planes of the

polar surface energy plot sketched in (b) and the resulting equilibrium crystal shape (for all four

equivalent quadrants) of the model system displayed in (a).

planes (lines) are known as Wulff planes (lines) and it is simply the inner envelope

- the inner Wulff envelope - of all the planes (lines) connected normal to the vectors

of the surface energy plot that yields the equilibrium crystal shape (Fig. 17(d)). The

resultant 2D crystal shape obtained by performing a Wulff construction on all four quad-

rants of a polar surface energy plot for the model system in Fig. 17(a) is shown in Fig. 17(d).

Before moving away from Wulff constructions, we briefly make a few rather self-evident

but nonetheless worthwhile comments upon it. First, the distance of each face from the

center of the crystal is proportional to the surface energy of that face. The equilibrium

crystal shape for a purely isotropic crystal is thus a sphere. Second, the Wulff theorem can

be used in “reverse”, i.e., given a crystal of a particular shape one can use the Wulff theorem

to extract the relative surface energies of the different facets exposed. This is a powerful

and commonly used technique for extracting relative surface energies of different crystal

facets from experiment. Third, if one cleaves a crystal along a direction which does not form

part of the equilibrium boundary, the crystal will spontaneously facet along those directions

that do, assuming, as always, that the system is at equilibrium. Fourth, and finally, as

the volume of the crystal decreases to the nanometer scale, the accuracy of the predic-
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tions one can obtain from the Wulff theorem become questionable because the energetic

contribution of edges and corners at the boundary between each face becomes non-negligible.

Although the standard application of the Wulff theorem provides a means to obtain

relative surface free energies from experiment, the determination of absolute surface

free energies is, on the other hand, notoriously difficult. This is mainly because it is a

small quantity and sensitive to the presence of vacancies, adatoms, steps, impurities, and

kinetic barriers that prevent equilibrium structures from being attained. Interestingly,

most experimental surface free energy studies from which absolute surface free energies

can be obtained are indirect and old, originating in the mid 1970s and before, when

the standards of surface cleanliness and perfection were unavoidably lower than they are

nowadays. Although in compilations of surface energies “recommended values” may be

given, one would need to be brave to make a bet of any substance on the validity of a

tabulated value of a surface free energy. One need only look at published results for W, for

example, to see the problem: measured values range from 105 meV/Å2 to 281 meV/Å2 [148].

Partly because of the difficulty in acquiring reliable surface free energies of solids, when

dealing with one component systems, it is common to exploit the equivalence of GS and

surface tension, γ [149]. The surface tension, particulary the surface tension of liquids,

can be determined more accurately than GS for solids. Since it is generally believed that

the surface tension of a molten liquid is about 10-20 % less than GS for the close-packed

surfaces of that solid, the liquid surface tension measurements provide what is considered

an average surface free energy of the low-index solid surfaces. Generally these values are

extrapolated on “semi-theoretical” [150] grounds to 0 K, which is how most of the tabulated

surface free energy values of metals are presented [74, 150].

A notable exception to the rule that experimental surface energy measurements are

old are the experiments of Bonzel and co-workers on Pb in which surface free energies for

individual crystal facets were determined from knowledge of the temperature dependence of

the equilibrium crystal shapes of Pb crystallites [151]. The Pb crystallites were supported

on a Ru(0001) substrate and imaged with scanning tunneling microscopy at around room

temperature and above, leading to the determination of the absolute free energy of Pb(111)
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and several other low-index orientations ((100), (110), (113), (112), and (221)). Comparison

of the measured value for Pb(111), 27.5 meV/Å2 at 323-393 K, with previous recommended

values of polycrystalline Pb samples show that the new value is about 15 % smaller than

the previous ones. It remains to be seen where this difference comes from and if the modern

value is indeed superior to its predecessor. However, DFT (LDA) calculations tend to favor

the modern result [152].

6.2 Theoretical Considerations of Surface Energies

In theoretical studies, such as with DFT, the T=0 value of GS is typically calculated, also

assuming that contributions due to zero point vibrations as well as the pV term are negligible,

i.e., ES is calculated. In terms of a periodic slab calculation ES is more conveniently defined

with regard to surface area, A, as

GS ∼ ES = (Eslab
tot −NEbulk

tot )/2A , (33)

where Eslab
tot is the total energy of a slab with N atoms and Ebulk

tot is the reference total

energy per atom of the bulk system. The factor 1/2 takes into account the presence of

two equivalent surfaces of the slab. To obtain Es one thus needs to compute just two

quantities, Eslab
tot and Ebulk

tot [153]. Before doing this one must, as always, decide on which

exchange-correlation functional to trust. Since so far most calculations of Es have been

performed with LDA and GGA we restrict the comparison to just these two functionals.

