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Abstract

The discovery of novel materials with specific functional properties is one of the highest goals
in materials science. Screening the structural and chemical space for potential new material
candidates is often facilitated by high-throughput methods. Fast and still precise computa-
tions are a main tool for such screenings and often start with a geometry relaxation to find
the nearest low-energy configuration relative to the input structure. In part I of this work,
a new constrained geometry relaxation is presented which maintains the perfect symmetry
of a crystal. How this also saves time and resources is shown in a benchmark study with
hundreds of materials throughout all symmetry groups. As another example, two materials
with meta-stable phases are relaxed with these new constraints that would otherwise loose
their symmetry in a fully unconstrained relaxation at zero Kelvin. The proposed constraints
also allows for local symmetry preservation or breaking enabling maximum flexibility when
systems with distortions or defects are investigated. This is demonstrated at the example of
a small polaron distortion.

Apart from improving such computations for a quicker screening of the materials space, bet-
ter usage of existing data is another pillar that can accelerate novel materials discovery. While
many different databases exists that make computational results accessible, their usability de-
pends largely on how the data is presented. We here investigate how semantic technologies
and graph representations can improve data annotation. A number of different ontologies
are developed enabling the semantic representation of crystal structures, materials proper-
ties as well experimental results in the field of heterogeneous catalysis. In a first use-case a
computational dataset of hybrid organic-inorganic perovskites is expressed as a knowledge
graph using these ontologies. Results from subsequent studies, such as similarity relations,
are added to showcase the flexibility of graph-based storage approaches. As a second applica-
tion, an experimental dataset for nine vanadium-containing catalyst materials is transformed
to a knowledge graph. We discuss the breakdown of the knowledge-graph approach when
knowledge is created using artificial intelligence and propose an intermediate information
layer. Gaining new insights was not possible simply by using semantic techniques for storage
and annotation. The underlying ontologies can provide background knowledge for possible
autonomous intelligent agents in the future. However, mathematical support is needed in the
natural sciences to infer new logical consequences from semantic descriptions. We conclude
that making materials science data understandable to machines is still a long way to go and
the usefulness of semantic technologies in the domain of materials science is at the moment
very limited.
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Zusammenfassung

Die Entdeckung von neuen Materialien mit speziellen funktionalen Eigenschaften ist eins
der wichtigsten Ziele in den Materialwissenschaften. Das Screening des strukturellen und
chemischen Phasenraums nach potentiellen neuen Materialkandidaten wird häufig durch den
Einsatz von Hochdurchsatzmethoden erleichtert. Schnelle und dennoch genaue Berechnun-
gen sind eins der Hauptwerkzeuge für dieses Phasenraum-Screening und der erste Schritt
sind oft Geometrierelaxationen um die nächstgelegene Konfiguration mit einem lokalen En-
ergieminimum zu finden. In Teil I dieser Arbeit wird eine neue Methode der eingeschränk-
ten Geometrierelaxation vorgestellt, in welcher die perfekte Symmetrie des Kristalls erhalten
bleibt. Anhand von hunderten Materialien quer durch alle Symmetriegruppen wird in einer
Benchmark-Studie gezeigt, wie dieser Ansatz Zeit und Resourcen spart. Als zweites Beispiel
werden zwei Materialien mit metastabilen Phasen eingeschränkt relaxiert, die in einer vollen
unbeschränkten Geometrieoptimierung bei null Kelvin ihre Symmetrie verlieren würden.
Die neue Methode erlaubt ebenfalls das lokale Erhalten oder Brechen von Symmetrien was
wiederum ein Maximum an Flexibilität bedeutet, insbesondere für Systeme mit Verzerrungen
und Defekten. Am Beispiel eines kleinen Polarons wird dies demonstriert.

Neben der Verbesserung solcher Berechnungen um den Materialraum schneller durchleuchten
zu können ist auch eine bessere Nutzung vorhandener Daten ein wichtiger Pfeiler, der die
Entdeckung neuer Materialien beschleunigen kann. Obwohl schon viele verschiedene Daten-
banken für computerbasierte Materialdaten existieren ist die Nutzbarkeit stark abhängig
von der Darstellung dieser Daten. Hier untersuchen wir inwiefern semantische Technolo-
gien und Graphdarstellungen die Annotation von Daten verbessern können. Verschiedene
Ontologien werden entwickelt anhand derer die semantische Darstellung von Kristallstruk-
turen, Materialeigenschaften sowie experimentellen Ergebenissen im Gebiet der heteroge-
nen Katalyse ermöglicht werden. Zunächst wird als Beispiel ein DFT-Datensatz von hy-
briden organisch-anorganischen Perowskiten als Wissensgraph mithilfe dieser Ontologien
repräsentiert. Ergebnisse späterer Studien, wie beispielweise Ähnlichkeitsrelationen, wer-
den dem Graphen hinzugefügt um die Flexibilität solch graph-basierten Speichermethoden
aufzuzeigen. In einer weiteren Anwendung wird ein Wissensgraph aus einem experimentellen
Datensatz für neun vanadiumbasierte Katalysematerialien erstellt. Wir diskutieren, wie der
Ansatz Ontologien und Wissensgraphen zu separieren, zusammenbricht wenn neues Wissen
mit künstlicher Intelligenz involviert ist. Eine Zwischenebene wird als Lösung vorgeschla-
gen. Semantische Technologien zur Speicherung und Annotation führen nicht automatisch zu
einem Erkenntnisgewinn, sondern bilden eher die Grundlage für zukünftige autonome Agen-
ten, die Ontologien als Hintergrundwissen verwenden. Es ist in den Naturwissenschaften
allerdings notwendig mathematische Konzepte zu unterstützen um neue logische Schlüsse
aus semantischen Beschreibungen ziehen zu können. Solche Ansätze existieren bisher nicht.
Zusammenfassend ist es noch ein langer Weg bis Materialdaten für Maschinen verständlich
gemacht werden können, so das der direkte Nutzen semantischer Technologien nach ak-
tuellem Stand in den Materialwissenschaften sehr limitiert ist.
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General Introduction

