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Theoretical Methods

The Tight Binding Model

In this work, all tight binding (TB) calculations were performed on one-dimensional (1D) pe-

riodic chains consisting of atoms located on a regular lattice characterized by a spacing d. In

agreement with the work of Misquitta et al. (23), the corresponding TB model Hamiltonian is

given as:

ĤTB =
∑

i

(β1a
†
2ia2i−1 + β2a

†
2i+1a2i +H.C.) , (S1)

in which a†i and ai represent the creation and annihilation operators for an electron at site i,

respectively, and the free parameters β1 and β2 account for alternate nearest-neighbor bond

strengths. This model Hamiltonian provides an effective description of systems like H2 chains

or π-conjugated polyenes, for instance.

The TB model defined above cannot predict a van der Waals (vdW) interaction between parallel

1D chains, as only nearest-neighbor interactions are taken into account in the Hamiltonian (cf. Eq.

S1). To address this issue when considering two parallel chains A and B, we make use of the

following second-order perturbative formula:

ELR
vdW,AB ≈

∑

i∈A, j∈B

∑

a∈A, b∈B

∣

∣〈ij
∣

∣r−1
12

∣

∣ ab〉
∣

∣

2

ǫi + ǫj − ǫa − ǫb
, (S2)

in which the indices i, j (a, b) represent occupied (virtual) independent-particle orbitals, ǫp is the p-

th single-particle energy, and r12 is the distance between the two points located on the two different

chains.

Notably, the single chain TB model can be diagonalized analytically in reciprocal space, lead-

ing to the following energy bands:

ǫ(k) = ±
∣

∣β1e
ikd + β2e

−ikd
∣

∣ . (S3)

From this equation, it is clear that the β1 and β2 parameters provide one with the ability to describe

the following qualitatively different limits: (i) for β1 6= 0 and β2 = 0, one has two flat bands and a

corresponding gap of 2β1, indicative of the insulating character of the chain, and (ii) for β1 = β2,

no gap is present and the system becomes metallic at half-filling.

The computation of ELR
vdW,AB in Eq. S2 was performed using localized atomic orbitals accord-

ing to the prescription defined by Misquitta et al. (23). Clearly, the TB model permits a straight-

forward control of the single chain eigenstates and the corresponding interwire vdW interaction.
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These eigenstates are used in Eq. S2, which accounts for the metallic or insulating character of

the system; as a result, the two limiting power laws of D−5 (insulating) and D−2 (metallic) are

recovered, which is in qualitative agreement with the coupled fluctuating dipole model (CFDM)

utilized within the many-body dispersion (MBD) framework (25, 29, 34, 35). Interestingly, the

power law exponents for intermediate cases (with 0 < β2/β1 < 1) vary and reach the D−5 limit at

large D, which is also consistent with the reported MBD results.

The Coupled Fluctuating Dipole Model

Within the coupled fluctuating dipole model (CFDM), the many-body vdW or dispersion en-

ergy is computed via diagonalization of an effective Hamiltonian (cf. Eq. 2) which describes

the coupling between localized atomic response functions, obtained from mapping the N atomic

susceptibilities onto a set of N atom-centered quantum harmonic oscillators (QHO). The result-

ing Hamiltonian, which includes the dipole-dipole interaction between QHOs, is quadratic in the

dipole-displacement variables and can be efficiently diagonalized with an O(N3) associated com-

putational cost.

Diagonalization of this Hamiltonian yields a set of 3N eigenvalues ω2
i , and the total vdW energy

is then computed (25, 29) as

ELR
vdW =

1

2

3N
∑

i=1

ωi −
3

2

N
∑

j=1

ωj , (S4)

in which ωj is the characteristic frequency of the j-th atom.

The dipole-dipole interaction tensor employed in the present calculations is derived from the

interoscillator Coulomb interaction

v(|r1 − r2|) =
erf [|r1 − r2| /σ1,2]

|r1 − r2|
. (S5)

Here rj are the Cartesian coordinates of atom j and the parameter σ1,2 =
√

σ2
1 + σ2

2 controls the

Coulomb interaction attenuation scale determined by charge overlap (assuming a Gaussian charge

distribution on each QHO). The parameter σj determines the Gaussian width of the j-th QHO

charge distribution, and is defined as σj = (
√

2/9παj)
1/3, where αj is the static atomic dipole

polarizability. These polarizabilities reflect the chemical environment of a given atom according

to the Tkatchenko-Scheffler approach (12), in which the free-atom reference polarizabilities are

rescaled proportionally to the corresponding atomic Hirshfeld volume.
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Numerical Computation of Power Law Exponents