Comparing the results of LDA and GGA (PBE) calculations for a selection of sp and

transition metals to the 0 K experimental data proves useful and leads to the somewhat

surprising result that LDA apparently outperforms GGA (Table 3). We say “apparently”,

of course, because the size of the error bars on the experimental values are unclear.

Nonetheless in each case GGA (PBE) predicts surface energies that are about 30 % lower

than LDA, and more often than not LDA is closer to experiment than GGA. This seems to

be a genuine conclusion for metals since it is also true for Pb(111) for which possibly the

most reliable single-crystal surface energy measurements have been made. Here LDA comes

within 2 meV/Å2 of the experimental value, whereas GGA-PBE is about 10 meV/Å2 lower

than experiment [152].
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Table IV: Theoretical (DFT LDA and PBE) and experimental surface energies in meV/Å2 for some

close-packed transition metal surfaces. All data is taken from ref. [79] except for the Pb results

which are from ref. [152].

Mg(0001) Al(111) Ti(0001) Cu(111) Pd(111) Pt(111) Pb(111)

LDA 38.7 56.8 141.7 119.8 116.7 139.2 26.0

PBE 35.0 46.8 124.2 88.0 83.0 104.2 17.2

Exp. 49.3 71.2 124.2 114.2 125.5 155.4 27.5

Studies on jellium surfaces provide a partial explanation for why LDA outperforms

GGA for the calculation of the surface energy of metals. Specifically they show that

the exchange-correlation contribution to the surface energy is calculated more reliably

with the LDA due to a favorable cancelation of errors: LDA overestimates the exchange

contribution to the surface energy, but underestimates the correlation contribution, whereas

PBE underestimates both quantities [154–156]. Since these results on jellium surfaces are

apparently transferable to real metals, it is reasonable to anticipate that functionals which

are superior to LDA for jellium surfaces will also be superior to LDA for real metal surfaces.

In this regard it appears that the meta-GGA TPSS, PBE-WC, and a functional from

Mattsson and co-workers based on a subsystem functional approach offer some promise

[37, 156, 157]. However, whether these functionals live up to expectations for real metal

surfaces and solid surfaces in general remains to be seen.

6.3 Phenomenological Theories of Surface Energies

So far we have not discussed the physics of the surface energy. Why do different materials

exhibit different surface energies? Why does the surface energy of different facets of the

same material differ? Essentially both questions are the same as asking: what controls

the magnitude of the surface energy? The qualitative answer to this is very simple: the

surface energy is related to the number and strength of the bonds per unit area which are

broken in creating the surface. Thus surface energies exhibit similar dependencies over the

periodic table (e.g. from Y to Ag) as cohesive energies do, and surface energies are lower

for more closely packed surfaces than they are for the more open ones or with less dangling
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unsaturated bonds.

(a) Surface energies and cohesive energies

For any given element its surface energy is a fraction of its cohesive energy. Often

it turns out that GS per surface atom ∼ 1/6Ecoh per bulk atom [158]. The surface

dependance comes in via the number of atoms at the surface or unit area. This rough

empirical relationship can be seen in Fig. 18(a), for example, where the ratio of experimental

heat of vaporization and experimental surface energy is plotted for more than 20 metals.

Correlations like this have a long history and can easily be refined to account for the

elements which are outliers on the plot [159].

So where does the value of the proportionality constant come from? Simply counting

the number of nearest-neighbor bonds that break in making a close-packed surface would

lead one to expect a value of 1/4 or larger, since at the most closely packed (111) surface

of an fcc metal 1/4 of the bonds are broken. On less closely packed surfaces obviously

more bonds are broken. As discussed by Methfessel et al. [161, 164] the reason the

simple bond cutting model fails to predict the correct proportionality constant is that it

neglects to account for the variation of the bond strength with coordination number, C.

In particular it must be recognized that bonds between an atom with a few neighbors are

stronger than those between an atom with many neighbors. This coordination-number-

bond-strength relationship is well known and has, for example, been calculated explicitly

with DFT for several metals, showing that the energy per bond can be as much as twice

as large for C = 2 compared to C = 12 [164, 165]. Since making an fcc (111) surface

entails cutting the comparatively weak twelfth, eleventh, and tenth bonds, the overall cost

to make the surface is less than would be predicted by the simple linear bond cutting concept.