Technological progress is today closely connected with advanced materials. From the touch
screen display of our smartphones over the coatings of gas turbines to the right catalyst ma-
terial for carbon dioxide elimination in our atmosphere: Every area of modern life depends
on the choice of the appropriate material. Finding and designing new materials that meet
the demands of specific applications is one of the most challenging tasks in materials sci-
ence. The amount of possible materials is defined by the immensity of combinations in the
chemical and structural space and is practically infinite. Even with today’s fast supercom-
puters only a tiny portion of this space has been explored so far. Experimentally, even less
materials are known. Properties of interest are often the result of complicated computational
or experimental workflows requiring expensive calculations or setups, respectively, and are
thus available for an even smaller portion of materials. Not so long ago, physics and the
natural sciences were divided into experimental and theoretical studies. With the develop-
ment and improvement of computers, a third pillar has evolved: the computational physics
and chemistry. Today, the amount of data created every day has become tremendously large
and a so called fourth paradigm of materials science research (or research in general) has
risen. This is the age of big-data driven materials science which aims to find patterns and
anomalies in big data using for example artificial intelligence (AI). [1] In order to find the
needle in the haystack1, not only a sufficient amount of data is needed but also the quality
of these data must be reliable enough to not mistake false input data for interesting anoma-
lies. For future data production therefore quality and quantity are similarly important factors.
High-throughput approaches are very popular nowadays as means to scan the chemical and
structural space for possibly interesting materials. Here, one method is reducing accuracy just
enough to maintain a balance between efficiency and quality so that qualitative trends can
still be identified reliably. Exploiting symmetry in crystal structure is a widely used method to
both accelerate calculations and improve their accuracy at the same time. Traditionally, crys-
tal symmetries are incorporated already at the electronic-structure level. This saves memory
and workload especially for highly symmetric systems. Such global symmetry constraints,
e.g. space group conservation, are not sufficient to describe systems with distortions or de-
fects. Selectively breaking the symmetry locally is necessary to address these effects that may
crucially alter a material’s properties. In Part I of this thesis, we present an effective way to
treat global and local symmetries equally during geometry relaxations. Utilizing parametric
constraints, both global and local symmetry can be preserved or symmetry can selectively be
broken locally when needed. We explore how this approach enables relaxations of dynam-
ically stabilized structures that would otherwise not be addressable easily. In a benchmark
study, we show that it furthermore accelerates relaxations for stable systems and is therefore
a high-throughput-ready method. Finally its power to handle local distortions in relaxations
of supercells is demonstrated at the example of a small polaron in MgO. Besides accelerating
and facilitating calculations, these constraints also classify materials. Global symmetries do

1a perfect material for a specific use-case in the huge amount of possibilities
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in fact determine the space group of materials, whereas local symmetry breaking classifies
different types of defect formations and distortions. Such clear and unique classifications are
essential to harvest the wealth of data produced nowadays.

Facilitating high-throughput methods naturally leads to a rapid increase in the amount of
produced data. Storage and annotation of these data has therefore become an important
pillar of materials research with its own challenges and strategies. Several databases and
repositories are nowadays established in the field, among which the NOMAD Repository and
Archive [2] is the largest due to synergetic relationships with other major databases like
AFLOW [3], Materials Project [4], and OQMD [5]. Each data or dataset is fully character-
ized by a set of attributes called meta-data that allows to clearly describe the data and their
provenance. The aforementioned databases all adopt their own meta-data schemas of which
the NOMAD Metainfo is the most sophisticated one that not only structures, categorizes and
describes the meta-data terms but also provides basic relations between them. A plethora
of different meta-data efforts have been taken since the 1980s: the Chemical Markup Lan-
guage (CML [6]) for chemical meta-data; the European Theoretical Spectroscopy Facility
(ETSF) File Format Specifications [7], and the Electronic Structure Common Data Format
(ESCDF) [2] are only a few of them. More recently, the OPTIMADE consortium [8] has built
a first version of an API providing unified access to a subset of common meta-data terms of
different data sources. According to the FAIR principles [9], data as well as meta-data should
be findable, accessible, interoperable and re-usable or, as termed in NOMAD, re-purposable.
The NOMAD Metainfo fulfills these data principles in many aspects and therefore serves as a
good starting point to add another layer of information: semantics. Semantics is the branch
of linguistics considering the meaning of words and their relations. In computer science, this
refers to the formal expression of these meanings within standardized frameworks. One such
framework is an ontology that enables annotating linked data and provides means to describe
knowledge in a machine-readable formal manner. Ontologies have gained increasing interest
in the last decades especially because reasoning software can be used on top of them. One
desired goal of such reasoners is to infer logical consequences automatically that have not
been put into the ontology directly. The European Materials and Modelling Counsil (EMMC)
has focused on the development of an upper ontology for the physical sciences (EMMO) [10]
that is based on descriptions from physics, analytical philosophy, and information and com-
munication technologies. Focusing on small chemical compounds, the ChEBI [11] ontol-
ogy (Chemical Entities of Biological Interest) is a dictionary for general knowledge about
molecular entities. Other efforts like the Materials Design Ontology [12], the Materials On-
tology [13] and MatOnto [14] reflect that ontology development is currently a hot topic in
materials science. Most ontologies are designed to either improve data exchange among het-
erogeneous databases, therefore covering a wide range of the most common properties and
concepts, or for specific narrow sub-domains like nanoparticle domain [15, 16]. In contrast,
part II of this thesis attempts to not only design ontologies that correctly represent a material
and its properties but also to find applications that showcase the unique value ontologies can
provide in the materials sciences. The NOMAD Metainfo is converted to an ontology and can
be used directly to represent data in the NOMAD Archive in a linked data format. Further,
the Metainfo ontology is enhanced and semantified using a number of ontologies developed
within the NOMAD ecosystem. For an example dataset, a knowledge graph is created and en-
hanced using new and old semantic technologies. Using heterogeneous catalysis as a contrary
experimental use-case, an ontology for catalytic characterization and testing experiments is
developed. A small set of real experimental results in combination with the outcomes of
a machine-learning study on this data is represented utilizing this ontology. Finally, limi-
tations of semantic technologies as they are available and usable today are identified and
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Chapter 1

The Basics: From the Many-Body
Problem to Polarons

This chapter introduces the fundamental concepts that are used in electronic-structure theory.
After a short description of the many-body problem and its Hamiltonian, we will explain
the widely used Born-Oppenheimer approximation as well as density-functional theory as
the main method for electronic-structure calculations. Based on that, the atomic positions
that make up the crystal structure are discussed together with symmetry considerations and
ab initio methods of structure relaxations. Finally, temperature effects like the vibrational
motion of the nuclei and quasiparticles like phonons and polarons are introduced.

