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S1 Sample and tip preparation

The Au(111) single crystal is cleaned using the standard routine of Ar-sputtering and anneal-

ing. NTCDA, PTCDA, and TTCDA are deposited at sub-monolayer coverage onto the room-

temperature sample by thermal evaporation at 500 K, 570 K, and 710 K, respectively. After depo-

sition, the PTCDA and TTCDA samples are annealed to 470 K for 2 minutes. Single molecules

are created in the STM/nc-AFM by detaching them from the edge of an island with the tip and

dragging them several nm away. The tip of the qPlus sensor is made from a PtIr wire of 15�m

diameter that is cut and sharpened by a focused ion beam. The tip apex is covered with gold1. This

is achieved by carefully dipping it into the Au surface.

S2 Treatment and averaging of experimental raw data

The experimental raw data has been measured in 25 individual contacting experiments (11 on

NTCDA, 7 on PTCDA, and 7 on TTCDA). Each of these consists of (1) a vertical approach of the

bare Au-covered tip towards the position of one of the carboxylic oxygen atoms within a single

isolated surface-adsorbed molecule, (2) the jump to contact at which the carboxylic oxygen atom

flips up and forms a covalent bond with the tip, and (3) a series of up to 45 vertical tip retraction

and re-approach cycles with the molecule attached to the tip. In all phases the frequency shift of

the qPlus sensor is recorded as a function of piezo-voltage (relative z-coordinate zrel).

Irregular curves, which arise as a consequence of either a flip-up of the entire molecule to

the tip, a broken tip-molecule bond, or an instability of the tip-suspended molecule are removed
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Figure S1: Exemplary regular raw data curves. Displayed are four raw data curves

taken during two consecutive tip cycles while lifting and lowering TTCDA. The inset shows

the noise level and the reproducibility in a relevant region of the curve. The offset of about

1.8 Hz originates from the tip-sample interaction that is still present in the raw data.

from the data set (about 15% (NTCDA), 20% (PTCDA), and 50% (TTCDA) of all curves). An

instability of the suspended molecule is characterized by a pronounced hysteresis between the

Δf(z) curves taken during retracting and approaching of the tip (Fig. S2). We show exemplary

raw data curves in the Figures S1 to S3 to illustrate our criteria for curve-removal.

Within each contacting experiment, the remaining individual Δf(zrel) curves are aligned on

the zrel-axis with the first re-approach curve, focusing on the part of each curve where the molecule

is well separated from the surface. The first re-approach curve is chosen because (1) it is measured
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Figure S2: Exemplary irregular raw data curves. Displayed are four raw data curves

taken during two consecutive tip cycles while lifting and lowering TTCDA. The curves

show a clear hysteresis between lifting and lowering of the molecules that originates from

instability of the tip-suspended TTCDA molecule or of the tip.

S4



30 25 20 15 10

0

20

40

z (Å)tip

Δ
f 
(H

z)

Figure S3: Exemplary regular and irregular raw data curves. Displayed are four raw

data curves taken during two consecutive tip cycles while lifting and lowering NTCDA. The

molecule has flipped to the tip in the last part of the first tip retraction. The subsequently

recorded curves show no sign of the molecule in the junction anymore.

S5



in the same direction (tip lowering) as the bare tip approach curve and hence has the same (small)

PLL lag, and (2) it is measured shortly after the bare tip approach curve and hence is barely affected

by any slow z-piezo creep that may occur. The aligned Δf(zrel) curves are averaged. This greatly

reduces the noise level.

Next, a fit to the bare tip approach curve Δf0(zrel) is subtracted from the average curve. This

step eliminates the tip-surface interaction from the data. Note that the contribution of the single

(still flat adsorbed) molecule to the approach curve is too small to be relevant since, at identical

tip heights, the tip-suspended vertical molecule is always much closer to the surface than the flat

molecule was to the bare tip. This is the reason why the flat molecule’s contribution to the bare-tip

approach curve can be neglected.

Since the noise level of the bare tip approach curve is that of an individual Δf(zrel) curve

(±0.4 Hz) and thus much higher than the noise of the average curve, we subtract a fit to the bare

tip approach curve instead of the bare tip approach curve itself. The fit is performed using the

9-parameter function

Δf0(zrel) = −A− C/(B − zrel)− E/(D − zrel)
2 −G/(F − zrel)

3 − I/(H − zrel)
4 (S1)

An example of such a fit is shown in Figure S4.

After subtracting the fitted bare tip approach curve, the Δf(zrel) curves of individual con-

tacting experiments for one molecular species are aligned on the zrel-axis and averaged again. This

further reduces the noise level. Finally, the three resulting curves, one for each molecular species,
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Figure S4: Exemplary bare tip approach curve and fit. The fit is subtracted from all Δf

curves that have been measured while the molecule is attached to the tip. In this way we

completely eliminate the contribution from the tip-surface interaction without introducing

additional noise (from the approach curve) in the data.
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Figure S5: Determination of the absolute experimental ztip-scale. Experimental and

simulated Δf(ztip) curves for the complete single-molecule manipulation process for all

three molecules. The experimental data has been aligned to the simulations in the part of

the curve where molecule and surface are well separated.

