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Abstract

Research on small particles containing up to a few tens of atoms is largely driven
by their novel properties that are significantly affected by quantum effects, particularly
in the interplay between structural and electronic degrees of freedom. Such clusters,
thus, carry the potential of major technological advances for applications exploiting
their already exemplified unique optical, magnetic, and chemical properties. Atomically
resolved structural information is a key prerequisite towards employing these envisioned
functionalities, considering that the latter will be tailored to the atomic scale. In this
respect not only the ground state isomer will be of importance, but potentially all
energetically low-lying metastable isomers.

A materials modeling targeting the identification of such relevant cluster isomers in-
volves the global and local exploration of the corresponding vast configuration space,
represented by the high-dimensional potential-energy surface (PES). The exponential
growth of the number of local PES minima, i.e. metastable isomers, with increasing
cluster size quickly limits approaches focusing only on structural motifs provided by
chemical intuition.

In this thesis the problem is addressed with a first-principles Monte Carlo approach.
The essential features herein are a quantitative quantum mechanical energetics from
density-functional theory, together with a basin-hopping type sampling for the global
exploration of the energy surface. This approach is applied to Co+

n Arm clusters, for which
far-infrared vibrational spectroscopy data were provided by the group of Prof. Gerard
Meijer at the Molecular Physics Department of the FHI. For the isomers obtained by the
implemented first-principles sampling scheme, we calculated the infrared spectra, that
are in turn compared to the experimental data. Apart from the thus gained structure
information, we particularly elaborated on the role of the involved Ar probe atoms and
its implication for the indirect structure determination using the vibrational fingerprints.

To suggest possible strategies for optimizing the numerically intense ab initio based
sampling, the involved technical settings are analyzed in detail, using small silicon and
copper clusters as illustrative benchmark systems. In order to assess and critically
discuss the limitations and bottlenecks of the scheme, a central aspect of this part of
the work was to establish a framework to quantitatively measure the sampling efficiency.
The detailed insights obtained are then used to devise a robust self-adapting scheme for
future applications in particular to systems involving intermediate size clusters.



“So einfach wie möglich. Aber nicht einfacher.”

Albert Einstein
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1. Introduction

Clusters are aggregates of atoms and thus somewhere intermediate in size between indi-
vidual atoms and bulk matter. One major characteristics that separates them from the
bulk is the dramatic change in the electronic structure when the system size is reduced to
few atoms, thus replacing the quasi-continuous density of states by a discrete energy level
spectrum. Due to the intricate relationship between structural and electronic degrees of
freedom, optical, magnetic and chemical properties do therefore not vary smoothly with
size and shape of the cluster but are highly governed by quantum (size) effects. The
study of these effects constitutes one field of cluster physics, since they open the door
to novel applications, such as small electronic devices. A second important property
of clusters is the large fraction of atoms being on the surface. Due to this favourable
surface to volume ratio, metal clusters are for instance ideal candidates for applications
in catalysis. Atomically resolved structural information is thereby a key prerequisite
towards employing these envisioned functionalities, considering that the latter will be
tailored to the atomic scale.

Experimentally, structural information can for instance be obtained by photoelectron
spectroscopy, which exploits the fact that different isomers exhibit different electronic
structures. The measured density of states can therefore serve as a characteristic fin-
gerprint for the underlying atomic structure. In the case of reactivity experiments, the
number of adsorbed atoms on a cluster is measured, which is obviously correlated with
the number of adsorption sites and therefore with the cluster shape. Another probe of
cluster structure is provided by mobility experiments in which clusters are accelerated by
an electric field and then traverse a chamber containing an inert gas. The travelling time
is hereby affected by the collisions of the clusters with the inert gas and thus correlates
with the collision cross section, being sensitive to the atomic structure. Another possi-
bility that is particularly sensitive to the internal cluster structure is the measurement of
vibrational frequencies. A corresponding technique that has recently been successfully
employed to determine the structure of cationic and neutral metal clusters is far-infrared
(vibrational) resonance enhanced multiple photon dissociation (FIR-MPD) spectroscopy
[1, 2, 3, 4, 5]. Common to all these experimental methods is that atomic information
is not directly measured, but only quantities that are coupled to the geometric config-
uration. At this point, theory comes into play and provides the required tool to assign
the experimental data to an underlying geometry. As starting point for any such the-
oretical study, structural motifs are therefore required, which in the easiest approach
are merely guessed, guided by chemical intuition. While for small systems, containing
only few atoms such an approach might seem sufficient at first glance, it is in practice
even then likely that one misses isomers. This holds in particular for systems exhibiting
strong Jahn-Teller distortions, with a concomitant number of different isomers all corre-
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1. Introduction

sponding to the same basic structural motif. What is thus required is a more systematic
scheme which then involves the global and local exploration of the huge configurational
space, represented by the potential-energy surface (PES) [6]. A central and challenging
property of the PES is thereby the suspected exponential increase of the number of local
minima with system size. This drastic growth has led to the famous Levinthal’s paradox
according to which a protein would never reach its native state within the lifetime of
the universe if it would have to go through all local PES minima completely randomly
[7, 8].

Correspondingly, approaches addressing the determination of cluster structures face
a twofold challenge, the first being the calculation of the PES itself. To have predictive
power and in view of the intricate quantum-size effects ruling clusters in the targeted
size range, a quantum-mechanical treatment of the PES is obviously required. Accu-
rate quantum-mechanical methods become unfortunately prohibitively expensive due to
their unfavourable scaling behaviour. The second order perturbation theory by Møller
and Plesset (MP2) [9], for instance, scales as O(N5) with the system size, thus quickly
becoming prohibitively expensive in connection with the exponentially increasing num-
ber of PES minima. As an alternative, density-functional theory scales formally as
O(N3) and can be implemented to reach O(N) for larger systems. It thus represents a
suitable compromise between accuracy and computational demand and is the technique
employed in the present work. The second major theoretical problem is the system-
atic and efficient exploration of the thus defined PES. A classical optimization method
for this purpose is simulated annealing, in which successive trial moves, corresponding
to random distortions of the cluster geometry are performed. Accepting or rejecting
such moves via a Boltzmann-factor, the system is then driven towards the ground state
structure. An additional key ingredient of many unbiased sampling schemes is a local
structural relaxation, ensuing the trial move, which thereby reduces the PES sampling
to the local minima and thus facilitates the optimization tremendously. In combination
with simulated annealing, this scheme has first been proposed as Monte-Carlo mini-
mization or basin-hopping by D. Wales and L. Scheraga [10]. A primary target for
which basin-hopping is employed is to identify the global PES minimum, i.e. the most
stable geometric structure in the focus of atomic clusters. However, in experiment,
thermodynamic or kinetic reasons might lead to a population of metastable isomers or
superpositions of it, thus making energetically higher-lying isomers subject to funda-
mental interest as well. By suitably adjusting the temperature controlled acceptance
scheme in the simulated annealing, basin-hopping can be tuned to achieve this goal,
thus identifying isomers within a thermodynamically reasonable energy range above the
ground state. In the present work, a corresponding basin-hopping scheme has been cou-
pled to the DFT implementation FHI-aims [11] currently developed a the FHI Theory
Department, with the goal to perform a conformational sampling of cluster structures
based on an accurate ab initio PES.

Aiming at interpreting the FIR-MPD data of Co+
n Ar complexes measured in the group

of Prof. Gerard Meijer at the Molecular Physics Department of the FHI, we first ap-
plied the developed tool to obtain candidate structures for the ensuing electronic struc-
ture studies. In an FIR-MPD experiment, the vibrational spectrum is measured by
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1. Introduction

far-infrared absorption spectroscopy using argon as probe atoms. Irradiated by a free-
electron laser, the Co+

n Ar complex is heated up when the laser frequency is in resonance
with a vibrational eigenmode. Multiple photons can then be absorbed, which in turn
leads to the dissociation of the argon atom from the metal cluster. Recording the re-
sulting abundance changes of the rare-gas complexes as a function of the IR frequency
yields the desired spectra that can finally be compared to computed IR absorption
spectra for the different isomer structures obtained in the preceding sampling. Tacitly
assuming that the influence of the probe atom on the vibrational fingerprint can be ne-
glected, this enables the structure determination of the bare cobalt clusters and provides
valuable feedback on the accuracy of the energetic ordering provided by the employed
approximate DFT exchange-correlation functional. Contrary to previous studies on V+

n

(n = 3 − 23) [1, 2], Nb+
n (n = 5 − 9) [3, 4] and Ta+

n (n = 6 − 20) [5], however, a strong
influence of the measured spectra on the number of adsorbed argon atoms has this time
been observed, which motivated us to explicitly elaborate on the role of the probe atom
and its implications for the structure determination. This then also involved exhaustive
sampling runs, with argon ligands explicitly taken into account.

Despite the fact that due to continuing methodological improvements and vast increase
of computational power ab initio basin-hopping runs have nowadays become possible,
one still has to recognize that due to the exponential growth of the number of PES
minima with system size, this method quickly reaches its limit. Unfortunately, many
studies in the literature merely provide the size of the largest system studied as some
kind of performance indicator of the employed sampling scheme, or at best record as
benchmark the mean first encounter of the global minimum, i.e. the number of local
relaxations until the ground state has been identified for the first time. What is more or
less completely missing is an exact measure of efficiency that is coupled to the sampling
goal used in a practical application, namely not only to find the ground state but also
to identify higher-lying isomers. Motivated by the application in the first part of this
work, the aim of the second part is therefore to establish a framework to quantitatively
analyze the efficiency of a sampling run. Apart from identifying inefficient settings and
suggesting possible optimization strategies, one has to note in this respect that already
exactly pinning down the efficiency of an ab initio basin-hopping run is a task of its own.
On the one hand one needs to define a reasonable measurable quantity which correlates
with the sampling success. On the other hand, hundreds of basin-hopping runs are re-
quired to get statistically meaningful averages. This can quickly become unfeasible with
straightforward DFT, whereas use of simple model-potentials is uncertain to provide
answers for the practical materials-science applications. To circumvent this problem,
we therefore developed the concept of a hopping matrix, which records the transition
probabilities between individual isomers and thus enables the extraction of statistically
meaningful quantities at tremendously reduced computational demand. Once the con-
nectivity of the low-lying isomers is therewith represented, the hopping matrix provides
the additional possibility to analyze different kind of efficiency indicators without having
to run further first-principles basin-hopping runs and thus allows to further disentangle
and understand the sampling process.

After introducing the different methodologies and concepts to describe and explore
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the configurational space of atomic clusters in Part I, the employed DFT implementation
FHI-aims is presented in Part II. Special emphasis is hereby given on the analytical atomic
forces, which are required for an efficient local structural relaxation, and the implementa-
tion of which constituted a major, preparatory part of this thesis. Part III then describes
the comparison between the experimental and computed Co+

n Ar IR-spectra based upon
geometries obtained by first-principles basin-hopping. Using small silicon and copper
clusters as illustrative benchmarks, Part IV finally addresses the performance of the
applied basin-hopping algorithm by disentangling and critically discussing the different
technical settings, and then presenting a self-adapting scheme based upon the obtained
insights.
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2. Describing the Configurational
Space of Atomic Clusters

2.1. The Born-Oppenheimer Surface

The starting point to get the energetics of an atomic cluster containing Nel electrons and
N nuclei is the Schrödinger equation which in time-independent non-relativistic cases
can be written as

ĤΨ({xi}, {Rα}) = EΨ({xi}, {Rα}) , (2.1)

where {xi} ≡ {x1, . . . ,xNel
} ≡ {(r1, σ1), . . . , (rN , σNel

)} is a short hand notation for all
spatial and spin coordinates of the Nel electrons and {Rα} ≡ {R1, . . . ,RN} denotes the
spatial coordinates of all nuclei. The Hamiltonian contains the following terms

Ĥ = Te + TN + VNe + Vee + VNN , (2.2)

with the individual contributions being the kinetic energy of the electrons Te and of the
nuclei TN, the electrostatic interaction between the electrons Vee, between the nuclei VNN

and between the electrons and nuclei VNe. Using atomic units, i.e. h̄ = me = e = 4πǫ0 =
1, the terms have the following form:

Te =
Nel∑

i=1

p2
i

2
= −1

2

Nel∑

i=1

∇2
i , (2.3)

TN =
N∑

α=1

p2
α

2Mα

= −1

2

N∑

α=1

1

Mα

∇2
α , (2.4)

VNe({ri}, {Rα}) = −
Nel∑

i=1

N∑

α=1

Zα

|ri − Rα|
, (2.5)

Vee({ri}) =
Nel∑

i=1

Nel∑

j>i

1

|ri − rj |
, (2.6)

VNN({Rα}) =
N∑

α=1

N∑

β>α

ZαZβ

|Rα −Rβ|
. (2.7)

In principle, the solution of Eq. (2.1) accurately describes the energetics of a system.
However, containing 3N + 3Nel degrees of freedom, it is computationally unfeasible to
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2. Describing the Configurational Space of Atomic Clusters

tackle Eq. (2.1) exactly and hence, approximations have to be applied. The first impor-
tant one is the Born-Oppenheimer Approximation [12] which states that electronic and
nuclear motions can be separated using the following ansatz for the total wavefunction:

Ψ({xi}, {Rα}) = Ψe({xi}, {Rα})ΨN({Rα}) , (2.8)

with the electronic part being a solution of the electronic Hamiltonian:

Ĥe = Te + VNe + Vee , (2.9)

ĤeΨe({xi}, {Rα}) = Ee({Rα})Ψe({xi}, {Rα}) . (2.10)

The justification is that due to the huge ratio of the masses, electrons can instantaneously
catch up with the movements of the nuclei. In the extreme case of a hydrogen atom,
for instance, M/me ≈ 1800. In other words, the ions are fixed from the electronic point
of view or just move very slowly. Consequently, the nuclear positions appear only as
parameters in the electronic wavefunction and the effect of the kinetic energy operator
of the nuclei on the electronic part of the wavefunction can be neglected.

TN Ψe({xi}, {Rα})ΨN({Rα}) ≈ Ψe({xi}, {Rα})TN ΨN({Rα}) . (2.11)

Using this approximation, the ansatz (2.8) leads to the following equation for the nuclear
part of the wave function:

(TN + VNN({Rα}) + Ee({Rα}))ΨN = EΨN . (2.12)

So the ions move under the influence of the effective potential

VBO({Rα}) ≡ VNN({Rα}) + Ee({Rα})) , (2.13)

which is called the Born-Oppenheimer surface or more generally the potential energy

surface (PES). The total energy Etot of the system is then the potential energy plus
quantum mechanical corrections due to lattice vibrations.

The initial problem of solving equation (2.1) has thus been reduced to solving the
electronic equation (2.10) in order to obtain Ee({Rα}) which in turn defines the PES
according to Eq. (2.13). Though the number of degrees of freedom has therewith been
reduced from 3Nel + 3N to 3Nel, a huge computational burden still remains and further
approximations are required which will be discussed in chapter 4.

2.2. Fundamentals of Group Theory

Many common molecules, in particular small ones containing few atoms, possess sym-
metry, i.e. undergoing certain symmetry operations, like a rotation around a certain
angle for instance, the molecule superimposes with itself. Using group theory, symmetry
considerations are therefore on the one hand helpful to introduce a nomenclature for
describing a molecular structure. Furthermore, features of the PES that will later on be
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2. Describing the Configurational Space of Atomic Clusters

discussed, can be addressed more quantitatively exploiting the symmetry of the system
taken into account. It is therefore of great importance to understand the fundamentals
of group theory with which the symmetry properties of a molecule are described in a
concise way (see e.g. [13]).

2.2.1. Symmetry Elements and Operations

Figure 2.1.: Illustration of the symmetry el-
ements exemplifying an octahe-
dral structure.

The symmetry of a molecule can best
be described by listing all symmetry el-

ements which allow for symmetry opera-
tions. One example of a symmetry ele-
ment is the n-fold rotation axis Cn. In
such a case, the corresponding symme-
try operation Ck

n is k times a rotation
about an angle of 2π/n around the ro-
tation axis which thus superimposes the
molecule with itself.

Another element is the plane of symme-

try σ, with the corresponding operation
being a reflection of the molecule through
this plane.

A third possible element is the alter-

nating axis of rotation Sn. In that case, a
rotation about an angle of 2π/n is carried
out, being followed by a reflection of the molecule through a plane perpendicular to this
axis. Sk

n corresponds to k times a rotation around the axis, each being followed by a
reflection. A special case of an alternating axis of rotation is Sn/2

n , n being even, which
is equivalent to an inversion of the molecule through its center. Furthermore, if k is
even, then Sk

n is simply equivalent to an ordinary rotation Ck
n. For odd n, all Sk

n with
k ≤ 2n− 1 are different operations, since then Sk>n

n equals Sk−n
n followed by a reflection

through the symmetry plane and thus is a new operation.

2.2.2. Symmetry Point Groups

The set of all possible symmetry operations of a molecule forms a group which is math-
ematically defined by the following properties:

• The product of two members A ◦ B = C also constitutes a member of the group.
In particular, the product is associative, i.e. A ◦ (B ◦ C) = (A ◦ B) ◦ C.

• A special group element is the identity E, which leaves any member unchanged,
i.e. E ◦ A = A ◦ E = A.

• Each member A can be assigned an inverse A−1 so that the product A ◦ A−1 =
A−1 ◦ A = E equals the identity.
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2. Describing the Configurational Space of Atomic Clusters

Figure 2.2.: Illustration of the most common
symmetry point groups.

In the case of symmetry operations, a
product of two operations corresponds to
the consecutive application of these two
operations, like for instance the product
C1

n ◦ C1
n = C2

n corresponds to twice a ro-
tation about an angle of 2π/n. The net
operation C2

n is hence a rotation about an
angle of 2 ·2π/n and therefore also part of
the group. The identity E is a trivial op-
eration that does not change the molecule
at all. Obviously, for each operation one
can find an operation that reverts the ef-
fect of the former one, thus being the cor-
responding inverse element. The inverse
of the rotation C1

n, for instance, is Cn−1
n .

The symmetry of the molecule is re-
flected by the point group of the con-
stituent symmetry operations, with the
number of different operations being an
important quantity which is called the
order of the point group.
The most common point groups describ-
ing the symmetry of molecules are:

• Cn. This simple point group is made up of an n-fold-rotation axis which thus con-
tains the elements {E,C1

n, · · · ,Cn−1
n } = {E, {Ck

n}}. Correspondingly, it possesses
the order n and is called a cyclic group.

• Cnh. Additional to an n-fold-rotation axis, the molecule described by this cyclic
group exhibits a plane of symmetry σh perpendicular to the axis (”horizontal”).
Consequently, the alternating axis appears as well as a symmetry operation, since
σh ◦ Ck

n = Sk
n, with k being odd. For even k, Sk

n is equivalent to Ck
n since the

reflections at the horizontal plane even out (σh ◦ σh = E). The special case of
C1h is commonly denoted as Cs. The group therewith contains the operations
{E, σh, {Ck

n}, {Sk
n}}.

• Cnv. Additional to an n-fold-rotation axis, the molecule contains n vertical planes
perpendicular to the axis. Summarized the operations are {E, {σi

v}, {Ck
n}}.

• Sn. A further cyclic group is obtained by having a pure alternating axis of rotation
which thus leads to the operations {E, {Sk

n}}. This group is only new for even n,
since for n being odd, Sn is equivalent to Cnh.

• Dn. Additional to an n-fold-rotation axis, the molecule described by the dihedral

group features n two-fold rotation axes perpendicular to the principle symmetry
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2. Describing the Configurational Space of Atomic Clusters

axis, which thus allows for the symmetry operations {E, {Ck
n}, {(C1

2)
i}}, with i

being an index running over the different two-fold rotation axes.

• Dnh. Additional to the symmetry operations of the Dn-group, the molecule pos-
sesses a plane of symmetry perpendicular to the principle axis which further intro-
duces the alternating axis of symmetry and n vertical planes of symmetry. Hence,
this dihedral group contains the operations {E, σh, {σi

v}, {Ck
n}, {(C1

2)
i}, {Sk

n}}.

• Dnd. Additional to the symmetry operations of the Dn-group, the system contains
n vertical planes of symmetry bisecting the n two-fold rotation axes, resulting in
the set of operations {E, σh, {σi

d}, {Ck
n}, {(C1

2)
i}, {Sk

n}}.

The remaining point groups contain multiple rotation axes of order greater than two.
The tetrahedral group T, for instance, possesses all rotation axes of a regular tetrahedron,
while the full tetrahedral group Td additionally contains all mirror planes. Similarly, the
full octahedral group Oh comprises all symmetry elements possessed by a regular cube,
and the full icosahedral group Ih those of an icosahedron.

2.3. Features of the Energy Surface

Figure 2.3: Model surface (V = x4−x2 +
y2) exhibiting two local min-
ima (green regions) that are
connected by two steepest-
descent paths crossing a tran-
sition state (yellow line). The
red line exemplifies a further
steepest-descent path leading
to the left local minimum.

2.3.1. Stationary Points and Normal Modes

Within the Born-Oppenheimer approximation, the nuclear dynamics is typically treated
semi-classically, i.e. the energy surface VBO is obtained quantum-mechanically, whereas
the atoms are treated as classical point masses in space. The forces are therefore obtained
as total energy derivatives with respect to the atomic positions

Fα = −dVBO

dRα

, (2.14)
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2. Describing the Configurational Space of Atomic Clusters

and the atomic motion is given by the solution of the classical Newton equation

MαR̈α = − d

dRα
VBO({Rα}) . (2.15)

Most interesting points on the PES are the stationary points which are configurations
for which all forces vanish and the corresponding energy possesses an extremum. In par-
ticular, local minima exhibit a positive slope of the PES in all directions. Consequently,
any small displacement of the atoms results in a restoring force that brings the atoms
back to their equilibrium positions, the corresponding configuration is stable and called
an isomer of the system in the context of molecules and clusters. In particular, the local
minimum with the lowest total energy is the global minimum. In order to check the
local stability of a stationary point quantitatively, a normal mode analysis can be per-
formed. For that, molecular vibrations around the equilibrium position of the nuclei are
considered. In the harmonic approximation, the PES can be expanded in a Taylor-series
around {Rα,0} and truncated after the second-order term. The first-order term is zero
since the forces vanish at the equilibrium position {Rα,0},

VBO({Rα}) = VBO({Rα,0}) +
∑

β

dVBO

dRβ

∣
∣
∣
∣
∣
{Rα,0}

︸ ︷︷ ︸

=0

qβ +
1

2

∑

βγ

d2VBO

dRβdRγ

∣
∣
∣
∣
∣
{Rα,0}

︸ ︷︷ ︸

≡Hβγ

qβqγ + · · ·

= VBO({Rα,0}) +
1

2

∑

βγ

Hβγqβqγ + · · · , (2.16)

where the displacement vector qα = Rα − Rα,0 is defined as the change of the atomic
positions with respect to their equilibrium configuration. Inserting this into Eq. (2.15)
yields

Mαq̈α = −1

2

∑

βγ

d

dRα,0

(Hβγqβqγ) . (2.17)

Since
dqβ

dRα
= δαβ , the equation of motion further simplifies to

Mαq̈α = −
∑

β

Hαβqβ . (2.18)

A solution to the above equation can be obtained by the following ansatz

qα = Aα cos (ωt+ ǫ) , (2.19)

with the second time derivative

q̈α = −ω2Aα cos (ωt+ ǫ) . (2.20)

Inserting this into Eq. (2.15) gives the following eigenvalue-equation for the 3M ampli-
tudes {Aα}.
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Mαω
2Aα =

∑

β

HαβAβ (2.21)

Non-trivial solutions can be obtained by solving the secular equation

det
(

Hαβ − δαβMαω
2
)

!
= 0 . (2.22)

For a system containing M atoms, the Hessian Hαβ possesses 3N rows and columns and
the secular equation yields 3N solutions ωi. Within the harmonic approximation, the
atoms are therefore oscillating around their equilibrium positions with an harmonic mo-
tion having the frequency 2π/ωi and a constant phase ǫi. The normalized eigenvectors

Qα,i = Aα,i/
√
∑

β A2
β,i, the eigenmodes, describe the relative motion of the individual

atoms, where the amplitude is uniquely defined by the boundary conditions, i.e. how
far the individual atoms are initially displaced. Having the same frequency and phase,
all atoms reach their maximum displacements simultaneously. A vibrational mode ex-
hibiting the above described characteristics is called a normal mode of the system.

It can be shown that for a non-linear molecule, only (3N − 6) solutions have non-
vanishing frequencies. The other six solutions correspond to the three translational and
three rotational degrees of freedom of the system. In case of a linear molecule, there
are (3N−5) non-vanishing solutions, since a linear system only possesses two rotational
degrees of freedom.

A local minimum possesses only positive eigenvalues ω2
i . An imaginary frequency ωi

corresponds to a negative slope of the PES in direction of the eigenvector and thus
indicates a local instability, since an infinitesimally small displacement of the atoms
along the eigenvector brings the system out of the equilibrium position. The number
of negative eigenvalues is often referred to as the index of the Hessian. An index of
zero corresponds to a local minimum on the PES which hence represents a stable isomer
of the system under consideration. Stationary points with indices of one or higher are
called saddle points, in particular a saddle point with index one is a transition state. If
two local minima are connected by any path on the PES, then according to the Murrel-
Leidler theorem [14] there is a lower energy path connecting these two minima which
involves a transition state. In other words, if the system undergoes a transition from
one isomer to another, the path that involves the lowest energy barrier to surmount
possesses a saddle point of index one at its energy maximum (see Fig. 2.3).

Steepest-Descent Path and Basin of Attraction

Loosely stated, a steepest-descent path starting from any configuration is defined by sim-
ply following the PES downhill along the forces until a stationary point is reached where
the gradient vanishes. Numerically, one would therefore obtain the steepest-descent path
by successively displacing the atoms by infinitesimal amounts along the force direction.
One important feature is that the resulting path on the PES is uniquely defined and
every point with a non-vanishing gradient in the configurational space lies exactly on one
path [15]. In particular, all points whose steepest-descent paths converge to a certain
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2. Describing the Configurational Space of Atomic Clusters

local minimum form its basin of attraction which thus comprises all configurations of a
molecule that will relax into the corresponding isomer represented by the local minimum
on the PES. Due to the uniqueness of the steepest-descent path, basins of attractions
belonging to different local minima cannot interpenetrate and are a characteristic region
around a local minimum.

At a transition state there are exactly two steepest-descent paths going in opposite
directions along the eigenvector corresponding to the negative curvature and leading to
two local minima. They constitute the minimum-energy path on the PES for a transition
between these two local minima (see Fig. 2.3).

Scaling behaviour of the number of local minima with the system size
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Figure 2.4.: Illustration of two permutation-inversions of a pentagonal bipyramid leading
to the same local minimum. (12345) indicates a permutation that swaps
atom 1 with atom 2, 2 with 3, 3 with 4, 4 with 5, 5 with 1, thus resulting
in a pure rotation (indicated by the blue arrow), which in turn corresponds
to the same local minimum. (67)∗ swaps atom 6 with 7 being followed by
an inversion through the center which can also be superimposed with the
unpermuted one by a pure rotation.

Regarding in particular the question how the configurational space of a system can be
sampled efficiently, it is of fundamental interest to estimate how big the PES is in terms
of the number of different isomers one expects to find. To address this question, one
has to distinguish between two different aspects of this problem. Since the Hamiltonian
of the system is invariant with respect to permutations of the nuclear coordinates of
equivalent species and with respect to inversions of all the coordinates through the
origin of a space-fixed coordinate system, there are many symmetry-equivalent isomers
with the same geometry and energy, but corresponding to different points on the PES.
Assuming the system contains NA atoms of species A, NB atoms of species B, NC atoms
of species C, and so forth, one would expect to have
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2 ×NA! ×NB! ×NC! × · · · (2.23)

symmetry-equivalent isomers, or versions of the structure. However, it can be shown
[6, 16] that in case of a molecule with a point group of order o, there are o permutation-
inversions that can be obtained from the non-permuted isomer by a pure rotation, thus
not being a distinct local minimum of the isomer (see Fig. 2.4). Therefore, there are

Nversions = 2 ×NA! ×NB! ×NC! × · · ·/o (2.24)

different versions of the same isomer that cannot be superimposed by a pure rotation.
In other words, every isomer possesses Nversions different basins of attraction on the
PES. Hence, the lower the symmetry of a structure, the more symmetry-equivalent local
minima it possesses on the PES.

More difficult is the question how many isomers of different energy and geometric
structures exists. According to empirical observations and heuristic estimates [17, 18,
19], the number of isomers grows exponentially with increasing cluster size. The basic
idea of such an estimate is to divide the system into m equivalent subsystems each
containing M atoms. Assuming that the stable configurations of each subsystem can be
considered independent, the number of local minima nmin then behaves like

nmin(mN) = nmin(N)m . (2.25)

A solution of this equation is

nmin(N) ∝ exp(αN) , (2.26)

where α is a system-dependent constant.

2.3.2. Global Topology of the Energy Surface

The overall shape of the energy surface is determined by the energetic ordering of the
local minima and their connectivity through transition states. One feature to describe
the global topology of a PES is for instance the monotonic sequence introduced by Kunz
and Berry [20, 21]. It is defined as a sequence of local minima connected by transition
states for which the energy of the minima monotonically decreases. All monotonic
sequences leading to the same local minimum therewith define a monotonic sequence

basin or funnel. Another common term is superbasin which emphasizes the analogy to a
basin of attraction on the global scale of the PES. In contrast to the latter where every
point of the configurational space with a non-vanishing gradient only belongs to one
basin of attraction, a local minimum can belong to several monotonic sequence basins.

Systems with only one funnel converging to the global minimum are often referred to
as single-funnel systems. They are obviously benign systems for a global optimization
since the overall topology can guide the system towards the global minimum. Contrary
to that, multi-funnel systems contain multiple sequence basins. Once in a wrong funnel,
the system then has to surmount several energy barriers to climb out of it and reach the
global minimum, which makes global optimization in general more difficult [7, 8].
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monotonic sequence

monotonic sequence basin

(“funnel”)

Figure 2.5.: Schematical picture of a multi-funnel potential energy surface with a de-
picted monotonic sequence basin.

2.4. Thermodynamics

At zero temperature, the most stable structure is the isomer with the lowest energy E0

plus the zero point energy (vide infra) given by the vibrations. Increasing the tempera-
ture of the system, entropic effects start to play a role and the free energy F determines
the stability of the system (see e.g.[22]).

F = E0 − kBT lnZ , (2.27)

where Z is the partition function of the system defined as

Z =
∑

i

e
−

Ei
kBT , (2.28)

with i being the index running over all possible states of the system and Ei the corre-
sponding energy of the system. For an atomic cluster system, assuming that rotations
and vibrations can be decoupled, the partition function separates into

Z = ZtransZvibZrot , (2.29)

where Ztrans, Zvib and Zrot are the partition functions due to the translational, vibrational
and rotational degrees of freedom. The free energy then adopts the form

F = E + Ftrans + Fvib + Frot. (2.30)
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2.4.1. Translational Degrees of Freedom

The partition function Ztrans can be calculated in a straightforward manner and has the
form [22]

Ztrans = V

(

MkBT

2πh̄2

)3/2

. (2.31)

V is the volume of the box in which the cluster is placed. Since the only system-
dependent parameter is the total mass M of the system, the translational degrees of
freedom do not influence the energetic ordering of different isomers of the same system
and can thus be neglected when addressing the energetic stability of free molecules.

2.4.2. Molecular Vibrations

The vibrational contribution to the free energy can be approximated using the vibra-
tional frequencies obtained by the harmonic approximation. Using normal modes, the
molecule can be considered as being composed of (3N−6) independent one-dimensional

harmonic oscillators with the energies En,i =
(

n + 1
2

)

h̄ωi, where n is the principal quan-
tum number of the vibrational state. Hence the partition function further separates into
[22]

Zvib =
3N−6∑

i=1

Zvib,i . (2.32)

Each partition function can easily be evaluated analytically,

Zvib,i =
∞∑

n=0

e
−(n+ 1

2)
h̄ωi
kBT = e

−
h̄ωi

2kBT

∞∑

n=0

e
−n

h̄ωi
kBT =

e
−

h̄ωi
2kBT

1 − e− h̄ωi

kBT

, (2.33)

Zvib =
3N−6∏

i=1

e
−

h̄ωi
2kBT

1 − e− h̄ωi

kBT

. (2.34)

The resulting vibrational contribution to the free energy is

Fvib = −kBT lnZvib =
3N−6∑

i=1

(

h̄ωi

2
+ kBT ln

(

1 − e
−

h̄ωi
kBT

))

(2.35)

= EZPE + kBT
3N−6∑

i=1

ln
(

1 − e
−

h̄ωi
kBT

)

. (2.36)

The first term corresponds to the zero-point energy since it contributes to the free energy
already at zero temperature. It originates from the zero-point vibration of the molecules.
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2.4.3. Molecular Rotations

As for the rotational contribution to the free energy, one can assume that the centrifugal
forces acting upon the nuclei are negligible and do not alter the molecular structure
significantly. A good approximation to the rotational partition function based upon
classical mechanis is [22]

Zrot =

√
π

σ

(

2kBT

h̄2

)3/2√

I1I2I3 , (2.37)

where I1, I2, I3 are the principle moments of inertia, e.g the eigenvalues of the moment
of inertia tensor. σ is the order of the rotational subgroup of the system, so the number
of pure rotational symmetry operations.
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3. Exploring the Configurational Space

Determining cluster structures requires to identify the local minima of the PES, which
is a high-dimensional function of the atomic coordinates. Of fundamental interest is
thereby without doubt the global minimum, which constitutes the most stable isomer
at zero temperature. Energetically higher-lying and therewith metastable isomers, how-
ever, might be observed in experiment due to finite temperature or kinetic effects, thus
additionally being in the focus of interest.