1.1 The Many-Body Problem

Fully describing a solid material like a crystal requires solving the many-body time-independent
Schrödinger equation given by

HΨ = EΨ (1.1)

with the many-body wave function Ψ, which depends on the coordinates of both, all elec-
trons and all nuclei. The complexity of this becomes obvious when looking at the full non-
relativistic Hamiltonian for a system with N electrons and Nnuc nuclei:

H = TR + Tr + Vnn + Vee + Ven (1.2)

=−
Nnuc∑
I

~2

2MI
∇2
I −

N∑
i

~2

2m
∇2
i (1.3)

+
1

2

Nnuc∑
I 6=J

ZIZJe
2

|RI −RJ |
+

1

2

N∑
i 6=j

e2

|ri − rj |
−

N∑
i

Nnuc∑
I

ZIe
2

|ri −RI |
,

where the indices i, j run over the electrons with mass m and I, J over the nuclei with
masses MI and nuclear charges ZI . TR and Tr are the nuclear and electronic kinetic energy
operators, Vee and Vnn the electron-electron and nucleus-nucleus Coulomb repulsion terms
excluding self-interaction and Ven is the attractive Coulomb potential between the nuclei and
electrons. For a representative piece of matter, Nnuc would be in the order of 1023 leading to
the necessity of a number of approximations to solve the many-body problem.
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1.1.1 Adiabatic Approximation

One of the most important approximations being made is the adiabatic or Born-Oppenheimer
(BO) approximation. It uses the fact that the motion of the nuclei happens on a much larger
timescale than the motion of the electrons due to the MI/m times heavier mass. Hence,
the electrons follow the nuclear movement almost simultaneously and their dynamics can
be decoupled. The Hamiltonian can be split into an electronic (He) and a nuclear (Hn)
part

Hn = TR + Vnn , He = Tr + Vee + Ven . (1.4)

that can be solved consecutively. First, the electronic Schrödinger equation can be solved
regarding the nuclear positions {RI} only as parameters. The electronic energy eigenvalues
Ei({R}) depending on these parameters then serve as a potential for the nuclear eigenvalue
problem.

Formally, the total wavefunction can be expanded in the basis of the orthonormal electronic
eigenfunctions that depend parametrically on the nuclear positions. The expansion coeffi-
cients are the nuclear wave functions. When the nuclear kinetic energy operator TR acts on
this product wave function, non-adiabatic couplings between different electronic states ap-
pear that are due to the nuclear motion in the off-diagonal matrix elements. Neglecting these
as well as their diagonal elements lead to the Born-Oppenheimer (BO) approximation.

Whenever non-adiabatic effects become important, the Born-Oppenheimer approximation
is not sufficient anymore to describe the systems appropriately. An example are electron-
phonon interactions as well as Jahn-Teller like distortions. Furthermore the nuclear coupling
terms become large when two Born-Oppenheimer surfaces lie close together. Consequently
another assumption for the BO approximation is that the energy surfaces are well sepa-
rated.

Once the electronic problem is solved, all information needed to describe the motion of the
nuclei is given. The quantum nuclear dynamics are determined by the nuclear Schrödinger
equation. However, it is in many cases sufficient to solve the classical Newton equations
to obtain reasonable results for the relatively slow movement of the nuclei. Therefore, a
combination of ab initio quantum electronic-structure calculations with classical equations for
the nuclei equilibration is considered often. [17] In the Born-Oppenheimer approximation,
the nuclei move in the effective potential created by the electrons as calculated for example
using density-functional theory.

1.1.2 Density Functional Theory

Despite the Born-Oppenheimer approximation, which regards the nuclear coordinates only
as parameters, solving the electronic problem still remains impossible for systems with many
electrons.

Based on the idea of Thomas [18] and Fermi [19], in density-functional theory (DFT) the
N -electron wavefunction is replaced by the 3-dimensional electron density, hence reducing
the degrees of freedom by a factor N . In 1964, Hohenberg and Kohn recognized that the
many-electron wavefunction is too complex and could prove that the electron density can be
used instead from which all other ground-state properties follow. [20] While it is not surpris-
ing that the ground state wavefunction and therefore the density can be uniquely determined
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from the external potential vext(r) 1, the Hohenberg-Kohn theorem implies also the oppo-
site, namely that from the density the external potential can be concluded and thus also
all other properties of the system. One can say that the wavefunction as well as properties
like the ground state energy E are functionals of the external potential and, because of the
Hohenberg-Kohn theorem, also of the density. The HK energy functionalEHK[ρ(r); vext(r)] ex-
ists and is unique and it is “minimal at the exact ground-state density, and its minimum gives
the exact ground-state energy of the many-body problem” [20]. According to the variational
principle this energy functional needs to be minimized with respect to the density

EHK[ρ(r); vext(r)] = T [ρ(r)] + Vee[ρ(r)]︸ ︷︷ ︸
universal functional

F [ρ(r)]

+

∫
vext(r)ρ(r)dr . (1.5)

The density-functional theory as presented so far is exact up to disregarded phenomena like
spin, magnetism or degeneracy. It has to be noted that the universal functional F [ρ(r)] is
unknown and has to be appropriately approximated.

The most often used framework to practically apply DFT is the Kohn-Sham (KS) scheme,
which assumes that “for each non-uniform ground-state density ρ(r) of an interacting elec-
tron system there exists a non-interacting electron system (the Kohn-Sham system) with the
same non-uniform ground-state density”[20]. This leads to the decomposition of the ground-
state density ρ(r) of an interacting system into the sum of N independent one-electron orbital
contributions . When the kinetic energy of the Kohn-Sham system is denoted by T0 and the
Hartree potential VHartree is defined as the Coulomb repulsion between the ith electron and
the electron density produced by all electrons, the universal functional in Equation 1.5 can
be further split into

F [ρ] = T0[ρ] + VHartree[ρ] + Exc[ρ] (1.6)

with the exchange-correlation energy functional Exc containing all many-body quantum ef-
fects. A variational calculation of the functional 1.5 leads to the Kohn-Sham equations that
are Hartree-Fock-like single particle equations with a local effective potential and need to be
solved iteratively usually in a self-consistent field (SCF) approach.

As the exact exchange-correlation energy functionalExc[ρ] is unknown, many different density-
functional approximations have been developed with different levels of accuracy [21]. Lo-
cal density approximations (LDA) regard the exchange correlation energy as a function of
only the value of the electron density at each point in space neglecting any derivatives of the
density. A step further goes the class of generalized-gradient approximations (GGA) taking the
first derivative, i.e. the gradient, of the density into account to correct for the non-locality
of real systems. Whereas the LDA is local, GGAs fall under the name of semi-local approxi-
mations. The proposed parametrization by Perdew, Burke and Ernzerhof [22] (PBE) is one
of the widest used GGA and also used in this work alongside its later modification for solids
PBEsol [23]. Meta-generalized gradient approximations (MGGA) additionally consider the ki-
netic energy densities τ , which are the Laplacians of the orbitals. Even more accurate but
also computationally costly are hybrid functionals mixing a fraction of exchange energy from
the Hartree-Fock calculation into a GGA. Especially popular is the Heyd–Scuseria–Ernzerhof
screened hybrid functional (HSE2006) [24], which can be necessary to obtain more accurate
electronic Kohn-Sham levels or for charge-transfer calculations.