are aligned with respective simulations of the full single-molecule manipulation process that are

performed using the procedure and parameters described in Ref. 2 (Fig. S5). This final step pro-

vides us with the correctly calibrated ztip-axis. The simulations allow us to employ the known

lengths of the molecules as highly accurate rulers for the determination of the absolute tip-sample

distance ztip in the experiments.
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S3 Multipole expansion for the asymptotic dispersion interaction

A correct description of molecule-surface interaction requires the inclusion of both exchange and

correlation at a consistent level. Exchange is the part of the electron-electron interaction en-

ergy (beyond the Hartree term) that is related to the anti-symmetric nature of the many-electron

wave function3, while correlation is the correction to the total energy in the Hartree-Fock (HF)

approximation3. If the distance z between the adsorbate and the substrate is large and there is

thus no wave function overlap, there will be no exchange. In this limit, correlation can be treated

perturbatively and Lifshitz-Zaremba-Kohn theory (LZK) results in an asymptotic power series

−C3/z
3−C4/z

4−C5/z
5− . . . [4], where C3 depends on the dipole polarizability of the adsorbate

and the bulk macroscopic dielectric function of the metal in the long wavelength q = 0 limit (lead-

ing order dispersion interaction). Higher order terms include combinations of multipole adsorbate

polarizabilities and q-dependent substrate response. In a common approximation we account for

the first two terms of this series by

Va-s(z) = −C3(z − z0)−3. (S2)

The C3 coefficient in Eq. S2 is given by Ref. 3

CAiS
3 =

ℎ̄

4�

∫ ∞
0

du
�S(iu)− 1

�S(iu) + 1
�Ai

(iu), (S3)

with �S(iu) being the dielectric function of the metal and �Ai
(iu) the atomic polarizability of

species Ai. z0 = C4/3C3 gives the position of the van der Waals reference plane that is closely

related to the dynamic image plane of the surface3. Usually z0 lies within 20 to 30% of dℎkl/2,

where dℎkl is the distance between ℎkl lattice planes of the ℎkl substrate surface.
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S4 Fit of experimental data

Fit function

The experimental Δf(ztip) curves are fitted by the second derivative of Eq. 2 in the paper. The

distance di of each atom i from the tip at ztip is taken from the simulation results shown in Figure S5.

In the region of interest, where molecule and surface are well separated, all atoms in the molecule

rigidly move up together with the tip, i.e., the di are practically constant over the fitted region.

A clear and direct experimental evidence for a stable molecular configuration of the freely

suspended molecule is the lack of any hysteresis between up- and down-cycles (i.e. lifting and

lowering of the molecule). If the molecule changed its configuration on the tip during the up-

cycle, one would expect the down-cycle to show a different frequency shift curve compared to the

up-cycle. Occasionally, this effect was observed (see Fig. S2 and the discussion in Section S2).

Those curves were excluded from the data set before averaging and fitting.

Since the dynamic atomic polarizability is element-specific, different C3 coefficients have

to be used for different atomic species in the molecule. This is realized by the combination of

element-specific 
i and a single C3 which is, by our definition, the C3 for carbon. We cannot

determine the ratios 
oxygen = CO-Au
3 /CC-Au

3 and 
hydrogen = CH-Au
3 /CC-Au

3 from our experimental

data, because the fit quality s defined in Eq. S5 depends only very weakly on these ratios. The ratios

are therefore taken from our vdWsurf calculation5, where C3 coefficients are calculated according

to Eq. S3 with �S(iu) coming from reflection energy-loss data6 and �Ai
(iu) from the polarizability

of free atoms, scaled by an effective volume for the atom in the molecule that is determined by a
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Hirshfeld analysis7. The ratios 
i are used to calculate the effective number of carbon atoms on the

abscissa in Fig. 4a as

Meff =
1

M

M∑
i=1


i, (S4)

where M is the number of atoms in the molecule. We would like to point out that the observation

of a non-additivity of the vdW potentials does not depend on the partitioning scheme used. For

example, if we apply a uniform partitioning scheme with identical C3 for all atomic species, we

obtain C3 = 18.7, C3 = 19.7, and C3 = 21.5 kcal/molÅ3 for NTCDA, PTCDA, and TTCDA

respectively.

Weighted least-squares regression

We use a weighted least-squares regression, minimizing the quantity

s =
1

N

N∑
j=1

wj[Δfexp(ztip,j)−Δfsim(ztip,j)]
2 (S5)

when fitting the N data points within the fit interval j = 1, ... N . Choosing the right weights wj is

a non-trivial task.

In the case of a linear fit, the goodness of fit (gof) is best described by the reduced �2, defined

as

�2 =
1

N

N∑
i=1

(
xi − xfit

i

)2

�2
, (S6)

where xi is the ith measured point and xfit
i the corresponding value of the fitted curve. Here, the

respective weighting function is the inverse of the variance �2 that is a measure of the statistical

noise in the measured curve. While with this definition one obtains �2 = 1 for a perfect fit, there

is no general rule of how close a reduced �2 should be to 1 for a good fit.
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For a linear fit the reduced �2 as defined above is a suitable gof criterion, because according

to this definition each data point of a linear data set has the same chance of contributing to the

overall �2 value. However, in our case we do not perform a linear fit. Rather, we fit a force law that

is proportional to z−5 and moreover our experimental noise is practically constant over the whole

fit interval. To gauge the quality of our fit to experimental data following this force law, we must

ensure that the entire measured curve contributes to our gof criterion. Otherwise, experimental

information would be lost, because any part of the measured data curve that does not contribute

significantly to the gof criterion has no influence on the outcome of the fit. For this reason we use

the gof criterion in Eq. S5 with the weighting function

wj = [∣Δfexp(ztip,j)∣+ 0.05 Hz]−1. (S7)