Hence, this work faces a twofold challenge. On the one hand, the PES needs to be
evaluated, thus necessitating a method that yields the total energy for a given atomic
configuration. Obtaining this energy within the framework of density-functional theory is
the topic of chapter 4. On the other hand, the local information of a current configuration
thereby gained needs to be exploited to efficiently sample the PES and finally identify
the local minima. The goal of this chapter is to condense and classify most popular
corresponding schemes to explore the huge configurational space.

3.1. Local Optimization Methods

Local optimization methods are deterministic schemes that guide the system to the next
local minimum of the PES from an arbitrary starting point by following the surface
downhill in some way. At each iteration step, local information like the energy, forces or
the Hessian of the corresponding atomic configuration are taken into account to obtain
the next structure until iteratively the forces vanish and the local minimum has been
identified.

3.1.1. Steepest Descent

The simplest method to implement is the steepest descent method [22] that strictly
proceeds downhill to reach the local minimum. In each iteration step, the atoms are
displaced according to the forces acting on them

Rα,i+1 = Rα,i + γiFα({Rα,i}) , (3.1)

with γi being a technical step width parameter to adjust that does not necessarily have
to be constant for the whole local optimization. If the step width is too small, many
iteration steps are required and the convergence to the local minimum is rather slow. If
on the other hand γi is too large, the system might start to oscillate around the local
minimum.
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3.1.2. Conjugate Gradient

The conjugate gradient scheme consists of succesive line minimizations along a search
direction Gα,i [22, 23, 24, 25, 26]

γi = arg min
γ
E (Rα,i + γGα,i({Rα,i})) , (3.2)

where arg minγ E denotes the argument γ which minimizes the energy E. The atomic
coordinates are then correspondingly updated to

Rα,i+1 = Rα,i + γiGα,i . (3.3)

Similar to the steepest descent scheme, one starts along the atomic forces as first search
direction, so Gα,0 = Fα({Rα,0}). Contrary to the former scheme, however, information
from previous searches are accumulated so that new line searches do not destroy the
progress of previous line searches as might be the case for ill-conditioned functions (see
Fig. 3.1). In these cases, the steepest descent scheme follows a criss-cross pattern since
every new line step only takes local information into account. The conjugate gradient
scheme instead does not strictly follow the PES downhill but along a search direction
that is somewhat perpendicular (”conjugate”) to the previous search directions, which
is achieved by adding a fraction of the previous search direction to the atomic forces

Gα,i = Fα,i + βiGα,i−1 . (3.4)

There exist different flavours of the conjugate gradient scheme, differing by the definition
of βi. Some of the names associated with these schemes are Fletcher-Reeves (FR) [24, 25],
Polak-Ribière (PR) [24] and Hestenes-Stiefel (HS) [26]

βFR
i =

∑

α Fα,i · Fα,i
∑

α Fα,i−1 · Fα,i−1

, (3.5)

βPR
i =

∑

α Fα,i · (Fα,i − Fα,i−1)
∑

α Fα,i−1 · Fα,i−1

, (3.6)

βHS
i =

∑

α Fα,i · (Fα,i − Fα,i−1)
∑

α Gα,i−1 · (Fα,i − Fα,i−1)
. (3.7)

The construction of the search directions Gi is based upon the assumption that the
PES is harmonic. If this assumption holds exactly, the conjugate gradient scheme will
converge to the local minimum in 3N iteration steps, thus being a direct minimization
scheme. In particular, all aforementioned different schemes are then equivalent. Conse-
quently, if the system is far away from the harmonic region, the search directions become
unreasonable and it is recommended to start with a few steepest descent steps to bring
the system closer to the local minimum.
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Figure 3.1.: Illustration of the steepest descent scheme (black arrows) for an ill-
conditioned two-dimensional surface compared to conjugate gradient (red
arrows).

3.1.3. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

The BFGS method is a so-called quasi-Newton scheme that takes additional information
in the form of the second derivative of the PES into account [27]. Knowing the Hessian
matrix Hαβ, a new search direction Gβ,i can be obtained by solving the Newton equation

∑

β

HαβGβ,i = Fα({Rα,i}) . (3.8)

The next atomic configuration can then be obtained by performing a line minimization
as in the conjugate gradient scheme (Eq. (3.2)). If the PES were perfectly harmonic
and the Hessian known exactly, the local minimum would be found within one line
search. In practice, however, the calculation of the Hessian matrix in each iteration
step can be prohibitively expensive, so that it is instead successively approximated in
each iteration step, therewith being a quasi-Newton scheme. Since more information of
the PES is taken into account, the BFGS method can be more efficient than steepest
descent or even conjugate gradient, but it works only efficiently if the system is close
to the local minimum, where the harmonic approximation is justified. It is therefore
typically recommended to start with a few steepest descent steps to bring the system
close to the local minimum as in the case of the conjugate gradient scheme.

3.2. Global Optimization Schemes

The above described local optimization methods are deterministic schemes that approach
the next local minimum from a starting point constructively, since the local information
obtained for a given configuration, like the energy and forces, uniquely guides the system
to the next local minimum. In order to find all isomers, particularly the global minimum,
a search algorithm is required that not only scans the local environment but samples
the whole PES. Since local information is not enough to locate the global minimum of
the system, stochastic methods are required that provide some recipe to systematically
sample the huge configurational space. The global optimization of atomic clusters is
assumed to be NP-hard (non-deterministic polynomial-time hard) [28], i.e. no algorithm
is known that guarantees to locate the most stable isomer within polynomial time. This
difficulty is typically ascribed to the exponential growth of the number of local minima
with system size. Assuming the most primitive method that simply runs through all local
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minima, the computational burden therefore quickly becomes unfeasible which connects
to the famous Levinthals paradox according to which a protein would never reach its
native state within the lifetime of universe in view of the tremendous number of different
local minima [7, 8]. Correspondingly, one possible way out is that the global topology
can serve as a guidance for the system to reach the global minimum. As already stated
in the previous chapter, single-funnel systems are benign topologies in this sense.

One key ingredient of any sampling algorithm is the way new structures are generated.
This so-called trial move corresponds to a jump of the system in the configurational
space. A simple method for that is to randomly displace the atomic positions. After
such a jump, a criterium is required which decides whether this new structure is preferred
and the search should continue from there or if it should rather be discarded. Such an
acceptance criterium is typically based upon the total energy, being a natural choice
since it is the quantity to optimize. Of course, there is no need to confine to a single
sequential run. Multiple search sequences can be performed and information can be
exchanged to thus combine structures from different positions on the PES instead of a
purely local search. The number of serial runs and the special scheme to cross them
are examples of the large number of technical parameters that make up for the huge
diversity of different optimization schemes of which the most archetypal ones will be
described in the following.

3.2.1. Simulated Annealing

A classical optimization algorithm applied to many fields is the simulated annealing
scheme that resorts to methods of statistical mechanics and is based upon the Metropolis-
algorithm [29, 30]. Starting from an arbitrary configuration with a total energy E, a new
structure is generated by randomly displacing the atoms, leading to a change of the total
energy ∆E. If the energy has decreased, i.e. ∆E < 0, the new structure is accepted and
used as starting point for the next step. In the opposite case, however, the structure is not
discarded unconditionally, but accepted with a probability of P (∆E) = exp(−∆E/kBT ).
According to Metropolis, this acceptance criterium thus generates a canonical ensemble
of atomic configurations at T . At zero temperature, only isomers that are lower in energy
would be accepted which would be an intuitive choice at first glance since the system is
thereby pushed towards the ground state. However, the system is then likely to get stuck
in the wrong minimum. A finite temperature allows instead for controlled uphill steps
thus enabling the system to get out of local minima. Starting from a high temperature,
the system is then successively cooled down according to an annealing schedule. Coupled
to the temperature are the random displacements of the individual atoms ∆Rα that obey
a Gaussian distribution in the classical simulated annealing scheme [31]:

p(∆Rα) ∝ exp
(

−(∆Rα)2/T
)

(3.9)

With decreasing temperature, the step width is therewith reduced thus freezing the
system in the ground state. The cooling rate needs to be inverse logarithmic in time to
assure convergence
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T ∝ T0

log(1 + t)
. (3.10)

Improvements can be made by adjusting the annealing scheme, as done in the Fast

Simulated Annealing scheme, proposed by Szu et al. [32]. The Gaussian distribution
of random displacements is replaced by a Cauchy distribution that contains longer tails
additional to a Gaussian-like peak, thereby enabling the system to occasionally perform
longer jumps in the configurational space. Instead of an inverse logarithmic cooling rate,
the temperature can then be reduced linearly with time, converging to the ground state
much faster. Both versions are special cases of the Generalized Simulated Annealing

scheme, that introduces more technical parameters to tune the cooling rate [33]. Due to
the reduction of the temperature, no canonical ensemble is generated anymore, so that
unlike in the original Metropolis scheme, no thermodynamic quantities can be derived.
The resulting simulated annealing scheme is a pure global optimization procedure.

3.2.2. Basin-Hopping

Loosely stated, the basin-hopping method is the simulated annealing method applied
to local minima [10, 34, 35]. Additional to the trial move, a local structural relaxation
is performed and the total energy of this local minimum is then assigned to the initial
configuration. The PES is therewith effectively transformed into a set of interpenetrating
staircases that are the basins of attractions introduced in chapter 2 (see Fig. 3.2)

Ẽ{R} = minE{R} , (3.11)

where min indicates a local structural relaxation.
This deformation is an example of the class of hypersurface transformation methods

that aim at modifying the PES to facilitate the global optimization. In many cases,
like e.g. the distance scaling method [36], the surface is smoothed out, thus decreasing
the number of local minima. However, there is in general no guarantee that such a
transformation does not change the global minimum, or even washes out relevant isomers.
On the contrary, the basin-hopping method leaves the local minima unchanged but only
removes the transition state regions, thus facilitating interbasin transitions. Hence,
contrary to the original simulated annealing scheme, moves that lead the system to
high points on the PES are much more likely to be accepted, since the ensuing local
optimization allows the system to relax into the corresponding local minimum which is
much lower in energy. This makes a complicated annealing schedule unnecessary, and
in the classical BH scheme the temperature in the Boltzmann-criterium is simply kept
constant [10], thereby generating a canonical ensemble of the transformed PES.

A classical trial move scheme is to randomly vary the cartesian components of all
atomic coordinates

∆Rα,i = 2 · R0(rand − 0.5) , (3.12)
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Figure 3.2.: The principle of the basin-
hopping method. Depicted is
a model energy surface together
with its transformed landscape.
The green arrow indicates a trial
move performed on a local min-
imum, being followed by a lo-
cal structural relaxation (red ar-
rows).

with R0 being the maximum step width
and rand being a random number be-
tween zero and one.

With the basin-hopping scheme, Wales
et al. identified in 1999 all hith-
erto known global minima of Lennard-
Jones(LJ)-clusters containing up to 110
atoms and additionally new ones. The
LJ38 is a well-known example of a double-
funnel PES [37], that contains an icosahe-
dral funnel with a large free energy, and
an fcc funnel with a comparably smaller
free energy but leading to the global mini-
mum. The unmodified surface yields only
a small overlap in the canonical occupa-
tion probabilities with respect to the tem-
perature, so that the system is likely to
get trapped in the wrong funnel. Trans-
forming the PES like in the basin-hopping scheme, however, results in a broadening of
the overlap region, and enables the system to climb out of the wrong funnel [37, 38] .
Hence, it is not only the alleviated interbasin transition due to the removal of the tran-
sitions state regions, but also the easier transition between different funnels because of
the modified thermodynamics that make up for the success of the basin-hopping scheme.

3.2.3. Genetic Algorithms

  

Figure 3.3.: Mating between two parent
structures generating a child.
After the mating, the new child
is locally relaxed.

The name of this class of algorithms
comes from the mimicked Darwinistic
principle of the survival of the fittest
[39, 40]. Contrary to the basin-hopping
scheme, the starting point is a population

of randomly generated cluster structures
instead of a single initial configuration.
New cluster structures are hereby gener-
ated by choosing two candidate structures
from the population, the parents, which
are then mated to create a child. The
mating has thereby to be appropriately
designed to preserve structural properties
of the parents during the mating proce-
dure. A common choice for that is to cut
the parent structures by a plane that is randomly oriented and cross the resulting halfs
followed by a relaxation to generate a child (see Fig. 3.3). Local structural motifs from
different points on the PES are therewith combined instead of performing a pure local
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search like in the basin-hopping scheme.
A further technical aspect is the question which of the children are supposed to replace

parents in the population. A simple rule of Deaven and Ho [39] is that a child has to
be energetically lower than a parent structure to replace it. To keep the diversity of the
population, a further constraint is that a child structure that is supposed to replace a
parent structure needs additionally to be different enough from all the other members
of the population. Deaven and Ho [39] therefore introduced a second energy criterium.
A potentially new structure in the population needs to have an energy difference of ∆E
to all other isomers in order to be considered different enough, where ∆E is another
tunable parameter. With such an implementation of a genetic algorithm, Deaven and
Ho independently discovered the fcc-structure for LJ38 in 1996 [40], and based upon a
tight-binding scheme, the fullerene structure for C60 could be identified in 1995 [39].
It is worth pointing out that due to the involved local structural relaxation, a genetic
algorithm is simply a different search algorithm applied to the same transformed PES
like in the case of the basin-hopping scheme.

3.2.4. Further Algorithms

Many modifications of the above described basic types of global optimization schemes
have been suggested in the literature, one of them is for instance the minima hopping

algorithm by Stefan Goedecker [41, 42]. As indicated by the name, it can be considered
as basin-hopping with a different type of move. Goedecker suggests using a molecular
dynamics trajectory instead of random moves to generate new structures, thereby ex-
ploiting the Bell-Evans-Polanyi-principle [22, 43, 44]. This principle states that a local
minimum behind a transition state is lower in energy the smaller the barrier to cross.
By starting with a small kinetic energy, the MD-trajectory tends to surmount lower
energy barriers and assuming the validity of the BEP-principle is therefore more likely
to approach the ground state. Another key ingredient of the minima hopping method
is a history feedback method which keeps track of all local minima identified during the
sampling run. If the trajectory leads to an isomer that has already been found, the ki-
netic energy is slightly increased and higher energy barriers can be surmounted, thereby
enabling the system to climb out of a wrong funnel if it has been exhaustively explored.
Of course, there is no reason to constrain this kind of history feedback method to the
application of MD-trajectories, it can also be combined with basin-hopping, which would
simply be replacing MD-runs by random moves. Since detailed balance would then not
be fulfilled, such a modified basin-hopping scheme would no longer generate a canonical
ensemble, which would, however, not constitute a problem since thermodynamic quan-
tities are not of interest in the case of global optimization. Instancing LJ38, MD-steps
were proven to be superior compared to random moves [41]. Averaged over a huge
number of global optimization runs, roughly 34000 local minima using MD-trajectories
were identified until the global minimum was found compared to 75000 in the case of
random moves. However, Wales reports an average number of 2000 moves, including
more efficient angular moves [10, 45] thus making basin-hopping an order of magnitude
faster in this case and illustrating the intricate connection of the sampling scheme and
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employed trial moves to the overall performance.
Another type of history feedback method is the concept of landscape paving [46]. The

basic idea is to artificially increase the energy in regions that have already been explored.
With that, moves that lead into such regions are likely to be rejected thus preventing
the system from useless sampling already known regions of the PES. However, this
modification, being a significant improvement at first glance, also bears some dangers.
Considering the case of two-funnels that are connected by only one transition basin,
the paving of this important basin prevents the system from interfunnel transitions,
thus prohibiting the system to climb out of a potentially wrong funnel. Combined
with basin-hopping, Zhan et al. suggested the basin paving method [47] that makes
use of the histogram of already visited minima to construct an artificial increase of the
PES. Using Lennard-Jones clusters, a statistically significant improvement for the global
optimization could only be shown for very large systems containing around 150 atoms
[47].

3.3. Summary

A concise overview of present sampling methods was given of which the basic ones are
simulated annealing, basin-hopping and genetic algorithms. A few popular modifications
have been presented which can be considered as derivations from basin-hopping with
improvements that were proven to be advantageous for certain cases. However, the
performance of the various schemes and their modifications can strongly depend upon
both the actual system under consideration and upon the huge number of involved
technical parameters, like e.g. the special type of move performed in the random move
scheme. A critical analysis and discussion of the implemented sampling method of the
present work, in particular regarding possible generic optimizations and showing clear
limitations, is therefore part of this PhD project and will be presented in chapter 9.
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4. Density-Functional Theory

This chapter deals with the question how to obtain the energetics of a system with a
given atomic configuration as required to evaluate the PES. In this work, the method
employed is density-functional theory. Before giving a short overview of other popular
methods in order to properly classify DFT, some basic terminology will be introduced.

4.1. The Electronic Wave Function

The central quantity within electronic structure theory is the electronic wave function
Ψ(x1, . . . ,xNel

) which yields the probability to find an electron at position r1 with spin
σ1, an electron at position r2 with spin σ2 and so forth by

|Ψ(x1, . . . ,xNel
)|2 dx1 . . .dxNel

. (4.1)

Being fermions, electrons obey the Pauli principle [48, 49] which states that two electrons
of like spin cannot be at the same point in space. In terms of the wavefunction, this is
reflected by the antisymmetry with respect to the space- and spin-coordinates

Ψ(x1, . . . ,xi, . . . ,xj, . . . ,xNel
) = −Ψ(x1, . . . ,xj , . . . ,xi, . . . ,xNel

) , (4.2)

which thus gives for two equal coordinates xi = xj

Ψ(x1, . . . ,xi, . . . ,xi, . . . ,xNel
) = 0 , (4.3)

and ensures that the probability to find two electrons of like spin at the same spatial
position is zero as prescribed by the Pauli principle.

The Variational Principle [22, 50] states that the expectation value of any trial wave
function E [Ψtrial] = 〈Ĥ |Ψtrial| Ĥ〉 is always an upper bound to the ground-state energy
given by the expectation value of the ground-state wavefunction Ψ0

E0 ≡ E [Ψ0] ≤ E [Ψtrial] . (4.4)

4.1.1. The Electron and Pair Density

The electron density at the position r is defined as the probability to find an electron of
any spin at this point and is given by

ρ(r) = Nel

∑

σ1

ρσ1(r) = Nel

∑

σ1

∫

. . .
∫

dx2 . . .dxNel
|Ψ(x1, . . . ,xNel

)|2 , (4.5)
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and is the sum of the individual spin densities ρσ which describe the probability to find
an electron of a specific spin σ at the position r. The prefactor Nel is the number of
electrons in the system and ensures the right normalization

∫

drρ(r)dr = Nel . (4.6)

In the same manner, the pair density at x1 and x2 is defined as the probability to find
an electron with spin σ1 at the point r1 and an electron with spin σ2 at the point r2

ρ2(x1,x2) = Nel(Nel − 1)
∫

. . .
∫

dx3 . . . dxNel
|Ψ(x1, . . . ,xNel

)|2 , (4.7)

where the antisymmetry of the wavefunction due to the Pauli principle correspondingly
leads to an antisymmetry of the pair-density

ρ2(x1,x2) = −ρ2(x2,x1) . (4.8)

If electrons moved completely independently, the pair density would just be the product
of the spin densities ρ2(x1,x2) = ρ(x1)ρ(x2). The probability to find an electron with
spin σ1 at the point r1 is then independent of the probability distribution of the second
electron. Due to the Coulomb interaction, however, the movements of both electrons
are correlated, so in general ρ2(x1,x2) 6= ρ(x1)ρ(x2).

4.2. Approximative Methods to solve the Many-Body

Problem

One fundamental approach to solve the electronic Schrödinger equation (2.10) numer-
ically is the Hartree-Fock method which approximates the electronic wavefunction by
a single Slater-determinant of single particle wave functions, thus ensuring the anti-
symmetry of the wave function to fulfil the Pauli principle. Additional to the classical
Coulomb-potential V c

ee, this gives rise to a quantum mechanical contribution to the po-
tential called exchange potential VX. The aforementioned Coulomb correlation, however,
is not captured, and the pair density of electrons of unequal spins which are not sub-
ject to the Pauli principle just separates into the individual spin densities. The missing
energy is correspondingly defined as correlation energy EC and is significant to obtain
accurate results though being smaller compared to the exchange and classical Hartree
energy. The corresponding potential is consequently termed correlation potential VC.

Among the approaches to account for the correlation energy, the most popular ones
based on the electronic wave function are second or fourth order perturbation theory
by Møller and Plesset (MP2 or MP4) [9], configuration interaction (CI) [51], multi-
configuration self-consistent field (MCSCF) [52], coupled cluster methods (CC) [53] or
Quantum Monte Carlo (QMC) [54]. Though these methods can be quite accurate, they
are computationally very demanding for larger systems. MP2 for instance, nominally
scales as N5, thus quickly becoming prohibitively expensive with increasing cluster size.
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Density-functional theory (DFT) provides an alternative approach. The electronic
Schrödinger equation and the corresponding wave function are replaced by a formalism
based upon the much simpler electron density ρ.

4.3. The Thomas-Fermi Model

The original idea to use the electron density as the fundamental quantity goes back to
1927, when Thomas and Fermi approximated the distribution of electrons in an atom
[55] and came up with their famous kinetic energy functional which is exact in the limit
of a homogeneous electron gas

TTF(ρ) = CF

∫

drρ5/3(r) dr , CF =
3

10
(3π2)2/3 = 2.871 . (4.9)

Additionally, the attractive electron-nucleus energy and the classical repulsive electron-
electron Coulomb energy can be expressed as functions of ρ(r).

VNe = Z
∫

dr
ρ(r)

r
, (4.10)

V c
ee =

1

2

∫ ∫

dr1dr2
ρ(r1)ρ(r2)

|r1 − r2|
. (4.11)

Neglecting the exchange-correlation energy, a simple formula for the total energy of an
atom is derived exclusively in terms of the electron density

ETF[ρ] = CF

∫

dr ρ5/3(r) + Z
∫

dr
ρ(r)

r
+

1

2

∫ ∫

dr1dr2
ρ(r1)ρ(r2)

|r1 − r2|
. (4.12)

Minimizing Eq. (4.12) with respect to the density under the normalization constraint
Eq. (4.6) then yields the ground-state density ρ0 and the corresponding ground-state
energy E[ρ0]. While simple, the Thomas-Fermi formula is of no practical use due to
the underlying approximations of both a very crude kinetic energy functional and the
complete neglection of the exchange-correlation energy.

4.4. The Hohenberg-Kohn Theorems

The Thomas-Fermi model was the first attempt to express the electronic energy in terms
of the electron density only, thereby reducing the number of degrees of freedom from 3Nel

to 3. Nonetheless, this approximation did not become popular due to its low accuracy.
The concept of the electron density was taken up again in 1964 by Hohenberg and Kohn
[56] who founded the basics of an exact theory, the density-functional theory. It is based
upon two theorems which prove that the electron density can in principle be used alone
to obtain the ground-state energy of any system.

The first theorem states that the external potential Vext of a system is, within an ad-
ditive constant, uniquely defined by the electron density, where the external potential is
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not confined to the Coulomb-potential of the nuclei. Since Vext defines the Hamiltonian,
which then determines the many-body wavefunction from which all observables can be
obtained, it follows that the whole physics of a system, in particular the ground-state en-
ergy, can exclusively be obtained from the electron density. For non-degenerate systems,
the proof is trivial and based upon the variational principle [57]. Consider two different
external potentials Vext and V ′

ext that differ by more than just an additive constant but
give rise to the same ground-state electron density ρ0. The corresponding Hamiltonians
Ĥ and Ĥ ′ then yield two different wavefunctions Ψ and Ψ′. Applying the variational
principle to the unprimed Hamiltonian with Ψ′ as trial wavefunction yields

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉 + 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 , (4.13)

which expands to

E0 < E′
0 + 〈Ψ′|T + Vee + Vext − T − Vee − V ′

ext|Ψ′〉 , (4.14)

so that the expression can be simplified to

E0 < E′
0 +

∫

dr ρ(r)(Vext − V ′
ext) . (4.15)

Now the roles are exchanged, so the variational principle is applied to the primed Hamil-
tonian using Ψ as trial wavefunction, thus yielding

E ′
0 < E0 −

∫

dr ρ(r)(Vext − V ′
ext) . (4.16)

Summing Eq. (4.14) and Eq. (4.15) finally gives the following contradiction

E0 + E ′
0 < E′

0 + E0 ⇐⇒ 0 < 0 . (4.17)

Hence, the basic assumption of two different external potentials giving rise to the same
ground-state density was wrong. The total energy E0 can therefore be expressed solely
in terms of ρ

E0[ρ] =
∫

dr ρ(r)VNe + T [ρ] + Eee[ρ] (4.18)

=
∫

dr ρ(r)VNe + FHK[ρ] . (4.19)

FHK[ρ] is called the universal functional of ρ since it does not depend upon the external
potential. The proof can be generalized to the case of degenerate systems [57].

The second Hohenberg-Kohn theorem is a reformulation of the variational principle,
now being expressed in terms of the density. It states that the energy given by any trial
density ρ̃ is an upper bound to the ground-state energy E0

E0 = E[ρ] ≤ E[ρ̃] . (4.20)

According to the first Hohenberg-Kohn theorem, the trial density ρ̃ is uniquely given
by the external potential Ṽext, which in turn defines the corresponding Hamiltonian Ĥ
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which yields the many-body wavefunction Ψ̃. Applying the variational principle Eq.
(4.4) then gives the desired result

〈

ψ̃
∣
∣
∣ Ĥ

∣
∣
∣ψ̃
〉

=
∫

dr ρ̃(r)Vext(r) + FHK[ρ̃] = E[ρ̃] ≥ E[ρ0] . (4.21)

Additionally, applying the variational principle to the Hohenberg-Kohn functional under
the normalization constraint of the electron density and the assumption of the differen-
tiability of EHK

δ {E[ρ] − µ [ρ(r)dr −Nel]} = 0 , (4.22)

yields the Euler-Lagrange equation

µ =
δE[ρ]

δρ(r)
= Vext(r) +

δFHK[ρ]

δρ(r)
, (4.23)

with µ being the chemical potential.

4.5. The Kohn-Sham Equation

In principle, DFT is an exact theory, which means that if the universal functional FHK

were known, minimizing the energy functional would give the exact ground-state energy.
Unfortunately, FHK is not known, making a direct application of the Hohenberg-Kohn
theorems impossible. In 1965, Kohn and Sham approximated FHK [58], thus paving the
way for tackling practical problems using DFT. Their strategy was to separate everything
that can be expressed exactly and only approximate the missing terms. Introducing a
reference system of non-interacting electrons described by single-particle states ψi(r) the
kinetic energy of that reference system can then be obtained exactly as

TS = −1

2

Nel∑

i

〈φi|∇2|φi〉 , (4.24)

with φi being the Kohn-Sham orbitals. The non-interacting kinetic energy TS is not equal
to the true kinetic energy T , with T = TS + TC. Furthermore, the classical Coulomb
energy J [ρ] can be expressed exactly with respect to the electron density. Therefore,
Kohn and Sham rewrote the universal functional as

FHK[ρ] = TS[ρ] + J [ρ] + EXC[ρ] , (4.25)

where the exchange-correlation energy EXC[ρ] contains everything that is missing: The
quantum-mechanical contributions due to exchange and correlation, and the remaining
part of the kinetic energy not being captured by TS

EXC[ρ] = (T [ρ] − TS[ρ]) + (Eee[ρ] − J [ρ]) , (4.26)

which thus yields the Kohn-Sham functional
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EKS[ρ] = TS[ρ] + J [ρ] + EXC[ρ] + Eext[ρ] . (4.27)

Minimizing Eq. (4.27) with respect to the orbitals φi, using the expression of the electron
density for a non-interacting system ρ(r) =

∑

i fi |φi(r)|2 and under the orthonormality
constraint of the Kohn-Sham orbitals 〈φi|φj〉 = δij , then results in the famous Kohn-
Sham equation for the single-particle Kohn-Sham orbitals

[

−1

2
∇2 + Veff(r)

]

φi = ǫiφi , (4.28)

with {ǫi} being the Kohn-Sham orbital energies which result as Lagrange-multipliers to
ensure the orthonormality of the orbitals. Veff is the effective potential, which contains
the classical Coulomb potential, the exchange-correlation potential and the external
potential Vext(r),

Veff(r) =
∫

dr′
ρ(r)′

|r − r′| + VXC(r) + Vext(r) . (4.29)

The resulting electron density ρ(r) =
∑

i fi |φi(r)|2 is by contruction equal to the true
electron density, where the occupation numbers {fi} are one for occupied states and zero
otherwise. The exchange-correlation potential VXC(r) is defined as functional derivative
of the exchange-correlation energy with respect to the electron density

VXC(r) ≡ δEXC

δρ(r)
. (4.30)

Being an artificial reference system, the Kohn-Sham orbitals are no real single-particle
wave functions but only approximations to them. Their introduction was in particu-
lar only necessary due to the lack of knowledge of the kinetic energy functional with
respect to the electron density. Attempts to keep the density-functional theory purely
density-based have been made by approximating the kinetic energy functional within
the so-called orbital-free density-functional theory (see e.g. [59]). However, common
functionals that go beyond the classical Thomas-Fermi model turned out to be little
successful since the kinetic energy is in the same order of magnitude as the total energy,
and errors in the approximations are therewith significant. Only in simple cases, like
e.g. bulk aluminum, where the electron density resembles the homogeneous electron gas,
quantitative results could be obtained [60]. For systems with localized electron densi-
ties, in particular transition metals that are of interest in the present work, the crude
approximation of common existing kinetic energy functionals yields unsatisfactory re-
sults [61]. Therefore, to obtain quantitative results, classical density-functional theory
based upon the Kohn-Sham equation is used, which is in principle an exact theory.
Hence, if the exact forms of EXC and VXC were known, the Kohn-Sham scheme would
lead to the exact total energy Etot which in turn is the correct eigenvalue of the many-
body Hamiltonian. Nevertheless, the unknown functional for the exchange-correlation
energy EXC and its corresponding potential VXC necessitates approximations to them,
therewith turning DFT into an approximative method in practice. The central goal of
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modern density-functional theory is therefore to find better and better approximations
to these two quantities.

4.6. Present-Day Exchange-Correlation Functionals

The quality of density-functional theory results depends upon the quality of the ap-
proximation of the exchange-correlation energy. Unfortunately, there is no systematic
way to successively improve the results like in wavefunction based methods. Analogous
to the Thomas-Fermi model, the first attempt to find an explicit expression for EXC

was based on the homogeneous electron gas. The basic assumption of the Local-Density

Approximation (LDA) is that non-local effects of the real electron gas can be neglected
and the exchange-correlation energy can be expressed as a sum over space where each
point contributes to the energy with a value given by the homogeneous electron gas of
the same density. In other words, the exchange-correlation energy density per particle
per volume ǫLDA

XC (ρ(r)) in the local-density approximation equals to the true energy den-
sity ǫXC(ρ(r)) of the corresponding homogeneous electron gas. The exchange-correlation
energy is then given by

ELDA
XC [ρ(r)] =

∫

dr ρ(r) ǫXC(ρ(r)) , (4.31)

and the corresponding exchange-correlation potential by

V LDA
XC (r) =

δEXC

δρ(r)
= ǫXC(ρ(r)) + ρ(r)

∂ǫXC(ρ)

∂ρ
. (4.32)

The exchange-correlation energy density ǫXC(ρ(r)) can be separated into two parts, the
exchange part ǫX, resulting from the Pauli principle, and the correlation part ǫC, resulting
from the Coulomb correlation

ǫXC(ρ) = ǫX(ρ) + ǫC(ρ) , (4.33)

where the exchange part ǫX(ρ) can be expressed analytically for the homogeneous elec-
tron gas [55, 62]

ǫX(ρ(r)) = −3

4

(

3ρ(r)

π

) 1
3

. (4.34)

For the correlation part ǫC(ρ), no such analytical result is known. Expressions can be
obtained for the high-density [63, 64] and the low-density [65, 66] limit. The intermediate
range has only been assessed numerically by highly accurate quantum Monte Carlo
calculations, e.g. by Ceperley and Alder [67]. In order to use this discrete set of values,
a parameterization is required, of which the most popular ones are the one by Vosko,
Wilk and Nusair [68] (VWN-LDA) and the one by Perdew and Wang [69] (PW-LDA).
Both schemes give usually very similar results.

Though the local-density approximation is a crude approximation to the true exchange-
correlation energy, is has been widely used until the 1990’s with surprisingly good results.
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This can partly be related to the fact that the magnitude of the exchange-correlation
energy is rather small compared to the total energy so that errors in the approximation
are less significant as in the case of the kinetic energy. Drawbacks are, however, the
typical overestimation of binding energies and the underestimation of bond lengths. In
particular, systems with electron density distributions far away from the homogeneous
electron gas, like the atomic clusters of interest in this work, often yield disappointing
results.

Improvements over LDA can be achieved by taking non-local information of the
density-distribution explicitly into account. A straightforward correction to the local-
density approximation is a formal expansion of EXC in gradients of the density suggested
by Hohenberg and Kohn [56], which yields in general a functional of the form

EDGE
XC [ρ(r)] =

∫

dr
[

ǫ
(0)
XC(ρ) + ǫ

(1)
XC(ρ)∇ρ+ ǫ

(2)
XC(ρ) |∇ρ|2 + . . .