Power law exponents provide an effective measure of the decay rate of the vdW interaction

energy with respect to the distance between two objects. In the simplest case of two atoms A

and B separated by a relatively large distance DAB, a reasonable approximation to the interatomic

vdW interaction energy can be obtained from the asymptotic pairwise expression derived from

second-order perturbation theory:

E
LR(2)
vdW,AB ∝ C6,ABD

−6
AB . (S6)

Here the vdW interaction energy is clearly characterized by a unique power law exponent which

is independent of DAB. By taking the logarithm of both sides of Eq. S6, this exponent can be

straightforwardly computed as the slope of ln |E
LR(2)
vdW,AB| with respect to lnDAB.

For the case of two arbitrary fragments A and B in which the vdW interaction energy EvdW,AB

cannot be expressed by a single exponent, a generalization of the above procedure should be

followed. Since power law exponents are related to the slope on the logarithmic scale, a natural

extension of the above procedure consists in taking the derivative of ln |EvdW,AB| with respect to

lnDAB. Throughout the present manuscript, power law exponents Pexp at a given interfragment

distance D are thus defined as

Pexp(D) =
∂ ln |EvdW,AB(DAB)|

∂ lnDAB

∣

∣

∣

∣

∣

DAB=D

. (S7)

Supplementary Text

Comments on the Tight Binding Response Function

At this point, we have analyzed the marked differences that exist between the conducting and

insulating cases within the framework of the TB model—differences which are primarily due to

the nature of the corresponding wave functions. To provide a more comprehensive understanding

of the problem, we consider here the TB single-chain response function,

χ(x, x′, ω) =
∑

i,j

(fi − fj)
φ∗
i (x)φ

∗
j (x

′)φj(x)φi(x
′)

ǫi − ǫj + iω
, (S8)

where φj is the j-th single-particle eigenstate of the TB Hamiltonian, ǫj the corresponding eigenen-

ergy, and fj the Fermi occupation number. Given the periodicity of the system, the j-th eigenstate
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of the Hamiltonian in Eq. S1 can be written in Bloch form, i.e., φj(x) = eikjxuj(x), where uj(x)

is a function with a period that is equal to the unit cell length.

Considering the metallic limit, in which β1 = β2 = β, all sites become equivalent and the

eigenstates of the Hamiltonian in Eq. S1 can be expressed as:

ǫ(k) = 2β cos(kd) , (S9)

with k ∈ [−π/d, π/d] (since the unit cell can be reduced in this case to a single atom). Substituting

this expression into Eq. S8 yields:

χ(x, x′, ω) =
∑

i,j

(fi − fj)
u∗i (x)u

∗
j (x

′)uj(x)ui(x
′)ei(kj−ki)(x−x′)

−4 sin
(

d(ki+kj)

2

)

sin
(

d(ki−kj)

2

)

+ iω
. (S10)

As a consequence of the metallic dispersion, the above response function is intrinsically non-local.

Moreover, at small values of (ki + kj)/2 and (ki − kj)/2, the quantity ǫi − ǫj is approximately

equivalent to the free-particle case considered by Dobson et al. (21). A collection of uncorrelated

single-atom polarizabilities therefore necessarily provides an incorrect description of the metallic

limit.

In contrast, a strongly localized response function emerges in the insulating limit, in which

β1 = β and β2 = 0. In this case, the system can essentially be described as a collection of isolated

dimers. Here one is therefore faced with a set of independent two-particle systems, each character-

ized by two energy levels: ǫ± = ±β. The corresponding eigenstates are bonding and anti-bonding

wave functions, obtained as linear combinations of the atomic orbitals, ψA(x) and ψB(x), i.e.,

φ±(x) =
1√
2
(ψA(x)± ψB(x)). In this case, there is no k-dependence of the energy eigenvalues,

as confirmed by Eq. S3 as well. Moreover, both the bonding and anti-bonding wave functions are

strongly localized, since the atomic orbitals are expected to be exponentially decaying functions.

The response function can thus be written as a product of the independent two-atom contributions,

with each vanishing at |x−x′| > d. Given the absence of intrachain dispersion correlations within

the TB model, atomic dimers hence act at large interchain distances as a collection of independent

oscillators, which is in stark contrast to the metallic limit.