The coordination-number-bond-strength relationship is qualitatively captured in simple

tight-binding schemes in which the energy per bond can be assumed to scale with
√
C leading

to
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Figure 18: (a) Plot of experimental values of the surface free energy (GS) (from ref. [150]) against

the cohesive energy (Ecoh) (from ref. [160]) for more than twenty simple, transition, and noble

metals. Lines corresponding to proportionality constants of 1/6 and the result of eqn. (34),

0.134, are also displayed. (b) Variation of the computed DFT LDA surface energies across the 4d

transition metal series and for various close-packed surfaces. Note that in this plot fcc crystals

have been used for all metals (after ref. [161]). (c) Computed DFT anisotropy ratios, relative

to the (111) surface, for the low index and the most close-packed vicinal surfaces of some noble

and transition metal surfaces (after ref. [162]). (d) Plot of experimental (two lower curves) and

theoretical (upper curve) anisotropy ratios, relative to the (111) surface, along the [001], [110] and

[011] zones for a series of Pb surfaces (after ref. [163]).

ES =

√
Cbulk −

√
Csurf

√
Cbulk

Ecoh , (34)

where Cbulk and Csurf are the coordination number of the bulk and the surface,

respectively. For an fcc (111) surface eq. (34) yields a surface energy per atom of 0.134Ecoh

which gives results rather close to the ones plotted in Fig. 18(a). Refinements of the
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tight-binding treatment to account for repulsive forces between the atoms improves the

agreement with experiment further [161, 164].

(b) Surface energy anisotropy

As we have said the variation of surface energy with the type of crystal facet exposed

is known as surface energy anisotropy. Generally it is known that the surface energy of a

material is proportional to the number of broken bonds at the surface. Thus more open

surfaces with more under-coordinated atoms (i.e., more broken bonds) are less stable than

the close-packed ones. This effect is qualitatively seen in the equilibrium crystal shapes

of materials which expose close-packed surfaces at the expense of more open ones. First

principles theory provides a considerable body of quantitative support for this concept

[88, 131, 152, 161–164, 166–168]. As an example we show in Fig. 18(b) the computed DFT

LDA surface energies of Methfessel et al. [161, 164] for model fcc (111), (100) and (110)

surfaces of the 4d transition metals. Clearly for each metal the surface energy increases

along with the corrugation of the surface, being lowest for the (111) surfaces and highest

for the (110) surfaces.

More recently Galanakis et al. [162, 167] have shown that for the surfaces of several fcc

metals there is an almost perfect linear correlation between the relative surface energies of

different crystal facets and the number of broken bonds. This is shown in Fig. 18(c) for

a number of fcc transition metal surfaces. Precisely the DFT LDA computed anisotropy

ratios (relative to the (111) surface) for the (100), (110), (311), (331), and (210) surfaces of

several transition metals are displayed. The solid horizontal lines are the ideal broken-bond

ratios, which for the (100) surface, for example, is 4/3 since each atom on this surface

has only 8 nearest neighbors compared to 9 in the (111) surface. It can be seen that in

every case the computed results fall on the ideal lines or within a few percent of them.

Calculations on other fcc metal surfaces, including an extensive series of 35 Pb surfaces and

a large set of Cu surfaces predict that this trend also applies to these substrates; typically

computed surface energies were within 5 % of what would be predicted from the broken

bond rule [163, 168]. It has been argued that the linear correlation in the relative surface

energies is not inconsistent with eqn. (34) and the basic knowledge that the binding energy
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Figure 19: (a) Scanning tunneling microscopy (STM) image of part of a Pb crystallite showing

the (111) and the surrounding 2-fold symmetric (221) and (211) facets as well as a (100) facet at

the contact edge to the substrate. The image size is ca. 970× 750 nm. (b)-(d) Three dimensional

equilibrium crystal shapes of Pb constructed from DFT LDA surface energies. (b) is obtained

from computed surface energies on relaxed surfaces, (c) from computed surface energies on fixed

surfaces, and (d) with the vicinal surface energies obtained from the linear broken bond model

(after ref. [169]).

does not scale linearly with coordination number C, by recalling that the square root in

eqn. (34) can be linearized in the regime of high coordination [162].