]

. (4.35)

However, truncating this expansion after the first order gives unsatisfying results, some-
times even being worse than LDA. Better approximations can be obtained by introducing
a more generalized expansion. In this Generalized-Gradient Approximation (GGA), the
exchange-correlation functional has the following form

EGGA
XC [ρ(r)] =

∫

drf (ρ(r),∇ρ(r)) dr =
∫

ρǫGGA
XC (ρ(r),∇ρ(r)) , (4.36)

which typically yields better binding energies. Similar to LDA, EGGA
XC can be separated

into an exchange and a correlation part. There are many different flavours of GGA-
functionals that are differing in the functional form of the exchange and correlation
energy which is typically constructed by fulfilling known constraints of the exchange-
correlation potential VXC. One popular GGA-functional was proposed by Perdew, Burke
and Ernzerhof in 1996 (PBE) [70] which is almost exclusively used in the present work.
This functional is based upon the PW91 functional of Perdew and Wang [71] which is an
analytical fit to a numerically determined first-principles GGA, but cast into a simpler
functional form by neglecting energetically irrelevant terms.

4.7. Spin-Density-Functional Theory

Many systems of interest possess an odd number of electrons. While the results ob-
tained by the formalism described so far are quite satisfactory for closed-shell systems,
extensions to open-shell systems are required, in particular for transition metals which
exhibit magnetic properties. In principle, density-functional theory is an exact theory
and the total energy depends exclusively upon the total electron density which also holds
for open-shell systems unless there is an explicit spin-dependence in the Hamiltonian,
e.g. in the case of an external magnetic field. Experience has shown, however, that
approximate functionals gain more flexibility when explicitly depending upon the indi-
vidual spin densities ρσ. In the therewith resulting Unrestricted Kohn-Sham method
[72, 73], two sets of Kohn-Sham orbitals φ↑

i and φ↓
i are introduced, and used to represent

a spin-polarized system
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[

−1

2
∇2 + V σ

eff(r)
]

φiσ = ǫiσφiσ , (4.37)

where the spin-dependency of the effective potential V σ
eff enters through the exchange-

correlation potential

V σ
XC(r) ≡ δEXC

δρσ(r)
. (4.38)

The spin-polarized version of LDA is called local-spin-density approximation (LSDA)
[72] and the corresponding exchange-correlation functional is given by

ELSD
XC [ρ↑(r), ρ↓(r)] =

∫

drρ(r) ǫXC(ρ↑(r), ρ↓(r)) . (4.39)

Similarly, the EGGA
XC in the spin-polarized case looks in general like

EGGA
XC [ρ↑, ρ↓] =

∫

drρ ǫXC(ρ↑, ρ↓,∇ρ↑∇ρ↓,∇ρ↓∇ρ↓,∇ρ↑∇ρ↓) . (4.40)

with the special case of PBE

EPBE
XC [ρ↑, ρ↓] =

∫

drρ ǫXC(ρ↑, ρ↓, |∇ρ|2) . (4.41)
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The Density-Functional Theory
Implementation FHI-aims
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5. Solving the Kohn-Sham Equations
with Numerical Atom-Centered
Basis Sets

Due to the steadily increasing importance of density-functional theory, many different
implementations are nowadays available. Though the underlying theory is always the
same, differences arise from the actual strategy to put DFT into a practical tool. In a
dominant fraction of existing implementations the main principle is always the same in
that the Kohn-Sham orbitals φi are expanded into a set of basis functions ϕj

φi(r) =
∑

j

cijϕj(r) . (5.1)

A priori, the choice of a certain basis set is not prescribed and thus guided by the ac-
tual problem to tackle which leads to the manifold of electronic structure codes around.
Historically, there are two main classes. Plane waves first arose in the context of solid
state physics since they are naturally cast into periodic boundary conditions applied in
solid state calculations. Localized basis functions, on the other hand, are suitable to
treat finite systems like molecules, as the tail region of the eigenstates and the surround-
ing vacuum requires decaying basis sets for an efficient calculation. Common choices
for the latter class of basis functions are analytically defined Gaussians or Slater-like

orbitals. The implementation FHI-aims (”ab initio molecular simulations”) developed
at the Theory Department of the Fritz-Haber-Institute resorts to numerically defined
atom-centered orbitals of the form

ϕi(r) =
ui(r)

r
Ylm(ϑ, φ) , (5.2)

where Ylm(ϑ, φ) are spherical harmonics. The radial part ui(r) is numerically tabulated,
thus being very flexible since any kind of desired shape can be achieved. This paves
the way for generating highly efficient species-dependent basis sets, which are further-
more constructed strictly hierarchical so that the accuracy can be continuously increased
from tight-binding like to the meV level. The concept of atom-centered basis functions
together with a well-defined control of convergence makes FHI-aims a suitable tool for
the aspired atomic cluster calculations. The co-development of the electronic structure
code, in particular the essential atomic forces for the sampling schemes (see chapter 6),
constitutes an important, preparatory part of this PhD project.
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5.1. The Eigenvalue Problem

The heart of FHI-aims is to solve the Kohn-Sham equation

ĥKS |φi〉 = ǫi |φi〉 , (5.3)

with the single-particle Hamiltonian

ĥKS = −1

2
∇2 + Veff([ρ], r) , (5.4)

where for simplicity the non-polarized case is considered here first. The Kohn-Sham
orbitals lead to the electron density ρ(r) =

∑

i fi |φi(r)|2 which then determines the
effective potential Veff [ρ]. Equations (5.3) and (5.4) have therefore to be solved self-
consistently, i.e. the exact same eigenfunctions and electron density used to construct
the correct Hamiltonian must re-emerge as its output. In each iteration step towards
self-consistency, the orbitals are expanded in a set of basis functions ϕj.

φi(r) =
∑

j

cijϕj(r) . (5.5)

Inserting this ansatz into Eq. (5.3) and multiplying the equation with ϕi finally trans-
forms the continuous differential equation into an algebraic generalized eigenvalue prob-
lem

∑

j

hijcjl = ǫl
∑

j

sijcjl . (5.6)

The Hamiltonian and overlap matrix elements hij and sij , respectively, are hereby given
by

hij =
∫

dr
[

ϕi(r)ĥ
KSϕj(r)

]

, (5.7)

sij =
∫

dr [ϕi(r)ϕj(r)] . (5.8)

The complex conjugate notation is not needed for finite systems and therewith omitted
in this thesis.

As described in the previous chapter, the total energy of a system in DFT is given by
the Kohn-Sham-Functional including the repulsive nuclei-nuclei interaction

EKS = TS + JH + EXC + Eext + ENN , (5.9)

minimized over all possible densities according to the second Hohenberg-Kohn theorem.
The discretization of the Hilbert space by the basis functions {ϕj} leads to a mini-
mization with respect to the expansion coefficients {cij}. The Kohn-Sham functional
evaluated at the ground-state energy is therefore variational with respect to the {cij},
i.e.
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∂Etot

∂cij
= 0 (5.10)

The extension to the spin-polarized case is straightforward. Eq. (5.3) needs to be solved
for both spin-channels, thus yielding two different sets of expansion coefficients {ciσ,j}
for the corresponding orbitals {φiσ}. Self-consistency then needs to be achieved for
both spin-densities ρ↑ and ρ↓ due to the explicit dependency of the effective potential
V σ

eff([ρ↑, ρ↓]) on both quantities (see section 4.7).
Eq. (5.3) gives direct access to the Kohn-Sham eigenvalues ǫi. It is therefore conve-

nient to rewrite the energy functional as

EKS =
∑

i

fiǫi −
∫

drρ(r)VXC(r) + EXC [ρ] − 1

2

∫

drρ(r)VH(r) + ENN , (5.11)

which can trivially be extended to the spin-polarized case

EKS =
∑

iσ

fiσǫiσ −
∑

σ

∫

drρσ(r)V σ
XC(r)+EXC

[

ρ↑, ρ↓
]

− 1

2

∫

drρ(r)VH(r)+ENN . (5.12)

In principle, this reformulation is derived by summing up the Kohn-Sham equations, cor-
recting the double-counting of the classical Hartree energy and replacing the exchange-
correlation potential energy

∫

drρ(r)VXC(r) by the exchange-correlation energy EXC to
obtain the correct total energy.

5.1.1. Achieving Self-Consistency

Density mixing

The main problem of an electronic structure calculation is to achieve self-consistency, i.e.
the correct electronic Hamiltonian hij should yield as output the same wave functions,
electronic charge density and potentials that were used to construct it, which means
ρ

(n)
out = ρ

(n)
in . To achieve self-consistency, one therefore starts with an initial trial density

ρ(0) which in FHI-aims is constructed by superimposing the densities of the constituent
atoms. Solving the Kohn-Sham equation then yields orbitals {φi}(0) that lead to an

output electron density ρ
(0)
out which is used to construct the next input density ρ

(1)
in . This

whole procedure is repeated until finally the output density equals the input density and
thus self-consistency is achieved. The construction of the next input density is a crucial
technical detail that significantly determines the performance of the calculation. The
simplest scheme is to linearly mix the output density with the previous input density

ρ
(n)
in = αρ

(n)
out + (1 − α)ρ

(n−1)
out , (5.13)

with α being an adjustable parameter. If chosen too small, convergence is poor since
the electron density approaches the self-consistent density very slowly. Choosing a too
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large value might destabilize the electron density, resulting into an oscillating behaviour
or even no convergence at all.

More sophisticated is the Pulay mixing scheme [74, 75] that is exclusively used in the
present work. In that scheme, the input charge densities are stored for a number of
iteration steps. The key quantity in this mixing scheme is the charge density residual

defined as

R[ρin] = ρout([ρin], r) − ρin(r) = ∆ρ(r) , (5.14)

which describes the change of the electron charge density at every point in space after
a self-consistency iteration. If self-consistency is achieved, the norm of the residual
vanishes

〈R[ρin] |R[ρin]〉 = 0 , (5.15)

where the norm corresponds to a simple integral

〈R[ρ] |R[ρ]〉 =
∫

dr(∆ρ)2(r) . (5.16)

Hence, the density has converged to the self-consistent one at every point in space, since
∆ρ must equal zero everywhere. Achieving self-consistency therefore corresponds to
minimizing the charge density residual.

A new optimal input charge density is obtained in each step as a linear combination
of the input charge densities of all previous steps

ρopt
in =

∑

i

αiρ
(i)
in , (5.17)

where the linear coefficients obviously have to fulfil the following condition to conserve
the norm of the density

∑

i

αi = 1 . (5.18)

The underlying assumption of the Pulay mixing scheme is the linearity of the residual
so that the residual vector of the optimum charge density is given by

R[ρopt
in ] = R

[
∑

i

αiρ
(i)
in

]

=
∑

i

αiR[ρ
(i)
in ] . (5.19)

Minimizing the norm of the residual

〈

R[ρopt
in ]

∣
∣
∣R[ρopt

in ]
〉

, (5.20)

then leads to a system of equations for the coefficients αi which finally yields the optimum
input density. To prevent the electron charge density from being trapped in a subspace
spanned by the previous densities, a fraction of the residual vector is added to finally
obtain the new input density which is then used to construct the next Hamiltonian
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ρ
(n+1)
in = ρopt

in + γR[ρopt
in ] , (5.21)

with γ being an adjustable parameter.
For the spin-polarized case, it is crucial to combine both spin-channels to one single

residual vector

〈

R[ρ↑, ρ↓]
∣
∣
∣R[ρ↑, ρ↓]

〉

=
∑

σ

∫

dr (∆ρσ)2 (r) , (5.22)

which is then used to determine a single set of coefficients αi for both spin-densities ρ↑

and ρ↓, thus ensuring stable convergence.
The number of stored densities and residuals is a key parameter and can significantly

influence the performance. If chosen too small, too little information is taken into
account and the convergence is slow. In case of too many previous densities taken
into account, the individual densities might be too different, so that the assumption of
linearity is not justified and the Pulay matrix becomes singular.

Occupation smearing

In systems with degenerate or quasi-degenerate eigenstates near the Fermi level, the
occupation of the eigenstates might oscillate during the self-consistency iterations since
the eigenstates permanently cross the Fermi level. Additional stability can then be
achieved by occupying the states by a distribution {fiσ} which is slightly broadened
about the Fermi level, thus weakening the effect of a level-crossing since the occupation
then does not change discontinuosly. FHI-aims supports Fermi-smearing [76], Methfessel-
Paxton [77] and Gaussian [78], where the latter is exclusively used in the present work
when necessary. The occupation numbers are then given by

fiσ =
1

2

(

1 − erf
[
ǫiσ − µ

w

])

. (5.23)

Since the PES is therewith effectively distorted, one aims at a value for the smearing
width w as small as possible to not change the physics of the system significantly. Since
clusters typically show Jahn-Teller distortions and therewith a HOMO-LUMO gap, w
can typically be set to zero once the system is close to the local minimum. Small finite
values for w in the range of tenths of eV are only chosen for the atomic configuration
being far away from the local minimum.

5.2. Numerical Atom-Centered Basis Functions

5.2.1. The Definition of the Basis Functions

In FHI-aims the radial part of the basis function given by Eq. (5.2) is obtained by
solving a radial Schrödinger-like equation on a logarithmic grid. A steeply increasing
confinement potential is thereby used to spatially confine the basis functions to a local
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region, thus allowing for an O(N)-like scaling of the integrations for large systems. The
shape of the potential is chosen to ensure a continuous second derivative at the onset of
the potential which then increases gradually to infinity at the cutoff-radius rcut. One clear
advantage over analytically defined basis functions like Gaussians or Slater-like functions
is the greater flexibility since any kind of potential in the Schrödinger-like equation can
be chosen. In FHI-aims the minimal basis of a species is constructed by choosing the
effective Kohn-Sham potential of the corresponding non-polarized, spherically symmetric
free atom. This basis thus facilitates the all-electron calculation since the oscillatory
behaviour of the wavefunctions in the core-region are already well described at this level.
Additionally the minimal basis avoids the atomic basis set superposition error (BSSE)
which can typically be observed for analytical localized basis sets: When calculating the
cohesive energy of an XN -cluster

Ecoh = [Etot(XN) −NEtot(X)] /N , (5.24)

the energy contribution of a constituent atom to the total energy Etot might be vari-
ationally improved by basis functions sitting on adjacent atoms, thus leading to an
overestimating of Ecoh. Using atomic states, however, the total energy is already con-
verged at the level of the minimal basis, and neighbouring basis functions have no effect.
The BSSE might still occur and should be checked in case of intermolecular binding
energies, though.

The minimal basis set is augmented by further classes of basis functions, one of which is
formed by ion-like radial functions that are in particular suitable for describing a chemical
bond as demonstrated by Delley [79]. These are states obtained from calculations of
positive ions, which are supposed to describe the charge transfer of a system in a chemical
bond. Hydrogen-like functions are used in addition, especially as polarisation functions

for angular momenta beyond those present in the free atom itself. These functions are
derived from one-electron atoms with an arbitrary nuclear charge, that does not need
to be an integer. Since radial functions originating from different potentials are not
necessarily orthonormal to one another even on the same atomic site, all on-site radial
functions are orthonormalized explicitly using a simple Gram-Schmidt process [80].

Contrary to Gaussians or Slater-like functions, numerically tabulated basis functions
do not allow for an analytical integration, thus requiring a numerical method that is
described in section (5.3).

5.2.2. The Generation of Basis Functions

The major challenge when dealing with atom-centered basis functions is the systematic
convergence towards a complete basis set limit (cbs) with an as small and thus as efficient
basis set as possible. Contrary to plane waves, for which the cutoff energy can be
successively increased until the desired accuracy in the total energy has been achieved,
there is no such simple parameter for numerical basis functions. All one can be sure of is
the variational principle according to which the total energy improves when a given basis
set is augmented by further basis functions. In order to produce structure-independent,
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transferable basis sets, that can later on be used for production, the strategy pursued by
FHI-aims is therefore to choose the best basis functions out of a huge pool of candidate
radial functions. This contains ion-like functions [79, 81] of different main and angular
quantum numbers and hydrogen-like functions covering a broad range of effective charges
[79]. Starting from the minimal free-atom basis of size Nmin−basis, the entire pool of
candidate functions is sampled, adding each function to the given basis set in turn. The
radial function with angular momentum l that gives the single largest improvement of
a target total energy is added to the original basis set, increasing it to (Nmin−basis +
(2l+1)). This step is then repeated, adding again each candidate function with angular
momentum l̃ to the basis set of size (Nmin−basis +(2l+1)) in turn and then increase it to
size (Nmin−basis +(2l+1)+(2l̃+1)) with the next best function. The whole procedure is
performed until no further significant total energy improvements result. Regarding the
optimization target for a certain chemical element, the corresponding dimer is chosen
which constitutes the simplest possible chemical bond and further a rather demanding
test case for atom-centered orbitals [82], since no basis function overlap from further
centers can accidentally improve the total energy. The improvement resulting from
adding a certain trial basis function to the basis set is then defined as

∆basis =
1

Nd

Nd∑

i

[Ebasis(di) − Ecbs(di)] , (5.25)

where Ebasis(di) denotes the non-self-consistent total energy for the dimer at the bond
distance di. The non-self-consistent reference energy Ecbs(di) for a converged basis set is
obtained independently of the present procedure, by converging a very large and thus
inefficient, but formally systematic basis set of confined atomic excited-state functions.
The dimer distances {di} are spread to sample the self-consistent LDA binding curve.
Experience has shown [11] that non-selfconsistent energies are a sufficient optimization
target and transferable to self-consistent calculations. Furthermore, potential instabili-
ties of the self-consistency-cycle for pathological cases are therewith avoided.

The different basis functions resulting from the basis set generation typically arise in
groups of different angular momenta, spd or spdf , and are thus organized in so-called
tiers which contain a basis function of each angular momentum. The number of the
tier thereby denotes the accuracy of the basis set. The different basis sets used in the
present work are given in detail in Appendix A.

5.3. Numerical Integration

Numerical integrations are performed for several tasks. The dominant part in the com-
putational effort constitutes the calculation of the overlap, Eq. (5.8), and Hamiltonian
matrix, Eq. (5.7), which scale formally as O(N3) with the system size. In FHI-aims , the
numerical integration is based upon a partitioning technique [79, 83] which decomposes
a function to pieces sitting on atoms that are then integrated by an atom-centered nu-
merical grid. The distribution among the atoms is thereby done by an atom-centered
partitioning function pα
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∫

drf(r) =
∑

α

∫

dr pα(r)f(r) . (5.26)

The sum of all partitioning functions equals one which is achieved by the normalization

pα(r) =
gα(r)

∑

β gβ(r)
. (5.27)

gα is hereby strongly peaked close to the originating atom thus integrating the function
preferably on the grid sitting on the next nearest atom. In FHI-aims this is achieved by
an approach similar to the Hirshfeld partitioning scheme [84], which is based upon the
electron density of non-spinpolarized, spherical free atoms ρfree

α as suggested by Delley
[79]

gα(r) =
ρfree

α

r2
. (5.28)

Every single-atom centered integrand is then integrated over Nr radial integration shells
each containing Nang angular integration points,

∫

dr pα(r)f(r) ≈
∑

riα

∆riα pα(riα)f(riα) =
Nr∑

s

Nang
∑

t

∆riα(s, t) pα(riα)f(riα(s, t)) , (5.29)

where the grid weights riα can simply be obtained by the analytically given integration
points. Summarized, any kind of integral in FHI-aims is approximated by a discrete sum
of the form

∫

drf(r) ≈
∑

α

∑

riα

wriα
f(riα) , (5.30)

with the integration weights wriα
given by the product of the partition function and the

weights of the individual atom-centered grid wriα
= pα(r)∆riα.

The radial grid is defined as suggested by Baker [85]

r(s) = router

log
(

1 − [s/ (Nr + 1)]2
)

log
(

1 − [Nr/ (Nr + 1)]2
) , (5.31)

which provides radial shells that are dense in the core region and then becomes succes-
sively coarser with increasing distance of the nucleus. Thus, the fast-varying localized
wave function parts near the nuclei are captured, together with an efficient treatment
of the smoother parts in the interstitial and far-field regions. router gives the outermost
radial shell and is chosen as 7 Å for all species and thus contains the whole basis function
for cut-off radii rcut < 7Å that are used in this work. The number of radial grid points
Nr further scales with the nuclear charge [85] so that heavier elements with steeper core
states are integrated more accurately:

Nr = 16.8 (Z + 2)1/3 . (5.32)
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A uniform accuracy increase can be obtained by placing additional shells at integer
fractions Nr,div of the original grid, e.g. at s = 1

2
, s = 3

2
, ... , s = 2Nr + 1

2
for Nr,div = 2.

As angular grids, the Lebedev grids [86, 87, 88] are chosen in a special version provided
by Delley [89]. The corresponding integration points have octahedral symmetry and are
constructed in such a way as to integrate angular momentum functions up to a certain
order exactly [90, 91].

The number of angular grid points is not chosen fixed for all distances. Close to
the nuclei with a dense radial integration grid and small surfaces of the radial shells
less angular points are required compared to large distances. In FHI-aims the required
number Nang for a given radial integration shell can therefore be determined adaptively
by converging the initial overlap matrix elemets sij and the initial Hamiltonian matrix
elements hij prior to the production run. An upper and lower bound is given by the
parameter Nang,max and Nang,min, respectively.

Formally, the numerical integration scales as O(N3) with the system size, since all pairs
of basis functions (∝ N2) must be integrated across the entire system (∝ N). Due to the
localization of the basis functions, this scaling is reduced to O(N) for large systems since
the number of non-vanishing basis functions at a certain grid point becomes independent
of the system size.

5.4. The Hartree-Potential

The calculation of the electrostatic potential VH constitutes a further challenge. A direct
integration of the Hartree potential in Eq. (4.29) would be prohibitively expensive as
it requires a whole integration for each grid point. In FHI-aims the calculation is there-
fore much simplified by a multipole-decomposition method as described by Delley [79].
First, the superimposition of the non-polarized, spherical free atoms is subtracted from
the electron density, leaving the much smoother difference electron density due to the
chemical bond. The free electron density together with the corresponding potentials are
calculated in the preparation of the production and are therewith known, thus allowing
for a reconstruction of the full electrostatic potential .

∆ρ(r) = ρ(r) −
∑

α

ρfree
α (|r − Rα|) . (5.33)

Using the partitioning scheme presented in the previous section, the electron density is
allocated to the individual atoms, followed by a multipole expansion

∆ρMP
α,lm(r) =

∫

r=|r−Rα|
d2Ωα pα(r) · ∆ρ(r) · Ylm(Ωα) , (5.34)

where Ωα is a short-hand notation for the spherical coordinates (ϑ, ϕ) with respect to
atom α. With the multipole components of the electron density ∆ρMP

α,lm, the corre-
sponding components of the Hartree potential ∆Vα,lm can then efficiently be obtained
by integrating the Poisson equation on a one-dimensional, logarithmic radial grid

∇2(∆Vα,lm) = −4π∆ρMP
α,lm . (5.35)
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The individual components are then reassembled to finally obtain the Hartree potential
of the difference electron density

∆V MP
H (r) =

lmax∑

α,lm

∆Vα,lm (|r− Rα|)Ylm(Ωα) . (5.36)

The multipole expansion is truncated at a maximum angular momentum lmax, thus
introducing an expansion error. According to Dunlap et al. [92], the first-order expansion
error can be eliminated by modifiying the electrostatic double-counting correction in the
Kohn-Sham-functional, Eq. (5.11), like

−1

2

∫

drρVH[ρMP] −→ −1

2

∫

drρMPVHH[ρMP] , (5.37)

with

ρMP(r) =
∑

α

ρfree
α (|r − Rα|) +

∑

α,lm

∆ρMP
α,lm(|r −Rα|))Ylm(Ωα) , (5.38)

so that quadratic total energy convergence with respect to lmax can be achieved.
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The local structural relaxation is a key ingredient to the success of many global opti-
mization schemes discussed in chapter 3, since it effectively removes the transition state
regions during the exploration of the PES. Efficient structural relaxation thereby re-
quires the knowledge of the atomic forces which are the negative first derivative of the
total energy. The simplest method to obtain energy derivatives is the finite difference
scheme which approximates the gradient by displacing the atomic positions like

dEtot

dRα,x

≈ Etot(Rα,x + ∆Rα,x) − Etot(Rα,x − ∆Rα,x)

2∆Rα,x

. (6.1)

Technical details on higher-order finite difference schemes are given in Appendix D. In
principle, derivatives can thereby be evaluated up to any desired accuracy by choosing
a significantly small displacement step width ∆. However, this requires the calculation
of the total energy of all displaced atomic configurations for each single relaxation step,
thus increasing the overall computational burden by a factor of 6N for the simplest
finite difference scheme. Hence, analytical derivatives that can directly be obtained for a
given atomic configurations are desirable, which significantly decrease the computational
cost of a local structural relaxation. Accurate forces are furthermore a prerequisite for
obtaining reliable vibrational spectra as used in the application described in chapter III.
The implementation and critical examination of the accuracy of the analytical atomic
forces in FHI-aims has therefore been a major part of the present work.

6.1. The Calculation of Analytical Atomic Forces

The forces are defined as the negative gradient of the total energy with respect to the
nuclear coordinates

Fα = −dEtot

dRα
. (6.2)

The total energy in FHI-aims is the minimum of the Kohn-Sham-functional EKS under
the orthonormalization constraint of the Kohn-Sham orbitals

Etot = min
{ciσ,j}



EKS −
∑

iσ,jσ′

fiσǫiσδiσ,jσ′ (〈φiσ | φjσ′〉 − 1)



 (6.3)

= min
{ciσ,j}

(

EKS −
∑

iσ

fiσǫiσ (〈φiσ | φiσ〉 − 1)

)

= Etot [{ciσ,j}, {Rα}] , (6.4)
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where the sum goes over all states φiσ with the eigenvalue ǫiσ. From this, it follows that

Fα = −dEtot

dRα

(6.5)

= −∂Etot

∂Rα

−
∑

iσ,j

∂Etot

∂ciσ,j
︸ ︷︷ ︸

=0

∂ciσ,j

∂Rα

. (6.6)

Since at self-consistency the total energy is variational with respect to {ciσ,j}, the cor-
responding term for the forces vanishes and only the partial derivative remains

Fα = −∂Etot

∂Rα
= −∂E

KS

∂Rα
− ∂

∂Rα

∑

iσ

ǫiσ (〈φiσ| φiσ〉 − 1) , (6.7)

with

EKS = TS + JH + EXC + Eext + ENN , (6.8)

with the kinetic energy

TS = −1

2

∑

iσ

fiσ 〈φiσ| ∇2 |φiσ〉 , (6.9)

the Hartree energy

JH =
1

2

∫ ∫

drdr′
ρ(r)ρ(r′)

|r − r′| , (6.10)

the exchange-correlation energy

EXC =
∫

drρ(r)ǫXC , (6.11)

the electron-nuclei energy

Eext =
∫

drρ(r)VNe(r) , (6.12)

with

VNe(r) =
∑

β

Zβ

|r − Rβ|
, (6.13)

the nuclei-nuclei energy

ENN =
∑

α<β

ZαZβ

|Rα − Rβ|
. (6.14)

It is worth to point out that it is the variational property of the energy functional that
fortunately allows for a direct evaluation of the analytical derivative since the total
derivative therewith reduces to the partial derivative, thus making the partial deriva-
tive of the variational parameters with respect to the nuclear coordinates ∂ciσ,j/∂Rα

dispensable which would not directly be accessible.
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6.1.1. The Individual Derivative Terms

The Kinetic Energy

Just taking the partial derivative in a straightforward way yields

− ∂TS

∂Rα

=
1

2

∂

∂Rα

∑

iσ

fiσ

〈

φiσ

∣
∣
∣∇2

∣
∣
∣ φiσ

〉

(6.15)

=
1

2

∑

iσ

fiσ

(〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
∇2

∣
∣
∣
∣
∣
φiσ

〉

+

〈

φiσ

∣
∣
∣
∣
∣
∇2

∣
∣
∣
∣
∣

∂φiσ

∂Rα

〉)

(6.16)

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
− 1

2
∇2

∣
∣
∣
∣
∣
φiσ

〉

. (6.17)

The nuclear gradient of the orbitals can be obtained by

∂φiσ

∂Rα
=

∑

j(α)

ciσ,j
∂

∂Rα
ϕj (|r −Rα|) , (6.18)

= −
∑

j(α)

ciσ,j∇ϕj (|r − Rα|) . (6.19)

since
∂

∂Rα
ϕj (|r − Rα|) = −∇ϕj (|r −Rα|) , (6.20)

and j(α) indicates a basis function sitting on atom α. The remaining basis functions
do not contribute to the forces on atom α since they do not depend upon Rα. So the
nuclear gradients can be expressed in terms of spatial gradients of the basis functions
which can then easily be evaluated numerically.

The Hartree Energy

Similar to the kinetic energy, the Hartree energy can be derived in a straightforward
way

− ∂JH

∂Rα

= −1

2

∂

∂Rα

∫ ∫

drdr′
ρ(r)ρ(r′)

|r− r′| , (6.21)

= −
∫ ∫

drdr′
∂ρ(r)

∂Rα

ρ(r′)

|r − r′| , (6.22)

= −
∫

dr
∂ρ(r)

∂Rα

VH(r) . (6.23)

Since ρ(r) =
∑

iσ fiσφiσ(r) · φiσ(r), the derivative of the density is given by

∂ρ(r)

∂Rα
= 2

∑

iσ

fiσ
∂φiσ(r)

∂Rα
· φiσ(r) , (6.24)
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which finally yields as derivative of the Hartree energy

− ∂JH

∂Rα

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
VH(r)

∣
∣
∣
∣
∣
φiσ

〉

, (6.25)

which boils down to calculating the nuclear gradients of the orbitals analogous to the
kinetic energy term.

The Multipole-Correction Term

The above derivation of the Hartree energy was based upon the true electronic density.
In FHI-aims, however, the Hartree potential is based upon a multipole expansion of the
density ρMP instead of the true electron density ρ. Additionally, the first-order correction
of the total energy by Dunlap [92] due to the multipole expansion error yields a further
correction term. So the Hartree energy term as it is precisely implemented in FHI-aims

is given by

JH =
∫

drρVH[ρMP] − 1

2

∫

drρMPVH[ρMP] , (6.26)

which then yields by a straightforward derivation the additional correction term

FMP,α = −
∫

dr
(

ρ(r) − ρMP(r)
) ∂VH[ρMP]

∂Rα
, (6.27)

which is in agreement with the expression given by Delley [93]. As one can immediately
see, the multipole-correction term vanishes, if the multipole density would be equal to
the true density. The nuclear gradients of the Hartree potential are then obtained in
complete analogy to the nuclear gradients of the Kohn-Sham orbitals and can be boiled
down to calculating the spatial gradients. Since the multipole expansion of the Hartree
potential is composed of nuclear contributions

VH(r) =
∑

β

Vβ (r − Rβ) , (6.28)

only the components sitting on atom α contribute to its forces

∂VH

∂Rα
=

∂

∂Rα
Vα (r −Rα) = −∇Vα (r −Rα) . (6.29)

The Exchange-Correlation Energy

Assuming here a local-density approximation of the exchange-correlation functional
yields the corresponding force term which is given in the non-polarized case by

−∂EXC

∂Rα
= −

∫

dr
∂ρ(r)

∂Rα

(

ǫXC(ρ(r)) + ρ(r)
∂ǫXC

∂ρ(r)

)

(6.30)

= −2
∑

i

fi

〈

∂φi

∂Rα

∣
∣
∣
∣
∣
VXC(r)

∣
∣
∣
∣
∣
φi

〉

. (6.31)

61



6. Energy Derivatives in FHI-aims

In the spin-polarized case the expression is completely analogous

−∂EXC

∂Rα

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
V σ

XC(r)

∣
∣
∣
∣
∣
φiσ

〉

. (6.32)

The Electron-Nuclei Energy

The electrostatic energy between the electrons and nuclei yields another force contribu-
tion

−∂Eext

∂Rα

= −
∫

dr
∂ρ(r)

∂Rα

VNe(r) −
∫

drρ(r)
∂VNe

∂Rα

(6.33)

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
VNe(r)

∣
∣
∣
∣
∣
φiσ

〉

− Zα

∫

drρ(r)
Rα − r

|Rα − r|3
. (6.34)

The Nuclei-Nuclei Energy

The electrostatic forces between the nuclei are trivially given by

−∂ENN

∂Rα
= −Zα

∫

drρ(r)
Rα − r

|Rα − r|3
. (6.35)

The Normalization Constraint

Finally the constraint term in the Lagrange functional needs to be taken into account

∂

∂Rα

∑

iσ

fiσǫiσ (〈φiσ| φiσ〉 − 1) = 2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
ǫiσ

∣
∣
∣
∣
∣
φiσ

〉

. (6.36)

6.1.2. The Atomic Forces in the Case of LSD

Summing up the above derivative contributions Eqs. (6.15), (6.15), (6.25), (6.27), (6.32),
(6.33), (6.35) and (6.36) finally results in a total force acting on atom α

Fα = FHF,α + FPulay,α + FMP,α . (6.37)

These so-called Hellman-Feynman forces Fα correspond to the classical forces by em-
bedding each nucleus into the field of the electronic charge density and of all other nuclei
[94, 95]

FHF,α = Zα

∑

β 6=α

Zβ
Rα −Rβ

|Rα − Rβ|3
− Zα

∫

drρ(r)
Rα − r

|Rα − r|3
. (6.38)

The Pulay forces FPulay,α [96] result from the dependency of the basis functions on the
nuclear coordinates and are given by
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FPulay,α = −2
∑

iσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
ĥKS − ǫiσ

∣
∣
∣
∣
∣
φiσ

〉

, (6.39)

This term vanishes in case of a complete Hilbert space spanned by the basis functions,
because then the approximated eigenvalues ǫiσ would be the exact eigenvalues of ĥKS

and (ĥKS−ǫiσ) |φiσ〉 would therewith vanish. In practice, however, this is basically never
the case and for reasonable basis set sizes, this term is mandatory. Furthermore, in case
of basis sets which do not depend upon the nuclear coordinates, like e.g. plane waves,
this term would vanish as well because then the nuclear gradients of the Kohn-Sham
orbitals are zero.