Comments on the Coupled Fluctuating Dipole Model

While the TB model leads to a set of uncorrelated diatomic response functions in the insulating

limit, the inclusion of intrachain correlation effects, as provided by the MBD framework, intro-
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duces a collective nature into the dipole fluctuations. This of course is the physical motivation un-

derlying the unconventional power laws examined in this work. In practice, although the CFDM is

based on a set of localized QHOs, the intrachain correlation is still responsible for the emergence of

a non-trivial k-dependent energy dispersion of the collective dipolar fluctuation modes. Moreover,

we also observed that the small gap present in the MBD energy eigenvalue spectrum (cf. Fig. 1A)

does not prevent this model from predicting strongly delocalized intrachain response functions. In

fact, the eigenstates of the MBD Hamiltonian do not represent single-electron orbitals, but should

be viewed instead as collective dipolar fluctuation modes. Hence, the k-dispersion in Fig. 1A is a

clear indication of the non-locality of the system response.

Ensuring Numerical Convergence

Given the collective nature of the relevant single-chain dipolar fluctuations, convergence issues

are of particular relevance in this context. Regarding the TB model, a dense k-point sampling is

necessary, especially at large interchain distances, in order to resolve the Brillouin zone with suf-

ficient enough detail. For this reason, we utilized a mesh of 1024 k-points to achieve convergence

for the selected interwire separations. For the MBD model, a reciprocal-space algorithm was also

adopted and the convergence was carefully checked with respect to the number of k-points. In

particular, a regular mesh of 4000 k-points was used in all 1D periodic calculations. In 2D peri-

odic systems, a 360 × 360 k-point mesh was adopted at all interlayer distances. In both the 1D

and 2D cases, we found convergence of the collective dipolar fluctuation spectrum (concerning

both the energetic gap and slope of the dispersion), and found no detectable modifications of the

power law exponents by further increasing the number of k-points at the considered interfragment

separations.
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Table S1. Interwire interaction energies per C atom∆ELR
vdW (in Hartrees) and power law exponents

Pexp for two parallel 1D carbyne-like atomic wires as a function of the interwire separation D (in

nanometers) and several values of the interatomic C−C distance dC−C ranging from 1.2 Å (the

C−C bond length in acetylene) to 3.0 Å computed using the MBD model. The data in this table

were obtained by setting the Hirshfeld volume ratio to 0.97 for each C atom and sampling the

Brillouin zone with a regular mesh of 4000 points in the direction of the longitudinal chain axes.

dC−C=1.2 Å dC−C=1.4 Å dC−C=2.0 Å

D ∆ELR
vdW Pexp ∆ELR

vdW Pexp ∆ELR
vdW Pexp

0.46 4.79E-4 -3.94 4.50E-4 -4.15 2.74E-4 -4.80

0.50 3.49E-4 -3.81 3.21E-4 -4.05 1.85E-4 -4.76

0.60 1.80E-4 -3.63 1.57E-4 -3.92 7.80E-5 -4.72

0.70 1.06E-4 -3.45 8.76E-4 -3.79 3.78E-5 -4.70

0.80 6.78E-5 -3.32 5.34E-5 -3.71 2.02E-5 -4.69

1.00 3.32E-5 -3.20 2.36E-5 -3.65 7.10E-6 -4.69

1.20 1.88E-5 -3.10 1.22E-5 -3.62 3.01E-6 -4.71

1.50 9.54E-6 -3.05 5.45E-6 -3.62 1.05E-6 -4.74

2.00 4.00E-6 -3.02 1.90E-6 -3.67 2.64E-7 -4.78

2.50 2.03E-6 -3.04 8.19E-7 -3.76 8.99E-8 -4.83

3.00 1.16E-6 -3.10 4.05E-7 -3.88 3.71E-8 -4.86

4.00 4.66E-7 -3.21 1.29E-7 -4.05 9.07E-9 -4.90

6.00 1.21E-7 -3.42 2.37E-8 -4.29 1.23E-9 -4.93

8.00 4.41E-8 -3.60 6.70E-9 -4.46 2.94E-10 -4.96

10.00 1.94E-8 -3.75 2.44E-9 -4.57 9.70E-11 -4.97

15.00 3.99E-9 -4.04 3.69E-10 -4.74 1.28E-11 -4.98

20.00 1.21E-9 -4.24 9.31E-11 -4.82 3.06E-12 -4.99
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Table S2. Interlayer interaction energies per unit cell ∆ELR
vdW (in Hartrees) and power law expo-

nents Pexp for two parallel 2D graphenic layers and MoS2 as a function of the interlayer separation

D (in nanometers) computed using the MBD model. To investigate the behavior of these power

laws in highly polarizable 2D materials, several values of α0
C were considered for the graphenic

layers, ranging from 12 bohr3 (the static atomic dipole polarizability of a C atom) to 50 bohr3. The

data in this table were obtained by setting the Hirshfeld volume ratio to 0.87 for C, 1.03 for Mo,

and 0.99 for S and sampling the 2D Brillouin zone with a regular mesh of 360×360 points. The de-

creases in the interlayer interaction energies occurring at short distances for the highly polarizable

graphenic structures are due to charge overlap effects, as parameterized through Eq. S5.