Recent experimental results on Pb crystallites [151, 170, 171], provide valuable data with

which to assess the validity of the trends predicted by DFT. Summarizing an extensive

series of comparisons between experimental and DFT results [152, 163, 169, 172], it is

found that the surface energy anisotropies obtained from experiment and predicted by

theory agree with each other reasonably well. In Fig. 18(d), for example, the experimental
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and theoretical surface energy anisotropies are plotted along the [001], [110] and [011]

zones. At 323 and 473 K the experimental anisotropies are 11 and 6 %, respectively,

whereas the T = 0 K theoretical anisotropy is at 25 %, expectedly higher than the finite

temperature experimental values. In addition the directions of the maxima and minima of

the theoretical anisotropy curve coincide with the experimental values. Moreover, when the

theoretical equilibrium crystal shape - obtained by performing a Wulff construction with

the theoretical surface energies - is compared to experiment, the qualitative agreement is

good. As shown in Figs. 19(a)-(b) many features of the experimental equilibrium crystal

shape are reproduced by the theoretical one, such as the 3-fold symmetry of the central

(111) facet and the smaller peripheral (211) and (221) facets. Also shown in Figs. 19 are

the predicted equilibrium crystal shapes obtained from the surface energies of unrelaxed

Pb surfaces (Fig. 19(c)) and from the application of the linear broken bond rule. It is

clear that the equilibrium crystal shapes obtained with the alternative data sets differ

noticeably from experiment. In particular the assumption of a linear dependence of the

surface energy with the number of broken bonds results in an incorrect crystal shape with

just the low-index (111) and (100) surfaces present. Thus although approximate linear

correlations are observed between the surface energy and the number of broken bonds the de-

viations from linearity are essential for a correct description of the equilibrium crystal shape.

7. Surface Electronic Structure

Let’s now consider how the electronic structure at the surface differs from that in the

bulk. We have already seen for semiconductors that the loss of translational symmetry

along the surface normal has important consequences for the electronic structure, notably

through the formation of dangling bonds which, as we have seen, have profound implications

for the surface structures that form. Now we focus on the electronic structures of metal

surfaces and take this as an opportunity to discuss important concepts such as the surface

dipole, the work function, surface core level shifts, and surface states. First we look at the

surfaces of simple metals, where we find that again jellium provides useful insight, we then

move on to the transition metals and tight-binding arguments.

7.1 Jellium Surfaces: Electron Spillout; Surface Dipole; and Work Fnction
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Take the jellium model that we introduced earlier for the infinite crystal and terminate

the positive background (n+) abruptly along a plane at z = 0, with the positive uniform

background now filling the half-space z ≤ 0 with the form:

n+(z) = n, z ≤ 0

= 0, z > 0 (35)

where n is the mean density of the positive charge in the ionic lattice. For a range of

densities (rs = 2 − 6) Lang and Kohn [173, 174] considered how the density (within the

LDA) would behave at such an interface. The now famous plot displayed in Fig. 20(a)

was obtained, which shows that: (i) the electron density spills into the vacuum; and

(ii) the density within the boundary oscillates in a Friedel manner with an amplitude

that decreases asymptotically with the square of the distance from the surface. The

characteristic wavelength is one half of the Fermi wavelength, kF , where kF = (3π2n)1/3

[175]. The amount of spillout into the vacuum and the amplitude of the Friedel oscillations

depends on the Wigner-Seitz radius rs. The smaller rs is, the larger the spillout. The larger

rs is, the greater the amplitude of the oscillations.

The potentials associated with such density distributions are sketched in Fig. 20(b). In

particular the total effective (Kohn-Sham) potential, V eff , and the electrostatic potential,

V es are plotted. The difference between them is the exchange-correlation contribution to the

total effective potential which one can see comprises the largest part of V eff . This is generally

true for low and intermediate densities. Two aspects of the potentials are worth commenting

upon. First, as a result of the local-density approximation, V eff vanishes exponentially into

the vacuum. This asymptotic behavior is not correct. Instead, since as an electron moves out

of a metal surface its exchange-correlation hole stays behind, flattening out on the surface,

the effective potential should follow an image-like form at large z:

V eff(z) =
1

4|z − zimage|
. (36)

Here zimage is the so-called image plane, which for many purposes is considered the

“effective surface plane” [141, 176]. For typical values of rs the image plane (from LDA
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Figure 20: (a) Self-consistent electron-density distributions at a jellium surface for rs=2 and rs=5.

(b) Schematic illustration of the potentials that develop at the jellium surface within the local-

density approximation for an rs ∼ 5. All symbols are defined in the text (after ref. [173]).

predictions) of clean jellium surfaces resides about 2-3 Å to the vacuum side of the positive

uniform background (z = 0) [176]. As we will see, however, the LDA error in the asymptotic

behavior of V eff has little effect on the properties of interest here such as the ground-state

electron density and work function which are determined largely by the position and height

of the potential rather than its detailed shape.