6.1.3. The GGA-Correction Term

In the GGA-functional suggested by Perdew, Burke and Ernzerhof, the exchange-
correlation functional possesses the following functional form

EXC =
∫

drρ(r)ǫXC

(

ρ↑, ρ↓, |∇ρ|2
)

. (6.40)

Taking the derivative thus yields an additional term that arises due to the square of the
charge density gradient

∂EXC

∂Rα
=
∂EXC,LSD

∂Rα
+
∫

drρ(r)
∂ǫXC

∂ |∇ρ|2
∂ |∇ρ|2
∂Rα

, (6.41)

so another contribution to the overall forces is given by

FGGA = −
∫

drρ(r)
∂ǫXC

∂ |∇ρ|2
∂ |∇ρ|2
∂Rα

. (6.42)

The calculation of the nuclear gradient of the square of the density gradient can be
further broken down to

∂ |∇ρ|2
∂Rα

= 2 (∇ρ)T ∂∇ρ
∂Rα

, (6.43)

Since ∇ρ(r) = 2
∑

iσ ∇φiσ(r) · φiσ(r), the calculation of the matrix ∂∇ρ(r)/∂Rα yields

∂∇ρ(r)
∂Rα

= 2
∑

iσ




∂∇φiσ(r)

∂Rα

· φiσ(r) + ∇φiσ(r) ·
(

∂φiσ(r)

∂Rα

)T


 , (6.44)

where the second term corresponds to an outer product between two vectors thus giving
a matrix. Analogous to the nuclear gradients of the orbitals that can be expressed
in terms of the spatial gradients of the basis functions, the derivatives of the spatial
gradient of the Kohn-Sham orbitals ∂∇φiσ(r)/∂Rα can be boiled down to the spatial
Hessians of the basis functions ∇2φj.
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6.1.4. The Atomic Forces in Connection with Smearing Methods

If an electronic smearing method is used to accelerate the convergence of the self-
consistency cycle, the Lagrange functional is extended to another constraint to conserve
the number of electrons

Etot = min
{ciσ,j}

(

EKS −
∑

iσ

fiσǫiσ (〈φiσ | φiσ〉 − 1) − µ

(
∑

iσ

fiσ −Nel

))

(6.45)

= Etot [{ciσ,j}, {Rα}, {fiσ}] , (6.46)

with µ being the chemical potential. It can be shown that the total energy is then not
a variational quantity with respect to the partial occupancies [75]. Hence, the total
derivative of the total energy does not reduce to the partial derivative as in the case
without electronic smearing

Fα = −dEtot

dRα
(6.47)

= −∂Etot

∂Rα
−
∑

iσ,j

∂Etot

∂ciσ,j
︸ ︷︷ ︸

=0

∂ciσ,j

∂Rα
−
∑

iσ

∂Etot

∂fiσ
︸ ︷︷ ︸

6=0

∂fiσ

∂Rα
. (6.48)

To obtain a variational quantity, one needs to consider the electronic free energy F

F = E −
∑

iσ

wS(fiσ) , (6.49)

with a corresponding entropy term S. Using Gaussian smearing, the entropy is e.g.
given by

S =
1

2
√
π

exp

(

−
(
ǫiσ−µ

w

)2
)

. (6.50)

It can be shown that the free energy is therewith variational [75]. Since the entropy
correction does not depend upon the variational parameters {ciσ,j}, the corresponding
partial derivatives of the free and total energy are identical. Hence, it follows that

Fα = − ∂F

∂Rα
. (6.51)

As a result, the atomic forces are no longer consistent with the total energy but with the
free energy which therefore needs to be used for a local structural relaxation scheme.

6.1.5. Grid Effects

The integrals to calculate the total energy and therewith the atomic forces are not
calculated exactly, but approximated by a discrete sum according to Eq. (5.30)
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I =
∫

drf (r, {Rα}) (6.52)

≈
∑

α

∑

riα

wriα
(Rα) f (riα, {Rα}) . (6.53)

Since the integration weights depend upon the atomic coordinates, they need to be taken
into account explicitly for an exact derivative of the numerically evaluated total energy

∂I

∂Rα
=
∑

α

∑

ri,α

wri,α

∂f

∂Rα
+
∑

α

∑

ri,α

∂wri,α

∂Rα
f . (6.54)

Hence, each integration term in the forces yields an additional correction term to capture
the grid derivatives. This term can in principle be evaluated as the integration weights
are given by a simple analytical formula. The actual calculation represents, however,
a computational burden. Fortunately, grid effects are known to be negligible for grid
densities used in practice [85] and turn out to play no role for the cases of the present
work as well (see section 6.2).

6.2. Consistency of the Forces
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Figure 6.1.: Accuracy test of the analytical forces.

We illustrate the accuracy of the analytical atomic forces implemented in FHI-aims by
a comparison with numerical forces obtained by the finite difference scheme for some
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non-equilibrium dimers as test cases. Since the numerical forces can in principle be
evaluated up to any desired accuracy by choosing a sufficiently small step width, it
serves as a reliable reference value for the analytical forces. Caution is advised when
converging the numerical force with respect to ∆, though. Since the integration is done
on a discrete grid, a too small displacement might result in noise, thus yielding an
unreasonable numerical force. Fig. 6.1(a) presents the convergence test for ∆ for some
non-equilibrium dimers of the species treated in the present work using a converged tier2
basis set. The numerical forces are hereby obtained by a finite difference scheme of sixth
order (see Appendix D). The results clearly show that for all test cases, the numerical
force is converged within O(10−5) eV/Å at a step width of ∆= 0.01 Å, thus providing a
sufficiently accurate reference value. With the optimized step width, the convergence of
the analytical force with respect to the integration grid is then investigated. The results
are presented in Fig. 6.1(b). For Cu2 and Co2, the accuracy is within O(10−3) eV/Å and
seems to be independent of the chosen integration grid. Hence in these cases, grid effects
seem to play no role. In the case of Si2, the agreement between analytical and numerical
force is slightly worse and seems to be improved by augmenting the grid, indicating
small grid effects. However, the difference is at most 10−2 eV/Å for even the smallest
integration grid and therewith negligible. Since a typical force convergence criterium
for a local relaxation scheme is 10−2 eV/Å, such an accuracy is sufficient. Figure 6.2
illustrates this at a local relaxation of the ground-state isomers of Si7, Si10 and Cu7. In
all three cases, the change of the atomic configuration was only in the order of 10−3 Å
at that force convergence level and therewith sufficiently converged.

Figure 6.2.: Local relaxations for the ground-state isomers of Si7, Si10 and Cu7 with
BFGS and PBE-DFT. Plottet are the maximum force component Fmax and
maximum displacement ∆Rmax of the atomic geometry vs. the geometry
step.

6.3. The Second Energy Derivative

The vibrational analysis, in particular the calculation of the IR-spectra in chapter III,
necessitates the knowledge of the Hessian matrix, i.e. the second energy derivative
with respect to the atomic positions. The Hessian matrix of the total energy can be
obtained by taking the total derivative of the forces. Contrary to the total energy, the
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atomic forces are not a variational quantity, though. Hence the total derivative does
not reduce to the partial derivative, thus making a direct evaluation of the analytical
Hessian impossible

dEtot

dRαdRβ

= −dFα

dRβ

(6.55)

= −∂Fα

∂Rβ

−
∑

iσ,j

∂Fα

∂ciσ,j
︸ ︷︷ ︸

6=0

∂ciσ,j

∂Rβ

. (6.56)
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In the present work the Hessian
is therefore obtained by taking nu-
merical derivatives of the analytical
forces. Since the vibrational anal-
ysis is only a post-processing step
done at the local minimum, the ad-
ditional computational burden due
to the displacements remains small
for the cluster sizes considered in
the present work. Fig. 6.4 shows
the vibrational frequencies for some
dimers at their equilibrium bond
distance with respect to different fi-
nite displacements ∆ using a con-
verged basis set tier2. Like in the
case of numerical forces, the fre-
quencies can clearly be converged
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with respect to ∆ in all cases and grid effects play no role. With a displacement of
∆= 0.01 Å, the convergence with respect to the integration grid was explicitly checked
and summarized in Fig. 6.3. In all cases, even for the silicon dimer with a considerably
higher inaccuracy in the atomic forces, the vibrational frequencies are converged below
1 cm−1 and are therefore more than accurate enough for the requirements of the ensuing
applications. It is worth to point out that the high accuracy of the atomic forces and the
vibrational frequencies shown above of course only indicates a high consistency between
the calculated derivatives and the underlying energy surface. If the latter describes the
system poorly, the forces and vibrational frequencies are equally unphysical.

68



Part III.

Nature of Ar Bonding to Small Co+
n

Clusters and its Effect on the
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7. The Vibrational Fingerprint of Small
Co+

n Clusters and their Ar
Complexes

7.1. Introduction

The determination of atomic cluster structures constitutes a nice example of a mutual
support between experiment and theory. In case of a pure computational treatment
of the problem, there is never a guarantee to find the global minimum or all relevant
higher-lying isomers, regardless how sophisticated the sampling scheme is designed. Fur-
thermore, for the cluster size range of interest, where highly accurate quantum chemical
methods become prohibitively expensive, there is no systematic way to converge the
quality of the energetics. As a consequence, a poor description of the underlying PES
might yield wrong isomers. Experimentally, it is impossible to directly measure the
atomic structure but only quantities that are correlated with the underlying configu-
ration. Theory is therefore required to interpret the measured data by simulating the
experiment based upon putative cluster structures. If the computed and measured data
match, the candidate structure can be considered as confirmed.

Experimentally, obtaining information on the atomic arrangement of such small clus-
ters in the gas phase remains a challenge. Investigations of the reactivity of metal clusters
with small molecules, in particular their saturation behaviour, have been used to draw
conclusions about the clusters atomic arrangements [97]. Photoelectron spectroscopy
provides direct information on the electronic structure of clusters which can be related
to their geometries [98]. Information on the shape of cluster ions can be obtained from
ion mobility measurements [99, 100, 101] and, recently, electron diffraction of trapped
charged clusters has shown to be promising for revealing their structure [102, 103, 104].
Another possibility that is particularly sensitive to the internal cluster structure is the
measurement of vibrational frequencies. A corresponding technique that has recently
been successfully employed to determine the structure of cationic and neutral metal
clusters containing between three and 20 atoms is far-infrared (vibrational) resonance
enhanced multiple photon dissociation (FIR-MPD) spectroscopy [1, 2, 3, 4, 5]. The es-
sential idea of this technique is to irradiate rare-gas complexes of the targeted clusters
with infrared (IR) light in the range of the structure-specific vibrational fundamen-
tals. When the IR light is resonant with a vibrational mode in the cluster complex,
the complex can absorb several photons and subsequently evaporate off one or more
rare-gas atoms. Recording the resulting abundance changes of the rare-gas complexes

70



7. The Vibrational Fingerprint of Small Co+
n Clusters and their Ar Complexes

as a function of the IR frequency yields the desired spectra that can then be compared
to computed IR absorption spectra for different isomer structures obtained e.g. using
density-functional theory (DFT). As long as different isomers exhibit distinct vibrational
fingerprint patterns this then enables a unique determination of the atomic structure.

Performing the measurements on the rare-gas metal complexes, a fundamental as-
sumption behind this approach is that the rare-gas atoms do not significantly influence
the vibrational spectrum and merely act as a probe for detecting the resonant absorp-
tion of IR photons by the metal cluster [105]. A negligible influence of the employed
rare-gas atoms was indeed inferred from only insignificant differences in the IR spectra
of previously studied cationic V+

n (n = 3 − 23) [1, 2], Nb+
n (n = 5 − 9) [3, 4] and Ta+

n

(n = 6− 20) [5] complexes that contained one or more Ar atoms. Restricted test calcu-
lations comparing the IR spectra of bare and Ar-complexed V+

3 and V+
4 clusters led to

the same conclusion [1, 2], so that the ensuing theoretical modeling for the mentioned
systems focused exclusively on the IR spectra of the bare metal clusters.

The situation is markedly different for small cationic Co clusters. Here, the measured
FIR-MPD spectra show an intriguing dependence on the number of adsorbed Ar atoms,
which is strongest for clusters containing less than six cobalt atoms. The motivation for
this work is therefore to investigate on the nature of the Ar-Co+

n bond and its implications
for the vibrational spectra instancing the series Co+

4 to Co+
8 . Among the sampling

algorithms presented in chapter 3, basin-hopping was chosen in a spin-extended version
to sample both the configurational and spin space on an equal footing. Additionally,
the Ar probe atom was explicitly taken into account, thus identifying the Ar-binding
sites in a completely unbiased way. In this chapter, the comparisons of the computed IR
spectra with the measured data are presented, which allow in some cases for a unique
assignment of the experimental cluster structure. The calculations reveal furthermore
a characteristic increase of the Ar binding energy for the smaller clusters, rationalizing
the observed increased influence of the Ar probe atoms on the IR spectra.

In the next chapter, the binding energy trend is further analysed and traced back to
the predominant contribution to the Ar-Co+

n bond arising from the polarization of the
rare-gas atom in the electrostatic field of the cationic cluster. This motivates a simple
electrostatic model, that not only reproduces the binding energy trend, but also explains
why the interaction of Ar is much stronger than in the previously studied systems, where
little influence of the probe atoms on the vibrational spectra had been observed.

7.2. Far-Infrared Absorption Spectroscopy

7.2.1. Experimental Setup

The experiments were carried out in the group of Prof. Gerard Meijer at the Molecular
Physics Department of the FHI. They employed a molecular-beam setup [2, 4, 105] that
is coupled to a beam line of the Free Electron Laser for Infrared eXperiments (FELIX)
at the FOM-Institute for Plasma Physics in Nieuwegein, The Netherlands [106]. Metal
clusters were produced by pulsed laser ablation of a cobalt rod using the 2nd harmonic
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output of a Nd:YAG laser and by subsequent condensation of the plasma in a mixture
of Ar in He. Neutral, anionic, and cationic clusters were produced in this process and
passed through a temperature controllable copper channel. Only cationic clusters were
investigated in this study. Two different experimental conditions had been used. With
a mixture of 0.1% Ar in He at liquid-nitrogen-temperature, clusters containing six or
more cobalt atoms bound one and to a much lesser degree two argon atoms. At the same
conditions small clusters up to Co+

5 formed complexes with up to five argon ligands. At
a higher temperature of 340K and using a mixture of 0.3% Ar in He no attachment to
bigger cobalt clusters was observed, whereas Co+

4 and Co+
5 added one and two rare-gas

atoms which is in line with similar observations by Minemoto et al. [107].

Figure 7.1.: Scheme of the experimental set-up used for
IR multiple photon dissociation of metal
cluster-rare gas complexes.

The molecular beam ex-
panded into vacuum and pas-
sed through a skimmer and
an aperture before entering
the extraction region of a
reflectron time-of-flight mass
spectrometer. A counter-
propagating pulsed far-IR laser
beam delivered by FELIX was
overlapped with the aperture
to ensure that all species in
the beam that were detected
in the mass spectrometer had
been exposed to the IR radia-
tion. The laser pulse consisted
of a 1 GHz train of ps-duration
micropulses. The duration of
such a macropulse is several µs
while its energy ranged typically between 15 and 30 mJ, depending on the wavelength.
When the IR radiation is resonant with an IR-allowed transition of the cluster complex,
sequential absorption of single photons can take place [108]. The resulting heating of
the cluster may induce evaporation of the argon atoms, which leads to depletion of the
complexes in the beam. IR depletion spectra were constructed by recording the ion in-
tensities of the metal argon complexes as a function of the FELIX frequency; from these,
the far-infrared absorption spectra were obtained as described in ref. [105]. As the de-
tection is mass selective, the simultaneous measurement of far-IR spectra for different
cluster sizes is possible.

7.2.2. Observation of Highly Coordinated Co+
n
Arm Complexes

For both employed complex formation conditions (77K/0.1%Ar vs. 340K/0.3%Ar) the
recorded mass spectra of the cationic cobalt-argon complexes reveal profound differences
in the binding of the rare-gas ligands to clusters containing more or less than six atoms.
As shown in Fig. 7.2, at the low-temperature conditions, in which the bigger clusters
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bind only one or at maximum two Ar atoms, Co+
4 and Co+

5 readily attach up to five
ligands. The affinity of these small clusters to the rare-gas atoms is so pronounced that
they still form complexes with one or two Ar atoms even at a temperature as high as
340K. This change of the interaction with the probe atoms with cluster size is also
reflected in the obtained FIR-MPD spectra, which were measured in the range 75-350
cm−1 with no IR absorption bands detected at higher wavenumbers. The spectra show
an intriguing dependence on the number of adsorbed Ar atoms, which is strongest for
the smallest clusters and is essentially lost for clusters of more than seven atoms.

Figure 7.2: Distribution of cationic
cobalt clusters and their
Ar complexes obtained
at source temperatures of
340 K (top) and 80 K
(below). At the higher
temperature rare gas com-
plexes are only observed
up to Co+

5 , whereas at low
temperature also larger
clusters attach Ar and the
small clusters bind multi-
ple Ar atoms. The dashed
red line in the lower plot
connects the maxima of
the Co4Ar+

m peaks.

7.2.3. Interpretation of FIR-MPD Spectra

Compared to linear absorption spectra, FIR-MPD spectra are known to be subject to
distortions, such as an incomplete fragmentation of complexes containing more rare-
gas atoms and (cross)anharmonicities in the multiple photon excitation process [105].
For the prior effect one has to keep in mind that there is no mass selection before the
fragmentation of a certain complex. The spectrum of a given complex thus contains
both a contribution from the depletion due to evaporation of the argon ligand as well as
an increase in intensity due to incomplete fragmentation of complexes containing more
argon ligands. This can lead to missing bands especially at the low-frequency end of
spectra and is avoided by considering only the spectra of a certain cluster size with
the maximum number of argon ligands. The effect of (cross)anharmonicities is instead
rather to change the width and positions of existing lines. Corresponding effects have
been observed in preceding work on cationic V+

n (n = 3 − 23) [1, 2], Nb+
n (n = 5 − 9)
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[3, 4] and Ta+
n (n = 6− 20) [5] complexes. However, the influence of the rare-gas atoms

was typically small, with only minor shifts of the frequencies of the absorption bands of
the order of a few cm−1 and with the relative intensities of the observed bands barely
affected. This situation is markedly different in the case of the small cationic Co clusters,
where the spectra from different Ar containing complexes exhibit much more pronounced
frequency shifts and rather strong changes in the relative intensities, cf. Figs. 7.6 and
7.7 below.

7.3. Computational Details

The DFT calculations are carried out using the all-electron full-potential code FHI-aims

[11], described in part II, and the generalized gradient approximation (GGA-PBE) [70] to
describe electronic exchange and correlation (xc). For comparison, some calculations are
also performed using the local density approximation (PW-LDA) [69]. All calculations
reported here are done with the “tier2” basis set which contains 67 and 45 basis functions
for Co and Ar, respectively and are further detailed in Appendix A. As integration grids,
we used Nr,div= 2, corresponding to 158 and 140 radial shells for Co and Ar, respectively.
The angular grid is found to be converged for Nang,max=302 with a fixed Nang,min=110.
The cut-off radius was conservatively chosen with rcut = 5 Å for both species, as well
as the maxium angular momentum in the multipole decomposition lmax with a value of
6. Convergence tests focused on the D2d ground state (S=7/2) and the higher-lying D2h

isomer (S=9/2) of Co+
4 Ar as well as the D3d ground state (S=15/2) and higher-lying

C2v isomer (S=13/2) of Co+
6 Ar (vide infra), and are given in detail in the Appendix B.

Using the hierarchically constructed larger basis sets provided in FHI-aims, as well as
denser integration grids, we recomputed the relaxed geometric structure and vibrational
spectra of the isomers, as well as their energetic difference

∆E = Etot(isomer1) − Etot(isomer2) , (7.1)

and the Ar binding energy

Eb = Etot(Co+
n Ar) − Etot(Co+

n ) − Etot(Ar) , (7.2)

and found these quantities to be converged within 0.01 Å, 2 cm−1 and 10 meV, respec-
tively, which is fully sufficient for the arguments and conclusions put forward below.
Furthermore, no electronic smearing method as described in section 5.1.1 was required
to achieve self-consistency. All calculated results are therefore based upon an undistorted
energy surface.

7.3.1. Structural Relaxation and Calculation of the IR-Spectra

Local structural optimization is done using the Broyden-Fletcher-Goldfarb-Shanno
method described in section 3.1.3 [27], relaxing all cartesian force components to smaller
than 10−2 eV/Å. After relaxation, the Hessian matrix is determined numerically by finite
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displacements of all atomic positions by ∆ = 10−3 Å, and then diagonalized to get the
vibrational modes. The corresponding infrared intensities are obtained by taking the
derivative of the dipole moments along these modes [109]

I IR
i =

NAVπ

3c

∣
∣
∣
∣
∣

dµ

dQi

∣
∣
∣
∣
∣

2

, (7.3)

where the derivatives along the eigenmodes can easily be obtained by the derivatives
with respect to cartesian coordinates, the latter being calculated along the numerical
calculation of the Hessian by finite displacements.

dµ

dQi
=
∑

α

dµ

dRα
· Qα,i (7.4)

The influence of the force convergence criterium as well as the finite displacement ∆
on the calculated quantities has been carefully tested. Details on the test calculations
focusing on Co+

4 Ar and Co+
6 Ar are given in the Appendix B. In order to facilitate the

visual comparison to the experiment, the resulting IR spectra are finally folded with a
Gaussian line shape function of half-width 1 cm−1.

7.3.2. The Counterpoise Correction to the Basis Set Superposition
Error

As already mentioned in section 5.2, the numerical atom-centered basis sets prevent
an atomic BSSE by construction, since the total energy of the free atom is already
converged at the minimum basis set level and can therefore not be variationally improved
by further basis functions originating from neighbouring atoms. In the case of the
Ar binding energies, calculated according to Eq. (7.2), however, the reference energy
is not exclusively constituted by free atoms, but partially by the total energy of the
bare Co+

n cluster. Hence, it is a priori not clear, whether the neighbouring Ar basis
functions improve the total energy of the bare cluster or not. To investigate on that,
the counterpoise correction of quantum chemistry [110, 111] was applied to the four test
isomers of Co+

4 Ar and Co+
6 Ar as

∆CP = ECP
fragment(Co+

n ) − Efragment(Co+
n ) . (7.5)

To compensate for a potential BSSE, the total energies of the Co+
n fragments are hereby

calculated using both the bare Co basis sets (Efragment(Co+
n )), and as additional ghost

basis functions the Ar basis functions originating from an empty site at the position of
the Ar atom in the ConAr+ complex ECP

fragment(Co+
n ). In this context, “fragment” means

that the Co+
n structure is cut out from the Ar complex without further relaxing it. The

difference ∆CP is then a measure for the variational improvement of the total energy
due to the Ar basis functions which is responsible for the overestimation of the binding
energy. Hence, the corrected binding energy is obtained by

Eb −→ Eb − ∆CP . (7.6)
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The results based upon the tier2 basis set for Co and Ar are summarized in Table
7.1. Clearly, the BSSE is below 10 meV and thus negligible at this basis set level. This
conclusion is in line with ref. [11] and the counterpoise correction was therefore neglected
in this work.

∆CP [eV]

D2d 0.005
Co+

4 Ar
D2h 0.005

D3d 0.004
Co+

6 Ar
C2v 0.006

Table 7.1.: Corrections to the Ar binding energy due to the intermolecular BSSE.

7.3.3. Zero-Point Energy

Even at zero temperature, the total energy is increased by the zero-point energy resulting
from the vibrational motion according to Eq. (2.36). In the calculation of the Ar binding
energy, however, most of the zero point energy is expected to cancel in the difference
Etot(Co+

n Ar) − Etot(Co+
n ), since the influence of the Ar on the vibrational spectra is

rather small. The resulting differences in the zero point energies due to changes in the
vibrational spectra are presented in Table 7.2 for the above introduced test systems. As
already mentioned in the introduction, the influence of Ar on the vibrational spectrum
increases with decreasing cluster size. Nevertheless, even the smallest isomer Co+

4 only
exhibits a correction to the binding energy of 12 meV. Therefore, zero-point corrections
to the binding energies are negligible and are not considered in this work.

∆EZPE [eV]

D2d 0.012
Co+

4 Ar
D2h 0.011

D3d 0.007
Co+

6 Ar
C2v 0.008

Table 7.2.: Corrections to the Ar binding energy due to zero-point energy.
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7.4. Selection of Structural Motifs by Spin-Extended

Basin-Hopping

  

�
Initial

Figure 7.3.: The principle of the spin-
extended basin-hopping
method. Additional to a
random displacement of the
atomic positions, the initial spin
moments sitting on each atom
are randomly varied to allow
the system to adopt different
spin states.

In order to identify energetically low-
lying isomers all structures for the bare
clusters were tested that had been dis-
cussed previously in the literature. For
increasing cluster sizes this approach is
likely to miss relevant geometries. This
holds in particular for Co, where one has
to expect several, differently Jahn-Teller
distorted versions of the same struc-
tural motif. In addition, extended basin-
hopping [35] runs have therefore been run
to achieve a better sampling of configura-
tional space as described in section 3.2.2.

As specific implementation so-called
single-particle trial moves were chosen,
in which a randomly picked atom is dis-
placed in a random direction by a dis-
tance of 3.00 Å (corresponding to 1.5
times the GGA-PBE computed Co dimer
bond length). In order to prevent an
entropy-driven dissociation of the cluster
during the BH run, trial moves as well as
local relaxations were discarded that generate loosely connected or partly dissociated
structures characterized by an atom having a nearest-neighbour distance larger than
twice the dimer bond length. Similarly discarded were moves that place atoms at dis-
tances of less than 0.5 Å from each other.

In view of the specific electronic configuration of Co, the spin degree of freedom was
furthermore included into the sampling procedure, i.e. after the trial atomic displace-
ment the electronic self-consistency cycle was initiated with a random magnetic moment.
For specific isomers this search was supplemented by fixed-spin moment calculations en-
forcing spin-states that had not been found in the BH runs. However, in almost all cases
these states turned out not to be local minima of the spin hypersurface, suggesting that
the chosen spin sampling in the BH runs yields the relevant spin minima. Equivalent BH
runs were performed for the Co+

n Arm complexes, randomly displacing both Ar and Co
atoms. The most favourable structures determined by this completely unbiased treat-
ment of the Ar probe atoms were always Co clusters with Ar adsorbed at a top site,
with Ar-Co bond lengths that range for the most stable adsorption site from 2.45 Å for
the Co+

4 ground state to 2.63 Å for the most stable isomer of Co+
8 .
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Figure 7.4.: Differences in the free energies of low-lying Co+
4 and Co+

6 isomers. The red
dashed line depicts the temperature at which the presented IR spectra have
been measured.

7.5. Thermodynamic Effects

Since the experiments were performed at finite temperatures, it can a priori not be ruled
out that thermodynamic effects might change the energetic order of the isomers. Par-
ticularly, the vibrational frequencies and principal moments of inertia, determining both
the vibrational and rotational contribution to the free energy, are sensitive to the atomic
structure. The free energies according to Eq. (2.30) have therefore been calculated for
the three Co+

4 and two Co+
6 isomers, discussed below, over a wide temperature range

including the cryogenic temperature of T=77 K at which the measurements have been
performed. As one can clearly see, the free energy differences do not change at all. We
conclude that thermodynamic effects are insignificant for the present study and will no
further be discussed.

7.6. The Influence of the Exchange-Correlation

Functional

In general, there is little reason to expect that DFT with present-day local and semi-
local xc functionals yields an accurate description of the intricate electronic structure
of such small Co clusters. The difficulty of electronic structure calculations to properly
account for the delicate balance between exchange and correlation, between magnetism
and chemical bonding, and between populating d and s orbitals in these systems is al-
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Figure 7.5.: Comparison of computed vibrational spectra of the identified most stable
isomers of Co+

4 Ar to Co+
8 Ar and using the PW-LDA (blue line) or GGA-

PBE (red line) functional. Applied is a common scaling factor, matching
the main peak of the experimental Co+

6 Ar spectrum. See text and Figs.
7.6-7.10 below for a description of the different isomers.

ready well exemplified by the still controversial predictions of the true ground state of
the neutral Co dimer (see e.g. ref. [112] and refs. therein). With respect to vibrational
frequencies a common procedure to correct for some (systematic) errors due to an ap-
proximate xc treatment is to apply a general scaling factor to the calculated frequencies
to bring the computed spectra in better agreement with the measured ones. The limi-
tations of this approach for the cationic Co clusters is, however, well apparent from Fig.
7.5, which compiles the computed and scaled vibrational spectra of the identified most
stable isomers of Co+

n Ar complexes in the targeted size range (vide infra), and compares
them to the corresponding spectra obtained using the PW-LDA functional. In light of
the particularly controversial situation for the dimer, we did not follow the usual practice
to determine the scaling factor from the comparison of the computed and experimental
dimer vibrational frequency, but used the main peak of the simple fingerprint spectrum
of Co+

6 Ar, cf. Fig. 7.8 below, instead. However, regardless of which reference is actually
used, the validity of such a common scaling approach would have shown up in basically
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identical spectra for all cluster sizes after scaling the PW-LDA and GGA-PBE data,
which is obviously not the case.

In this situation, it makes little sense to strive for a quantitative agreement of the
absolute frequencies when comparing the experimental to the theoretical spectra. Ad-
ditionally considering the mentioned differences between linear IR absorption and FIR-
MPD spectra, the best one can hope for is if at all a match between (relative) spacings
between different peaks in the spectrum, or more modestly to identify some character-
istic fingerprint pattern that is unique to a specific isomer and which would then allow
for a structural assignment. It is within this perspective that we augment the detailed
presentation of the low-lying isomers of Co+

4 to Co+
8 identified in the BH runs with a

comparison of the computed and measured vibrational spectra of the corresponding Ar
complexes. Despite the discussed limitations, we apply thereby a global scaling to the
theoretical spectra simply to enable a better visual comparison. Using the main peak
of the experimental Co+

6 Ar spectrum as reference, this yields a global scaling factor of
0.881 for GGA-PBE and 0.749 for PW-LDA, respectively.

7.7. Low-lying Isomers and Vibrational Spectra of their

Ar Complexes

In the following, an overview of the putative ground-state structures and higher-lying
isomers for the series Co+

4 Arm to Co+
8 Arm is given. For the sake of a concise overview,

only a selection of the metastable structures is presented. Vibrational spectra have
thereby been preferentially chosen that exhibit similar qualitative fingerprints, thus being
candidate structures apart from the ground-state isomer, as well as completely different
fingerprints, exemplifying identified isomers that can safely be ruled out. Shown are
the spectra of the bare Co+

n -clusters together with their Co+
n Ar-complexes, where the

most stable binding site for the Ar is depicted. For the smaller cluster structures, where
the experiment yielded complexes with several Ar atoms bound to the Co+

n cluster, the
computational counterparts are additionally presented and discussed. An exhaustive
overview of all calculated structures, including all different structural motifs, spin states,
Jahn-Teller distortions, and binding sites for the Ar probe atoms, can be found in the
Appendix E.

7.7.1. Co+
4

The calculations for Co+
4 reveal as most stable isomer structure a distorted tetrahedron

with D2d symmetry and a magnetic moment of 7µB. This still quite symmetric geometry
has two (opposite) bonds of 2.50 Å length, while the remaining four bonds are 2.17 Å.
The next lowest structure determined is already 0.32 eV higher in energy, has a magnetic
moment of 9µB and corresponds to an even further distorted tetrahedron, in which one
bond is elongated to 2.90 Å to yield a kind of butterfly geometry. Even further up in
energy (0.53 eV) is the lowest-energy planar structure, with 9µB, a D2h symmetry and
bond lengths of 2.22 Å and 2.38 Å. The thus obtained energetic order is consistent with
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the interpretation of photodissociation spectroscopy data favouring a three-dimensional
structure for the cationic Co tetramer [107]. A corresponding preference for a pyramidal
ground state was also obtained in earlier DFT calculations for neutral Co4 clusters, albeit
with a much smaller energetic difference to the lowest lying planar isomer [113, 114].
Theory predicts hence similar geometries for the neutral and cationic Co4 ground state,
which is in line with a corresponding interpretation derived from measured bond energy
data [115].

From this quite consistent picture of the structural motif of the Co+
4 ground state

it is somewhat unexpected to achieve only a rather poor comparison of the computed
vibrational spectra of its Ar complexes with the corresponding FIR-MPD measurements.
Turning first to the experimental data shown in Fig. 7.6, pronounced differences are
observed for the spectra derived from Co+

4 Ar, Co+
4 Ar2 and Co+

4 Ar5. This concerns
frequency shifts and changes in the relative intensities of a group of presumably three
modes in the range 160-210 cm−1, as well as the appearance of a strong mode at 110
cm−1 and tentatively a small mode at 120 cm−1 only in the spectrum from the complex
with five Ar atoms. As already mentioned, such apparent missing peaks at the low-
frequency end of the spectrum from complexes having only one or two Ar atoms are
not uncommon in FIR-MPD, and are generally ascribed to an incomplete fragmentation
of complexes containing more rare-gas atoms [105]. The frequency shifts particularly
of the central peak observed for the group at higher wavenumbers are, however, much
stronger than those in preceding work on cationic clusters from group 5 of the Periodic
Table [1, 2, 3, 4, 5]. The spectrum of the Co+

4 Ar5 complex, however, cannot be affected
by an incomplete fragmentation of complexes containing even more Ar ligands. From
the relative abundances of Co+

4 Ar4 and Co+
4 Ar5 in the mass spectrum shown in Fig. 7.6

the latter complex is presumably best described as Co+
4 Ar4 with an additional rather

loosely bound Ar atom. Correspondingly, the spectrum derived from Co+
4 Ar5 should

give a most faithful representation of the vibrational frequencies of a Co+
4 Ar4 complex.