The normalization by the moduli of the data points ensures that differences Δfexp − Δfsim that

are small only because the measured value Δfexp and its fitted value Δfsim are close to zero, will

nevertheless contribute to the overall goodness of fit s. The 0.05 Hz offset prevents singularities

that can appear when the signal-to-noise ratio drops below unity and some data points come very

close to zero. The value of 0.05 Hz is derived from the experimental noise level. However, fit

results do not change significantly if, for example, 0.1 Hz is chosen instead.

A comparison of the two gof criteria s and �2, displayed in Fig. S6 clearly shows the advan-

tage of our gof criterion s for fitting the z−5 power law. In the figure we plot how the gof values s

and �2 accumulate as we sum over all N data points in the fit interval, starting close to the sample.

The reduced �2 criterion (blue) puts all the emphasis on the short-distance region (left side), while

our gof function s (red) distributes the weight evenly across the whole data range.
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Figure S6: Comparison of the goodness of fit criteria �2 and s. The exemplary gof

values that are shown here have been calculated for a fit to the TTCDA data with a C3

value which is 1 kcal/molÅ
3

higher than the optimal fit value. The normalized plots show

how �2 and s add up to the sum in Eq. S5. The �2 criterion reaches 90% of its final value

already after the first 10% of the fit interval, while the criterion s takes the full fit interval

into account.
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The gof values s for our fit are displayed in Fig. 3 in the paper. Having determined the best

fit with the gof criterion s, we can also calculate a reduced �2 value for our best fit. The respective

value is �2 = 2.3 (allowing different C3 for the three molecules). This is to be compared to a

reduced �2 value of 40 for the best fit that is obtained if the C3 coefficients of all molecules are

constrained to be the same. The residuals of both fits are shown in Fig. 3 of the paper.

Fitting procedure

Because we expect similar reference plane positions z0 for all three molecules, only one z0 param-

eter is necessary for the three experimental Δf(ztip) curves. Hence, the data of all three molecules

are fitted simultaneously, minimizing a combined s. The parameters to be optimized in the fit are

therefore z0, C3,N, C3,P, C3,T. In addition, a small absolute Δf offset of each of the three exper-

imental Δf(ztip) curves is optimized. This offset is in the range of ±0.03 Hz. It accounts for a

small remaining uncertainty in our data that is related to the approach curves which have the full

±0.4 Hz peak-to-peak noise level of a single non-averaged measurement. Although we eliminate

this noise completely by using a fit to the approach curve instead of the approach curve itself, the

fit is subject to a small uncertainty in said range of 0.03 Hz. To obtain a fully consistent picture, we

correct this error by optimizing the respective offset during the fit. The experimental data shown in

Fig. 3a have fitted offset values of 0.013 Hz (NTCDA), 0.02 Hz (PTCDA), and 0.0 Hz (TTCDA).

As we do not presuppose a theoretical value for z0, but obtain it from the fit, any error in the

molecule-surface distance determination would just result in a wrong value for z0, but not for the

C3 coefficients (cf. Eq. 1-3 in the paper). The fact that we obtain a value for z0 that is very close

to theoretical expectations proves in turn that our initial distance determination is accurate within
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a small fraction of an Angstrom.

Since there may be local minima in the fit quality s as a function of the 7 fit parameters, we

use a robust fitting method that searches the whole parameter space around the expected minimum

for z0 and the Δf offset values, while using a method with decreasing step size for the optimization

of the individual C3 coefficients.

Experimental error via synthetic noise

An unavoidable source of error in the recovered C3 coefficients is the statistical noise in the exper-

imental Δf curves. It is not a priori clear how strongly the noise of about 0.02 Hz (NTCDA and

TTCDA) and 0.05 Hz (PTCDA) affects our fitting procedure and thus the recovered C3 values. To

estimate the error, we use a Monte Carlo approach, adding white noise of the respective amplitude

to the data in Fig. 3a and conducting the fit. From the statistical distribution of the C3 values re-

covered in 140 such runs we obtain an estimate of the statistical error. The resulting error bars are

shown in Fig. 4a.

S5 Discussion and exclusion of potential systematic errors

qPlus sensor stiffness

The stiffness of commercially available qPlus sensors is 1800± 100 N/m. This uncertainty intro-

duces a systematic error in the determined C3 coefficients of about 6%, which does, however, not

influence the observed superlinearity.
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Electrostatic forces

In principle, electrostatic forces between the tip (with the attached molecule) and the surface could

add to the experimentally measured frequency shifts and thus invalidate the fitting of our data that

is based on van der Waals forces only. Electrostatic forces could originate from contact potential

differences between the tip with attached molecule and the surface. Such contact potential dif-

ferences could arise from charge transfer between the tip and the molecule. In particular, if there

was a systematic variation in this charge transfer with the molecules in our homologuous series,

electrostatic forces could influence the observed superlinearity of the C3 coefficients. It is impor-

tant to realize that we only need to consider electrostatic effects that are related to the tip-attached

molecule, since all (bare) tip-surface interactions (van der Waals and electrostatic) are eliminated

from the measured data by subtraction of the bare tip approach curve (see Section S2).