The second feature of the potentials sketched in Fig. 20(b) that we comment upon is

V es, the electrostatic potential. Although V es is a relatively small component of the barrier,

it is of the utmost importance since it is closely related to the work function, Φ. V es

arises because the spread of electrons beyond the edge of the positive background renders

the electrostatic potential in the vacuum, V es(∞), higher than that in the metal interior,

V es(−∞). (For a real system “∞” means large compared to the lattice constant but small

compared to the crystal dimension.) Thus an electron trying to leave the metal encounters
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an electrostatic surface dipole layer, D, with an electrostatic potential energy difference of

height

D = V es(∞)− V es(−∞) . (37)

From Poisson’s equation this can be written as

D = 4π

∫ ∞
−∞

z[n(z)− n+(z)]dz . (38)

This integral across the surface boundary is obviously an electric dipole, the surface

dipole, which is related to the work function, Φ, through

Φ = D − µ , (39)

where µ is the electron chemical potential, which in a metal at 0 K is equal to the Fermi

level (as discussed in section 4). Thus we arrive at the definition of the work function as

the minimum work necessary to remove an electron from a metal at 0 K [177].

Clearly the more the electrons spill into the vacuum, the larger D is. Indeed Φ generally

increases with decreasing rs as is illustrated by Fig. 21(a) where the work function of jellium

is plotted as a function of rs along with several experimental values for polycrystalline

metals. It can also be seen from the plot that the trend predicted by jellium is indeed

observed with experimental measurements on real crystals. Moreover, the absolute values

of Φ predicted with the jellium model fall in the range 2-4 eV and come within 10-20 % of

experiment for each of the sp metals listed.

A similar reasoning, although with the necessary introduction of a crystal lattice,

explains the well-established fact that for real crystals, Φ can differ from one facet to the

other, a concept known as work function anisotropy. For example, the measured values of

Φ for the (111), (100), and (110) surfaces of Cu are 4.74, 4.64, and 4.52 eV, respectively

[74]. Since µ or EF in eqn. (39) is a bulk quantity the anisotropy in Φ comes directly from

the different dipoles established at the different surfaces. Generally it is known that the

more open a surface, the smaller D is and consequently the smaller Φ is, as we see for Cu

above. Obviously, for jellium D is the same for all surface orientations. However, for a
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Figure 21: Computed work function of jellium as a function of rs along with measured experimental

values for polycrystalline surfaces (after ref. [174]).

real crystal, say fcc, the electron density is quite smooth at the (111) surface getting more

corrugated at the more open surfaces. In the latter situations the electron density will

smoothen out parallel to the surface to lower the kinetic energy (Smoluchowski effect), and

as a consequence the surface dipole moment will be reduced compared to that of the closer

packed surfaces.

7.2 Transition Metal Surfaces: Band Narrowing and Surface Core Level Shifts

As we know tight-binding arguments are more appropriate than jellium when seeking to

gain qualitative insight of transition metal surfaces. In tight-binding language the surface

suppresses a certain number of hopping integrals, since the surface atoms have lost some

neighbors in any sphere of coordination. This reduces the average width of the PDOS on a

surface atom relative to the bulk. Such “band narrowing” is a general phenomenon of solid

surfaces when the valence states are comprised of localized orbitals such as the d valence

orbitals of the transition metals. The bands of the surface atoms cannot narrow without

consequence, however. Given that the whole metal has a single Fermi level, narrowing

alone would lead to an unrealistic lack or surplus of electronic charge on the surface atoms

depending on the filling of the band. To avoid (or to at least reduce) this the center of gravity

of the narrowed bands shift; either up or down in energy. The magnitude and direction of
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the shift, ∆S, can be approximated with the rectangular d band model introduced earlier,

and is given by,

∆S = EF (1−
√
Csurf
Cbulk

) , (40)

where, as before, Cbulk and Csurf are the coordination numbers of atoms in the bulk

and at the surface, respectively. The energy zero in eq. (40) is the center of the bulk d

band, Ed, and thus within this simplified model ∆S is negative for less than 1/2 filled

bands, positive for more than 1/2 filled bands, and zero for an exactly half filled band. We

illustrate schematically the essence of this model in the upper part of Fig. 22. It is also

worth pointing out that since ∆S increases with the number of broken bonds at the surface,

the more open the surface, the larger the shift, and naturally as one descends into the bulk

of the crystal the bulk value for the band width is immediately recovered (within the model).