1The external potential is in our case given by the electron-nucleus attraction.
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1.2 Crystal Structure

A crystal structure is characterized by its unit cell that is spanned by three lattice vectors (a,
b, c) and contains one or more atoms. Each atom’s position can then be written either in
Cartesian coordinates or in fractional coordinates referring to the lattice vectors as basis. The
discrete lattice that is generated by a set of discrete translations defined by the lattice vectors
is called Bravais lattice. In three dimensions only 14 different Bravais lattices exist.

1.2.1 Symmetry Groups

Due to the periodic nature of a crystal, several operations are possible that leave at least parts
of the crystal invariant. A point-symmetry operation is an operation where exactly one point
in the structure is left unchanged. The corresponding mathematical groups where these oper-
ations are classified are the so called point groups. They include groups for plane reflection,
rotation about an axis and combinations of them leading to 32 unique three-dimensional
crystallographic point groups. Another type of symmetry operation is translation, which
itself does not leave any point of the crystal invariant. However, certain combinations of
the point symmetry operations with translations yield another type of symmetry operations,
which similarly bring the crystal structure into self-coincidence. Together with the screw axis
and glide plane operations, 230 different space groups can be defined in three dimensional
space. A space group fully determines the symmetry of a periodic system. It also restricts the
possible positions for the atoms within the unit cell to the symmetrically equivalent sites ex-
hibiting the same local site point group symmetries (symmetry sites). These sites are called
Wyckoff positions and are tabulated for each space group in the International Tables for
Crystallography (ITC) [25, 26] and the Bilbao Crystallographic Server [27, 28]. Still, how
these Wyckoff positions are decorated with atoms leaves us with infinite possibilities and
explains the tremendous amount of crystal structures.

1.2.2 Structure Prototypes

Apart from the symmetry groups, another classification can be made into structural proto-
types, which are undecorated structures with given space group and Wyckoff positions. This
is useful because often the same structure is found among different chemical compositions.
It is common practice in the search for novel materials to decorate known structure proto-
types systematically with different elements to obtain potential new materials. [29, 30] An
example is the crystal structure of Wurtzite, which is found in many different chemical com-
positions, e.g. ZnO or GaN. The probably largest library collecting structure prototypes today
is the AFLOW Library of Crystallographic Prototypes [31, 32, 33]. As of February 2021 it con-
tains 1100 unique prototypes across all 230 space groups. They are sorted by space group,
stoichiometry and occupied Wyckoff sites, as calculated with AFLOW-SYM [34].

1.2.3 Structure Relaxation

Regardless whether a prototype has just newly been decorated with elements or a known ma-
terial is investigated with different computational settings (e.g. number of k-points or another
XC functional), a structure relaxation is most often the first step. Even if the experimental
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values for the real lattice parameters and atomic positions are known, the actual computa-
tional equilibrium configuration associated with the electronic ground state depends on the
physical and numerical approximations being made (e.g. XC functional, basis set, k-grid).
Relaxing the structure is an iterative process in which the BO potential-energy surface is ex-
plored to find a local minimum. In each step the electronic structure is calculated from first
principles with DFT, the forces on the atoms as well as the stress on the lattice is calculated
and the geometry is optimized until the forces are above a chosen threshold. A necessary
condition for a local minimum is that all forces on the atoms vanish. The inter-atomic forces
are the derivatives of the Born-Oppenheimer potential-energy surface with respect to the nu-
clear coordinates. Because the latter are only included as parameters (see Section 1.1.1), the
Hellmann-Feynman theorem [35, 36] can be applied stating

dEλ
dλ

=

〈
Φλ

∣∣∣∣ dHλ

dλ

∣∣∣∣Φλ

〉
(1.7)

for a continuous parameter λ. With that, the force acting on the kth atom becomes

Fk = −〈Φg(r;R) | ∇Rk
He |Φg(r;R)〉 . (1.8)

For electronic basis functions that depend on the nuclear coordinates (like atom-centered
orbitals) additional correction terms appear. These are the Pulay forces, which arise from
the derivative of the orbitals with respect to the nuclear positions. Besides, also a lack of
self-consistency and therefore inaccuracies in the energy lead to such correction terms. [37]
Furthermore, the lattice degrees of freedom need to be relaxed along with the atomic coor-
dinates. Equivalent to the forces on the atoms, a deformed lattice feels a stress, which also
needs to vanish at a local minimum. It is in general described by the stress tensor σ and
defined as the first order change of the total energy with respect to a strain deformation ε
relative to a reference system

σij =
1

V

∂E

∂εij

∣∣∣∣
ε=0

(1.9)

for a unit cell with volume V .The indices i and j stand for the three Cartesian coordinates,
i.e. the stress acts on a plane normal to the i-axis in the direction j. At a local maximum or
saddle point of the PES, forces and stress vanish as well, so that an additional constraint is
therefore a positive second derivative of the energy, which is commonly known as the Hessian
H or force constant matrix

Hij = − ∂Fi
∂Rj

. (1.10)

A plethora of different optimization algorithms exist (see e.g. [38]), which can be cate-
gorized into direct methods using only the function value, gradient methods using the first
derivative, and Newton methods using also the second derivative. The best technique de-
pends as so often on the system size and the available computational resources. Gradi-
ent algorithms like the steepest descent or conjugate gradient first choose a step direction
and then a step size, classifying them as line-search methods. Newton methods assume a
quadratic approximation around the current point. The validity of this approximation can
be specified with a trust radius making this technique a trust-region method where the step
size (the trust radius) is chosen before the step direction. [39] Quasi-Newton methods fall
in between steepest descent and Newton methods by updating an approximated Hessian in
each step instead of re-calculating it. This makes quasi-Newton approaches the most effi-
cient and widely used optimization strategy for local minimum detection on a PES. Many
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different quasi-Newton methods exist, all implementing their own updating functions for the
approximate Hessian. All have in common that the Hessian approximation must satisfy the
quasi-Newton condition, the secant equation, which can be viewed as a finite difference ap-
proximation or Taylor expansion of the gradient itself. Because in more than one dimension
this equation is underdetermined, additional constraints are needed to obtain a solution. The
most popular quasi-Newton algorithm is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm. [40, 41, 42, 43] In BFGS, the Hessian does not only need to be symmetric and
positive definite but also must be sufficiently close to the Hessian in the previous iteration.
To ensure this closeness the matrix norm of the difference of two subsequent Hessians has to
be minimized, which turns out to be equivalent to adding a symmetric, rank-two matrix to
the Hessian. The update is therefore called a rank-two update. In practice, not the Hessian
but its inverse is updated directly, so that no additional matrix inversion is necessary reduc-
ing the computational cost from O(n3) to O(n2). This method is very robust and shows a
self-correcting behavior if at some iteration the Hessian approximation is far from the true
Hessian. One limitation is the system size. Approximated Hessian matrices are usually dense
even if the true Hessian is sparse. Thus, the cost for storage of the approximated Hessian and
working with it can become crucial for large n.