To address this issue, we have carried out DFT calculations of the tip-molecule-surface junc-

tion, with and without van der Waals interactions (PBE and PBE + vdWsurf). DFT calculations

determine the charge distribution in the junction, including possible charge rearrangements be-

tween the tip (modeled by a 20 atom pyramidal cluster) and the molecule, and on this basis yield

the electrostatic interaction energy (electrostatic forces) between the molecule-decorated tip and

the surface. We note here that the DFT calculations are very expensive, because the system-size is

large and the sought-after interaction energies are very small, on the border of what is feasible.

Our DFT calculations show that there is no systematic change of the charge transfer between

tip and molecule in the homologous series NTCDA-PTCDA-TTCDA, and hence no systematic
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change of the contact potential that could explain the superlinearity of our C3 coefficients. In fact,

the (molecule related; see above) electrostatic interaction energies between the molecule-decorated

tips and the surface are exceedingly small (at zmol = 7 Å −3.1 meV for NTCDA, −5.1 meV for

PTCDA and −2.1 meV for TTCDA) and, most importantly, do not increase in the sequence from

NTCDA to TTCDA, as would be necessary if systematic contact potential differences were to be

invoked to explain the superlinearity of the experimentally determined C3 coefficients. Moreover,

even at the relatively close distance of zmol = 7 Å, the DFT+vdWsurf calculated van der Waals

interaction energies are approximately one order of magnitude larger (26.6 to 33.5 meV) than

the electrostatic energies. Furthermore, there is strong experimental evidence (confirmed by DFT

calculations) that also for PTCDA on a flat Au(111) surface there is essentially no charge transfer

to the molecule8. Since no charge transfer is present in either of the two extreme cases (sharp Au

tip and flat Au(111) surface), we can conclude that charge transfer for our real experimental tip is

also negligible.

On the basis of the detailed DFT study, we can thus conclude that electrostatic interaction

does not play a significant role in the present material system xTCDA/Au(111). This is in full

agreement with our experimental findings and the interpretation of our data.

Orientation of the molecule

In our fitting of equation (2) to the experimental data we employ a vertical orientation of the

molecule (i.e. the diagonal of the molecule is perpendicular to the surface). This orientation is

obtained by minimizing the molecule-surface vdW potential for the tip-suspended molecule. If
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Figure S7: Sketch of the forces and resulting torques acting on the molecule. a

Asymmetries in the mesoscopic tip apex can lead to lateral forces acting on the tip-

suspended molecule. b If the bond between molecule and tip apex has no directional-

ity (as in the present case), and if the molecule experiences attractive forces to the tip

only, the molecule will always end up sitting flat on the tip, because the equilibrium of a

molecule not sitting flat on the tip will always be unstable. c The molecule-surface attrac-

tion introduces a restoring force strictly towards the vertical molecular orientation.

there was in experiment a deviation from this orientation, this would have an influence on the

determined C3 coefficients (this is, in fact, obvious from equation 2). However, we demonstrate

below by means of an ab-initio DFT calculation and experimental evidence that obtaining the

molecular orientation by minimizing the molecule-surface vdW potential (and thus the vertical

orientation as defined above) is indeed justified.

In our DFT calculation (PBE functional) we start with a molecule that is suspended vertically
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off the tip and tilt this molecule in the molecular plane and perpendicular to it. The incurred

energy cost is of the order of 10 meV in an angle range of ±20∘ (the tilting perpendicular to

the molecular plane incurs an even smaller energy cost of < 2 meV). Since these numbers are

at the significance threshold of DFT, the calculation confirms that for our molecules the gold-

oxygen bond has essentially no directionality. The orientation of the molecule hanging off the tip

will therefore be determined by van der Waals forces alone (electrostatic forces are negligible, as

discussed above). There are two sets of van der Waals forces of relevance here: (1) Fsurface between

the molecule and the surface and (2) Ftip between the molecule and the tip. For symmetry reasons,

Fsurface is always directed strictly normal to the surface, while Ftip can (and most probably will)

deviate from this direction, depending on asymmetries of the tip shape (see Figure S7a). F ∣∣tip, the

parallel component of Ftip, is related to the imbalance between the attractions to opposite sides of

the tip and produces a torque M on the molecule, as indicated in Figure S7a.

If for the moment we disregard Fsurface, we see in Figure S7b that on an asymmetric tip the

molecule will assume an equilibrium position (M = 0) that is tilted away from the more massive

side of the tip. In this way the presence of more tip matter on the right hand side is balanced

by the closer vicinity of the molecule to the left hand side of the tip (Figure S7b). What is also

immediately obvious from Figure S7b is the fact that the equilibrium of a molecule that experiences

only attractive forces to the tip is always unstable: Any tilt to one side will produce a torque that

will turn the molecule further to that same side, until the molecule sits flat on the tip. This is

shown schematically by the curve marked with Etip in Figure S8, where the potential energy E is

plotted against the tilt angle �. We can thus conclude: If the bond between molecule and tip apex
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has no directionality (as in the present case), and if the molecule experiences attractive forces to

the tip only, the molecule will always end up sitting flat on the tip. Evidently, such a molecule is

undetectable in our experiments (see Fig. S3).