The qualitative behavior predicted from the rectangular d band model can actually

be seen in self-consistent DFT calculations, where the shape of the DOS is explicitly

calculated. For example, we show this in the lower part of Fig. 22 where the bulk and

surface PDOS projected on to the valence d orbitals is plotted for bulk Zr and Ru and for

Zr and Ru (0001) surfaces. For both Zr and Ru the d PDOS associated with the surface

atoms is narrower than that of the bulk. For Zr with < 5 d electrons the surface d PDOS

moves down in energy (∼ 0.1 eV) relative to the bulk, and for Ru with > 5 electrons the

surface d PDOS moves up in energy (∼ 0.3 eV) [178].

Of more significance, perhaps, is that the shifts in the valence levels correlate with shifts

in the core electrons and that the latter are now accurately and routinely measured with

x-ray absorption spectroscopy (XPS) [93, 179, 180], as described in Chapter I. Such shifts

in the core electrons, known as surface core level shifts (SCLS), have been measured on

many close-packed transition metal surfaces finding the same qualitative trend illustrated in

Fig. 22 for the valence states, i.e., a shift to deeper binding energies is observed for elements

to the left of the transition series and a shift to shallower binding energies for elements to

the right. Quantitatively the core level shifts differ from the d-band shifts. See, for example,

refs. [179, 181, 182]. Surface core level shifts can also be computed within the framework

of DFT. However, to ensure good agreement with experiment it is often necessary to put
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Figure 22: Upper part: schematic illustration of d-band narrowing at transition metal surfaces and

its consequence for the energy levels of the surface atoms with less than 5 d electrons (Nd < 5),

exactly 5 d electrons (Nd = 5), and more than 5 d electrons (Nd > 5). Lower part: PDOS for the

d orbitals in bulk Zr and Ru and at the surface of Zr(0001) and Ru(0001), as computed within the

LDA. Ed is the center of gravity of the d PDOS and the small arrows indicate that Ed is lower at

the surface than in the bulk for Zr whereas Ed is higher at the surface than in the bulk for Ru

(computed by the authors).

in a little more effort with the DFT calculation than simply computing the differences

in the eigenvalues of core electrons at the surface and in the bulk, as was done for the

valence DOS (Fig. 22). Consider what is actually measured in a core-level photoemission

experiment: It is the difference in the energy it takes to remove a core electron from an

atom at the surface and from an atom in the bulk. From this definition it follows directly

that the SCLS of a particular core level is the difference in the self-consistent total energy

between a sample with a core hole at the surface compared to the core hole being in a

bulk atom. This binding energy shift thus includes changes in the core orbital energies

between bulk and surface atoms and differences in the screening of the core hole created by

the different surroundings of the core hole at the surface and in the bulk of the material.

The former effect is typically called the “initial state” contribution, whereas the latter is
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called the “final” state contribution. The inclusion of such “final state” effects can often be

necessary if quantitative agreement between experimental and theoretical values of SCLS

is sought [182–185]. In some cases it can even affect the qualitative physics [182, 186].

7.3 Surface States

As we have seen the electronic structure of metal surfaces is likely to differ from that

in the bulk. One way this altered behavior is exemplified is through the formation of

so-called surface states [187–190]. The surface states of metals represent interesting physical

phenomena in their own right, as examples of confined two-dimensional electronic systems,

but can also affect the physical and chemical properties of metallic interfaces, playing,

for example, a role in the mediation of adsorbate lateral interactions [191–193]. They are

routinely observed in experiment, notably with angle-resolved photoemission spectroscopy

(ARPES) or with scanning tunnelling microscopy [194, 195] (also see Chapter I).

Consider a wavefunction in the bulk as it approaches a metal surface. If it is reflected

back into the bulk and decays exponentially into the vacuum it is a bulk state (Fig. 23(a)).

Certain bulk states may have a larger weight at the surface than in the bulk unit cell. Gen-

erally these are referred to as surface resonances (Fig. 23(b)). However, other wavefunctions

may be localized almost exclusively at the surface and decay exponentially into the bulk

as well as into the vacuum (Fig. 23(c)). These electronic states localized near the surface

are surface states, and can be defined more precisely as states that occur in “forbidden”

[196] regions of the bulk band structure, i.e., at an energy and k‖ value or point-group

symmetry for which there are no bulk states into which they can decay. This implies that

surface states appear in “gaps” of the bulk band structure. Even though metals do not

(by definition) exhibit absolute band gaps there can be many regions of k -space for which

at specific energies there are no states. For example, in the bulk band structure of Cu

(Fig. 4(a)) there are no states above the d band until well above EF along the path Γ→ L.