1.3 Electronic-structure Calculations and Relaxations in FHI-aims

Electronic-structure calculations in this work were performed with the all-electron, full-
potential electronic-structure code FHI-aims (Fritz Haber Institute ab initio molecular sim-
ulations package). [17] To solve the Kohn-Sham equations, it uses numeric atom-centered
orbitals (NAOs) of the form

φi(r) =
ui(r)

r
Ylm(Ω) (1.11)

as basis functions for the Kohn-Sham orbitals. The shape of the radial part ui(r) is element-
dependent and numerically tabulated. Ylm(Ω) are the real and imaginary parts of the complex
spherical harmonics. This choice ensures the ability to gradually increase accuracy (and with
it computational cost) by adding more basis functions. The correct behavior of the radial
functions near the nuclei, i.e. for r → 0, is given by including occupied free-atom orbitals
in the basis. [17] Each radial function is a solution to a Schrödinger-like radial equation
with a potential v(r) = vi(r) + vcut(r) where the second potential cuts the tails of the radial
functions ensuring they are zero outside a confining radius rcut. The exponential form of the
confining potential in a region ronset < r < rcut is critical to avoid discontinuities in the basis
functions and their derivatives. Such a strict spatial separation ensures the good efficiency
of the necessary numerical integrations for larger systems with O(N) instead of O(N3) as
usual. [44] When periodic systems are treated, the Kohn-Sham Hamiltonian and its solutions
become k-dependent. The basis functions φi(r) can then be generalized to Bloch-like basis
functions of the form

χi,k(r) =
∑
N

exp [ik · T (N)] · φi [r −Rat + T (N)] (1.12)

where T (N) is the translation vector for the unit cell with the unique three-dimensional in-
dex N . The resulting k-dependent matrix elements are numerically integrated not in one
sweep but as partial integrals that each extend only over the volume of one unit cell. In prac-
tice, the basis functions for each element are grouped into different tiers that build on each
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other hierarchically. The minimal tier consists of core and valence functions for spherically
symmetric free atoms.

The choice of these NAOs result in additional terms for the atomic forces. A first correction
term appears because the electrostatic potential is truncated and the missing terms “move”
along with the nuclear positions. Also the so called Pulay terms arise that appear due to the
incompleteness of the basis set and because the basis function depend on the nuclear posi-
tions. [45] The Hellmann-Feynmann theorem is based on the assumption that the derivations
of the wavefunctions vanish, which does not hold in this case. The stress is calculated ana-
lytically in FHI-aims and includes corrections due to multiple approximations [46].

Because forces and stress are readily available after an electronic-structure calculation, FHI-
aims is also able to perform structure relaxations. The preferred algorithm is a trust-radius
enhanced BFGS method, which covers all use cases. As quickly mentioned in Section 1.2.3,
trust-radius refers to the step size that is chosen before the step direction in the type of
optimization techniques called trust-region methods [39].

1.4 Nuclear Dynamics in the Harmonic Approximation

In Section 1.2.3 we have placed the nuclei in the local minima of the potential-energy surface,
which represent their equilibrium positions at zero Kelvin. However, in a quantum description
localized ions have a non-vanishing kinetic energy even at zero Kelvin due to the uncertainty
principle. This is known as the zero-point motion or zero-point energy (ZPE). It influences the
cohesive energy as well as the lattice constant and other equilibrium properties at absolute
zero [47]. Even more crucial are the effects of nuclear motion at finite temperatures.

A good starting point to investigate the nuclear dynamics is Taylor expanding the PES around
the static equilibrium R0

E({R0 + ∆R}) = E({R0}) +
∑
i

∂E

∂Ri

∣∣∣∣
R0

∆Ri +
1

2

∑
i,j

∂2E

∂Ri∂Rj

∣∣∣∣
R0

∆Ri∆Rj +O(∆R3)

(1.13)

where the first term is the static equilibrium energy from DFT, the second summand vanishes
in the local minimum and the third term contains the Hessian already defined in Equation
1.10. Neglecting the terms of third and higher orders is called the harmonic approximation
and deemed valid for small displacements ∆R. The Hessian can either be calculated using
density functional pertubation theory (DFPT) within linear-response theory [48, 49] or using
the finite-differences approach [50]. For a real solid the number of atoms becomes practically
infinite. Applying periodic boundary conditions to the unit cell, the Hessian can however be
represented equivalently in the reciprocal space as the so called Dynamical Matrix

Dkl(q) =
1√

MkMl

∑
i

exp (i q(R0,i −R0,l))Hki , (1.14)

which is the mass-weighted Fourier transform of the Hessian. The equation of motion for the
nuclei becomes now an eigenvalue problem

D(q) νs(q) = ω2
s νs(q) (1.15)

with the eigenvectors νs and the eigenvalues ω2
s . In real space, the analytical solutions for the

nuclear movement are superpositions of harmonic oscillators with eigenfrequencies ωs. It can
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be shown that these vibrational modes are quantized leading to the concept of a phonon – a
quantized lattice vibration. In this work, the python package phonopy [51] was used to calcu-
late phonon properties. It uses a finite-difference approach and creates a symmetry-reduced
set of atomic displacements for which the forces are calculated. The force constants are
then obtained calculating a Moore-Penrose pseudoinverse2 by fitting all symmetry-reduced
elements of the force constants to the symmetry-expanded atomic forces of the atoms in the
supercells [52]. This is called a modification of the Parlinski-Li-Kawazoe method [50].

One of the properties that result from a phonon calculation is the Helmholtz free energy
F = U − TS with the internal energy U , and T and S being temperature and entropy
respectively. The Helmholtz free energy is minimal at equilibrium when a system is kept at
constant temperature. Because volume (V ) and particle number N do not change in such
calculations, it describes a canonical ensemble (constant NV T ). It takes the place of the
cohesive energy for elevated temperatures and determines whether a phase is stable or not
(or more stable than another one) at a given temperature. In contrast, when the pressure
p is kept constant and the volume is allowed to change, a closed thermodynamic system is
called isothermal-isobaric or Gibbs ensemble (constant NpT ) and is described by the Gibbs
free energy.