The computed IR absorption spectra of the most stable D2d isomer complexed with
one or two Ar atoms reproduce the strong low-frequency mode observed in experiment
quite well, cf. Fig. 7.6. Comparing to the also shown computed spectrum of the bare
cluster it is furthermore clear that this agreement is only achieved because of the explicit
consideration of the rare-gas atom(s) in the calculations. Only the unexpectedly strong
binding of the Ar atom of 0.3 eV breaks the symmetry of the bare cluster and leads
to the appearance of IR-active modes in the low-frequency range at all. This unusual
strength of the Ar-Co+

4 interaction prevails for up to four ligands, each time filling one
of the top sites at the four corners of the pyramid. Presumably due to the lacking
dispersive interactions in the semi-local xc functional, it was, however, not possible to
reliably bind a fifth Ar atom to the cluster at the GGA-PBE level, which unfortunately
prevents a direct comparison to the measured spectrum from the Co+

4 Ar5 complex.
Further complications in the experiment-theory comparison arise when turning to the
higher-frequency group of bands in the experimental data. In contrast to the more or less
evenly spaced three main peaks in this group, theory predicts a large spacing between
one lower-energy peak and a higher-energy doublet. While the frequencies of the latter
correspond quite well to the lower and higher frequency main peak of the experimental

81



7. The Vibrational Fingerprint of Small Co+
n Clusters and their Ar Complexes

group, either the central and dominant experimental peak is completely missing or the
splitting of the doublet is significantly underestimated in the theoretical spectrum.

The calculated spectra of the second and third lowest-energy isomer also shown in
Fig. 7.6 can neither achieve a better agreement with the experimental data, so that
a significant population of a higher-energy isomer is not readily invoked as reason for
the discrepancy. Two possible reasons for the discomforting disagreement between mea-
sured and computed data could be either an insufficient description provided by the
employed GGA-PBE functional or strong (cross)anharmonicities in the experimental
data, which could both particularly affect the splitting of the higher-energy doublet
in the D2d spectrum. The latter is very sensitive to the distortions of the pyramidal
ground-state structure caused by Jahn-Teller effects [113] and the Ar bonding, both of
which might not be sufficiently treated at the level of a semi-local xc functional. Si-
multaneously, one has to keep in mind, however, that the unusually strong Ar bonding
in the complex that will be further discussed in the next chapter severely enhances the
multiple photon excitation aspect of FIR-MPD, and makes the comparison to computed
linear IR absorption spectra possibly less justified.

7.7.2. Co+
5

For Co+
5 we determine as most stable isomers three slightly differently distorted versions

of a trigonal bipyramid that are all within a 0.06 eV energy range and possess all a
magnetic moment of 10µB. The energetically highest of the three has still C2v symmetry,
while the other two are further Jahn-Teller distorted to C1 symmetry by tilts of the apex
Co atom away from the symmetry axis of the slightly folded rhombohedral base. In all
three structures there are sets of shorter Co bonds of around ∼ 2.2 − 2.3 Å and more
elongated bonds to the apex atom of the order of 2.5 Å. A more symmetric C4v tetragonal
pyramid with 12µB is found at 0.15 eV above the ground state, followed by the lowest-
lying planar structure already at 0.81 eV. This strong preference for a distorted three-
dimensional structure in a high-spin state is again similar to corresponding findings
for the neutral pentamer [113, 114], further confirming that neutral and cationic Co
clusters exhibit similar geometries [115]. The comparison of the computed IR absorption
spectra to the FIR-MPD data is this time slightly more favourable. Figure 7.7 shows the
corresponding data for one of the degenerate distorted tetragonal pyramids (the spectra
of the other two differ only insignificantly), as well as for the more symmetric tetragonal
pyramid and the planar structure. The measured spectra from Co+

5 Ar and Co+
5 Ar5

complexes show comparable differences as in the case of the tetramer complexes: A peak
at the low-frequency end of the spectrum is only observed for the complex containing
more Ar atoms and a group of bands in the range 175-230 cm−1 exhibits pronounced
frequency shifts and intensity changes. From the overall shape one would expect at least
three components behind this group and this indeed is what is found in this frequency
range in the computed spectrum for the lowest-energy distorted pyramids. However, even
though only containing two main peaks in this frequency range, the overall spectrum
of the symmetric tetragonal pyramid isomer does also fit the experimental data rather
well, so that we cannot safely discriminate between these two (in any case rather similar)
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structures. What is instead quite clear from Fig. 7.7 is that the planar structure can
not be reconciled with the measurements.

Due to the already severely distorted geometry of the bare ground state the influence
of the rare-gas atom on the computed spectrum is less dramatic than in the case of the Co
tetramer. Rather than leading to the appearance of a series of additional IR-active bands,
its effect is more to shift existing peaks and change their intensities. With an again
rather strong computed binding energy of around 0.3 eV this concerns primarily those
modes that involve displacements in the direction of the Ar adsorbate. A particularly
pronounced example of such a change in intensity is the computed mode at 260 cm−1

for the spectra from the Co+
5 Ar and Co+

5 Ar5 complexes, in nice analogy to the variations
observed in the corresponding experimental spectra.

7.7.3. Co+
6

The two most stable determined isomers of Co+
6 correspond to slightly distorted tetrag-

onal bipyramids, with the lowest-energy structure exhibiting a magnetic moment of
15µB and another one 0.10 eV higher with 13µB. Both structures possess D3d symmetry
and bond lengths around 2.3 Å. The third lowest-energy geometry is a capped trigonal
bipyramid also with 13µB, but with 0.56 eV above the ground state this is already sig-
nificantly higher in energy. With the DFT calculations for Co6 by Datta et al. [114] also
arriving at a tetragonal bipyramid ground state, the similarity between the structural
motif of cationic and neutral clusters thus continues also for the hexamer.

The clear energetic preference for the tetragonal bipyramid motif is supported by the
comparison of computed and experimental vibrational spectra. The FIR-MPD data is
shown in Fig. 7.8 and exhibits this time only little differences between the measurements
of Co+

6 Ar and Co+
6 Ar2 complexes. In both cases the spectrum is simple and consists

only of two peaks around 250 cm−1. This pattern is fully reproduced in the calculated
spectra for the two tetragonal bipyramids and certainly inconsistent with the computed
spectrum for the capped trigonal bipyramid. In the case of the cationic hexamer theory
therefore achieves an unambiguous assignment of the structural motif. Furthermore, the
computed spectra for the identified ground-state structure either bare or with one or two
Ar atoms shown in Fig. 7.8 are virtually identical. This is distinctly different to the
findings for the smaller Co+

n clusters, and goes hand in hand with a significant reduction
of the Ar bond strength, computed as 0.12 eV for the 15µB ground-state tetragonal
bipyramid.
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Figure 7.6.: Comparison of experimental FIR-MPD spectra (upper panel) with the com-
puted IR absorption spectra of Ar complexes of the identified three energet-
ically lowest isomers of Co+

4 : The most stable distorted tetrahedron (second
panel from top), a butterfly-type tetrahedron (third panel from top), and
a planar rhombus (bottom panel), see text. Each of the theoretical panels
additionally displays a schematic representation of the cluster geometry also
indicating the position of the adsorbed Ar atom in the Co+

4 Ar complex, the
point group symmetry, the total energy difference ∆E of the bare cluster
with respect to the most stable isomer, and the Ar binding energy Eb in the
Co+

4 Ar complex. For the lowest-energy isomer, we additionally show a rep-
resentation of the cluster geometry indicating the position of both adsorbed
Ar atoms in the Co+

4 Ar2 complex. In the Co+
4 Ar4 complex each of the four

Co atoms is directly coordinated to one Ar atom.
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Figure 7.7.: Comparison of experimental FIR-MPD spectra (upper panel) with the com-
puted IR absorption spectra of Ar complexes of identified energetically low-
est isomers of Co+

5 : One of the three almost degenerate distorted tetragonal
pyramids (second panel from top), a more symmetric C4v pyramid (third
panel from top), and a planar structure (bottom panel), see text. Each
of the theoretical panels additionally displays a schematic representation of
the cluster geometry also indicating the position of the adsorbed Ar atom in
the Co+

5 -Ar complex, the point group symmetry, the total energy difference
∆E of the bare cluster with respect to the most stable isomer, and the Ar
binding energy Eb in the Co+

5 Ar complex.
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Figure 7.8.: Comparison of experimental FIR-MPD spectra (upper panel) with the com-
puted IR absorption spectra of Ar complexes of identified energetically low-
est isomers of Co+

6 : The tetragonal bipyramid with 15µB (second panel from
top) and the capped trigonal bipyramid (third panel from top). The spec-
trum for a second tetragonal bipyramid with 13µB is very similar to the one
of the 15µB pyramid and omitted for brevity, see text. Each of the theo-
retical panels additionally displays a schematic representation of the cluster
geometry also indicating the position of the adsorbed Ar atom in the Co+

6 Ar
complex, the point group symmetry, the total energy difference ∆E of the
bare cluster with respect to the most stable isomer, and the Ar binding
energy Eb in the Co+

6 Ar complex.
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7.7.4. Co+
7

In the case of Co+
7 , a capped tetragonal bipyramid with C3v symmetry and magnetic

moment of 16µB is identified as most stable structure. Again, the same structural motif
for the cationic ground state is therefore found as in the preceding work for the neutral
clusters [114]. The bond length in the triangle far side from the apex atom is 2.31 Å
and is thus close to the computed bond length of 2.36 Å of the uncapped Co+

6 ground-
state structure, whereas the triangle near side of the apex atom has elongated bonds of
2.43 Å. The resulting average bond length of 2.34 Å for the entire cluster is thus slightly
extended compared to the corresponding neutral isomer reported by Datta et al. [114]
with an average bond length of 2.29 Å. Energetically only insignificantly higher than the
capped tetragonal bipyramid are two spin-variants of a distorted pentagonal bipyramid
with C2v symmetry, namely one with 14µB only 0.06 eV higher and one with 16µB only
0.08 eV higher. The structural variety is further complemented by the energetically next
lowest isomer, which corresponds to a capped trigonal prism also in a 16µB high-spin
state and 0.15 eV higher than the ground state. Still energetically quite close this is
then followed by another, slightly differently distorted 16µB C3v tetragonal bipyramid
(0.18 eV) and a low-symmetry 16µB structure at 0.29 eV.

With this close energetic spacing it is particularly interesting to compare to the vi-
brational spectra from the FIR-MPD experiments and see if the obtained fingerprint
pattern does maybe conform with one of the slightly higher-energy isomers. The cor-
responding measurements are shown in Fig. 7.9, exhibiting slightly larger differences
between the data from the complexes with different number of Ar atoms than in the
case of Co+

6 , yet still significantly less than in the case of the smaller clusters Co+
4 and

Co+
5 . The computed IR absorption spectrum for the ground-state tetragonal bipyramid

agrees overall rather well with the experiments, reproducing all three higher-frequency
bands. The observed influence of the Ar atom in the comparison to the bare cluster
spectrum is also in line with the experimental trend, i.e. it is somewhat larger than
in the case of Co+

6 , but less than in the case of Co+
4 and Co+

5 . Defering the detailed
discussion to the next chapter, particular emphasis is placed on the clear correlation
with the now again slightly larger computed Ar binding energy of 0.18 eV.

A major concern in the comparison to the experimental data is the computed strong
Ar-induced mode at the lower frequency end of the spectrum. For this, one cannot
resort to the argument of apparent missing peaks in the spectra of complexes with one
or two Ar atoms, as there are no complexes with more Ar atoms stabilized under the
employed beam conditions, cf. Fig. 7.2. Comparing the theoretical spectra of the bare
and Ar-complexed C3v ground-state isomer it is, however, clear that the intensity of this
particular mode depends sensitively on the interaction with the Ar ligand. The second
most stable adsorption site at this isomer is atop one of the basal Co atoms that are on
the opposite side from the capping atom, and its binding energy is only 60meV lower.
In the corresponding spectrum (see Appendix E) the mode does hardly show up. Most
likely, the discrepancies between experimental and theoretical data with respect to this
mode can be attributed to subtle shortcomings of the employed xc functional in de-
scribing the cluster-ligand interaction. Returning to the question of a unique structural
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assignment, one would probably still conclude that the spectrum of the ground-state
capped tetragonal bipyramid agrees overall best with the experimental data. Neverthe-
less, one also has to recognize that the fingerprint pattern of the different low-energy
isomers is not sufficiently distinct to rule out small percentages of these isomers in the
experimental beam as well.

7.7.5. Co+
8

The most stable isomer found for Co+
8 is a double-capped distorted tetragonal bipyra-

mid with 17µB, which thus – like already the Co+
7 ground state – also contains the

very stable tetragonal bipyramid as a structural sub-unit and again coincides with the
structural motif determined as most stable for the corresponding neutral cluster [114].
The geometry has nearly D2d symmetry, with only bond distance differences of the order
of ∼ 0.01 Å reducing it to the Cs point group. The next lowest isomer found is only
marginally higher in energy (0.09 eV) and corresponds to a slightly distorted double-
capped trigonal prism with a magnetic moment of 17µB. This is followed by another
double-capped tetragonal bipyramid of the same magnetic moment (0.21 eV), and then
several differently distorted and energetically virtually degenerate capped pentagonal
bipyramid structures at around 0.47 eV.

For this largest studied cluster the comparison of the computed and measured vi-
brational data is unfortunately again rather inconclusive with respect to a potential
structural assignment. The experimental spectra are shown in Fig. 7.10 and exhibit pri-
marily two main peaks with some suggested shoulders at the high-frequency end. There
are only marginal differences between the measurements from the Co+

8 Ar and Co+
8 Ar2

complexes, which is characteristic for all further FIR-MPD spectra recorded for larger
clusters up to 18 Co atoms (not shown). This minor influence of the adsorbed rare-gas
atom is similarly found in all computed spectra for the three most stable Co+

8 isomers,
concomitant with a moderate Ar binding energy of around 0.15 eV. In all cases the data
obtained is furthermore more or less similarly consistent with the measured fingerprint
pattern, with maybe a slightly better agreement for the ground-state isomer. Put more
modestly there is at least no compelling evidence that it is not the latter structure that
is predominantly observed, and thus there is neither a reason to question the energetic
order determined at the GGA-PBE level nor to invoke the kinetic stabilization of a sig-
nificant fraction of higher-energy isomers in the experiments. Part of the reason for the
disappointing inconclusiveness are the rather strong Jahn-Teller deformations found for
the high-spin isomers, which make it partly a matter of semantics to distinguish between
e.g. a double-capped distorted trigonal prism or a double-capped distorted tetragonal
bipyramid. Without clearly distinct symmetries the various geometries exhibit only
quantitative differences in the IR spectra, which in turn severely limits a technique like
FIR-MPD which relies on an indirect structure determination through characteristic
fingerprint patterns.
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Figure 7.9.: Comparison of experimental FIR-MPD spectra (upper panel) with the com-
puted IR absorption spectra of Ar complexes of identified energetically low-
est isomers of Co+

7 : The capped tetragonal bipyramid with 16µB (second
panel from top), two spin-variants of a pentagonal bipyramid (third and
fourth panel from top), as well as a capped trigonal prism (bottom panel),
see text. Each of the theoretical panels additionally displays a schematic
representation of the cluster geometry also indicating the position of the ad-
sorbed Ar atom in the Co+

7 Ar complex, the point group symmetry, the total
energy difference ∆E of the bare cluster with respect to the most stable
isomer, and the Ar binding energy Eb in the Co+

7 Ar complex.
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Figure 7.10.: Comparison of experimental FIR-MPD spectra (upper panel) with the
computed IR absorption spectra of Ar complexes of identified energetically
lowest isomers of Co+

8 : The double-capped distorted tetragonal bipyra-
mid with 17µB (second panel from top), the double-capped trigonal prism
(third panel from top), as well as another double-capped tetragonal bipyra-
mid (bottom panel), see text. Each of the theoretical panels additionally
displays a schematic representation of the cluster geometry also indicating
the position of the adsorbed Ar atom in the Co+

8 Ar complex, the point
group symmetry, the total energy difference ∆E of the bare cluster with
respect to the most stable isomer, and the Ar binding energy Eb in the
Co+

8 Ar complex.
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7.8. Summary

Summarizing this chapter, density-functional theory has been used to study energetically
low-lying isomers of cationic Co clusters containing from four to eight atoms. Supple-
menting the search for structural motifs with first-principles basin-hopping sampling the
identified ground-state structures agree for each cluster size with the geometry deter-
mined in preceding DFT studies for the corresponding neutrals. All structures are in
high-spin states and exhibit sizable Jahn-Teller distortions. The specific motivation has
been a detailed comparison of the vibrational properties of the clusters with experimen-
tal far-infrared multiple photon dissociation data. While this comparison allows only in
few cases for a unique structural assignment and leaves some open questions and doubts
in particular for Co+

4 , there is at least no compelling evidence that would question the
energetic order of the isomers obtained at the GGA-PBE level or reciprocally indicate a
kinetic stabilization of a significant fraction of higher-energy isomers in the experiments.

Reproduced quite well by the calculations is the general trend of the influence of
the rare-gas probe atoms used in the measurements, with Ar-induced changes of the
IR spectra becoming smaller for larger clusters. This correlates nicely with an overall
reduction of the calculated Ar-Co+

n bond strength from 0.3 eV for the lowest lying isomers
of Co+

4 to around 0.1 eV for the largest studied clusters. This clear correlation therefore
motivates a deeper analysis of the nature of the Ar-Co+

n bond, presented in the next
chapter, with the expectation of understanding the behaviour in the previously reported
studies on cationic vanadium, niobium and tantalum clusters [1, 2, 3, 4, 5].

For the investigated Co+
n vibrational spectra, complexation with Ar leads in general to

the appearance of new IR-active modes, hand in hand with frequency shifts and splittings
of existing peaks and often an increase in the absorption intensity. These effects can be
primarily traced back to Ar-induced symmetry breakings in the geometric structure of
the cluster. The latter become obviously stronger with increasing Ar binding energy, but
can never be excluded. For a cluster geometry on the verge of a Jahn-Teller distortion
even the tiniest disturbance by a rare-gas ligand may induce symmetry breakings that
can then substantially affect the spectrum. In this respect, the present work casts some
doubts on the hitherto employed practice of comparing experimental data to computed
IR spectra of bare clusters. The influence of the probe atom can not be judged from a
comparison of experimental spectra from different complexes, as the latter reveal only
the differences between adsorption of one or more rare-gas atoms, and not with respect
to the bare cluster. A computed negligible effect of Ar on the spectrum of one cluster
isomer does neither justify to dismiss the ligand in the calculations, since this tells
nothing about the liability toward symmetry breaking of other isomers of the same or
other cluster sizes. In this situation, explicit consideration of the rare-gas atoms in the
modelling is always advisable at little additional computational cost.

The appearance of Jahn-Teller distortions and therefore qualitatively similar vibra-
tional fingerprints clearly limits FIR-MPD in connection with DFT as a method for
structure determination. Since a unique assignment of a computed spectrum is impossi-
ble in these cases, it is recommended to additionally resort to further spectroscopic data,
in the hope of gaining a more reliable picture of the cluster structure under consideration.
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8.1. Introduction

While the comparison of computed and measured vibrational spectra in particular of the
smallest studied Co clusters leaves a number of open questions and doubts with respect
to the detailed interpretation of the FIR-MPD data, the general trend of the influence of
the rare-gas atoms with cluster size is reproduced quite well by the calculations presented
in the previous chapter. In general, the Ar-induced changes of the IR spectra become
smaller for larger clusters, correlating nicely with an overall reduction of the Ar-Co+

n

bond strength from an “unusually” high value of 0.3 eV for the lowest lying isomers
of Co+

4 to the more “intuitive” value of around 0.1 eV for the largest studied clusters.
Particularly for the smallest clusters, the complexation with Ar leads to the appearance
of new IR-active modes in the spectra, hand in hand with frequency shifts and splittings
of existing peaks and often an increase in the absorption intensity. These effects can be
primarily traced back to Ar-induced symmetry breakings in the geometric structure of
the cluster, together with an enhanced polarization of the cluster electron density. Both
effects depend obviously on the strength of the Ar-Co+

n interaction, rationalizing the
correlation with the computed Ar binding energy. The explanation for the observation
of a much more pronounced dependence of the FIR-MPD spectra on the number of Ar
atoms compared to the preceding work on the cationic group 5 clusters [1, 2, 3, 4, 5] is
therefore coupled to the understanding of the larger Ar binding energy at the smaller Co
clusters compared to the e.g. ∼ 0.1 eV computed also with GGA-PBE for the previously
studied V+

n clusters [1, 2]. Hence, the motivation for this part of the work is to analyze
the origin of the Ar-Co+

n binding in order to deduce an explanation of the different
behaviour of the Ar probe atom in the previous studies.

8.2. Electrostatic Model of the Ar-Co+
n Bonding

8.2.1. Multipole Decomposition via Hirshfeld Analysis

As an important key to understand the particularities of the Ar-Co+
n binding energy, Fig.

8.1 shows a plot of the electron density redistribution when adsorbing an Ar atom at the
ground-state isomer of Co+

4 . Observable is a strong polarization of the Ar atom, which
is equivalently obtained in a corresponding analysis of Ar adsorption at all larger cluster
sizes studied. This suggests as the predominant contribution to the Ar-Co+

n bond a mere
polarization of the rare-gas atom in the electrostatic field of the cationic cluster. Figure
8.2 provides further insights into the charge density distribution of the bare Co+

4 cluster
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Figure 8.1.: Electron density difference induced by the adsorption of Ar at the ground-
state isomer of Co+

4 , see text. For the optimized geometry of the Co+
4 Ar

complex, the plot shows the isosurface corresponding to 0.015 Å−3 electron
accumulation (red) and depletion (blue) upon Ar addition, obtained by sub-
tracting from the full self-consistent electron density of the Co+

4 Ar complex
the self-consistent electron densities of the bare Co+

4 cluster and an isolated
Ar atom at the corresponding atomic positions. For better visualization,
the drawn skeleton of black “bonds” at the left of the figure represents the
cluster geometry, while the black cross marks the position of the Ar atom.

and clearly indicates that the positive charge seems to be smeared out over the surface
thus leading to local dipoles pointing outward of the atomic cluster. Further support for
this view on the nature of the Ar-Co+

n interaction comes from a multipole decomposition
of the charge density of the determined ground-state isomers of the bare Co+

n clusters.
Via Hirshfeld analysis [84] the point charge and dipole moment on each atom in the
bare Co+

n cluster is computed, yet at the relaxed geometry of the corresponding Co+
n Ar

complex. The qualitatively expected results of having radially outward pointing local
dipoles is herewith confirmed and depicted in Fig. 8.3, instancing both spin states of
the ground-state structure of Co+

6 .

8.2.2. Ar Binding Energy in the Electrostatic Model

In a second step the Hartree-type interaction energy of an Ar atom is then computed,
which is placed at the position in the Co+

n -Ar complex into the frozen electrostatic field
generated by the computed point charges and dipole moments of the bare cluster . The
correspondingly obtained binding energies, which are henceforth termed Eb(q +all p),
are finally compared to the fully self-consistently computed Ar binding energies at the
different cluster sizes in the upper panel of Fig. 8.6. The rather good agreement suggests
that the polarization of the Ar atom describes indeed the predominant character of the
bond, with larger multipole moments and the back-reaction of the Co charge density on
the polarized Ar atom contained in the true self-consistent calculation forming only a
small correction. These findings hold similarly for all of the studied cluster sizes, and even
carry over to less stable Ar adsorption sites and other low-energy isomers than the ground
state (see Table 8.1), for all of which we obtain a similarly good agreement of the Ar
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Figure 8.2.: Electron density difference between the ground-state isomer of Co+
4 and the

correspondong neutral isomer to illustrate the distribution of the positive
charge. The plot shows the isosurface corresponding to 0.02 Å−3 electron
accumulation (red) and depletion (blue) obtained by subtracting from the
full self-consistent electron density of the Co+

4 the self-consistent electron
densities of the neutral Co+

4 cluster at exactly the same geometry. For
better visualization, the drawn skeleton of black “bonds” represents the
cluster geometry.

binding energy computed in the electrostatic model with the true self-consistent value.
In order to better understand the tendency of the Ar binding energy, the individual
energy contributions have further been disentangled. The binding energy that arises in
the electrostatic model when the local monopoles are exclusively considered is termed as
Eb(q). Additionally considering the dipole to which the Ar atom is directly correlated
(therefore denoted as the direct dipole pd) yields a binding energy that is termed Eb(q+
pd). The contribution due to the direct dipole can then be defined as

Eb(pd) ≡ Eb(q + pd) −Eb(q) . (8.1)

Correspondingly, the contribution arising from the other dipoles can conveniently be
defined as

Eb(pother) ≡ Eb(q + all p) − Eb(q + pd) . (8.2)

Figure 8.6 clearly shows that taking the local monopoles exclusively into account yields
only a low binding energy below 100 meV in the electrostatic model. Most of the
binding energy instead results from the direct dipole field which is further offset by the
other dipoles, obviously being unfavourably oriented. Both dipole contributions show
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Figure 8.3.: Electrostatic model of the Ar-Co+
n

bonding instancing both spin states of the
D3d structure of Co+

6 Ar. The local dipole moments obtained by a Hirshfeld
analysis are pointing outwards. The two different spin states exhibit slightly
different orientations of the dipoles. The dipole to which the Ar atom is
directly coordinated is depicted as pd.

the overall tendency to get smaller with increasing cluster size, with the variation of the
binding energy predominantly resulting from the attractive direct dipole field. Figure 8.5
furthermore reveals the striking correlation between pd and the resulting binding energy,
once more underlining the picture of the direct dipole field playing the dominant role in
the electrostatic interaction of the Ar probe atom with the Co cluster. With that picture
in mind, the behaviour of the binding energy is easy to understand. The local dipole
moments are obviously correlated with the cluster structure which discontinuously varies,
thus giving rise to some kind of zig-zag trend, being typical for properties in the context
of cluster physics as already mentioned in the introduction of the thesis. Superimposed
is the general tendency towards a lower binding energy, which can be rationalized by
the picture of the positive charge being smeared over an increasing cluster surface. The
larger the cluster surface on which the single positive charge is distributed, the smaller
the local charge density, thus giving rise to smaller local dipole moments. The clear
correlation between the direct dipole and the overall binding energy again carries over
to less stable adsorption sites and different spin states, as computed in Table 8.1.

8.2.3. Electrostatic Driving Forces

On the basis of the established electrostatic picture a rather consistent explanation for
the observed trend of the Ar binding energy with Co cluster size can be achieved, as
well as for the stronger interaction compared to the previously studied cationic clusters
from group 5 of the Periodic Table. Taking the ground-state isomer of Co+

4 and Co+
8 as

well as both spin states of the Co+
6 ground-state structure as examples for stronger and

weaker Ar bonding, respectively, the upper panel of Fig. 8.7 shows the variation of the
interaction energy in the electrostatic model when changing the Ar-Co+

n bond length by
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# 1 # 2 # 3
Figure 8.4.: The three symmetry-inequivalent on-top binding sites of Co+

7 Ar.

pd[eÅ] Eb(PBE) Eb(q +all p) Eb(q) Eb(pd) Eb(pother)

S=15/2 0.46 0.12 0.10 0.04 0.13 -0.07
Co+

6 Ar
S=13/2 0.56 0.30 0.27 0.07 0.37 -0.17

# 1 0.50 0.18 0.20 0.05 0.20 -0.05

Co+
7 Ar # 2 0.46 0.13 0.11 0.04 0.14 -0.07

# 3 0.39 0.07 0.05 0.03 0.07 -0.05

Table 8.1.: Binding energies in the electrostatic model for different spin states and Ar
binding sites. The different binding sites of Co+

7 Ar, labeled as # 1, # 2, and
# 3, are illustrated in Fig. 8.4

moving the Ar atom radially away from the cluster. Immediately apparent is the smaller
attraction in the case of Co+

8 and the 15µB state of Co+
6 which can be rationalized with

the weaker direct dipole moment compared to Co+
4 and Co+

6 being in the 13µB state.
The lower panels shows the contributions to the interaction energy due to the attractive
field constituted by the monopoles and the direct dipole on the one hand (left lower
panel) and the repulsive field due to the unfavourably oriented other dipoles (right lower
panel) on the other hand. Perfectly in line with the observations of the previous section,
the differences in the attraction predominantly arise from the differences in the direct
dipole part, with the other dipoles only playing a minor role. Neglecting electronic self-
consistency effects, the equilibrium Ar-Co+

n bond length is determined by the interplay of
this attractive electrostatic contribution and a strongly repulsive short-range component
arising from Pauli repulsion. Since the latter is primarily due to the inner shell electrons
of the directly coordinated Co atom, one can assume this component to be rather similar
for the four test cases to a first approximation. With the stronger electrostatic attraction
this then leads to a shorter Ar-Co+

4 and Ar-Co+
6 (13µB) bond length compared to Ar-

Co+
8 and Ar-Co+

6 (15µB), and in turn to a stronger Ar binding energy. In the same
spirit one can also attribute the comparably stronger interaction of Ar with Co+

n than
with the previously studied V+

n , Nb+
n and Ta+

n clusters to this interplay of electrostatic
attraction and Pauli repulsion. The distance at which the latter sets in depends of course
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Figure 8.5.: Correlation between Ar binding energy and direct dipole moment pd.

on the size of the atomic radius, which is smaller for Co than for any of the group 5
elements. With the steep Pauli repulsion setting in at already larger distances, one can
in general expect longer equilibrium Ar-metal cluster bond lengths and therewith smaller
Ar binding energies for the group 5 elements. As suggested by Fig. 8.7, the differences
in the electrostatic driving forces is also smaller at such increased interaction distances,
so that one would furthermore conclude on a smaller variation of the Ar binding energy
with cluster size as in the case of Co.

Simplistically equating the Ar bond strength with the influence of the rare-gas atom
on the measured FIR-MPD spectra as discussed above, the electrostatic picture can thus
fully account for the general trends observed in the corresponding experiments on these
materials. Tacitly assuming a similar character of the rare-gas−metal cluster bond, one
would even predict that equally pronounced effects of the probe atoms as in the case of
Co will be obtained whenever studying cationic clusters formed of other elements with
small atomic radii or for more polarizable heavier rare-gas atoms.
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Figure 8.6.: Ar binding energy at the most stable adsorption site offered by the deter-
mined ground-state isomers of Co+

4 to Co+
8 . In the upper panel, values ob-

tained from the real self-consistent calculation (black crosses) are compared
to the Hartree-type interaction energy obtained when placing Ar into the
frozen electrostatic field formed by the point charges and dipole moments
of the bare cluster (red circles), see text. The lower panel shows the sep-
aration of this interaction energy into contributions due to the monopoles
(blue squares), the direct dipole (upper triangles) and the other dipoles
(lower triangles).
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Figure 8.7.: Attractive Hartree-type Ar-Co+
n interaction energy computed in the elec-

trostatic model, see text. Shown is the variation with bond length when
moving the Ar atom radially outwards in the four complexes Co+

4 Ar (D2d,
black line), Co+

8 Ar (C2v, green line), Co+
6 Ar (D3d, S=15/2, red line) and

Co+
6 Ar (D3d, S=13/2, blue line). The four dotted vertical lines indicate the

corresponding computed equilibrium bond lengths.