The facts that (i) in many cases we still detect the molecule in the junction when we return

the tip towards the surface from far away, and that (ii) the corresponding frequency shift curves

fall on top of the Δf curves measured on retraction of the tip with the hanging molecule from the

surface (i.e. no hysteresis), thus mean that there must be additional forces acting on the molecule

which turn the unstable equilibrium of the hanging molecule into a stable one, such that no flip to

the tip can occur. These forces can only originate from the surface (since the tip-molecule bond is

not directional, see above). Indeed, Figure S7c shows that van der Waals attraction to the surface

generates torques that turn the molecule towards the vertical orientation. The corresponding po-

tential energy curve is also shown in Figure S8, labelled Esurface. The total potential energy is given

by the sum of the two curves (not drawn).

Now Figure S8 shows very clearly: In order for the molecule to survive the whole manipula-

S20



tion cycle in the hanging configuration (with maximum tip-surface distances of 45 Å at the upper

turning point), the total potential energy curve must be opening upwards throughout the complete

cycle (otherwise the molecule would flip to the tip). Therefore the potential curve Etip must always

be shallower than Esurface in this cycle. Since the van der Waals attraction to the surface at the

upper turning point of the manipulation cycle is very weak and therefore Esurface is very shallow,

the potential energy curve Etip must be even shallower. Note that Etip itself does not depend on the

tip-surface distance. In other words, the restoring force constant k∣∣surface due to the minimal van der

Waals attraction to the surface constitute an upper bound for the parallel force constant k∣∣tip due to

the tip throughout the complete manipulation cycle (i.e. k∣∣surface > k
∣∣
tip always, with k∣∣surface >> k

∣∣
tip

for most of the manipulation cycle since Fsurface ∝ z−4
mol increases rapidly with decreasing zmol).

In conclusion, this means that in all those manipulation cycles in which the molecule survives

in the hanging configuration, the molecule must reside very close to the vertical configuration for

most of the fitting range, because in most the fitting range k∣∣surface >> k
∣∣
tip. We note here that the

improvement of the fit due to allowing for superlinearity is achieved in a distance range quite close

to the sample (see Fig. 3a of the manuscript) where the surface-derived torque on the molecule

is strong, leading to a vertical orientation. Hence, we can positively exclude that our finding

of superlinearity is influenced in any way by a deviation of the molecular orientation from the

vertical.

According to Figs. S7a and S7b, a tip with a small k∣∣tip is a nearly symmetric tip. One may

ask why we have succeeded in preparing a relatively large number of symmetric tips. The answer

S21



is clear: Only symmetric tips allow complete, non-hysteretic manipulation cycles. By eliminating

hysteric curves form our data set, we automatically eliminate asymmetric tips which would lead to

significantly tilted molecules. This means in summary: While it is true that tilts of the molecule

will influence the obtained C3 values, we can exclude such tilts on experimental grounds and thus

obtain C3 coefficients that are not influenced by tilts.

S6 The DFT+vdWsurf methodology

The DFT+vdWsurf method consists in the combination of the DFT+vdW method9 for treating inter-

molecular interactions in density-functional theory (DFT) and the Lifshitz-Zaremba-Kohn (LZK)

theory4, 10 for the nonlocal many-body response of the substrate surface. The inclusion of these col-

lective many-body effects, present within the substrate, in the determination of the vdW interaction

effectively goes beyond an atom-based pairwise description.

Based on the LZK theory, the interaction coefficient CAmS
3 between atomic species Am and

substrate S is given by

CAmS
3 =

ℎ̄

4�

∫ ∞
0

d!
"S(i!)− 1

"S(i!) + 1
�Am(i!), (S8)

where �S(i!) is the dielectric function of solid S (Au in the present case) calculated from reflection

energy–loss spectroscopy experiments6 and �Am(i!) corresponds to the dipole polarizability of

atomic species A in molecule m, where m = {N,P,T} as defined in the main text for [N]TCDA,

[P]TCDA, and [T]TCDA. For the element-specific dipole polarizabilities �Am(i!), we rely on a

Padé approximant model9, 11 as in the DFT+vdW method, given by the leading term of the Padé
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series as:

�Am(i!) =
�0

Am
[n(r)]

1 + (!/�eff)
, (S9)

where �eff is an effective characteristic excitation frequency and �0
Am

(i!) corresponds to an element-

specific isotropic static dipole polarizability. The latter is a functional of the ground-state electron

density n(r) of the atom in the molecule given as �0
Am

[n(r)] = vAm
eff [n(r)]�0

Afree
, where �0

Afree

corresponds to the static dipole polarizability of the free atom obtained from high level quan-

tum chemical calculations, and vAm
eff [n(r)] is the definition of a dimensionless effective volume for

species Am referenced to the free atom in terms of the Hirshfeld partitioning of the electron density

(see Refs. 5, 7, 9, 12).