Graphene

αC=12 bohr3 αC=20 bohr3 αC=50 bohr3 MoS2

D ∆ELR
vdW Pexp ∆ELR

vdW Pexp ∆ELR
vdW Pexp ∆ELR

vdW Pexp

0.60 3.59E-4 -3.67 2.43E-4 -3.67 1.01E-4 -4.08 1.24E-2 -6.73

0.70 2.07E-4 -3.58 1.41E-4 -3.52 5.66E-4 -3.74 3.97E-3 -7.42

0.80 1.29E-4 -3.52 8.96E-5 -3.42 3.53E-5 -3.53 1.76E-3 -6.10

1.00 5.95E-5 -3.47 4.26E-5 -3.33 1.68E-5 -3.34 5.73E-4 -5.02

1.20 3.18E-5 -3.44 2.35E-5 -3.26 9.38E-6 -3.18 2.60E-4 -4.33

1.50 1.48E-5 -3.43 1.15E-5 -3.21 4.74E-6 -3.06 1.08E-4 -3.92

1.80 7.89E-6 -3.44 6.43E-6 -3.19 2.76E-6 -2.97 5.57E-5 -3.65

2.00 5.49E-6 -3.45 4.60E-6 -3.18 2.03E-6 -2.92 3.85E-5 -3.51

3.00 1.34E-6 -3.50 1.27E-6 -3.20 6.39E-7 -2.81 9.96E-6 -3.24

4.00 4.86E-7 -3.55 5.02E-7 -3.23 2.87E-7 -2.76 4.00E-6 -3.13

5.00 2.19E-7 -3.59 2.43E-7 -3.27 1.56E-7 -2.74 2.01E-6 -3.07

6.50 8.45E-8 -3.65 1.02E-7 -3.32 7.62E-8 -2.72 9.02E-7 -3.03

8.00 3.94E-8 -3.68 5.10E-8 -3.37 4.34E-8 -2.71 4.82E-7 -3.01

9.50 2.09E-8 -3.71 2.85E-8 -3.41 2.73E-8 -2.70 2.88E-7 -3.00
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Table S3. Interaction energies ∆ELR
vdW (in Hartrees) and power law exponents Pexp for two parallel

(3, 3) carbon nanotubes and a carbyne-wire–protein nanostructure as a function of the respective

center-of-mass separations D (in nanometers) computed using the MBD model. Both the nan-

otubes and the wire have finite lengths (with 500 and 3000 unit cell replicas, respectively). The

data in this table were obtained by setting dC−C to 1.200 Å in the chain and 1.421 Å in the nan-

otubes and the Hirshfeld volume ratio to 0.90 for the C atoms in the nanotubes, 0.97 for the C

atoms in the wire, and 0.75 for all atoms in the 1MC5 protein.

nanotube-nanotube wire-protein

D ∆ELR
vdW Pexp ∆ELR

vdW Pexp

1.40 5.07E-2 -5.13 1.55E-4 -1.82

1.80 1.46E-2 -4.86 6.52E-5 -2.04

2.20 5.58E-3 -4.77 4.49E-5 -2.22

2.60 2.53E-3 -4.75 3.19E-5 -2.38

3.00 1.28E-3 -4.73 2.33E-5 -2.52

3.40 7.10E-4 -4.73 1.74E-5 -2.64

3.80 4.19E-4 -4.74 1.51E-5 -2.72

4.20 2.60E-4 -4.76 1.02E-5 -2.84

4.60 1.69E-4 -4.77 7.99E-6 -2.93

5.00 1.13E-4 -4.78 5.99E-6 -3.02

5.50 7.16E-5 -4.80 4.57E-6 -3.11

6.00 4.71E-5 -4.82 2.78E-6 -3.22

7.00 2.23E-5 -4.84 1.78E-6 -3.36

8.00 1.16E-5 -4.87 1.18E-6 -3.48

9.00 6.54E-6 -4.89 8.09E-7 -3.58
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