8.3. Summary and Conclusion

In this chapter, an electrostatic model was established that can capture most of the
Ar-Co+

n binding energy, in particular it can fully account for the variation of the binding
energy with the cluster size. For this, the Ar atom is self-consistently calculated in the
multipole field set up by the local monopoles and dipoles in the bare Co+

n cluster obtained
via Hirshfeld analysis. Disentangling the individual energy contributions reveals that the
binding energy predominantly results from the dipole moment to which the Ar atom is
directly coordinated, being offset by the unfavourably oriented dipole fields originating
from the other Co atoms. Supported is this picture by the striking correlation between
the full binding energy in the electrostatic model with the direct dipole strength, the
latter being highly sensitive to the cluster structure. Superimposed to the thus resulting
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zig-zag behaviour is the general trend towards lower binding energies with increasing
cluster sizes since the larger surface area on which the positive charge is distributed
yields smaller local dipoles. In the real cluster, the bond distance results from the
interplay between the attractive Hartree energy and the Pauli repulsion, where the
latter acts locally between the Ar atom and the Co atom to which the former is directly
coordinated, thus being more or less constant for all isomers under consideration. The
variation in the bond distances and the corresponding binding energies can therefore be
traced back to the variation in the electrostatic driving forces resulting from the variation
of the direct dipole strength. The interatomic distance at which the Pauli repulsion sets
in is clearly controlled by the atomic radii of the constituent atoms. Hence, the larger
binding energy for Ar-Co+

n can be attributed to the smaller radius of Co compared to
V, Nb and Ta in the previous studies. As for the binding site, the preference for on-top
sites becomes trivial to understand since this maximizes the polarization of the charge
density in the radially outwards pointing direct dipole and in turn the resulting binding
energy. As further conclusion, a stronger influence on the IR spectra is to be expected
for heavier, more polarizable probe atoms.
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9. Method Optimization Based upon
Quantitative Efficiency Criteria

9.1. Introduction

In the previous study with systems containing only few atoms (Co+
4 Ar to Co+

8 Ar), the
sampling efficiency is not critical, reasonable settings for sampling parameters provided.
In the context of the applied basin-hopping scheme, this means large enough move
distances, enabling the system to find new isomers. The average move distance for dis-
placing single randomly chosen atoms has therefore been empirically set to 1.5 times
the corresponding dimer bond length for the whole sampling run, which worked satis-
factorily. With increasing cluster size, however, the exponential growth of the number
of different isomers clearly requires a more careful analysis of the involved technical pa-
rameters. Taking the well studied Lennard-Jones clusters as an example, the number
of different isomers grows from 64 to 1505, when going from ten to only thirteen atoms
[6]. To reveal inefficient settings, such an analysis necessitates a proper definition of ef-
ficiency, with which runs under different settings can quantitatively be compared. Such
a quantity must obviously be coupled to the desired sampling goal. A common scheme
is to investigate the mean first encounter, i.e. one counts the number of moves, or lo-
cal structural relaxations, respectively, until the global minimum has been identified for
the first time (see chapter 3). If it were exclusively the ground state being of interest,
such a quantity would clearly be correlated with the overall computational time, thus
being an appropriate efficiency indicator. However, as the previous study on Co+

n Arm

has illustrated, also energetically higher-lying isomers are to be identified and discussed.
Hence, the move number should be somehow coupled to the relevant isomers, where
one has to consider the actual problem to decide which isomers are relevant. Moreover,
rather than revealing inefficient settings only a posteriori, this optimization would best
be carried out by monitoring on-the-fly analyzable performance indicators that allow
to adapt an ongoing run. Unfortunately, there are few to none general prescriptions
of how to set technical move parameters that do not require detailed system-specific
insight. With respect to on-the-fly performance indicators there exists at best the em-
pirical rule-of-thumb to aim at an overall acceptance of new trial structures of roughly
one half [45, 116]. However, this rule emerges from the empirical observation that a
factor one half ensures an efficient sampling of canonic ensemble averages and must not
necessarily carry over to the intended goal of searching for the energetically lowest ly-
ing isomers with the least possible number of energy and force evaluations. A second
complication arises from the stochastic nature of the BH algorithm. Any analysis mea-
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suring the efficiency of technical BH settings or the reliability of suggested on-the-fly
performance indicators therefore necessarily needs to involve an averaging over a suffi-
ciently large number of different BH runs starting from different initial structures and
using different random number seeds. This would not be too much of a problem when
using numerically undemanding model potentials, but then it would be unclear whether
the obtained findings are meaningful for proper quantum-mechanical PESs. A straight-
forward evaluation based on first-principles energetics, on the other hand, is hitherto
computationally prohibitive even when only considering smaller clusters up to say 10
atoms. In this situation, the aim of the present study is to establish a corresponding
framework for a systematic performance analysis of first-principles BH sampling runs.
An important ingredient herein is the use of a hopping matrix type concept that signif-
icantly brings down the computational cost for the manifold of first-principles BH runs
required in the averaging procedure and thus allows to arrive at statistically reliable
performance values. Using DFT, this scheme is illustrated for Si clusters as a system
with more directional, covalent type of bonding and for Cu clusters as representative of
a metallic system. With the obtained insights, a simple adaptive scheme based upon
on-the-fly efficiency indicators is finally suggested and illustrated.

9.2. Computational Details

9.2.1. Density-Functional Theory

The underlying PES is again obtained by DFT in the generalized-gradient approxima-
tion (GGA-PBE) [70] in order to transfer the gained insights to practical applications
that require a quantum-mechanical treatment of the energetics. In order to suppress a
potential complication in the performance analysis due to the spin degrees of freedom
all calculations were consistently carried out in a non-polarized way. All calculations re-
ported here were conducted with the so-called “minimal+spd” basis set (see Appendix
A). For each considered system we recomputed all stable cluster isomers within an
energy range up to 1 eV above the ground state, namely those listed in Figs. 9.5-9.7
below, also with hierarchically constructed larger basis sets available in FHI-aims. These
calculations clearly show that the relative energies between these isomers are converged
to within 10meV at the “minimal+spd” basis set level, which is fully sufficient for the
arguments and conclusions put forward below since it is the sampling efficiency that is
in the focus of interest, not tightly converged physical quantities. To be on the safe side,
several further basin-hopping runs with larger basis sets have been run, but no isomers
other than those already revealed at the “minimal+spd” level have been obtained. This
suggests that not only the local minima, but also the other parts of the PES are suffi-
ciently described with the employed “minimal+spd” basis, in order to pursue the aspired
efficiency study. The integration grids are found to be converged at Nang,max = 302 with
Nr,div = 2. The cut-off radius is slightly reduced to 4 Å which is again fully sufficient for
the energy differences and thus saves computational time for the sampling. As lmax a
conservative value of 6 was chosen. Furthermore, a slight Gaussian smearing of width 0.1

103



9. Method Optimization Based upon Quantitative Efficiency Criteria

eV was employed to ensure scf-convergence for the distorted structures resulting from
the trial move. Details of the convergence tests can be found in Appendix C.

Local structural optimization is done using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [27], relaxing all force components to smaller than 10−2 eV/Å. In order
to check whether the thus identified different isomers are true local minima and not
saddle points, they were subjected after the BH run to a vibrational analysis based
upon a Hessian matrix obtained by finite differences of the analytical atomic forces
when displacing all atoms by 10−3 Å.

9.2.2. Basin-Hopping

In this section, the intricate technical details of the basin-hopping scheme that influence
the efficiency of the sampling, are further analyzed. The key ingredients are the way new
structures are generated, the trial move scheme, and the acceptance criterium, which
decides, whether a new structure is accepted or not. While in the previously presented
study on Co+

n Arm-complexes these parameters have been adjusted intuitively, they are
now subject to a critical discussion.

Sampling Parameter

As a representative and widely used move class this work focuses on single-particle and
collective moves, in which either a single randomly chosen atom or all atoms in the
cluster are randomly displaced, respectively. The corresponding displacement vector of
atom α is suitably expressed in spherical coordinates as

∆Rα = r~er(θ, φ) , (9.1)

where ~er(θ, φ) is a unit vector in the displacement direction defined by the angles θ
and φ with respect to an arbitrary, but fixed axis. In order to obtain an unbiased
sampling, θ ∈ [0, π] and φ ∈ [0, 2π] must obviously be obtained as uniformly distributed
random numbers. On the contrary, the move distance r is a priori not specified, but will
sensitively determine the jumps in configuration space and therewith the algorithmic
performance. It provides therefore a nice example of a technical parameter that one
would like to optimize for a first-principles sampling run, yet without introducing bias
or system-specific insight. As any one specifically chosen value for r (suitably measured
in units of the dimer bond length a) could potentially already be too restrictive and
therewith lead to a biased result, it appears advantageous to use a distribution of r
values around a specified average value r0. As two natural distributions, both a normal
distribution (width 0.07

√
r0) around r0 and a uniform distribution (width r0) around r0

are therefore investigated.
Apart from the move class the second important ingredient that needs to be specified

in a BH run is the acceptance criterion according to which a generated trial structure is
accepted and replaces the current cluster structure as starting point for the following trial
move. In order to introduce a downhill driving force towards the energetically low-lying
(and ultimately ground-state) isomers it is clear that a more stable trial structure should
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always be unconditionally accepted. In its classical form, the BH scheme also accepts
less stable trial structures according to a Metropolis rule, exp(−∆E/kBTeff), where
kB is the Boltzmann constant and introducing another unspecified technical parameter
which crucially affects the algorithmic performance, the effective temperature Teff . The
original motivation behind this Metropolis rule is that the finite possibility to climb uphill
enables the algorithm to effectively surmount high-energy barrier regions on multiple-
funnel type transformed PESs Ẽ({Rα}). However, as long as the employed move class
enables efficient jumps between all parts of configuration space, this acceptance criterion
is only of subordinate importance. As it will become clear below this is still the case
for the small cluster sizes studied here, and therefore in this work simply all generated
cluster structures within a predefined energy range of interest are accepted. This allows
to separate the analysis of the performance variation with the move distance from the
specifically employed acceptance criterion.

In order to prevent an entropy-driven dissociation of the cluster during the BH run,
trial moves as well as local relaxations are discarded that generate loosely connected
or partly dissociated structures characterized by an atom having a nearest-neighbour
distance larger than twice the dimer bond length. Similarly discarded were moves that
place atoms at distances of less than 0.5 Å from each other.

Structure Distinction

For a performance analysis, it is of particular importance that the algorithm achieves
to uniquely distinguish structures. In case of a simple analytical model potential, the
total energy can be converged up to any desired accuracy, so that two isomers can
be distinguished from each other exclusively by their different energetics. Using ab

initio methods, however, the energy is noisy, thus prohibiting the structure distinction
exclusively based upon the energy to uniquely distinguish different isomers from each
other, in particular when Jahn-Teller distortions show up that are close in energy or
in case of accidental degeneracies in energy space. Hence, the difference norm of all
interatomic distances in the cluster is used as additional tool for the comparison of
isomer structures. Two isomers a and b are hereby considered to be equivalent if

∑

i

(

da,{i} − db,{i}

)2

∑

i

(

d2
a,{i} + d2

b,{i}

) < ∆ , (9.2)

where da,{i} and db,{i} are the sorted interatomic distances of the two isomers to compare.
The denominator serves as normalization which yields a dimensionless quantity that is
furthermore species- and cluster-size independent. ∆ can be tuned such that all isomers
are unambiguously distinguished and was taken as 10−4 as is illustrated in Fig. 9.1.
Shown are the number of different isomers that are considered to be different with respect
to the tolerance ∆. Additionally, the maximum energy interval ∆E associated with an
isomer is given, which is the range of the total energies of all structures that are found
to be identical according to the difference norm. A large value in the range of eV hereby
indicates that different isomers could obviously be not distinguished. Hence, a small
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value of ∆E is a necessary criterium for a sufficiently small tolerance value ∆. In case
of a too large threshold, isomers are considered to be identical, though being different,
and the number of different structures that are identified is too small and the energy
range is way above the typical noise of DFT calculations in the meV range. Taking an
extremely large value of 10−1, for instance, structures cannot be distinguished at all and
thus there is only one isomer yielded by the structure distinction scheme. Reducing ∆
consequently increases the number of isomers until it saturates at 10−4 when all different
structures can uniquely be distinguished from each other. This perfectly coincides with
a drop of the maximum energy range down to few meV, indicating that only energy
noise due to the finite self-consistency criterium and force convergence criterium of the
DFT calculations is left. Decreasing the threshold further leads again to a slight increase
of the number of isomers. This can be rationalized by a second effect. In this case, the
noise in the bond distances is too large and two structures are considered to be different,
though corresponding to the same isomer. This picture is supported by the fact that
the new structures that pop up must be energetically close to the already identified
structures at a larger tolerance value since the maximum energy range ∆E is already
at the order of meV. As Fig. 9.1 clearly shows, 10−4 is a reasonable value for all three
cases. Hence, Eq. (9.2) indeed leads to a size- and species-independent norm for the
structural difference between two isomers.

Figure 9.1.: Adjusting the difference tolerance ∆ according to Eq. (9.2). Shown are the
three cases Si7, Si10 and Cu7 discussed in this work. The sets of isomers result
from sampling runs, using single-particle moves and a normal distribution
of the move distance around 1.5 times the corresponding dimer bond length.

9.2.3. Measuring Sampling Efficiency

The intended performance analysis requires a well-defined measure for the success of a
sampling run. A common choice for this in the literature is the number of moves until the
global minimum has been found for the first time. Here, we adapt this criterion to the
stated goal of identifying not only the global minimum, but also all relevant energetically
lowest-lying isomers. Correspondingly, the considered indicator of sampling efficiency
which we aim to optimize is the number of moves N until all relevant isomers have
been found at least once, where, of course, one needs to define what a relevant isomer
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“unsuccessful”

“high-energy”

Figure 9.2.: Schematic illustration of successful, unsuccessful and high-energy trial moves
in the BH scheme. The horizontal red lines indicate an energy window as
acceptance criterium according to which moves within the target window
are accepted.

is. While certainly a useful measure for the performance of the employed BH moves, it
should still be stressed that due to the slightly varying number of geometry steps for
the local relaxation of each trial structure, N is only roughly proportional to the total
computational cost of the first-principles basin-hopping run.

Due to the stochastic nature of the BH method, both with respect to the genera-
tion of the initial starting structure and the generation of trial structures, N is only a
statistically meaningful quantity after averaging over sufficiently many runs. Even for
the small cluster sizes considered here, this implies having to run hundreds of different
first-principles BH runs to obtain an Nav that is converged to within ±1, and this for
each BH setting (e.g. move distance) one wants to analyze. Since this straightforward
approach would quickly lead to an unfeasible computational cost, we instead resort to
the concept of a “hopping matrix” hij , which summarizes the transition probabilities
between all isomers under the chosen BH settings. Specifically, the matrix element hij

is then the probability to jump from the local minimum i to the local minimum j. If all
local minima are explicitly accounted for, one obviously has the condition

∑

j

hij = 1 . (9.3)

Assuming that the matrix hij is completely known, a sufficiently large number of sam-
pling runs starting in random isomers can be quickly simulated entirely on the basis of
these transition probabilities without the need for further first-principles calculations.
Notwithstanding, with an exponentially growing number of isomers with cluster size this
approach merely shifts the computationally unfeasible number of direct BH runs to the
equally unfeasible computation of an exploding number of hopping matrix elements, i.e.
converged transition probabilities. Yet, below we will show that an approximate, but
for our purposes sufficient determination of Nav is possible by restricting the explicit
calculations to a limited number of hopping matrix elements.

Even then, Nav is only a quantity that reflects the efficiency of the sampling run a

posteriori. As potential on-the-fly indicators of the sort as discussed in the introduction,
we therefore disentangle the different possible outcomes of a trial move. First of all, the

107



9. Method Optimization Based upon Quantitative Efficiency Criteria

system might relax back into the structure from which the trial move has been performed
so that in terms of isomer information nothing has been gained. Correspondingly, we
denote such a move as unsuccessful (see Fig. 9.2) and define at the nth trial move during
the run the fraction of hitherto unsuccessful moves γunsucc. as

γunsucc. =
nunsucc.

n
, (9.4)

where nunsucc. < n is the number of unsuccessful moves up to that point. Even if the
trial move leads to a different local minimum, the move might still be rejected due to
the acceptance criterion, if the new minimum is higher up in energy. The fraction of
moves rejected on this basis is defined as

γhighE =
nhighE

n
, (9.5)

where nhighE < n is the corresponding number of rejected moves up to that point. Only
the remaining fraction

γsucc. = 1 − γunsucc. − γhighE (9.6)

are successful moves at least in the sense that they bring the algorithm to a new minimum
out of which the next trial move is performed, albeit not necessarily leading to a minimum
that had hitherto not yet been sampled. Just as in the case of Nav, it only makes sense
to analyze the fractions γunsucc.,av, γhighE ,av and γsucc.,av once averaged over sufficiently
many different BH runs, and for the small cluster sizes we will also evaluate only the
fractions for the entire run until all relevant isomers are found. Yet, it is obvious from
the construction that one can also evaluate these fractions on-the-fly at any trial move
and furthermore possibly also only considering the outcomes of a certain number of
the most recently performed trial moves, and we will further discuss this possibility in
section 9.4.

9.3. Performance Analysis For Small Cluster Sizes

Our performance analysis concentrates on small clusters formed of Si and small clusters
formed of Cu atoms. Both systems have already been subject to extensive theoretical
studies and are therefore natural choices for the intended benchmarking. Extensive
works on small silicon clusters have been done with Hartree-Fock methods and beyond
[117, 118]. Further calculations based upon DFT are e.g. [119, 120]. A database of
small silicon isomers based upon the PBE functional and an exhaustive sampling based
upon minima hopping can be found in the PhD-thesis by Hellmann [121]. Recent works
on small copper clusters based upon ab initio methods are e.g. [122, 123, 124, 125, 126].
The choice of these two materials is further motivated by their different chemistry,
which can be characterized as more covalent and directional in the case of Si, and more
metallic in the case of Cu. The direct comparison of the results obtained for Si7 and Cu7

will therefore reflect a possible material-specificity of the findings, while an additional
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comparison of the results obtained for Si7 and Si10 aims at assessing the variation with
cluster size in the range where due to the limited dimensionality of the configuration
space the BH acceptance criterion does not yet play a role (vide infra).

9.3.1. Existence of Dominant Isomers

Figure 9.3.: Histograms of the probability with which trial moves end up in the lowest-
energy isomers of Si7, Si10 and Cu7. The identified isomers are numbered
with decreasing stability, with isomer #1 corresponding to the ground state
and those isomers shown with bracketed numbers in fact revealed as un-
stable by an a posteriori vibrational analysis (see text). The histograms
comprise all isomers found in an energy range up to 2 eV above the ground-
state isomer, as obtained from long BH hopping runs using single-particle
moves and normally distributed move distances around the average values
r0 = 1.5 a, 2.0 a and 2.5 a (with a the computed dimer bond length). The
geometric structures behind the truly stable isomers in an energy range up
to 1 eV above the identified ground state are summarized in Figs. 9.5-9.7.

As a prelude to the actual performance analysis we present in Fig. 9.3 the histograms
of the number of times with which low-energy isomers were identified in long BH runs
for the three systems addressed, i.e. Si7, Si10, and Cu7. Each run consisted of several
hundred moves and was carried out until the shape of the histogram, i.e. the normal-
ized probability with which the different low-energy isomers are identified, was fully
converged. In all cases the evolution towards convergence was rather uniform as demon-
strated by Fig. 9.4 for Si7, which presents the histogram entries binned over consecutive
sampling periods containing 50 moves each. Apparently, the ratios of the histogram
entries for each sampling period are roughly the same. In view of the overall rather lim-
ited system dimensionality and concomitant small number of low-energy isomers, this is
most naturally interpreted in terms of the initially made assumption that the employed
move types enable jumps between any parts of the PES, thereby suggesting that for
these systems the algorithm efficiency is dominated by the actual moves and not the
acceptance criterion.

Even though Fig. 9.3 comprises the data obtained using single-particle moves with
three quite different move distances it is interesting to observe that some isomers are
always sampled much more often than others. For Si7 for example, more than one third of
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Figure 9.4.: Normalized histogram entries for the lowest-energy isomers of Si7 as in Fig.
9.3. Shown is the evolution when binning the histogram entries over consec-
utive sampling periods containing 50 moves each using single-particle moves
and normally distributed move distances around the average values ro = 2.5.
Entries for all isomers higher in energy than isomer #4 are bundled into one
entry labeled >#4.

all executed moves in the BH runs ended up in the isomer structure labeled #4, regardless
of the actual move distance employed. In the case of collective moves, the corresponding
histograms look qualitatively the same so that the existence of such “preferred” isomers,
which we will henceforth term dominant isomers, is even independent of the specific
move class employed. In this respect, one should mention that some of the isomers
listed in Fig. 9.3 turned out to be unstable in the concluding vibrational analysis and
are correspondingly not further considered below. Distinguishing and discarding these
structures which correspond either to flat or saddle-point PES regions directly in the BH
run is unfortunately impossible as it would imply a prohibitive computational cost when
performing a vibrational analysis directly after each trial move. As apparent from Fig.
9.3 the total number of times in which the BH runs end up in such unstable structures
is at least not too large, so that the actual computational time wasted is small. The
one notable exception is isomer #4 of Cu7, which exhibits small imaginary eigenmodes,
but is sampled about as frequently as the truly stable isomer #5. Since the algorithm
thus spends some appreciable time in this basin, we retained isomer #4 in the ensuing
performance analysis despite its instability.

One immediate rationalization for the existence of dominant isomers is simply that
their corresponding basins of attraction on the PES is huge and thus hit by the trial
moves many times. Inspection of the geometric structures of the lowest-energy isomers
as summarized in Figs. 9.5 - 9.7 for the three systems points, however, at a second
potential reason. Many of the dominant isomers correspond to rather low-symmetry
structures, e.g. isomer #4 for Si7, isomer #6 for Si10 or isomer #10 for Cu7. More
clearly stated, Si7 can e.g. be regarded as composed of a Si6 subunit with one capped
facet. In the case of its low-symmetric isomer #4 this capping can be done in four
different ways whereas in the case of the high-symmetry C3v-structure #2 there are only
two possibilities. Quantitatively, this can be expressed in terms of the number of versions
of an isomer that correspond to the multiplicity of the basins of attractions leading to
this isomer, which is given by Eq. (2.24). Table 9.1 summarizes the number of versions
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0.78 eV

# 3  C
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0.96 eV

# 4  C
2

0.97 eV

Figure 9.5: Identified stable Si7-isomers in the energy
range up to 1 eV above the ground state.
The isomer numbering follows the one of Fig.
9.3 and reflects the decreasing cluster stabil-
ity as indicated by the stated energies rela-
tive to the ground-state isomer #1.

  

# 1  C
3v
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# 4  C
3v

0.73 eV

# 6  C
1

0.81 eV

# 5  C
2

0.74 eV

# 3  T
d
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Figure 9.6: Identified stable Si10-isomers in
the energy range up to 1 eV
above the ground state. The iso-
mer numbering follows the one
of Fig. 9.3 and reflects the de-
creasing cluster stability as indi-
cated by the stated energies rel-
ative to the ground-state isomer
#1.

for the dominant isomers. In the case of Si7 and Cu7, for instance, the dominant isomers
with low-symmetry have ten times more local minima on the PES than the symmetric
ground-state structures and are therefore identified in the sampling much more often.
Hence, the histogram can be regarded as a convolution of the size of the basin with the
number of versions.
This relation to the underlying PES shape also motivates why certain isomers are dom-
inant irrespective of the employed move class. Any general purpose move class that is
intended to achieve unbiased jumps on the PES will be similarly affected by a varying
size or multiplicity of the different basins of attraction. This is an important point as an
at first glance appealing approach to improve the efficiency of BH sampling would be to
reduce the number of times that the algorithm gets stuck in always the same dominant
isomers and instead aim to increase jumps into the rare minima. Within the under-
standing of the relation to the PES shape it seems unlikely that this can be realized
without either resorting to moves that are specifically tailored to the system at hand or
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# 10  C
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Figure 9.7: Identified stable Cu7-isomers
in the energy range up
to 1.1 eV above the ground
state. The isomer number-
ing follows the one of Fig.
9.3 and reflects the decreas-
ing cluster stability as indi-
cated by the stated energies
relative to the ground-state
isomer #1. Note that iso-
mer #4 exhibits small imag-
inary eigenmodes but is nev-
ertheless retained in the per-
formance analysis, see text.

use other local PES information. From the perspective of an unbiased sampling ansatz
with purely stochastic moves it correspondingly seems inevitable that the algorithm will
(at least for the limited isomer number of the small cluster sizes studied here) often
revisit the same dominant isomers. The overall performance is then obviously dictated
by the way the algorithm can deal with these dominant isomers, e.g. how efficiently it
can hop out of them.

9.3.2. Approximate Hopping Matrix

On the basis of the histograms presented in Fig. 9.3 we can now specify which of the
energetically lowest-lying isomers are the target of the sampling runs. In the general
case, this would be dictated by the physics of the problem at hand, e.g. prescribing that
the sampling should yield the ground-state isomer, as well as all isomers in a certain
energy range above it. However in view of the discussion above, it is clear that the
overall sampling performance is governed by the dominant isomers, since the algorithm
spends most of its time jumping out of these few minima. For the intended performance
analysis we therefore choose as the sampling target the identification of all dominant
isomers. As indicator of the sampling efficiency we correspondingly focus on the number
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point group Nversions

# 1 D5h 504

# 2 C3v 1680
Si7 # 3 C2v 2520

# 4 C2 5040

# 1 D5h 504

Cu7 # 9 D6h 420

# 10 Cs 5040

# 1 C3v 1209600

Si10 # 5 C2 3628800

# 6 C1 7257600

Table 9.1.: The number of different versions for the dominant isomers.

of moves N until all dominant isomers are found at least once. In the case of Si7 and
Si10 all dominant isomers are included in an energy range up to 1 eV above the ground
state as apparent from Figs. 9.3, 9.5 and 9.7. In the case of Cu7, this energy range is
slightly extended to 1.1 eV above the ground state to also include the dominant isomer
#10, cf. Figs. 9.3 and 9.7.

With a thus defined sampling target the natural BH acceptance criterion is to un-
conditionally accept trial moves that lead into any isomer in the corresponding energy
window, and to unconditionally reject any trial move that leads into an isomer that is
higher in energy. It would only be necessary to change the latter to some, e.g. Boltzmann
weighted, conditional acceptance rule, if a multiple-funnel type PES would necessitate
passages via such higher energy isomers. However, as discussed above this is not the
case for the systems studied here. In terms of a hopping matrix corresponding energy-
window BH runs require only the knowledge of a limited number of hopping matrix
elements. Definitely required are the transition probabilities between any of the tar-
geted low-energy isomers. Since trial moves into higher energy isomers are rejected, it
suffices to know the overall probability to jump from each one of the low-energy isomers
into any of the higher energy ones, without the need to further resolve the latter. For the
example of Si7 the targeted energy window comprises 4 different isomers, and energy-
window BH runs can therefore be simulated on the basis of 20 hopping matrix elements:
16 transition probabilities between any of the 4 different low-energy isomers, as well
as one hopping matrix element per low-energy isomer that describes the sub-summed
transition probability to jump out of the isomer into any of the higher energy ones.

For a specified BH setting (i.e. fixed move type and fixed technical move parameters)
we obtain the required hopping matrix elements by simply performing a fixed number of
trial moves out of each of the low-energy isomers, recording the probabilities with which
the moves led into each of the other low-energy isomers or any of the higher-energy ones.
After 100 moves these probabilities are converged to within ±0.1 at a confidence interval
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at the level of 95%, which we found to be sufficient for the conclusions put forward
below. With the thus determined hopping matrix, a large number of energy-window
BH runs from different starting isomers and with different random number sequences
can be quickly simulated without the need for further first-principles calculations. This
allows to arrive at a properly averaged number Nav of moves required to determine
all low-energy isomers at least once, albeit with the disadvantage that the transition
probabilities are only known within the confidence interval of ±0.1. To account for
the latter, we therefore randomly varied the individual hopping matrix elements within
this uncertainty range and under the constraint of Eq. (9.3). Determining the Nav for
several hundreds of correspondingly created hopping matrices, we finally quote below
the average value together with error bars given by the standard deviation.

This remaining uncertainty incurred from the approximate hopping matrix procedure
does not affect any of the trend conclusions made below, yet on the other hand leads
to a substantial reduction in the computational effort: In order to determine a well
converged Nav for the systems studied here, required is typically an averaging over several
hundreds BH runs starting from different initial isomers and with different random
number sequences. As apparent below Nav for e.g. Cu7 is of the order of 50, so that
a straightforward determination of Nav by averaging over individual first-principles BH
runs would require of the order of 5000 or more trial moves, with a corresponding number
of first-principles energy and force evaluations. For the described hopping matrix based
approach, however, only 100 moves out of each of the six low-energy isomers need to be
done on the basis of first-principles calculations, while the ensuing hopping matrix based
simulations are computationally undemanding. This reduces the overall computational
cost by about an order of magnitude.

9.3.3. CPU Reduction by Using Optimum Sampling Parameters

For the ensuing move analysis, we first focus on a normal distribution which one would
intuitively consider to be better, since it centers on a potential optimum value for the
move distance. Further below, we then elaborate more on the random number distribu-
tion, taking additionally the uniform distribution into account.

Si7 and Cu7

In Fig. 9.8 we plotted the average move number along with the different fractions of
moves introduced in section 9.2.3. It is apparent that for all cases a too small value of
r0 leads to a large move number Nav which goes down with increasing move distance
until an optimum value for r0 is reached. This rather obvious behaviour is reflected
in the fraction of unsuccessful moves γunsucc. which approaches one for too small move
distances and goes down with increasing values for r0. Intriguingly, γunsucc. never reaches
zero but seems to asymptotically approach a finite value. To understand this behaviour
we take a closer look at the diagonal elements of the hopping matrix hii, which describe
the probability of the system to relax back in the previous structure after a trial move.
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Obviously, γunsucc. is just the average of {hii} weighted by the corresponding histogram
entries Hi:

γunsucc. =
1

N

N∑

i=1

Hihii (9.7)

Consequently, if all diagonal elements vanished, γunsucc. would reach zero. The upper
panel of Fig. 9.9 presents the diagonal elements of all dominant isomers of Si7 and
Cu7 with respect to the move distance for single-particle moves. For the case of Si7,
the diagonal elements of the rather symmetric isomers # 1 - # 3 vanish with large
enough distances as one would expect since the trial move then brings the system out
of the current basin of attraction. For the unsymmetric Si7 isomer with pointgroup C2,
however, the hopping matrix element seems to stay constant. The same tendency can
be observed for the case of Cu7, yet less pronounced. Clearly, the diagonal element of
the unsymmetric Cs isomer does not further decrease when increasing the move distance
beyond 2.0 a while the corresponding matrix elements of the more symmetric isomers
seem to decrease monotonically. This is a further consequence of the comparably large
number of versions of the low-symmetry structures of Si7 and Cu7 the system can relax
into. In other words, by choosing a sufficiently large move distance, the system can be
prevented from relaxing back into the previous structure but not from jumping between
symmetry-equivalent basins of attraction. Consequently, γunsucc. saturates at some point
and Nav does not decrease any further. A similar behaviour can be observed for collective
moves shown in the lower panel of Fig. 9.9.

In almost all cases, the move number starts to grow again, albeit insignificantly for
practical purposes. A rational for this behaviour can be obtained by having a closer
look at the fraction of rejected moves γhighE which monotonically increases with the
move distance r0. In other words, the larger r0, the more often the system jumps out of
the energy region of interest. The remaining fraction of accepted moves γsucc. is finally
the kind of moves that yield new isomers within the energy window of interest, so that
intuitively it should be correlated with the overall move number Nav. This is indeed
true for all four cases, in which γsucc. reaches a maximum at the optimum move distance
that minimizes Nav.

For Si7, using single-particle moves, the optimum value for r0 lies somewhere between
r0 = 1.5 a and 2.5 a with only minor differences in the move number. Using collective
moves, the best choice of r0 is 0.75 a. It is clear that displacing all atoms at once, the
absolute value of r0 can be smaller compared to single-particle moves, since the more
atoms are involved the less each of them needs to be disturbed to change the configura-
tion significantly. In the case of Cu7, the optimum move distance seems to be slightly
extended to 2.0 a and 1.0 a using single-particle and collective moves, respectively. Com-
paring the move numbers Nav at the optimum value of r0 for both move schemes, we
note that there is basically no performance difference.

We further note that the fraction of accepted moves γsucc. is different for Si7 and
Cu7 at their maximum. In the first case, roughly half of all the moves need to be
accepted to optimize the efficiency, while for the latter case, the optimum fraction is
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significantly higher (roughly 70 %). Hence, this example illustrates that aiming at a
certain and system-independent absolute value for the acceptance ratio for all different
kinds of systems is clearly not the best strategy to obtain an optimized sampling. For
instance, in the case of Cu7 using collective-moves, the move number and thus the
overall efficiency is more than twice as large for an acceptance fraction of roughly a half
(Nav > 20) compared to the optimum value of roughly 70 % (N ≈ 10).

Figure 9.8.: Performance analysis for Si7 and Cu7 for both single-particle (left) and col-
lective (right) moves. Given are the move number Nav including error-bar
(upper panels) along with the different fraction of moves including error-bar
(lower panels) γunsucc. (red curves with triangles pointing up), γhighE (red
curves with triangles pointing down) and γsucc. (blue curve with circles).
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Figure 9.9.: Diagonal elements of the hopping matrix of the dominant isomers of Si7
( # 1 (D5h), # 2 (C3v), # 3 (C2v) and # 4 (C2) ) and Cu7 (# 1 (D5h), # 2
(C3v), # 10 (Cs) ) using single-particle (left) and collective (right) moves.

Si10

Figure 9.10 presents the same analysis as above for Si10 using collective moves. There
are two striking features that can be assigned to the exponential growth of the number
of different isomers. Since there are obviously more isomers above the energy window
of interest, the probability to jump in the high-energy region is much higher than in the
case of the smaller system Si7. This is reflected in much higher values for γhighE . At the
maximum move distance of 1.0 a, roughly 20 % of the moves have led out of the energy
window in the case of Si7. With the same move parameter setting, four times as many
moves jumped into the high-energy region in case of the larger system Si10. The second
effect is the stronger dependence of the unsuccessful moves γunsucc. on the move distance.
Due to the higher number of local minima, the effect of the multiplicity of individual
isomers that saturates the fraction of unsuccessful moves becomes less significant, thus
making γunsucc. approach zero more closely. Consequently, the two competing effects of
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having a too small or a too large move distance, reflected in the two different fractions
of disadvantageous moves γunsucc. and γhighE , become much stronger, thus yielding a
clear optimum of γsucc., which again nicely correlates with the move number N , the
latter having a clear minimum in the range around 0.5 to 0.6 a. It is in particular
the intuitively chosen acceptance criterium that gives rise to this clear correlation, thus
making γsucc. a potential candidate for an on-the-fly indicator of efficiency. Since moves
are unconditionally accepted if they lie within the energy window of interest, γsucc.

corresponds exactly to the fraction of moves that explore the regions of the PES of
interest.