In order to compute the effective volumes vAm
eff for each species A in molecule m, we per-

formed DFT calculations for the case of a single [N,P,T]TCDA molecule on a Au(111) surface

using the PBE exchange-correlation functional13. The effective volumes are given by

vAm
eff =

(∫
r3wA(r)nm(r)d3r∫
r3nfree

A (r)d3r

)
, (S10)

where wA(r) is the Hirshfeld atomic partitioning weight of the species A, r3 is the cube of the

distance from the nucleus of an atom A, nm(r) is the total electron density of molecule m, and

nfree
A (r) is the reference electron density corresponding to the free atom A.

All calculations were performed with the FHI-AIMS code14. The repeated-slab method was

used to model all three systems, with three metallic layers to perform the calculations in-line with

previous investigations5, 8, 15–17. We used the experimental lattice constant of Au (4.065 Å) to build

the (111) surface and a Monkhorst-Pack18 grid of 2 × 2 × 1 k-points in the reciprocal space. For
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Table S1: Interaction coefficients C3 given in
(

kcal
mol

Å3
)

for Au with each atomic species in

the molecule and the weighting factors 
A (dimensionless) are presented. The interaction

coefficients of Au with each species A as a free atom are included for reference. By

definition, 
C is equal to 1.00.

CCmAu
3 CHmAu

3 COmAu
3 
H 
O 
C

NTCDA 27.0 7.7 18.0 }
0.29 0.67 1.00PTCDA 27.3 7.9 18.4

TTCDA 27.3 8.0 18.3

Free atom 32.6 12.2 19.4 0.37 0.60 1.00

each system, the volumes vAm
eff were calculated with the molecule placed at distances larger than 4.0

Å with respect to the topmost unrelaxed substrate layer. The final values taken for the calculation

of �0
Am

(i!) correspond to the distance averaged value in each system.

Using the theory described above, we computed the interaction coefficient CAmAu
3 for C, H,

and O in the [N,P,T]TCDA molecules with Au(111) as substrate. We define the weighting factor


A for species A with respect to Carbon as 
A = 1
3

∑3
m 
Am , where 
Am = CAmAu

3 /CCmAu
3 and

m = {N,P,T} as described in the text above. The results are given in Table S1.
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S7 Deviations from the asymptotic dispersion interaction at short range

We found in the paper that below≈ 4.8 Å the asymptotic form Eq. S2 of the dispersion interaction

is not fulfilled any more (Fig. 3b). This is to be expected, because Eqs. S2 and S3 only constitute

the long-range limit of the more general expression for the interaction part (Va−s) of the entire

correlation energy EC (see Section S3 of the Supplementary Information). In the random phase

approximation (RPA) to the adiabatic-connection fluctuation-dissipation theorem (ACFDT)17, 19–21

the correlation energy EC is given by

EC = − 1

2�

∫ ∞
0

duTr
(
1− �(iu) + ln(�(iu))

)
(S11)

with �(!) being the space-dependent dielectric function (or, equivalently, its Fourier-transform

matrix as discussed below in Section S8 of the Supplementary Information) of the entire system of

surface plus atom/molecule.

The RPA total energy, being an approximation, might suffer from slight inaccuracies on an

absolute energy scale. Nonetheless, RPA is perfectly suitable as a basis on which the deviation

of van der Waals attraction from its long-range asymptotic behaviour at close distances can be

discussed.

At large distances the charge densities of substrate and atom/molecule do not overlap, and

�(!) can be simplified into individual contributions from surface and atom/adsorbate, finally lead-

ing to the expressions of Eqs. S2 and S3. At closer distances, however, the charge densities and

polarizabilities of surface and of atom/molecule overlap and influence each other in a way which
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prohibits separation. The evaluation of Eq. S11 for physisorption of PTCDA on Ag(111) shows

that Va−s(z) becomes weaker than Eq. S2 for z smaller than about 4-5 Å [17], and does not diverge

at z0. This makes the use of Eq. S2 questionable at typical physisorption distances, as is indeed

found in our fits if the fitting region starts at too low values of zmol.

S8 C3 coefficients from the random phase approximation

Fig. 4a contains C3 coefficients based on the random phase approximation (RPA) to the adiabatic-

connection fluctuation-dissipation theorem (ACFDT)17, 19–21. The calculation is based on Eq. S3

with RPA-calculated molecular polarizabilities and �S for the metal from Ref. 22.

Since we are in the limit of clearly separated subsystems surface and molecule, we have

to use the macroscopic dipole polarizability �macr which is defined as the dipole response to the

macroscopic electric field. But we need to calculate the macroscopic response of the molecule

from a full microscopic quantum theory of the molecule, because we are interested in the role

played by the quantum mechanical electronic states in the response.

The evaluation of the � in Eq. S3 starts with the microscopic density-density response func-

tion

�(r, r′, !) = −4
1

V

occ∑
m

empty∑
n

 m(r) ∗m(r′) ∗n(r) n(r′)
En − Em

(En − Em)2 − !2
(S12)

at the RPA level. This function reveals how a perturbation of the density at position r within

the molecule propagates to position r′. The ∣m⟩, ∣n⟩ are the quantum mechanical states of the

electrons in the molecule. From Eq. S12, we calculate the Fourier transform (�(!))Q,Q′ , where
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in our notation the matrix (f)Q,Q′ is the Fourier transform of f(r, r′). (�(!))Q,Q′ is related to

the microscopic dielectric function (�(!))Q,Q′ by a matrix-matrix multiplication with the bare

Coulomb interaction (v(!))Q,Q′

(�(!))Q,Q′ = 1− (v)Q,Q′(�(!))Q,Q′ (S13)