Thus this represents a potential region in which, given the appropriate conditions, a surface

state may appear. Indeed the (111) surface of Cu is perpendicular to the Γ→ L path and,

as we will see, a surface state does indeed reside in this region of the surface projected bulk

band structure of Cu(111).
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Figure 23: Schematic illustration of: (a) an idealized bulk state; (b) an idealized surface resonance;

(c) an idealized surface state; and (d) an idealized image potential state.

Surface states are usually classified as Shockley [196] and Tamm states [197], and we

now briefly discuss these two types of surface state in turn. However, we caution in advance

that while useful the distinction is somewhat arbitrary since both types of state describe

the same physical phenomenon of a wavefunction that is localized at the surface and decays

exponentially into the bulk (also see Chapter I).

(a) Shockley states: These are typical of the simple and noble metals. Indeed the

hexagaonal close-packed surfaces of Be, Mg, Al, Cu, Ag, and Au all possess an occupied

Shockley state [198]. They arise simply because the presence of the surface allows solutions

of the Schrödinger equation which would otherwise be imaginary in the bulk to become

real in the semi-infinite crystal. Shockley states appear close to the low energy (i.e., high

binding energy) border of a gap and reveal a free-electron-like behavior parallel to the

surface. A particularly well characterized Shockley state is the one that occurs on Cu(111).

According to ARPES this is a free electron-like state which at the Γ point of the surface
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Figure 24: Surface projected bulk band structure for a 12 layer Cu(111) slab as computed from a

plane-wave pseudopotential DFT calculation within the LDA (computed by the authors).

Brillouin zone resides ∼ 0.4 eV below EF [199, 200]. DFT calculations agree with this

finding, as can be seen from the computed band structure of Cu(111) shown in Fig. 24.

The Shockley state can be seen at the Γ point just below EF .

(b) Tamm states: These are characteristic of more tightly bound systems such as the

transition metals in which the valence electrons are d states. Tamm states are split-off

states due to the reduced atomic coordination of the surface and the weaker potential that

arises (which was discussed in section 7.2). They reside also at the low energy border of

gaps and often exhibit negative effective masses. Noble metal surfaces such as Cu(111) also

exhibit Tamm states (in addition to Shockley states) and indeed in Fig. 24 an occupied

Tamm state 1.8 eV below EF can be seen at the M point split off from the top of the

Cu d band. Again the computed value of this surface state agrees with experiment [201, 202].

Finally we mention yet one more type of state that can occur at metal surfaces, these

are so-called image potential states which are localized mostly in the vacuum region of

the metal surface (Fig. 23(d)). Recall from section 7.1 how the image potential rises to

the vacuum level V∞ as one moves out from the surface into the vacuum (Fig. 20(b)).

This potential can actually support unoccupied bound states, i.e., image potential states.

These states lie above the Fermi energy, in a Rydberg-like series of states converging
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towards the vacuum level. Concerning image potential states, in particular, and surface

states, in general, the reader is referred to Chapters I, X.., X as well as to the book by

Davison and M. Stȩślicka [187] or some of the excellent reviews on these topics [190, 203, 204].

8. Conclusions and Perspectives

Due to the broken symmetry normal to the surface and the reduced coordination it is

fair to assume that the physical properties at the surfaces are different from those in the

bulk of a solid. By now, much is known about these peculiarities of clean surfaces. In many

cases we know where the atoms are, where the electrons are, and how stable both the atoms

and electrons are at their chosen locations. We have seen how at some surfaces the atoms

rearrange to form complex structures not known elsewhere in nature, whereas at other

surfaces the atoms remain happily at their bulk-like positions. We have seen how electrons

literally spill out of some surfaces, whilst at others they become trapped finding it almost

impossible to escape. We have seen how at some surfaces the electrons sense the presence of

the surface by moving up in energy, at others they move down, and at yet other surfaces they

do nothing, apparently oblivious to their reduced coordination compared to the bulk. And,

we have seen that the cost in energy to produce some surfaces is high, to produce others it

is low, and the balance between them conspires to yield a rich variety of equilibrium shapes

for crystals. This body of knowledge comes from countless surface science experiments

over the last 30-40 years, using all the fine experimental methods addressed in this book.