Finally, it should be noted that the harmonic approximation is a very crude approximation
and its ability is limited. Anharmonic effects that can not be described within the harmonic
approximation include temperature dependence of equilibrium properties like the thermal
lattice expansion as well as phase transitions and heat transport. In the quasi-harmonic
approximation the volumetric dependence of the force constants is included, but higher-
order terms in the Taylor expansion are often necessary to accurately describe a material at
finite temperatures [53].

1.5 Electron-phonon Interaction

So far, the electronic and nuclear motions were investigated separately. Many interesting
phenomena in solid-state physics, however, rely on the interaction of these systems. The
temperature dependence of charge-carrier mobility in semiconductors or of the electronic
energy bands are just two simple examples where electron-phonon interactions (EPI) play
a crucial role [54]. A particularly interesting scenario is the reduced conductivity when
a charge carrier (e.g. in a photovoltaic material) interacts with polar phonon modes. This
leads to the formation of a quasiparticle called Polaron consisting of a charge carrier (electron
or hole), which is dressed by a lattice distortion. The size of this distortion depends on the
strength of the electron-phonon coupling. Small polarons usually inhibit strong EPI and can
be regarded as a type of point defect [55, 56]. Such point defects often show a Jahn-Teller
like behavior [57, 58, 59]. The Jahn-Teller theorem states that “any non-linear molecular
system in a degenerate electronic state will be unstable and will undergo distortion to form a
system of lower symmetry and lower energy, thereby removing the degeneracy.” [60]. Mostly,
this occurs in octahedral and tetrahedral complexes in form of elongated or compressed axial
and equatorial bonds. Such a system will be discussed in Section 3.3 with MgO. Because
polarons can significantly reduce the charge-carrier mobility, is it crucial to understand how
they form and move through a material. Many applications like catalysis [61, 62, 63] or
thermo-electricity [56] rely on the mobility of the charge carriers.

2The Moore-Penrose inverse, also called pseudoinverse, is a widely known generalization of an inverse matrix.
It is obtained from singular value decomposition.
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Instead of formulating and solving the complicated interaction Hamiltonian, the supercell
approach is often chosen in which the distortion is placed subsequently in supercells of in-
creasing sizes to study how the defect affects the system’s total energy. Extrapolating to the
dilute limit is then possible if a scaling law is known.

Systems with local distortions as discussed here are a good example for why it is useful
to constrain structure relaxations to a reduced parameter space as presented in the next
chapter.
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Chapter 2

Constraining a Relaxation

2.1 The Role of Symmetry

Symmetry is one of the most fundamental concepts in materials science. It determines for
example selections rules of electronic transitions, which is why we talk about symmetry-
allowed and symmetry-forbidden transitions. Many properties and applications therefore
require certain symmetries to be maintained. Not only global crystallographic symmetries
like space group or point group matter, but also local symmetry breaking. For example,
polaronic distortions reduce the charge carrier mobility, which can be either favorable or
disadvantageous, e.g. for photo-voltaic applications.

Many first-principle codes exploit crystallographic symmetries already at the electronic-struc-
ture level because it leads to significant savings in cost and computational resources for highly
symmetric crystals. In VASP [64], ABINIT [65] and exciting [66] the k-space is sampled
in the irreducible Brillouin zone and in PARSEC [67] the sampling happens in symmetry-
defined “irreducible wedges” in real space. This ensures that also the atomic forces as well
as the stress on the lattice reflect these symmetries. As discussed in Section 1.2.3, geometry
relaxations rely on the forces and stresses to calculate the new geometric configuration in
each relaxation step. Therefore, the global symmetry such as the space group is inherently
preserved in this approach even during structure relaxations. Local symmetry breaking is,
however, not possible and typically requires lifting all constraints to involve all atomic and
lattice degrees of freedom in the electronic structure calculations and relaxations. A three-
dimensional crystal has a (9 + 3N)-dimensional potential-energy surface resulting from the
three components of the three lattice vectors and the 3N components of N atoms in the
unit cell. Trajectories can become long and inefficient for unconstrained relaxations. More
degrees of freedom and more first-principles calculations because of more relaxation steps
hence increases the computational cost. Sometimes, fixing the lattice, atomic or internal
degrees of freedom [68, 69] (as done in Quantum Espresso [70], VASP or ABINIT) can help
to ensure that the chosen crystal structure or at least the space group is retained during a
relaxation. However, this requires manual inspection of the structures and the mentioned
examples of systems with local distortions may not always be expressible within such simple
constraints.
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Figure 2.1: Left: Phonon band structure for cubic ZrO2 with an imaginary soft mode at X
indicating instability along this eigenvector. Right: Ball-and-stick model for the 12-atom
supercell of tetragonal ZrO2. Blue balls represent Zr and red balls O atoms. Black arrows
indicate the eigenvector of the imaginary phonon mode that pushes the oxygen atoms out of
the cubic symmetry resulting in a tetragonal structure.

2.2 New Parametric Constraints

2.2.1 Motivating Example of Zirconia

The three lattice vectors a, b, c are the edges of the unit cell and are usually expressed in
Cartesian coordinates and it is common to use them as basis vectors for the atomic posi-
tions, which serves not only human readability but is also practical for structure relaxations
where the shape of the unit cell changes. The more symmetric a crystal structures is, the
fewer parameters are necessary to describe the shape of the unit cell. A cubic unit cell for
example consists of only one lattice constant, referred to as a. If one of the lattice vectors
has a different length, c, the unit cell is tetragonal. To illustrate why relaxing within these
reduced parameters can be advantageous let us look at the example of zirconia, ZrO2. In
its pure form it exists in three different crystal phases: a high-temperature (T > 2370 ◦C)
cubic phase, a tetragonal phase at intermediate temperatures (1170 ◦C ≤ T ≤ 2370 ◦C), and
a low-temperature (T < 1170 ◦C) monoclinic phase [71]. The cubic phase however is only
dynamically stabilized, i.e. it is actually a thermodynamical average of lower-symmetry struc-
tures [72]. In fact the cubic structure is a special case of the tetragonal structure with a ratio
c/a = 1 and no displacements of the oxygen atoms. As it corresponds to a saddle point on
the PES, it lies in between the six symmetry-equivalent tetragonal structures (two for each
cartesian direction). In other words, the cubic structure can be regarded as a transition state
between each two tetragonal phases. Figure 2.1 depicts the phonon band structure of the
hypothetical, pure cubic ZrO2 structure. This exhibits an imaginary phonon mode at the X
point [50], shown here as negative value. An antiparallel distortion of oxygen atom pairs
along the associated eigenvector leads to a stretched unit cell and thus to the tetragonal
structure [71]. As shown in figure 2.2, the cubic crystal phase constitutes a saddle point on
the potential-energy surface, which lies inbetween two minima corresponding to equivalent
tetragonal phases. Here, the PES is shown for a reduced parameter set describing the lattice
constant a and the atomic motion along the imaginary mode z2. Freely relaxing cubic zir-
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Figure 2.2: Two-dimensional potential-energy surface of ZrO2. The black crosses are the
local energy minima (set to 0.0 eV) representing the tetragonal phase and the cubic phase is
the transition state between them indicated by the black dot. The outsets show how the two
parameters, lattice constant a and oxygen distortion z2, change if the other is kept fix.