In Fourier space, we can obtain the inverse microscopic dielectric function (�−1(!))Q,Q′ by a

simple matrix inversion. The macroscopic dielectric constant is defined as the long-range limit of

the inverse dielectric function, which can be obtained in Fourier space as

�−1
macr(!) = (�−1(!))Q=0,Q′=0. (S14)

Finally, we have to relate the macroscopic dielectric function to the macroscopic polarizability that

can be used in Eq. S3. Here we use the fact that the polarization density P = p/V, where V is the

volume, can be expressed by

P(r) =
�macr − 1

4�
E(r), (S15)

where E(r) is the macroscopic electric field. Combining this with the definition of the macroscopic

polarizability p(r) = �macrE(r) we obtain

�macr(!) =
V

4�
(�macr(!)− 1). (S16)

�macr(!) at imaginary frequencies is then inserted into Eq. S3. We note that for anisotropic objects

like the molecules under consideration here, different directions along which the Q,Q′ approach

zero in Eq. S14 lead to different dielectric functions. In other words, �macr(!) and �macr(!) are

3×3 tensors. Because of the symmetry of our molecules, these tensors become diagonal if the
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coordinate system is chosen to coincide with the three symmetry directions (principal axes), such

that the macroscopic polarizability is fully described by the three functions �xx(!), �yy(!) and

�zz(!). Note that we use a molecular coordinate system in which x refers to the long molecular

axis within the plane of the molecule, y refers to the short axis, and z is perpendicular to the

molecular plane.

S9 Superlinearity

In the paper we found a clear trend of increasing experimental C3 coefficients with molecular

size, i.e. the per-atom molecule-surface interaction rises in the sequence NTCDA→ PTCDA→

TTCDA. Slight inaccuracies of the RPA total energy on an absolute energy scale notwithstanding,

the RPA (see Sections S7 and S8 of the Supplementary Information) is perfectly suitable as a

basis to discuss the connection between the microscopic electronic states and the macroscopic

polarizability of the molecule that finally leads to the superlinear increase of the C3 coefficients.

Eqs. S12 to S16 indicate two important issues regarding the macroscopic polarizability �macr

and its separation into contributions from individual atoms. On the one hand, the microscopic

charge-density response � in Eq. S12 can often be discussed in terms of local, atom-wise polariz-

ability effects (simply because the various wave functions have local contributions at the various

atoms). However, after the transformation � → � → �−1 → �−1
macr → �macr, which shuffles infor-

mation around in real space (in terms of the so-called local-field effects), atom-wise additivity is

questionable. This is in principal contrast to the idea of the additivity of atom-to-atom contribu-
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Figure S9: a Dynamic per-atom polarizabilities of carbon (averaged over all atoms in the

molecule) for NTCDA, PTCDA, and TTCDA as resulting from Eq. S12. Local-field effects

are not included here, so the polarizabilities are larger than those observable in experi-

ment. The coordinates x, y, and z refer to the directions along the long axis, short axis,

and perpendicular to the plane of each molecule. b Static per-atom polarizabilities of car-

bon (averaged over all atoms in the molecule) for NTCDA, PTCDA, TTCDA, QTCDA, and

PentTCDA (same as the zero-frequency data of panel a). The data labelled ”w/o HOMO-

LUMO” are obtained by excluding the HOMO-LUMO transition from the summation of

Eq. S12.
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tions to the van der Waals interaction. Fortunately, such effects are often of secondary importance.

In the present case of NTCDA, PTCDA, TTCDA and beyond, our calculations indicate that the

molecular polarizabilities before and after the � → � → �−1 → �−1
macr → �macr transformation

differ by a factor that is the same for all molecules discussed here. This would re-establish the

additivity, if it were not for the second issue to which we now turn.

Eq. S12 indicates that even at the level of the microscopic density response function �, the

polarizability of an atom is drastically influenced by its environment, because the latter affects the

wave functions and the energy levels. This influence can be quite long-ranged if delocalized quan-

tum mechanical states dominate the polarizability. We discuss this issue in more detail below for

the case of NTCDA, PTCDA, and TTCDA. In short, the delocalized nature of quantum mechanical

states makes it impossible to accurately predict the polarizability of an atom from just considering

its nearest neighbours.

As an example, we show in Figure S9a the per-atom polarizability of the carbon atoms (av-

eraged over all carbon atoms in each molecule) for NTCDA, PTCDA, and TTCDA for imaginary

frequencies iu that are relevant for Eqs. S3 and S11. The data result from Eq. S12 by partitioning

the wave functions into contributions at each atom (for details, see Ref. 23). We also evaluate

the anisotropy of the charge-density response of Eq. S12, which is particularly important for the

current case of flat �-conjugated systems. Note that all discussion here are on the level of � (more

precisely (�(!))Q=0,Q′=0), i.e. Eq. S12, without considering local-field effects.

Three important observations can be made in Figure S9a:
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∙ At large iu, the per-atom polarizability behaves as � ∝ u−2. This is expected from Eq. S12

if u ≫ En − Em. Moreover, at large iu the per-atom polarizability is essentially the same

for all molecules.