Theoretical studies, a number of which we have mentioned, nowadays are not only able to

reproduce the experimental findings on the basis of fundamental principles, but have also

reached an impressive level of predictive power. In particular, we have focused mainly on

the contributions from density-functional theory, although the qualitative insight obtained

from simplified tight-binding schemes should not be overlooked [76, 205].

Let’s now recap some of the key points made in this chapter and which will be treated

in great detail in the remainder of this volume. Further we outline a few challenges and

issues that remain to be addressed in future work.

(a) Surface structures: Atoms at clean surfaces generally do not maintain their bulk-
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truncated positions. Relatively simple relaxations in which the interlayer spacings in the

surface region are modified are common for metals, as are more complex reconstructions in

which the atoms in the surface region undergo lateral displacements, experience a change

in atomic density, or change in bonding topology. Metal surfaces exhibit a rich variety of

reconstructions and semiconductor surfaces an even richer variety.

In most cases the results of DFT calculations, even with exchange-correction functionals

as simple as the LDA or GGA, and LEED analyses agree on the structural details of a

particular relaxation or reconstruction. Further, DFT can generally provide an adequate

a posteriori explanation for why a relaxation or reconstruction take places, such as for

the hex phase of the late 5d fcc transition metals. However, there are several surfaces

where discrepancies persist and further attention from experiment and theory alike is needed.

(b) Surface energetics: The most fundamental energetic quantity of a surface is the

Gibbs surface free energy. This controls the surface that is stable under conditions of

constant temperature and pressure. Trends in the Gibbs surface free energy have been

discussed, as have variations across different types of surface. The statement that the

surface energy is proportional to the number and strength of the bonds which are broken

in creating the surface has been shown to be qualitatively correct.

Demonstrably reliable and quantitatively correct experimental surface energies are

however generally lacking. The recent STM-based experiments for Pb are a welcome

development. There is a pressing need for more measurements of this kind.

(c) Surface electronic structures: The concept of the dangling bond at semiconductor

surfaces has been introduced and the inextricable link between dangling bonds and

semiconductor surface structure emphasized. The general qualitative behavior of the

ground-state electronic structure at metal surfaces has also been addressed. Much of this

qualitative insight comes from the pioneering studies of Lang and Kohn on jellium surfaces

and the semi-empirical tight-binding studies discussed briefly here and covered in more

detail elsewhere [76]. The former provide the basis for understanding the physical origin of

the work function and trends in the work function from one metal to another. Whereas the
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latter are helpful for understanding concepts such as band narrowing and surface core level

shifts.

Further Reading

Aside from the many original articles, review papers, and books cited already, the inter-

ested reader may wish to consult the following texts for complimentary and in some cases

more detailed discussions on the physical and chemical properties of solid surfaces:

• Physics at Surfaces by A. Zangwill: The first half of this book deals exclusively with

clean solid surfaces, with large chunks devoted to metal and semiconductor surfaces.

It is positioned at a somewhat similar level to the present article.

• Theoretical Surface Science; A Microscopic Perspective by A Gross: The most up to

date of the books in this area, with detailed discussions of modern electronic structure

theories and their application to metal (and other) surfaces.

• Concepts in Surface Physics by M.C. Desjonquères and D. Spanjaard: Provides a

very detailed discussion of many aspects of the electronic structures of metals and

semiconductors, in particular the basis and application of tight-binding methodologies.

• Principles of Surface Physics by F. Bechstedt: Provides a contemporary overview of

surface physics from a theoretical microscopic perspective with a particular emphasis

on semiconductor surfaces.

• Handbook of Surface Science, Volume 2 edited by K. Horn and M. Scheffler: Contains

several very useful and detailed chapters on the electronic structure of solid surfaces

in general (Chapter 1 by E. Wimmer and A. J. Freeman), metal surfaces (Chapter

3 by G. Borstel and J. E. Inglesfield), and semiconductor surfaces (Chapter 2 by J.

Pollmann and K. Krüger and Chapter 7 by K. Horn).

• Interactions of Atoms and Molecules with Solid Surfaces edited by V. Bortolani, N. H.

March, and M. P. Tosi: Although somewhat out of date Chapter 5 by J. E. Inglesfield

is excellent, and well worth a read.
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• Theory of the Inhomogeneous Electron Gas edited by S. Lundqvist and N. H. March:

Chapter 5 by N. D. Lang is a good “one stop shop” for most of the early material

stemming from the work of Lang and Kohn.
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