Table 2.1: Parametric expressions for each cartesian component of the lattice vectors in the
12-atom cubic and tetragonal ZrO2 supercells

Cubic Tetragonal
x y z x y z

a a 0 0 a 0 0
b 0 a 0 0 a 0
c 0 0 a 0 0 c

conia in its 12-atom conventional unit cell on this PES would push the material out of the
cubic phase into a local minimum. To maintain the cubic structure, the relaxation needs to
be constrained to optimize only the lattice parameter a. The respective lattice and atomic
constraints for the cubic and tetragonal structures are given in tables 2.1 and 2.2. Within a
space group the possible atomic positions are defined by the Wyckoff positions as introduced
in Section 1.2.2. In the case of cubic zirconia there are no free parameters in the fractional
coordinates so that indeed the whole crystal structure is fixed up to the lattice constant. The
parametrically constrained relaxation needs to act only on a while all other degrees of free-
dom remain untouched. To explore the imaginary phonon modes at X in Figure 2.1, i.e.
to allow relaxation to the tetragonal polymorph, the constraints can be lifted stepwise by
adding more parameters to the analytic expression of the (originally cubic) structure. It can
be seen in Tables 2.1 and 2.2 that the pairwise distortion of the oxygen atoms is included as
additional parameter z2 in the constraints along with an additional lattice parameter c ac-
counting for the stretching of the lattice, which leads to the tetragonality. Using this method
ensures that the system relaxes truly to the tetragonal structure and not any other possibly
existing near-by local minima on the PES. Cubic and tetragonal zirconia could as well have
been relaxed in their primitive cells with six and three atoms respectively to maintain sym-
metry. However it is not always desirable or feasible to work with primitive cells. When
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Table 2.2: Parametric expressions for each fractional component of the atomic positions in
the twelve atom cubic and tetragonal ZrO2 supercell

Cubic Tetragonal
Atom a b c a b c

Zr 0.00 0.00 0.00 0.00 0.00 0.00
Zr 0.50 0.50 0.00 0.50 0.50 0.00
Zr 0.00 0.50 0.50 0.00 0.50 0.50
Zr 0.50 0.00 0.50 0.50 0.00 0.50
O 0.25 0.25 0.25 0.25 0.25 0.25− z2
O 0.25 0.75 0.25 0.25 0.75 0.25− z2
O 0.75 0.75 0.75 0.75 0.75 0.75 + z2
O 0.25 0.25 0.75 0.25 0.25 0.75 + z2
O 0.75 0.25 0.25 0.75 0.25 0.25− z2
O 0.25 0.75 0.75 0.25 0.75 0.75− z2
O 0.75 0.75 0.75 0.75 0.75 0.75 + z2
O 0.25 0.25 0.25 0.25 0.25 0.25 + z2

investigating thermal properties often the phonon supercell approach is used whose name al-
ready suggests the need for larger unit cells. Furthermore, there exist other materials where
different polymorphs have the same number of atoms in their primitive cells, e.g. the later
discussed bismuth oxide [73, 74].

2.2.2 Transformation to Reduced Space

In practice, the three lattice vectors a, b, c can be conveniently written as a (3×3)-dimensional
lattice vector matrix, L, where the rows contain the lattice vectors. Equivalently the fractional
atomic positions are combined in an (N×3)-dimensional matrix RF . This matrix notation is
also chosen for the forces on the Cartesian atomic positions, FR, which are usually calculated
directly in first-principles codes, as done in FHI-aims. Similarity, when the stress on the lattice
is known, we can obtain a generalized force on the lattice as derived in the following [75].
From Equation 1.9 we know that the stress is defined as

σij =
1

V

∂E

∂εij

∣∣∣∣
ε=0

(2.1)

where the strain tensor ε describes the distortion of the lattice vectors compared to their
relaxed states

L′T = (1 + ε)LT . (2.2)

Here, the lattice vector matrix is transposed because the strain tensor acts on vectors and the
Cartesian coordinates need to be indicated by the rows. Performing the matrix multiplication
element-wise, this reads

L′ij =

3∑
k=1

(δjk + εjk)Lik , (2.3)
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now referring to the un-transposed lattice matrix again after index-swapping. With the chain
rule the energy derivative in the stress definition becomes

∂E

∂εij
=

3∑
l,m=1

∂E

∂L′lm
∂L′lm
∂εij

(2.4)

and the second factor can be rewritten using Eq. 2.3 as

∂L′lm
∂εij

=
3∑

k=1

δmiδkjLlk . (2.5)

After making use of the δ functions, the energy derivative with respect to the lattice vector
matrix can be formulated as

dE

dL
= LT−1 V · σ . (2.6)

Finally, a generalized force on the lattice, FL is obtained after removing atomic force contri-
butions

FL = −dE

dL
−RF

T FR . (2.7)

To transform these matrix quantities denoted by calligraphic letters to the parameter-reduced
space it is useful to flatten them to one-dimensional vectors that we will name RF , FR,
L, and FL. Their reduced parametric counterparts are given in small letters: the MR-
dimensional vectors r, Fr and the ML-dimensional l and Fl. MR and ML are exactly the
number of free parameters in the atomic and lattice degrees of freedom. Assuming a linear
relationship between the full coordinates and the reduced parameters, transforming back
and forth becomes possible by defining the Jacobian matrices JR, JRf and J L as well
as translation vectors tRf and tL that account for additional constant shifts missing in the
Jacobians. The reduced lattice and atomic parameters are obtained from the lattice vectors
and fractional positions via

r = J −1Rf (RF − tRf ) (2.8a)

l = J −1L (L− tL) . (2.8b)

Because the Jacobians are not square matrices, they are not regularly invertible. Instead we
use the generalized left inverse [76] defined for a matrix A as

A−1,L =
(
ATA

)−1 AT , (2.9)

provided A has full column rank. Despite working with fractional coordinates, the atomic
forces are usually given in a Cartesian coordinate system. To transform the atomic coordi-
nates from Cartesian to reduced space, we define the third Jacobian, JR as

JR =


LT 0 . . . 0

0 LT . . . 0
...

...
. . .