As to the overall sampling efficiency, we further note that except for extremely un-
reasonable move distances, the basin-hopping scheme using unbiased collective moves is
quite robust with respect to the exact value of the move distance. Around the range of
0.5 and 0.6 a, the move number varies less than a factor of two, which is in practice an
insignificant uncertainty.

normal vs. uniform distribution

We now turn our attention to the random number distribution for the move distances.
Intuitively, one would expect that focusing on an appropriate value r0 as was done above
is more efficient than using a uniform distribution around r0. The rational is simple. A
uniform distribution contains both a large fraction of moves with quite small distances
and a fraction of moves with rather large displacements as well. While the former is
inefficient since the system tends to relax back into the previous structure, the latter can
decrease the efficiency since the system jumps to high in energy as was shown above.
To investigate on this we explicitly compared the efficiency of both distributions. The
results are summarized in Table 9.2 and clearly prove that in the case of single-particle
moves using the optimum value of r0, the normal distribution is more efficient than the
uniform one. In the case of Si7 with 1.5 a for instance, an average move number of 30.8
is obtained with the uniform distribution compared to 20.1 using a normal distribution.
The same holds for Cu7 with r0 equals 1.5 or 2.0 a, where the uniform distribution yields
an average move number about twice as large as in the case of the normal distribution.
In the case of collective-moves, however, both uniform and normal distribution perform
roughly the same for Si7 and Cu7. The rational is here simply that in the case of
collective moves, each atom has an individual move distance determined by a random
number around r0. Consequently, even if some atoms are disturbed too much or too little,
there are always certain atoms which are displaced with an appropriate move distance.
In the case of Si10, however, the uniform distribution seems to get less efficient compared
to the normal distribution (e.g. 15.1 compared to 9.8 moves in the case of the optimum
move distance 1.5 a). Again, this can be rationalized with the effect that a huge fraction
of the moves lead to high-energy regions since the uniform distribution contains a larger
ratio of move distances that are larger than the average value r0. Summarized, the
uniform distribution can only be disadvantageous for the systems under consideration
and is thus no longer considered.
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move settings normal uniform

1.0 a 31.1 34.6
single

1.5 a 20.1 30.8
Si7 0.5 a 22.4 20.3

collective
0.75 a 20.9 17.7

1.5 a 11.5 20.3
single

2.0 a 9.4 21.9
Cu7

0.5 a 22.9 24.7
collective

0.75 a 9.4 8.0

0.5 a 9.8 15.1
Si10 collective

0.75 a 20.5 29.1

Table 9.2.: Performance comparison of normal-distributed and uniformly distributed
random numbers for the move distance.

Figure 9.10.: Performance analysis for Si10 using collective moves.
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9.4. Adaptive Move Scheme

On the basis of the above obtained insights, a simple adaptive scheme is now presented,
which guides an unknown system towards reasonable move settings based upon opti-
mizing γsucc.. This efficiency indicator is therefore averaged over the last 50 moves, thus
being converged up to ±0.1 at a confidence interval at the level of 90 % (see as an
example Fig. 9.11). As move scheme, collective moves are applied with a normal dis-
tribution around an average value r0. Our suggested self-adapting scheme then updates
the average move distance according to simple rules. Starting with some initial value
r0 and a step width ∆r, the change in the fraction of successful moves ∆γsucc. between
two averaging periods with r0 and r0 +∆r is then monitored. Since γsucc. contains noise,
the sign of ∆γsucc. cannot directly be used as an indicator whether an updated move
distance has improved the efficiency or not. Hence, a tolerance value of γtol needs to be
defined which was set according to the convergence rate discussed above to 0.1. After
two averaging periods, three cases then need to be distinguished. If γsucc. has increased
more than the prescribed tolerance value

∆γsucc. > γtol , (9.8)

the change in the step width ∆r has obviously improved the efficiency significantly.

Figure 9.11.: The convergence of γsucc

with respect to the move
number.

Consequently, the adjustment ∆r points into
the direction of the maximum of γsucc. and the
sign is therefore kept for the next move dis-
tance adaption. Additionally, the magnitude is
slightly increased to accelerate the approach to
the optimum value of r0, so ∆r → β1∆r, with
β1 = 1.2.

In the opposite case, if γsucc. has decreased
more than the prescribed tolerance value

∆γsucc. < −γtol , (9.9)

the efficiency has significantly degraded and the
sign of the adjustment ∆r is therefore changed.
To enable the system to pin down the optimum
value of the move distance, the magnitude is decreased in this case, so ∆r → −β2∆r,
with β2 = 0.3.

If ∆γsucc. has not changed within the tolerance range,

−γtol < ∆γsucc. < γtol , (9.10)

the current move distance r0 is obviously close to the optimum range. However, in case
of small “gradients” of γsucc., the system thus might get stuck in regions away from the
maximum. Hence, the adjustment ∆r is not set to zero, but instead only decreased in
magnitude, so ∆r → +β2∆r .
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Further fast adjustments according to γunsucc. and γhighE additionally lead to a quick
and coarse adjustment of the move distance by directly exploiting the obtained insights
from the move analysis in the previous section. If the system got stock in at least 9 out
of 10 moves, it is clear that the current move distance must be way too small without
further averaging γsucc.. So if

γunsucc. ≥ 0.9 , (9.11)

the move distance r0 is immediately increased by a certain amount ∆r, which was
typically chosen as equal to the initial adjustment. If on the other hand, more than half
of the previous 10 moves lead to the high-energy region, so

γhighE ≥ 0.5 , (9.12)

the move distance is likely to be too large and thus decreased by ∆r, again (arbitrarily)
set to the initial adjustment.

This simple scheme is illustrated for Si10, using collective moves, for which the opti-
mum parameter range for r0 is known.

Figure 9.12.: Self-adapting move distance during a Si10 sampling run with window accep-
tance criterium and collective moves. Exemplified are three runs starting
with a way too small move distance (left panel), a move distance that lies
already in the optimum range (middle panel) and a way too large move
distance (right panel). γsucc. is averaged over 50 moves with additional fast
adjustments according to γunsucc. and γhighE . The blue dotted lines indicate
the optimum range according to the performance analysis in section 9.3.3.
The initial step adjustment ∆r is set to 0.2 Å or 0.09 a, respectively.

Fig. 9.12 instances three cases, starting with a way too small move distance, a way too
large one and with a setting that lies already within the reasonable range. Indicated
are the two values 0.5 and 0.6 a that are optimum values according to sec. 9.3.3. As
these three examples clearly show, the self-adapting scheme succeeds in guiding the
system towards a reasonable move distance within O(100) moves. Compared to this
computational demand, even one data point in the move analysis for Si10 required 2000
trial moves, 100 moves for each of the 20 hopping matrix elements. Hence, our suggested
self-adapting scheme provides an efficient scheme which exploits the on-the-fly efficiency
indicators, thus preventing the system from inefficient sampling due to unreasonable
move settings. As to the converged move distances in the three example runs, we note
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that the optimum range where γsucc. is maximized, obviously lies somethere between 0.45
and 0.7, thus not exhibiting a sharp peak but rather a broad plateau where the overall
sampling efficiency is quite unaffected by the exact value of the move distance, which is
in line with the insights obtained in section 9.3.3.

9.5. Summary and Conclusion

In this part of the work, the efficiency of an ab initio based basin-hopping run was
quantitatively analyzed to reveal inefficient settings, thus suggesting potential ways to
optimize the technical settings, in particular discussing consequences and possible strate-
gies for larger cluster runs. To pin down the efficiency of a sampling run under a certain
set of parameters, the common scheme in literature to measure the mean first encounter
was extended to the number of moves until all relevant isomers within a pre-defined
energy range have been identified at least once. This defined measure of efficiency is
therewith coupled to the sampling goal of not only finding the ground state but also
higher-lying isomers. To make the analysis computationally tractable, the concept of
a so-called hopping matrix has been developed, thereby circumventing the necessity to
perform hundreds of ab initio basin-hopping runs in order to get a statistically mean-
ingful move number with respect to the stochastic noise and the dependence upon the
starting geometry. Further on-the-fly measurable quantities have additionally been sug-
gested that monitor the efficiency during a sampling run instead of just identifying an
inefficient setting a posteriori, thus being candidates for possible self-adapting schemes.
In order to elaborate on the question which isomers are relevant, long basin-hopping
runs for Si7, Si10 and Cu7 under different move settings, using both single-particle and
collective moves, have been performed, revealing dominant isomers as an intrinsic feature
of the PES. This property can be traced back to either a huge size of the corresponding
basin of attraction or to the huge multiplicity of different versions corresponding to the
same isomer. Since the system spends most of the time jumping between the dominant
isomers, they obviously govern the overall performance and have thus been chosen as
sampling goal. The performance analysis of the trial move is thereby separated from the
acceptance criterium by using a window acceptance scheme, according to which isomers
that lie within the energy window containing the dominant isomers are unconditionally
accepted. Supported is this strategy by the fact, that for these cluster sizes, the simple
stochastic trial move schemes enable efficient jumps between all parts of the configura-
tion space. Using both single-particle and collective moves, the performance analysis
yields a clear correlation between the move number Nav and the on-the-fly indicator
γsucc., which is defined as the fraction of moves that lead to new isomers that lie within
the energy window of interest. Comparing single-particle and collective moves, there is
basically no difference between the move numbers at the corresponding optimum move
distances. Further analysis of the random number distribution for the move distance
only revealed a slight disadvantage of the uniform distribution compared to the normal
distribution. Hence, the sampling in connection with simple stochastic moves turns out
to be quite robust with respect to the analyzed parameters. Significantly inefficient
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settings result mainly from way too small move distances, so that the system relaxes
essentially always back to the previous minimum, or way too large distances, which tend
to bring the system into high-energy PES regions, thus being out of the energy range
of interest. In particular the last tendency becomes stronger with increasing cluster
size, since the number of isomers exponentially grows and with that the configurational
space in the high-energy region. Such inefficient settings can be avoided by a simple
self-adapting scheme that is based upon the optimization of the indicator γsucc., which
has been presented and illustrated for Si10. Apart from unknown systems, for which this
scheme is able to quickly identify the reasonable range of move distances, the system
is expected to locally adjust the move distance in case of significant differences in the
topologies in multi-funnel-systems. To gain further significant improvements in the sam-
pling efficiency, more sophisticated trial moves would have to be designed that are able
to explore the properties of the PES, like in the spirit of the MD-trajectories exploiting
the BEP-principle. However, this always bears the danger of biasing the sampling. A
completely different strategy would therefore be not to put emphasis on the sampling of
the PES, but on the evaluation of the PES itself using sophisticated analytical potentials
that are able to capture at least the same structural motifs as an ab initio energy surface.
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10. Summary and Outlook

The motivation of the present work was to develop and analyze a DFT based basin-
hopping algorithm for the structure determination of atomic clusters. This methodolog-
ical approach has been applied for the interpretation of FIR-MPD data of small Co+

n Arm

(n=4-8) clusters, measured in the group of Prof. Gerard Meijer at the Molecular Physics
Department of the FHI. The dataset of isomers generated from the unbiased sampling of
configurational space included several cases of differently Jahn-Teller distorted versions
of the same basic structural motif, which consequently would likely have been missed
using the commonly employed scheme to simply try out “usual suspect” structures de-
rived from chemical intuition. Specific conclusions concerning this part of the work, in
particular on the nature of the Co-Ar binding, were already presented at the end of the
corresponding chapter, which is why this final chapter is restricted to an outlook of only
the methodological aspects.

The structure determination based on the comparison of vibrational spectra relies
on the fundamental assumption that different isomers do exhibit distinguishable finger-
prints. In the present work, however, many isomers, in particular the differently Jahn-
Teller distorted ones, exhibited rather similar fingerprints with only minor quantitative
differences, which in turn severly limited the approach to exclusively use FIR-MPD data
to indirectly determine the atomic structure. Only in few cases the structure could be
unambiguously determined, while in many cases some isomers could at best be ruled out
or, put more modestly, turned out to be energetically rather unlikely. Taking additional
experimental data into account, like for instance photoelectron spectroscopy, can there-
fore significantly facilitate the structural assignment by analyzing different independent
fingerprints.

The involved exploration of the PES requires to combine two aspects. In order to
obtain reliable energetics, a quantum-mechanical description of the PES is essential,
which is nowadays typically achieved by density-functional theory. While single local
optimizations of clusters at the size of few atoms constitute simple tasks with present
day computational facilities, a basin-hopping run already at this system size may contain
a few hundred optimizations, dictating already a high efficiency of both the calculation
of the underlying PES and the sampling parameter. Using small silicon and copper
clusters, we therefore demonstrated how the efficiency of an ab initio basin-hopping run
can be critically assessed. For the system sizes studied, the crucial aspect is the trial
move scheme, i.e. the way a new trial structure is generated from the previous one. The
comparison of the efficiency for different move settings herein necessitates a quantity
that pins down the computational demand of a certain run. For this, we extended the
common scheme in the literature to count the number of moves until the ground state
has been identified for the first time, to the mean first encounter of defined low-energy
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isomers, since it is not only the ground-state structure that is of fundamental interest.
The first step of the performance analysis hereby identified dominant (or frequently
visisted) isomers as an intrinsic feature of the PES. For the size range investigated,
they consequently govern the overall computational demand of the sampling and are
therefore the relevant isomers for the performance analysis. To lower the computational
cost and additionally obtain detailed analysis data we circumvented the straightforward
calculation of the manifold of sampling runs by introducing the concept of a hopping
matrix. By recording the transition probabilities between the individual isomers within
the energy range of interest, statistically meaningful quantities can then be extracted
without the need for further first-principles calculations and the converged hopping
matrix elements provide the connectivity of the low-lying isomers. This led to the
observation of clear correlations between the number of required moves with on-the-fly
efficiency indicators, that could then be used to develop a simple self-adapting scheme.

The move analysis focused on single-particle and collective moves. At the small cluster
sizes studied no clear dominance of one move class over the other could be identified.
Furthermore, each individual class turned out to be quite robust with respect to the
average step width with which atoms are randomly displaced. The governing factors
leading to this optimum move distance are the inability to escape from the basin of at-
traction of the present configuration at too short distances and the increased probability
to end up in high-energy isomers at too large distances. The suggested self-adapting
scheme exploits these insights and its performance has been demonstrated for Si10, for
which the self-adapting scheme guides and keeps the system within reasonable move
settings.

In this respect, one has to note that simple stochastic move schemes provide only
little flexibility to significantly improve the sampling efficiency. While this motivates the
design of more sophisticated trial moves at first glance, such an approach always bears
the danger to introduce bias or loose the general-purpose character. Nevertheless, when
assessing such more specialized move types (also in view of the much more demanding
size range beyond ten atoms) the evaluation should be based on a performance analysis
protocol as presented in this work. In any case, orders of magnitude in the efficiency
are much more likely to be gained not by optimizing the exploration, but instead the
calculation of the PES itself. Simple empirical potentials can thereby not guarantee
that the same structural motifs are captured, not to speak of their energetic order, thus
making them unsuitable for a fast coarse screening of the configurational space. More
promising are approaches that are based upon a parameterization of the ab initio PES,
and therefore allow for a systematic convergence of the accuracy. In a collaboration
with Dr. Jörg Behler from the Ruhr-Universität Bochum, we currently pursue this
direction based on a neural network approach, which has recently been successfully
applied to bulk silicon and achieved ab initio accuracy [127]. With an equally accurate
parameterizaton for finite systems, this approach would then be an ideal candidate to
enable sampling runs for significantly larger cluster sizes that are presently unfeasible
with straightforward DFT energetics.
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A. Basis Sets used in FHI-aims

Si Cu Co Ar

minimal [Ne]+3s23p2 [Ar]+3d104s1 [Ar]+3d74s1 [Ar]

tier1 H(3d, 4.2) Cu2+(4p) H(3p, 5.8) Ar2+(3d)

H(2p, 1.4) H(4f , 7.2) H(4f , 8.2) Ar2+(4p)

H(4f , 6.2) H(3s, 2.6) H(3d, 5.4) H(4f , 7.4)

Si2+(3s)∗ H(3d, 4.9) H(5g, 12.0) H(3s, 4.5)

H(5g, 10.4) Co2+(4s)∗

tier2 H(3d, 9.0)∗ H(4p, 5.8) Co2+(4p)∗ H(4d, 7.8)

H(5g, 9.6) H(6h, 14.8) H(6h, 16.4) H(5g, 10.4)

H(4p, 4.0) H(5s, 10.4) H(4d, 5.6) Ar2+(3p)

H(1s, 0.65) H(3d, 2.9) H(4f , 17.2) H(1s, 15.2)∗

H(4f , 8.2) H(4f , 15.2) H(1s, 0.75)

tier3 Si2+(3d) H(3d, 3.6) H(4d, 7.8) H(4d, 5.8)∗

H(3s, 2.6) H(3s, 25) H(2p, 5.8) H(5f , 9.2)

H(3d, 3.4) H(3p, 2.3) H(4f , 8.0) H(4s, 11.2)

H(3p, 3.0) H(5f , 8.4) H(5g, 11.6) H(5p, 10.8)

H(4p, 6.4) H(6g, 12.4) H(4s, 4.3)

H(5g, 10.8)

· · · · · · · · · · · ·

Table A.1.: Radial basis functions used in FHI-aims as they were selected during the ba-
sis optimization for the elements studied in this work Si, Cu, Co and Ar.
”H(nl,z)” denotes a hydrogen-like basis function for the bare Coulomb po-
tential z/r, including its radial and angular momentum quantum numbers n
and l. X2+(nl) denotes a n,l radial function of a doubly positive free ion of
species X. The radial functions marked with an asterisk have artificially been
swapped to retain the otherwise consistent order into successive angular mo-
mentum shells (”tiers”, see section 5). The minimal basis set simply contains
the atomic functions according to the ground-state electronic configuration
of the corresponding species.

The radial basis functions (each with (2l+1) angular momentum functions) employed
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in the present work together with their explanation are summarized in Table A.1.
Apart from two exceptions, where in each case two basis functions have been artifi-
cially swapped, all angular momenta appeared naturally during the basis set generation
procedure in the first tier. In the third tier, where improvements in the total energy
lie only in the meV range, the order of the angular momenta is more or less arbitrary.
The additional ”minimal+spd” basis set, employed in chapter 9, is simply the tier1 set
without the expensive f and g radial functions, which correspond to 7 and 9 basis func-
tions, respectively. The bond distances {di} used in the basis set generation according
to Eq. 5.25 are spread to sample the self-consistent PW-LDA binding curve of the non-
polarized dimer and are illustrated in Fig. A.1. We note that PW-LDA is unphysical
for the Ar dimer since the latter is bound by pure van-der-Waals forces. In the basis set
construction, however, it can still be used to simulate some kind of bonding to which
the basis set is then optimized. Of course, in practical applications, extra care has to be
taken whether a used tier is really converged.
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Figure A.1.: PW-LDA binding curves for basis set generation using a converged tier3
basis set to illustrate the chosen bond distances (marked by red crosses).
di[Å]= {1.75, 2.0, 2.25, 2.75, 3.5} for Si, di[Å]= {1.8, 2.2, 2.8, 3.5} for Cu,
di[Å]= {1.8, 2.0, 2.5, 3.5} for Co, di[Å]= {2.25, 2.625, 3.0, 3.375, 4.0} for Ar.
All technical parameters are converged (Nang,max=302, Nr,div=2, lmax=6,
rcut=5 Å, cf. Appendix B and C).
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B. Convergence Tests for the Co+
nAr

Complexes

The technical parameters to converge together with their default values in brackets are:

1. The integration grid which is determined by Nr,div (2) and Nang,max (302). Cf.
section 5.3.

2. The basis set (tier2). Cf. section 5.2.

3. The cutoff radius rcut (5 Å). Cf. section 5.2.

4. The maximum angular momentum in the multipole decomposition of the Hartree
potential lmax (6). Cf. section 5.4.

5. The force convergence criterium Fmax (10−2 eV/Å). Cf. section 6.2.

6. The step width ∆ (10−3 Å) for the finite displacement to calculate the Hessian
and dipole derivatives. Cf. section 6.3.

For the ensuing convergence tests, each parameter is in turn individually varied whereas
for the other parameters the default value is used and kept fixed. As will be shown below,
these default settings are converged and have therefore been used in the production
runs. All tests are done using the PBE functional. For the convergence tests, it is
crucial to choose proper target quantities with respect to which the settings have to
be converged, which in turn depends upon the actual problem to tackle. The starting
point for the study of IR spectra of Co+

n Ar complexes are isomers that are obtained from
first-principles basin-hopping, both the bare Co clusters as well as the Co+

n Ar complexes.
Consequently, the corresponding energy differences ∆E between different isomers of the
bare clusters and the complexes with Ar, respectively, need to be converged as well as
the bond distances. Since we are interested in IR spectra, the frequencies ω together
with the IR activities are additional target quantities. We therefore explicitly checked
the convergence of the frequencies and the overall IR spectrum. Furthermore, the Ar
binding energy was in the focus of interest, which is thus explicitly checked as well. The
convergence tests focus on the the ground-state isomers of Co+

4 Ar and Co+
6 Ar, as well as

a higher-lying isomer of each (see Fig. B.1). The bond distances, Ar binding energies,
vibrational frequencies and IR spectra are considered for the ground-state isomers of the
Co+

n Ar complexes, whereas the energy differences are considered between the ground
states and higher-lying isomers of the bare Co+

n clusters and additionally the Co+
n Ar

complexes. For the first four parameters, that are species-dependent, first the Co setting
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has been converged with the Ar setting kept fixed. In a second step, the corresponding
Ar setting has been varied with a fixed Co setting.

Figure B.1.: Co+
n Ar-complexes used for the convergence tests. From left to right:

ground-state isomer D2d of Co+
4 Ar (S=7/2), higher-lying D2h isomer

(S=9/2), ground-state isomer D3d of Co+
6 Ar (S=15/2), higher-lying C2v

isomer (S=13/2). Some bonds of the ground-state isomers are labelled that
are used for the convergence tests.

B.1. Integration Grid

The angular part of the integration grid Nang,max is varied over several different Lebedev-
grids, that are 194, 302, 434, 590 and 770. Using 302 the radial part which is determined
by Nr,div is augmented from 2 to 4. The convergence tests are summarized in Tables
B.1, B.2, B.3, B.4 as well as in Fig. B.2.

Figure B.2.: IR spectrum of the ground state of Co+
4 Ar (left panels) and Co+

6 Ar (right
panels) vs. integration grid (Nang,max/Nr,div). In the upper panels, the Ar
integration grid is kept fixed, while the Co grid is varied. In the lower
panels, vice versa.

As one can see, the integration grid is completely uncritical and convergence seems to
be reached already for the smallest setting (194/2). For the production runs, we chose
(302/2). We note that due to the adaptive grid scheme, this does not mean that the
overall computational time is enhanced by a factor of 1.5, since Nang,max actually denotes
only the maximum amount of angular integration points per radial shell that is possible.
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Co-/Ar-grid ∆ECoN+Ar ∆ECoN+ Eb ωlowest ωmain,1 ωmain,2 ωlargest

(194/2) / (590/2) 0.562 0.537 0.303 27 224 229 317
(302/2) / (590/2) 0.562 0.536 0.303 30 224 229 316
(434/2) / (590/2) 0.562 0.536 0.303 30 224 229 316
(590/2) / (590/2) 0.562 0.537 0.303 29 224 229 316
(770/2) / (590/2) 0.562 0.537 0.303 30 224 229 316
(302/4) / (590/2) 0.562 0.536 0.303 30 224 229 316
(590/2) / (194/2) 0.562 - 0.303 30 224 229 316
(590/2) / (302/2) 0.562 - 0.303 30 224 229 316
(590/2) / (434/2) 0.562 - 0.303 30 224 229 316
(590/2) / (590/2) 0.562 - 0.303 29 224 229 316
(590/2) / (770/2) 0.562 - 0.303 30 224 229 316
(590/2) / (302/4) 0.562 - 0.302 30 224 229 316

Table B.1.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D2d- and
D2h isomers of Co+

4 Ar as well as between the corresponding bare clusters
∆ECoN+ [eV], the Ar binding energy of the ground-state isomer D2d of Co+

4 Ar
and the lowest, largest and two main vibrational frequencies ω [cm−1] of the
D2d isomer of Co+

4 Ar with respect to the integration grid (Nang,max/Nr,div).

Co-/Ar-grid ∆ECoN+Ar ∆ECoN+ Eb ωlowest ωmain,1 ωmain,2 ωlargest

(194/2) / (590/2) 0.445 0.561 0.116 17 213 251 295
(302/2) / (590/2) 0.442 0.559 0.116 15 212 251 295
(434/2) / (590/2) 0.441 0.558 0.115 17 213 251 295
(590/2) / (590/2) 0.442 0.559 0.117 17 212 251 295
(770/2) / (590/2) 0.441 0.559 0.115 18 213 251 295
(302/4) / (590/2) 0.442 0.559 0.116 15 212 251 295
(590/2) / (194/2) 0.442 - 0.116 19 212 251 295
(590/2) / (302/2) 0.442 - 0.116 19 212 251 295
(590/2) / (434/2) 0.442 - 0.116 17 212 251 295
(590/2) / (590/2) 0.442 - 0.117 17 212 251 295
(590/2) / (770/2) 0.442 - 0.116 19 212 251 295
(590/2) / (302/4) 0.442 - 0.116 19 212 251 295

Table B.2.: Convergence of the energy difference ∆ECoN+Ar [eV] between D3d- and
C2v isomers of Co+

6 Ar as well as between the corresponding bare clusters
∆ECoN+ [eV], the Ar binding energy of the ground-state isomer D3d of Co+

6 Ar
and the lowest, largest and two main vibrational frequencies ω [cm−1] of the
D3d isomer of Co+

6 Ar with respect to the integration grid (Nang,max/Nr,div).
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Co-/Ar-grid r1 r2 r3 r4 r5
(194/2) / (590/2) 2.51 2.49 2.18 2.16 2.45
(302/2) / (590/2) 2.51 2.49 2.18 2.16 2.45
(434/2) / (590/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (590/2) 2.51 2.49 2.18 2.16 2.45
(770/2) / (590/2) 2.51 2.49 2.18 2.16 2.45
(302/4) / (590/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (194/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (302/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (434/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (590/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (770/2) 2.51 2.49 2.18 2.16 2.45
(590/2) / (302/4) 2.51 2.49 2.18 2.16 2.45

Table B.3.: Convergence of the bond distances [Å] with respect to the integration grid
(Nang,max/Nr,div) for the ground-state isomer D2d of Co+

4 Ar.

Co-/Ar-grid r1 r2 r3 r4
(194/2) / (590/2) 2.37 2.27 2.26 2.76
(302/2) / (590/2) 2.37 2.27 2.26 2.76
(434/2) / (590/2) 2.37 2.27 2.26 2.76
(590/2) / (590/2) 2.37 2.27 2.26 2.74
(770/2) / (590/2) 2.37 2.27 2.26 2.76
(302/4) / (590/2) 2.37 2.27 2.26 2.76
(590/2) / (194/2) 2.37 2.27 2.26 2.76
(590/2) / (302/2) 2.37 2.27 2.26 2.76
(590/2) / (434/2) 2.37 2.27 2.26 2.76
(590/2) / (590/2) 2.37 2.27 2.26 2.74
(590/2) / (770/2) 2.37 2.27 2.26 2.76
(590/2) / (302/4) 2.37 2.27 2.26 2.76

Table B.4.: Convergence of the bond distances [Å] with respect to the integration grid
(Nang,max/Nr,div) for the ground-state isomer D3d of Co+

6 Ar.
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B.2. Basis Set Convergence

The basis set composition is given in Appendix A. The convergence tests are summarized
in Tables B.5, B.6, B.7, B.8 and Fig. B.3.

Figure B.3.: IR spectrum of the ground state of Co+
4 Ar (left panels) and Co+

6 Ar (right
panels) vs. the basis set. In the upper panels, the Ar basis is kept fixed,
while the Co basis is varied. In the lower panels, vice versa.

Co-/Ar-basis ∆ECoN+Ar ∆ECoN+ Eb ωlowest ωmain,1 ωmain,2 ωlargest

min+spd/tier2 0.182 0.133 0.345 29 231 237 330
tier1/tier2 0.259 0.211 0.346 29 232 237 331
tier2/tier2 0.562 0.536 0.303 30 224 229 316
tier3/tier2 0.569 0.543 0.295 31 224 229 316

tier2/min+spd 0.560 - 0.285 27 224 229 316
tier2/tier1 0.562 - 0.295 30 223 228 316
tier2/tier2 0.562 - 0.303 30 224 229 316
tier2/tier3 0.562 - 0.306 30 224 229 316

Table B.5.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D2d- and
D2h isomers of Co+

4 Ar as well as between the corresponding bare clusters
∆ECoN+ [eV], the Ar binding energy of the ground-state isomer D2d of Co+

4 Ar
and the lowest, largest and two main vibrational frequencies ω [cm−1] of the
D2d isomer of Co+

4 Ar with respect to the basis sets.
In order to get quantitative results, a tier2 basis set for Co is obviously required, while for
Ar the smaller tier1 basis set would be sufficient. Energy differences are then converged
within 10 meV. The vibrational modes are accurate within 1 cm−1 and all bond distances
are converged to 0.01 Å. In most of the studied cases, there are only few Ar atoms,
typically even only one, compared to several Co atoms in the cluster. Consequently, the
Ar basis contributes only a minor fraction to the overall computational time and is thus
not critical. Therefore, we consistently chose a tier2 basis for both species. Since the
bond distances are decently converged already at the level of the minimal+spd basis, this
reduced basis set has been used for the basin-hopping sampling prior to the electronic
structure study. However, one cannot trust the energetics at this level. We therefore
postrelaxed all structural motifs identified during the sampling using the tier2 basis set,
regardless of their energy differences.
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Co-/Ar-basis ∆ECoN+Ar ∆ECo Eb ωlowest ωmain,1 ωmain,2 ωlargest

min+spd/tier2 0.556 0.701 0.127 16 222 261 308
tier1/tier2 0.586 0.736 0.128 17 224 263 309
tier2/tier2 0.442 0.559 0.116 15 212 251 295
tier3/tier2 0.441 0.555 0.110 14 213 251 295

tier2/min+spd 0.447 - 0.106 13 213 251 295
tier2/tier1 0.443 - 0.110 14 212 251 295
tier2/tier2 0.442 - 0.116 15 212 251 295
tier2/tier3 0.441 - 0.118 15 213 251 295

Table B.6.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D3d and C2v

isomers of Co+
6 Ar as well as between the corresponding bare clusters ∆ECoN+

[eV], the Ar binding energy of the ground-state isomer D3d of Co+
6 Ar and

the lowest, largest and two main vibrational frequencies ω [cm−1] of the D3d

isomer of Co+
6 Ar with respect to the basis sets.

Co-/Ar-basis r1 r2 r3 r4 r5
min+spd/tier2 2.52 2.50 2.18 2.16 2.42

tier1/tier2 2.50 2.49 2.16 2.14 2.42
tier2/tier2 2.51 2.49 2.18 2.16 2.45
tier3/tier2 2.51 2.49 2.18 2.17 2.45

tier2/min+spd 2.51 2.49 2.18 2.16 2.47
tier2/tier1 2.51 2.49 2.18 2.16 2.45
tier2/tier2 2.51 2.49 2.18 2.17 2.45
tier2/tier3 2.51 2.49 2.18 2.17 2.45

Table B.7.: Convergence of the bond distances [Å] with respect to the basis sets for the
ground-state isomer D2d of Co+

4 Ar.

Co-/Ar-basis r1 r2 r3 r4
min+spd/tier2 2.37 2.27 2.26 2.76

tier1/tier2 2.35 2.25 2.24 2.74
tier2/tier2 2.37 2.27 2.26 2.76
tier3/tier2 2.37 2.27 2.26 2.76

tier2/min+spd 2.37 2.27 2.26 2.76
tier2/tier1 2.37 2.27 2.26 2.76
tier2/tier2 2.37 2.27 2.26 2.76
tier2/tier3 2.37 2.27 2.26 2.74

Table B.8.: Convergence of the bond distances [Å] with respect to the basis sets for the
ground-state isomer D3d of Co+

6 Ar.
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B.3. Cutoff Radius

The cutoff radius rcut is varied over the range of 3 to 6 Å. The results are summarized
in Tables B.9, B.10, B.11, B.12 and Fig. B.4.

Co-/Ar-rcut ∆ECoN+Ar ∆ECoN+ Eb ωlowest ωmain,1 ωmain,2 ωlargest

3 / 5 0.567 0.542 0.298 31 224 229 316
4 / 5 0.562 0.536 0.302 30 224 229 316
5 / 5 0.562 0.536 0.303 30 224 229 316
6 / 5 0.562 0.536 0.303 30 224 229 316
5 / 3 0.562 - 0.299 30 224 229 316
5 / 4 0.562 - 0.303 30 224 229 316
5 / 5 0.562 - 0.303 30 224 229 316
5 / 6 0.562 - 0.303 30 224 229 316

Table B.9.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D2d and D2h

isomers of Co+
4 Ar as well as between the corresponding bare clusters ∆ECoN+

[eV], the Ar binding energy of the ground-state isomer D2d of Co+
4 Ar and

the lowest, largest and two main vibrational frequencies ω [cm−1] of the D2d

isomer of Co+
4 Ar with respect to the cutoff radius rcut [Å].