∙ There is a strong anisotropy of the per-atom polarizability. This is coupled to the linear ex-

tensions of the molecule in the three space directions. The larger the extension in a given

direction, the larger the respective polarizability. Note that NTCDA, which is of similar

extension in x and y directions, also has similar per-atom polarizabilities in these two direc-

tions.

∙ As iu → 0, we observe a strong difference in �xx between NTCDA, PTCDA, and TTCDA.

Looking at Eq. S12, we would expect such a behaviour ifEn−Em was decreasing in the same

sequence. Since the HOMO-LUMO transition is by definition the lowest energy transition

in each molecule that therefore contributes strongest to the atomic polarizability � ∝ (En −

Em)−1 in Eq. S12, this suggests that the HOMO-LUMO gap drops in the sequence NTCDA

→ PTCDA→ TTCDA. This is indeed true. It is remarkable that �yy and �zz are apparently

not affected by the changing HOMO-LUMO gap, with the consequence that the per-atom

polarizabilities along y and z are nearly the same for all molecules. This is also found for all

per atom polarizabilities of the oxygen and hydrogen atoms.

The strong increase of the per-atom polarizability along x (the long axis of the molecule) for

increasing length of the molecule (NTCDA→PTCDA→TTCDA) is the origin of the superlinearity

of the C3 coefficients as discussed in the paper.
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A more detailed analysis confirms the role of the HOMO-LUMO transition as conjectured

above. In Figure S9b the same data as in panel a is displayed, but for zero frequency only (static

case). For the data labelled ”w/o HOMO-LUMO” the HOMO-LUMO transition has been left out

of the summation in Eq. S12. Evidently, the per-atom polarizability along the x axis is strongly

affected, in particular for the larger molecules where this transition dominates the polarizability in

x direction. Without this transition only a very small superlinearity persists (from 2.37 Å3 to 2.98

Å3 when going from NTCDA to PentTCDA). This shows that more than 90 % of the superlinearity

results from the HOMO-LUMO transition of the molecules.

Due to the particular symmetry of the HOMO and LUMO wave functions, the polarizabilities

in the y and z directions are not affected at all by the HOMO-LUMO transition. Apparently, this

transition shuffles � electrons exclusively in the direction of the long axis of the molecule. In

this context, it is interesting to note that in going from the HOMO to the LUMO, the number

of nodal planes perpendicular to the long axis of the molecule increases from 5 to 6, with the

consequence that the superposition of these two orbitals can shift charge along the long molecular

axis effectively, as required for a polarization in this direction.

For an infinitely long molecule, i.e. a (C10H4)n polymer, electrons would form a metallic

band and the static polarizability in x direction would diverge. Our five data points of Figure S9b

constitute the onset of this divergence. For finite molecules, the band breaks up into confined states,

which are the molecular orbitals24, e.g. HOMO and LUMO. The longer the molecule, the more

closely spaced are these confined states on the energy axis, i.e., the HOMO-LUMO gap reduces
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from NTCDA to PentTCDA. According to Eq. S12 (� ∝ (En − Em)−1), this leads to increasing

contributions of corresponding electronic transitions to the low-frequency molecular polarizability.

Note that the C3 coefficients follow this trend, but they would not diverge at infinite molecular size.

It is well-known that the conjugation in aromatic systems can lead to a superlinear in-

crease of the polarizability with molecular size, most prominently in elongated species such as

oligomers25–27. The influence of this effect on the optical properties of molecules in solution is

subject of intense research28, 29. Here, we observe superlinearity for the first time directly in force

experiments. One has to keep in mind that the superlinear rise of the dispersion interaction is

smaller than the one in optical experiments, because the latter probe the polarizability at optical

frequencies, while the dispersion potential is obtained by integration over imaginary frequencies

up to 100 eV.

S10 Full potential profile between PTCDA and Au(111)

Fig. 4b contains two separate interaction potentials for PTCDA with Au(111), one for the near-

distance region, the other for the asymptotic region. Between them, they fully map out the potential

profile.

The asymptotic potential is based on the data of this paper. In Fig. 4b we follow common

practice and plot the potential for the flat molecule (molecular plane parallel to the surface). Since

for a flat molecule all atoms in the molecule have identical z, we can sum over the C3 coefficients
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of all atoms in the molecule. The total potential thus becomes

Vflat mol−s = −Meff
C3

(z − z0)3
, (S17)

with the effective number of carbon atoms Meff (Eq. S4).

The orange potential profile is based on C3 = 70 kcal/molÅ3 with z0 = 0 Å, as determined

in Ref. 2 by fitting the range from 8 to 14.7Å and from 16.9 to 23.6Å in Fig. 2a (blue curve) with an

expression based on the asymptotic potential Eq. S2. It is clear that applying this expression outside

its range of validity, z0 will decrease while C3 will increase when approaching the surface, thus

emulating the more shallow slope of the true potential for z < 4.8 Å and avoiding the singularity at

z0 (see Ref. 17 and Section S7 of the Supplementary Information). This behaviour can clearly be

seen in Fig. 3b. We note here that although the C3 = 70 kcal/molÅ3 and z0 = 0 Å are ‘unphysical’

in the sense that they have been derived outside the asymptotic region, they do parameterize the

true potential sufficiently well to yield a reasonable adsorption energy2. For clarity, the repulsive

branch of the short-range potential (Ref. 2) has been omitted in Fig. 4b.
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