Co-/Ar-rcut ∆ECoN+Ar ∆ECoN+ Eb ωlowest ωmain,1 ωmain,2 ωlargest

3 / 5 0.439 0.558 0.112 14 213 252 296
4 / 5 0.442 0.559 0.115 15 212 251 295
5 / 5 0.442 0.559 0.116 15 212 251 295
6 / 5 0.442 0.559 0.116 15 212 251 295
5 / 3 0.442 - 0.112 15 212 251 295
5 / 4 0.442 - 0.115 15 212 251 295
5 / 5 0.442 - 0.116 15 212 251 295
5 / 6 0.442 - 0.116 15 212 251 295

Table B.10.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D3d and
C2v isomers of Co+

6 Ar as well as between the corresponding bare clusters
∆ECo [eV], the Ar binding energy of the ground-state isomer D3d of Co+

6 Ar
and the lowest, largest and two main vibrational frequencies ω [cm−1] of
the D3d isomer of Co+

6 Ar with respect to the cutoff radius rcut [Å].

All results are tightly converged up to 2 meV, 1 cm−1 and 0.01 Å already at rcut = 4 Å
and decently converged up to 10 meV, 2 cm−1 and 0.01 Å with rcut = 3 Å. Therefore,
our conservatively chosen value of 5 Å provides tight convergence of all quantities at the
tier2 basis set level.

136



B. Convergence Tests for the Co+
n Ar Complexes

Co-/Ar-rcut r1 r2 r3 r4 r5
3 / 5 2.51 2.49 2.18 2.16 2.45
4 / 5 2.51 2.49 2.18 2.16 2.45
5 / 5 2.51 2.49 2.18 2.16 2.45
6 / 5 2.51 2.49 2.18 2.16 2.45
5 / 3 2.51 2.49 2.18 2.16 2.45
5 / 4 2.51 2.49 2.18 2.16 2.45
5 / 5 2.51 2.49 2.18 2.16 2.45
5 / 6 2.51 2.49 2.18 2.16 2.45

Table B.11.: Convergence of the bond distances [Å] with respect to the cutoff radius rcut

[Å] for the ground-state isomer D2d of Co+
4 Ar.

Co-/Ar-rcut r1 r2 r3 r4
3 / 5 2.37 2.27 2.26 2.76
4 / 5 2.37 2.27 2.26 2.76
5 / 5 2.37 2.27 2.26 2.76
6 / 5 2.37 2.27 2.26 2.76
5 / 3 2.37 2.27 2.26 2.76
5 / 4 2.37 2.27 2.26 2.76
5 / 5 2.37 2.27 2.26 2.76
5 / 6 2.37 2.27 2.26 2.76

Table B.12.: Convergence of the bond distances [Å] with respect to the cutoff radius rcut

[Å] for the ground-state isomer D3d of Co+
6 Ar.

Figure B.4.: IR spectrum of the ground state of Co+
4 Ar (left panels) and Co+

6 Ar (right
panels) vs. cutoff radius rcut. In the upper panels, the Ar cutoff radius is
kept fixed, while the Co cutoff radius is varied. In the lower panels, vice
versa.
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B. Convergence Tests for the Co+
n Ar Complexes

B.4. Hartree Potential

For the maximum angular momentum lmax in the multipole decomposition scheme, we
tried a value of 3, 4, 6 and 8. The results are summarized in Tables B.13, B.14, B.15,
B.16 and Fig. B.4.

Figure B.5.: IR spectrum of the ground state of Co+
4 Ar (left panels) and Co+

6 Ar (right
panels) vs. lmax. In the upper panels, the Ar lmax is kept fixed, while the
Co lmax is varied. In the lower panels, vice versa.

Co-/Ar-lmax ∆ECoN+Ar ∆ECoN+ Eb ωlowest ωmain,1 ωmain,2 ωlargest

3 / 6 0.219 0.191 0.298 27 183 191 290
4 / 6 0.561 0.536 0.303 26 224 229 317
6 / 6 0.562 0.536 0.303 30 224 229 316
8 / 6 0.562 0.536 0.303 30 224 229 316
6 / 3 0.562 - 0.303 30 224 229 316
6 / 4 0.562 - 0.303 30 224 229 316
6 / 6 0.562 - 0.303 30 224 229 316
6 / 8 0.562 - 0.303 30 224 229 316

Table B.13.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D2d and
D2h isomers of Co+

4 Ar as well as between the corresponding bare clus-
ters ∆ECoN+ [eV], the Ar binding energy of the ground-state isomer D2d

of Co+
4 Ar and the lowest, largest and two main vibrational frequencies

ω [cm−1] of the D2d isomer of Co+
4 Ar with respect to lmax.

A value of 3 for lmax is obviously too small, the energy differences are tenths of eV off.
Bond distances are not converged within several hundredths of Å. Furthermore, the IR
spectra do change a lot with increasing lmax. The C2v isomer of Co+

6 could not even be
converged with lmax = 3. With a value of 4, however, tight convergence can be achieved.
For Ar, lmax is not critical, since the density sitting on the single Ar atom contributes
only little to the complete density. However, the contribution to the computational time
is, like in the case of the basis set, not critical. We therefore chose for both species a
conservative value of 6, for which tight convergence also for Co4+Ar is achieved, where
little noise was still observed for lmax = 4.
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B. Convergence Tests for the Co+
n Ar Complexes

Co-/Ar-lmax ∆ECoN+Ar ∆ECo Eb ωlowest ωmain,1 ωmain,2 ωlargest

3 / 6 N./A. N./A. 0.096 3 197 207 271
4 / 6 0.442 0.559 0.116 15 213 251 295
6 / 6 0.442 0.559 0.116 15 212 251 295
8 / 6 0.442 0.559 0.116 15 212 251 295
6 / 3 0.442 - 0.116 15 212 251 295
6 / 4 0.442 - 0.116 15 212 251 295
6 / 6 0.442 - 0.116 15 212 251 295
6 / 8 0.442 - 0.116 15 212 251 295

Table B.14.: Convergence of the energy difference ∆ECoN+Ar [eV] between the D3d and
C2v isomers of Co+

6 Ar as well as between the corresponding bare clus-
ters ∆ECoN+ [eV], the Ar binding energy of the ground-state isomer D3d

of Co+
6 Ar and the lowest, largest and two main vibrational frequencies

ω [cm−1] of the D3d isomer of Co+
6 Ar with respect to lmax.

Co-/Ar-lmax r1 r2 r3 r4 r5
3 / 6 2.51 2.49 2.21 2.20 2.44
4 / 6 2.51 2.49 2.18 2.16 2.45
6 / 6 2.51 2.49 2.18 2.16 2.45
8 / 6 2.51 2.49 2.18 2.17 2.45
6 / 3 2.51 2.49 2.18 2.16 2.45
6 / 4 2.51 2.49 2.18 2.16 2.45
6 / 6 2.51 2.49 2.18 2.16 2.45
6 / 8 2.51 2.49 2.18 2.16 2.45

Table B.15.: Convergence of the bond distances [Å] with respect to lmax for the ground-
state isomer D2d of Co+

4 Ar.

Co-/Ar-lmax r1 r2 r3 r4
3 / 6 2.42 2.41 2.30 2.84
4 / 6 2.37 2.27 2.26 2.76
6 / 6 2.37 2.27 2.26 2.76
8 / 6 2.37 2.27 2.26 2.76
6 / 3 2.37 2.27 2.26 2.76
6 / 4 2.37 2.27 2.26 2.76
6 / 6 2.37 2.27 2.26 2.76
6 / 8 2.37 2.27 2.26 2.76

Table B.16.: Convergence of the bond distances [Å] with respect to lmax for the ground-
state isomer D3d of Co+

6 Ar.

139



B. Convergence Tests for the Co+
n Ar Complexes

B.5. Force Convergence Criterium and Finite

Displacement for the Numerical Hessian and

Dipole Gradient

Figure B.6.: IR spectrum of the ground state of Co+
4 Ar and Co+

6 Ar vs. force convergence
criterium Fmax (left panels) and finite displacement ∆ (right panels).

Though the bond distances, as was illustrated in section 6.2, are typically converged
within 10−3 Å using a force convergence criterium for the local relaxation scheme of
10−2 eV/Å, it is a priori not clear, whether such a value is enough to converge the
vibrational frequencies and IR spectra, for which it is essential to be in a local minimum.
We therefore further relaxed the ground-state isomers of Co+

4 Ar and Co+
6 Ar further to a

tighter force convergence criterium of 10−3 eV/Å and recomputed the IR spectra, which
are presented in the left panel of Fig. B.6. As one can see, the IR spectra do not change
at all. The step width ∆ for the finite difference scheme to calculate the Hessian and
dipole gradient numerically turns out to be uncritical (see the right panel of Fig. B.6).
Our chosen value of 10−3 Å is small enough, ensuring a converged IR spectrum without
showing grid noise due to the discrete integration grid.
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C. Convergence Tests for Si and Cu
clusters

The technical parameters to converge together with their default values in brackets are:

1. The integration grid which is determined by Nr,div (2) and Nang,max (302). Cf.
section 5.3.

2. The basis set (minimal+spd). Cf. section 5.2.

3. The cutoff radius rcut (4 Å). Cf. section 5.2.

4. The maximum angular momentum in the multipole decomposition of the Hartree
potential lmax (6). Cf. section 5.4.

5. The force convergence criterium Fmax (10−2 eV/Å). Cf. section 6.2.

6. The step width ∆ (10−3 Å) for the finite displacement to calculate the Hessian.
Cf. section 6.3.

r
1

r
2

r
3

Figure C.1.: Pentagonal bipyramid motif of
Si7 and Cu7 together with la-
belled bonds used for the con-
vergence tests.

For the ensuing convergence tests, each
parameter is in turn individually varied
whereas for the other parameters the de-
fault value is used and kept fixed. As will
be shown below, these default settings
are sufficiently converged for the purpose
of the intended study and have therefore
been used in the production runs. All
tests are done using the PBE functional
with a Gaussian smearing of 0.1 eV width
consistent to the production runs (see sec-
tion 9.2). For the convergence tests, it is
crucial to choose proper target quantities
with respect to which the settings have
to be converged, which in turn depends
upon the actual problem to tackle. The focus of the study here lies in the sampling
performance. Tightly converged physical quantities are therefore not crucial. Important
are instead the right energetic order of the isomers and the correct structural motifs.
We therefore check the energy differences with respect to the atomization energy
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C. Convergence Tests for Si and Cu clusters

Eat = Etot(XN) −NEtot(X) . (C.1)

of the ground state (X=Si, Cu) as well as the bond distances. The vibrational frequencies
are important for the vibrational stability analysis. The convergence tests focus on the
dominant isomers of Si7 and Cu7 (cf. section 9.3.1) concerning the energy difference.
Bond distances, as well as the smallest and largest vibrational frequency are only given
for the D5h ground-state isomer.

C.1. Integration Grid

The angular part of the integration grid Nang,max is varied over several different Lebedev-
grids, that are 194, 302, 434, 590 and 770. Using 302 the radial part which is determined
by Nr,div is augmented from 2 to 4. The convergence tests are summarized in Tables C.1
and C.2.

grid Eat ∆E(#2) ∆E(#3) ∆E(#4) r1 r2 r3 ωsmallest ωlargest

(194/2) -31.362 0.780 0.957 0.968 2.51 2.49 2.55 170 435
(302/2) -31.361 0.782 0.956 0.965 2.51 2.49 2.55 171 435
(434/2) -31.362 0.782 0.959 0.966 2.51 2.49 2.55 171 435
(590/2) -31.363 0.782 0.958 0.967 2.51 2.49 2.55 170 435
(770/2) -31.363 0.782 0.958 0.967 2.51 2.49 2.55 170 435
(302/4) -31.361 0.782 0.956 0.965 2.51 2.49 2.55 171 435

Table C.1.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the four dominant isomers of Si7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. the integration grid (Nang,max/Nr,div).

grid Eat ∆E(#2) ∆E(#10) r1 r2 r3 ωsmallest ωlargest

(194/2) -14.701 0.225 1.105 2.46 2.46 2.60 70 240
(302/2) -14.700 0.223 1.103 2.46 2.46 2.60 70 240
(434/2) -14.699 0.222 1.103 2.46 2.46 2.60 70 240
(590/2) -14.699 0.222 1.103 2.46 2.46 2.60 70 240
(770/2) -14.699 0.222 1.103 2.46 2.46 2.60 70 240
(302/4) -14.700 0.223 1.103 2.46 2.46 2.60 70 240

Table C.2.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the three dominant isomers of Cu7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. the integration grid (Nang,max/Nr,div).

The integration grids are not critical at all and all quantities are tightly converged using
the default value of (302/2).
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C. Convergence Tests for Si and Cu clusters

C.2. Basis Set Convergence

The basis set composition is given in Appendix A. The convergence tests are summarized
in Tables C.3 and C.4.

basis Eat ∆E(#2) ∆E(#3) ∆E(#4) r1 r2 r3 ωsmallest ωlargest

min -23.715 0.446 N./A. 0.618 2.78 2.79 2.95 114 346
min+spd -31.361 0.782 0.956 0.965 2.51 2.49 2.55 171 435

tier1 -31.669 0.798 0.985 0.990 2.50 2.48 2.54 172 438
tier2 -31.788 0.784 0.977 0.986 2.50 2.47 2.52 172 437
tier3 -31.817 0.782 0.973 0.984 2.50 2.47 2.52 172 437

Table C.3.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the four dominant isomers of Si7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. the basis set.

basis Eat ∆E(#2) ∆E(#10) r1 r2 r3 ωsmallest ωlargest

min -9.507 0.007 0.325 2.61 2.76 3.28 60 171
min+spd -14.700 0.223 1.103 2.46 2.46 2.60 70 240

tier1 -14.906 0.226 1.097 2.45 2.45 2.57 71 240
tier2 -14.991 0.228 1.110 2.45 2.45 2.57 71 241
tier3 -15.030 0.231 1.118 2.45 2.45 2.57 71 241

Table C.4.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the three dominant isomers of Cu7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. the basis set.

Though tight convergence up to a few meV in the energy differences and 0.01 Å in the
bond distances can only be achieved using a tier2 basis, the energetic order is already
correct using a minimal+spd basis. Bond distances are converged within a few hun-
dreds Å, so that the structural motifs are established. We therefore chose the reduced
minimal+spd basis for the sampling performance analysis.
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C. Convergence Tests for Si and Cu clusters

C.3. Cutoff Radius

The cutoff radius rcut is varied over the range of 3 to 6 Å. The results are summarized
in Tables C.5 and C.6.

rcut Eat ∆E(#2) ∆E(#3) ∆E(#4) r1 r2 r3 ωsmallest ωlargest

3 -31.198 0.786 0.953 0.966 2.51 2.49 2.55 170 434
4 -31.361 0.782 0.956 0.965 2.51 2.49 2.55 171 435
5 -31.368 0.782 0.956 0.964 2.51 2.49 2.55 170 435
6 -31.368 0.782 0.956 0.964 2.51 2.49 2.55 170 435

Table C.5.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the four dominant isomers of Si7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. rcut [Å].

rcut Eat ∆E(#2) ∆E(#10) r1 r2 r3 ωsmallest ωlargest

3 -14.510 0.222 1.081 2.46 2.46 2.60 70 240
4 -14.700 0.223 1.103 2.46 2.46 2.60 70 240
5 -14.723 0.224 1.107 2.46 2.46 2.60 70 239
6 -14.725 0.224 1.108 2.46 2.46 2.60 70 239

Table C.6.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the three dominant isomers of Cu7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. rcut [Å].

The bond distances do not vary at all over the range of the considered cutoff radii.
Furthermore, the energy differences are converged within 10 meV and the vibrational
frequencies within 2 cm−1 at rcut = 4 Å so that we chose this value for the production
runs.
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C. Convergence Tests for Si and Cu clusters

C.4. Hartree Potential

For the maximum angular momentum lmax in the multipole decomposition scheme, we
tried a value of 3, 4, 6 and 8. The results are summarized in Tables C.7 and C.8.

lmax Eat ∆E(#2) ∆E(#3) ∆E(#4) r1 r2 r3 ωsmallest ωlargest

3 -31.369 0.779 0.954 0.961 2.51 2.49 2.55 170 435
4 -31.365 0.781 0.956 0.964 2.51 2.49 2.55 170 435
6 -31.361 0.782 0.956 0.965 2.51 2.49 2.55 171 435
8 -31.361 0.782 0.956 0.965 2.51 2.49 2.55 170 435

Table C.7.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the four dominant isomers of Si7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. lmax.

lmax Eat ∆E(#2) ∆E(#10) r1 r2 r3 ωsmallest ωlargest

3 -14.713 0.223 1.104 2.46 2.46 2.60 70 240
4 -14.704 0.223 1.104 2.46 2.46 2.60 70 240
6 -14.700 0.223 1.103 2.46 2.46 2.60 70 240
8 -14.700 0.223 1.103 2.46 2.46 2.60 70 240

Table C.8.: Convergence of the atomization energy Eat [eV] and energy differences w.r.t.
the ground state ∆E [eV] for the three dominant isomers of Cu7 as well as
the bond distances, smallest and largest vibrational frequency [cm−1] of the
ground state w.r.t. lmax.

Again, the results do not critically depend upon lmax and with the default value of 6, all
results are converged within 1 meV, 0.01 Å and 1 cm−1 at the minimal+spd basis set
level.
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C. Convergence Tests for Si and Cu clusters

C.5. Force Convergence Criterium and Finite

Displacement for the Numerical Hessian

Si7 Cu7

ωsmallest ωlargest ωsmallest ωlargest

10−2 170 435 70 240
Fmax [eV/Å]

10−3 170 435 70 240
10−1 170 437 70 241

∆ [Å] 10−2 170 435 70 240
10−3 170 435 70 240

Table C.9.: Vibrational frequencies for the ground-state isomers of Si7 and Cu7 w.r.t.
the force convergence criterium Fmax and the finite displacement ∆.

Though the bond distances, as was illustrated in section 6.2, are typically converged
within 10−3 Å using a force convergence criterium for the local relaxation scheme of
10−2 eV/Å, it is a priori not clear, whether such a value is enough to converge the
vibrational frequencies, for which it is essential to be in a local minimum. We there-
fore further relaxed the ground-state isomers of Si7 and Cu7 further to a tighter force
convergence criterium of 10−3 eV/Å and recomputed the vibrational spectra, of which
the smallest and largest frequencies are presented in Table C.9. As one can see, the
frequencies do not change at all. The step width ∆ for the finite difference scheme to
calculate the Hessian turns out to be uncritical. Our chosen value of 10−3 Å is small
enough, ensuring a converged vibrational spectrum without showing grid noise due to
the discrete integration grid.
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D. High Order Finite Difference
Schemes

Numerical derivatives are required for the calculation of the Hessian, which is composed
of the first derivatives of the atomic forces. Furthermore, numerical forces are used as
reference values for the accuracy tests of analytical forces. Accurate high-order schemes
up to any desired order can herein be obtained by a Taylor-expansion.

∂

∂x
f =

1

C̃h

N∑

n=−N

Cnf(xi + nh, yj, zk) +O(h2N) . (D.1)

The coefficients are anti-symmetric with respect to the central node f(xi, yj, zk), i.e.
C−n = −Cn and are given in Table D.1.

N C̃ C3 C2 C1 C0

1 2 1 0
2 12 -1 8 0
3 60 1 -9 45 0

Table D.1.: Coefficients for the first numerical derivative
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D. High Order Finite Difference Schemes

N C̃ C6 C5 C4 C3 C2 C1 C0

1 1 1 -2
2 12 -1 16 -30
3 180 2 -27 270 -490
4 5040 -9 128 -1008 8064 -14350
5 25200 8 -125 1000 -6000 42000 -73766
6 831600 -50 864 -7425 44000 -222750 1425600 -2480478

Table D.2.: Coefficients for the second numerical derivative

Correspondingly, the second derivative can be discretized

∂2

∂x2
φ =

1

C̃h2

N∑

n=−N

Cnφ(xi + nh, yj, zk) +O(h2N+2) . (D.2)

Here, the coefficients (Table D.2) are symmetric, i.e. C−n = Cn.
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E. Computed Structures and IR
Spectra of Co+

nArm Complexes

In the following, all calculated Co+
n Arm complexes for both PBE and PW-LDA are listed.

Shown are the IR spectra together with the underlying geometry. For each structure,
the spin state and the energy difference with respect to the ground-state isomer is given.
All bond distances are given in units of Å. For each cluster size, the bare Co+

n clusters
are presented first, being followed by Co+

n Arm complexes, which are overlapped with the
IR spectra of the corresponding bare clusters to emphasize the influence of the Ar probe
atom on the vibrational fingerprint. For the larger Co+

n Arm-complexes (n=6-8), only the
Co-Ar bond distances are shown for the sake of overview, since the Co-Co distances are
in these cases only slightly distorted in the order of few hundreds of Å with respect to
the bare cluster. For a few larger clusters, the bond distances are not explicitly given in
the plot, but the atoms are labelled instead and the corresponding distances are given
on the last page of this Appendix. Furthermore, the energy differences shown for the
Co+

n Arm complexes are referred to the corresponding ground-state isomer of the Co+
n Arm

cluster structure. Complemented are the data by the binding energy of the Ar atom and
the symmetry point group, the latter being defined within a threshold of 0.01 Å. We
note that in the case of the Co+

n Arm complexes, the symmetry point group is given for
the corresponding bare cluster structure, since the Ar atom always breaks the symmetry
which reduces the exact point group almost always to C1 and thus makes the concept of
the point group useless in the context of nomenclature if implying the Ar atom explicitly.
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E. Computed Structures and IR Spectra of Co+
n Arm Complexes
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Figure E.1.: Co+
4 IR spectra with PBE
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E. Computed Structures and IR Spectra of Co+
n Arm Complexes
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E. Computed Structures and IR Spectra of Co+
n Arm Complexes
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4 Arm IR spectra with PBE

152



E. Computed Structures and IR Spectra of Co+
n Arm Complexes
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Figure E.5.: Co+
5 IR spectra with PBE
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Figure E.6.: Co+
5 Ar IR spectra with PBE
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Figure E.7.: Co+
5 Ar5 IR spectrum with PBE
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Figure E.8.: Co+
5 Ar IR spectra with PW-LDA
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Figure E.9.: Co+
6 IR spectra with PBE

158



E. Computed Structures and IR Spectra of Co+
n Arm Complexes

  

E = 0.0

D4h    

S = 15/2

�E = 0.08 eV

S = 13/2

S = 13/2

�E = 0.53 eV

C2v

D3d    

C2v

C2v

D3d    

S = 15/2

�E = 0.63 eV

�E = 0.84 eV

S = 13/2

S = 11/2

E
b
 = 0.30 eV

E
b
 = 0.12 eV

E
b
 = 0.23 eV

E
b
 = 0.13 eV

2.28

2.32

2.44

2.76

2.51

2.69

2.46

2.78

Figure E.10.: Co+
6 Ar IR spectra with PBE. We note that the S=13/2 ground-state isomer

traverses a slight structural rearrangement when an Ar atom is bound and
possesses D4h symmetry contrary to the corresponding bare cluster with
D3d symmetry.
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Figure E.11.: Co+
6 Ar IR spectra with PW-LDA. We note that the S=13/2 ground-state

isomer traverses a slight structural rearrangement when an Ar atom is
bound and possesses D4h symmetry contrary to the corresponding bare
cluster with D3d symmetry.
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Figure E.12.: Co+
7 IR spectra with PBE
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Figure E.13.: Co+
7 IR spectra with PBE
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Figure E.14.: Co+
7 Ar IR spectra with PBE

163



E. Computed Structures and IR Spectra of Co+
n Arm Complexes

  

S = 16/2

�E = 0.14 eV

S = 16/2

S = 16/2

C2v    

C2v    

C2v  

�E = 0.16 eV

S = 16/2

C2v   

�E = 0.19 eV

E
b
 = 0.15 eV

E
b
 = 0.11 eV

E
b
 = 0.10 eV

E
b
 = 0.14 eV

S = 16/2

C2v   

�E = 0.21 eV

E
b
 = 0.11 eV

S = 16/2

C2v   

�E = 0.22 eV

E
b
 = 0.10 eV

�E = 0.10 eV
2.64

2.76

2.79

2.68

2.71

2.76

Figure E.15.: Co+
7 Ar IR spectra with PBE
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Figure E.16.: Co+
7 Ar IR spectra with PW-LDA

165



E. Computed Structures and IR Spectra of Co+
n Arm Complexes

  

S = 17/2

�E = 0.10 eV

S = 17/2

Cs   

Cs    

S = 17/2

Cs     A 

�E = 0.47 eV

  E = 0.0

S = 17/2

Cs     B

�E = 0.47 eV

S = 17/2

C1     C 

�E = 0.48 eV

S = 17/2

�E = 0.21 eV

C2v    

2.38

2.34

2.23

3.01

2.29

2.41

2.32

2.35

2.27

3.06

2.26

2.29

2.32

2.37

2.34

2.322.28

2.54

2.45

2.50

2.31

2.23

2.38

2.28

2.29

1
2

3

4 5

6

7
8

2.29

Figure E.17.: Co+
8 IR spectra with PBE. We note that contrary to the Cs A and B

isomers, the C1 C isomer does not have a mirror plane, since the apex
atom which caps the distorted pentagonal bipyramid, is slighly tilted, thus
reducing it to the C1 point group.

166



E. Computed Structures and IR Spectra of Co+
n Arm Complexes

  

S = 17/2

�E = 0.55 eV

Td    

S = 17/2

�E = 0.57 eV

Cs    

S = 17/2

�E = 0.50 eV

Cs         D

2.42
2.29

2.31

2.35

2.30

2.362.33

2.40

2.43

12

3

4 5

6

7

8

Figure E.18.: Co+
8 IR spectra with PBE
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Figure E.19.: Co+
8 Ar IR spectra with PBE
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Figure E.20.: Co+
8 Ar IR spectra with PBE
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Figure E.21.: Co+
8 Ar IR spectra with PW-LDA. We note that contrary to PBE, the

double-capped trigonal prism is not distorted and possesses C2v symmetry.
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E. Computed Structures and IR Spectra of Co+
n Arm Complexes

Bond distances for the C1 isomer of Co+
7 with PW-LDA [Å]: r13=2.37,r14=2.30,r15=2.22,

r16=2.59,r17=2.23, r34=2.12, r45=2.30, r56=2.12, r67=2.18,r73=2.18, r32=2.61, r42=2.22,
r52=2.29,r62=2.38, r72=2.22

Bond distances for the Cs A isomer of Co+
8 with PBE [Å]: r12=r16=2.29, r72=r76=2.37,

r73=r75=2.36, r82=r86=2.39, r83=r85=2.29, r26=2.42, r23=r56=2.37, r34=r45=2.36, r78=2.41,
r48=2.41, r47=2.29, r17=2.31

Bond distances for the Cs B isomer of Co+
8 with PBE [Å]: r12=r16=2.32, r72=r76=2.34,

r73=r75=2.34, r82=r86=2.37, r83=r85=2.29, r26=2.37, r23=r56=2.43, r34=r45=2.32, r78=2.44,
r48=2.56, r47=2.32, r17=2.30

Bond distances for the C1 C isomer of Co+
8 with PBE [Å]: r12=2.35, r16=2.29, r72=2.36,

r76=2.45, r73=2.32, r75=2.31, r82=2.38, r86=2.40, r83=2.28, r85=2.29, r26=2.31, r23=2.36,
r56=2.33, r34=2.22, r45=2.24, r78=2.84, r48=2.80, r47=2.45, r17=2.27

Bond distances for the Cs D isomer of Co+
8 with PBE [Å]: r12=r16=2.34, r72=r76=2.44,

r73=r75=2.46, r82=r86=2.35, r83=r85=2.51, r26=2.35, r23=r56=2.24, r34=r45=2.27, r78=2.89,
r48=2.28, r47=2.31, r17=2.21

Bond distances for the Cs isomer of Co+
8 with PW-LDA [Å]: r12=r16=2.19, r72=r76=2.26,

r73=r75=2.25, r82=r86=2.32, r83=r85=2.21, r26=2.34, r23=r56=2.35, r34=r45=2.21, r78=2.44,
r48=2.55, r47=2.31, r17=2.28
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Kurzfassung

Die Motivation dieser Arbeit war die Entwicklung und Analyse eines Dichtefunktional-
Theorie (DFT) basierten Basin-Hopping Algorithmus zur Strukturbestimmung atomarer
Cluster. Diese methodische Arbeit wurde zur Interpretation von Multiphotonenabsorp-
tionsspektren im nahen Infrarotbereich kleiner Co+

n Arm (n=4-8) Cluster angewendet,
die in der Gruppe von Prof. Gerard Meijer in der Abteilung für Molekülphysik des FHI
gemessen wurden. Hierbei wurde zunächst durch gleichförmiges Abtasten des Konfi-
gurationsraumes ein Datensatz von Isomeren generiert, der unter anderem verschiedene
Jahn-Teller verzerrte Versionen desselben strukturellen Motivs besaß, die demnach im
Falle des üblichen Ansatzes, Motive aufgrund chemischer Intuition zu wählen, nicht ge-
funden worden wären. Für die identifizierten Isomere wurden dann die Infrarotspektren
berechnet und mit den gemessenen Daten verglichen. Diese Methode des Abgleichs
schwingungsspektroskopischer Fingerabdrücke basiert dabei auf der Annahme, dass un-
terschiedliche Isomere charakteristische Spektren besitzen, die eindeutig zuzuordnen
sind. In dieser Arbeit besaßen jedoch viele Isomere, insbesondere die verschiedenen
Jahn-Teller Verzerrungen, qualitativ ähnliche Fingerabdrücke, was somit diese Methode
limitierte. Nur in einigen Fällen war hier eine eindeutige Strukturzuordnung möglich.
Zur eindeutigeren Eingrenzung ist es daher ratsam, zusätzliche, unabhängige spektros-
kopische Daten in Betracht zu ziehen, wie beispielsweise Photoelektronenspektren.

Ein weiterer Aspekt dieser Studie betraf die Rolle des involvierten Ar Sondenatoms.
Nach der bisherigen Vermutung, die sich auf frühere Arbeiten zu kationischen Vanadium,
Niob und Tantal Clustern stützt, ist der Einfluss des Edelgasatoms auf das Infrarotspek-
trum vernachässigbar, sodass das gemessene Absorptionsspektrum als das des reinen
Übergangsmetallclusters betrachtet werden kann. Im Falle der Cobalt Cluster konnte
jedoch erstmals eine starke Abhängigkeit der Spektren von der Zahl der gebundenen Ar
Atome beobachtet werden, die insbesondere für die kleineren Cluster stärker ausgeprägt
war. Dies veranlasste uns, näher auf die Natur der Co-Ar Bindung einzugehen. Die An-
nahme, dass das Ar Atom rein elektrostatisch an den geladenen Cobalt Cluster gebun-
den ist, konnte hierbei durch ein elektrostatisches Modell bestätigt werden. Vereinfacht
ausgedrückt ist demnach die positive Ladung des Clusters auf dessen Oberfläche ver-
schmiert und erzeugt dadurch lokale Dipolmomente, die auf den Atomen lokalisiert und
radial bzgl. des Clusterzentrums orientiert sind. Das Ar Atom bindet durch induzierte
Dipol-Dipol Wechselwirkung auf einem Top-Platz, wobei das Dipolfeld des direkt koor-
dinierten Co Atoms bindet, während die Dipolfelder aller anderen Co Atome repulsiv
wirken. Im Rahmen dieses Modells konnte damit die Variation der Bindungsenergien
und -abstände für unterschiedliche Clustergrößen und Isomere ebenfalls auf diese rein
elektrostatischen Effekte zurückgeführt werden und somit Rückschlüsse auf das unter-
schiedliche Verhalten des Ar Atoms in den früheren Studien gezogen werden.
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Im zweiten Teil dieser Arbeit wurde der methodische Aspekt des Abtastens des Konfi-
gurationsraumes näher untersucht. Aufgrund des exponentiellen Wachstums der Anzahl
der lokalen Minima mit der Systemgröße sind die Grenzen heutiger Rechenkapazitäten
schnell erreicht, insbesondere im Zusammenhang mit einer rechenintensiven ab initio

Energetik wie DFT. Anhand kleiner Silizium und Kupfer Cluster als Benchmarksys-
teme wurde daher der Einfluss der unterschiedlichen technischen Parameter auf die Ef-
fizienz des Abtastens untersucht, um mögliche Strategien für Optimierungen herauszuar-
beiten. Hierbei stellte das Messen von Effizienz bereits in sich eine Herausforderung
dar, da zum einen eine Maßzahl für Effizienz eingeführt werden musste und zum an-
deren statistisch signifikante Mittelwerte eine hohe Zahl an Abtastzyklen erforderlich
machte. Dieses wurde durch das eingeführte Konzept einer ”Hopping Matrix” verein-
facht, die die Übergangswahrscheinlichkeiten verschiedener Isomere zusammenfasst und
statistisch signifikante Mittelwerte dann ohne weitere ab initio Rechnungen liefert. Die
Analyse fokussierte sich auf den wesentlichen technischen Aspekt für diese Systemgröße,
die Generierung neuer Zufallsstrukturen. Das Basin-Hopping Verfahren erwies sich hier-
bei als relativ robust bzgl. der technischen Parameter, wobei ungünstige Einstellungen
zudem über ein einfaches adaptives Verfahren vermieden werden können. Die Band-
breite, über die die Effizienz bei den untersuchten kleinen Clustergrößen variiert, läßt je-
doch nicht auf signifikante Effizienzsteigerungen hoffen, ohne den Anspruch aufzugeben,
gleichförmig und ohne jegliche chemische Intuition abzutasten. Stattdessen empfiehlt
es sich, den Fokus nicht auf das Abtasten des Konfigurationsraumes selbst, sondern auf
die Auswertung der Energieoberfläche zu richten, um Alternativen für die numerisch
intensiven ab initio Rechnungen zu finden.
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