...
0 0 . . . LT

JRf . (2.10)
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With this, the atomic forces as well as the generalized forces on the lattice can be transformed
to their reduced counterparts via

Fr = J T
R FR (2.11a)

Fl = J T
L FL . (2.11b)

A back-transformation of the coordinates to real space is done by inverting Equations 2.8
in each relaxation step after the reduced parameters were updated. Back-transforming the
forces is not necessary but can still be done in the same manner by inverting Equations
2.11. Thereby, symmetrized Cartesian or fractional forces can be investivated to check for
convergence of the relaxation or to explicitly monitor forces that would drive the system out
of its constraints.

The implied linear relationship is automatically fulfilled for the atomic positions when frac-
tional coordinates are used. For the unit cell, non-linear expressions appear when angles
are introduced as is the case for the monoclinic and triclinic lattice systems. In these cases,
these expressions can be substituted with independent parameters. As an example the com-
ponents c · cosβ and c · sinβ in the c-vector of the monoclinic primitive cell can be replaced
by individual independent parameters c and d respectively.

2.2.3 Implementation

In FHI-aims, a trust-radius enhanced BFGS relaxation algorithm is used, where the Hessian
matrix is not calculated directly but initialized with an approximate guess and updated in
each step. Therefore the Hessian, H, which is initialized in the full coordinate space, needs
to be transformed to the reduced space as well. First, it is divided into atomic and lattice
blocks, HR and HL respectively. These are then transformed individually into the reduced
parameter space via

Hr = J T
RHRJR (2.12a)

Hl = J T
LHLJ L. (2.12b)

The full reduced Hessian is recombined as

H =

(
Hr 0
0 Hl

)
. (2.13)

Atomic and lattice degrees of freedom are handled by the optimizer as if they were at the
same scale. The atomic parameters coming from the fractional coordinates are however
multiple orders of magnitude smaller than the lattice parameters. Before passing them to
the optimizer, the atomic coordinates are therefore scaled by the average unit vector length,
V 1/3. Similarly, the reduced atomic forces as well as the atomic block of the Hessian are
scaled by V −1/3.

Although it would principally be possible to construct the Jacobians at each relaxation step
by describing the real space coordinates as a function of the reduced parameters, it is much
simpler to create them once at the start of the calculation and re-use them in every step. As
mentioned this is however only possible by assuming a linear relationship.

The workflow of relaxing structures within the parametric constraints is shown in Figure 2.3.
In each step of the relaxation, forces and stress for the current geometry of the system are
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Figure 2.3: Workflow of the relaxation constrained to the parameter reduced space

obtained from a full SCF cycle. Convergence is achieved when the forces are below a given
threshold. In this case the current geometry is returned and the relaxation stops. Otherwise
the transformations in Equations 2.8, 2.11 and 2.12 are applied to map all degrees of freedom
onto the reduced space. After the optimization, the real space representation of the structure
is obtained via back-transformation and is passed to the next relaxation step.

To initialize such a constrained relaxation, the analytic parameter representation of the struc-
ture needs to be given. In FHI-aims this relaxation scheme is triggered when the keywords
symmetry_n_params, symmetry_params, symmetry_lv, and symmetry_frac are found in the
geometry.in file and a relaxation calculation is started. The two latter keywords specify ex-
actly the parametric expressions as listed in Tables 2.1 and 2.2 respectively. Additionally,
the parametric constraints were implemented in the Python package ASE, Atomic Simulation
Environment [77], and can be used therein using the classes

- ase.constraints.FixParametricRelations,
- ase.constraints.FixScaledParametricRelations, and
- ase.constraints.FixCartesianParametricRelations .

2.3 Automated Parameter Representations

The proposed formalism requires that the reduced parameter representation of the system
and how it is related to its full geometry is known analytically before generating the input
files. For crystals, they could in principle be manually constructed from the space group and
its Wyckoff positions. Fortunately, the AFLOW Library of Crystallographic Prototypes col-
lects crystal structures and provides their analytical expressions for more than 1100 different
prototypes across all 230 space groups. The concept of structure prototypes was already
introduced in Section 1.2.2. As there are already three editions of this library, the number
of prototypes is likely to increase even more. Materials with the same stoichiometry, space
group and occupied Wyckoff positions as calculated with AFLOW-SYM [34] are grouped to-
gether in the same crystal prototype. Such a prototype is then uniquely identified by an ID
that is created from concatenating the undecorated chemical composition, the Pearson sym-
bol, the space group and the occupied Wyckoff positions. For the example of cubic Zirconia,
this reads AB2_cF12_225_a_c. Because of the large amount and variety of structure proto-
types in the library, it is well suited as a starting point for high-throughput studies. AFLOW
is able to create input geometry files automatically for VASP [64], FHI-aims [17], Quantum
Espresso [70], Abinit [65] and more codes allowing usage of the prototypes for further inves-
tigations. The option --add_equations is available in AFLOW since version 3.1.204 to add

23



the parameter blocks needed for the constrained relaxation to FHI-aims’ geometry.in file au-
tomatically. Adding additional constraints is straight-forward as will become clear when this
method is applied to relax distortions in the next chapter. In the same manner, parameters
can be removed selectively to constrain certain parts of the structure even further.
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Chapter 3

Applications and Results

This chapter demonstrates the necessity and usefulness of constraints in a geometry relax-
ation for meta-stable and unstable systems. In a benchmark study, the ability of the ap-
proach to accelerate high-throughput calculations is presented. Finally, using the example
of a small polaron in magnesium oxide, it is shown that even systems with local distortions
can be treated more efficiently with constraints. Throughout this chapter, the full-potential,
all-electron electronic-structure code FHI-aims is used that was already introduced in Sec-
tion 1.3.

3.1 Relaxing Metastable and Unstable Systems

The work of this section has largely been done by the author. Thomas Purcell contributed
by refining calculations on Bi2O3, especially after a reviewer from [78] pointed out different
refinements for the β phase.

Some materials have very complex potential-energy surfaces with several local minima repre-
senting different meta-stable polymorphs. These stable or meta-stable phases can be relaxed
in an unconstrained fashion by choosing an initial geometry close enough to the respective
global or local minimum on the PES. As we have seen for zirconia, there can as well be
phases that are unstable at zero-point conditions but may be stabilized at higher tempera-
tures or pressures. For the cubic zirconia structure, we have seen that this transition structure
corresponds to a saddle point on the energy landscape in between two stable tetragonal struc-
tures. A free relaxation would always drive the system towards such a nearby local minimum
with lower symmetry. To showcase how parametric constraints introduced in the previous
chapter can be used to maintain the structure of these phases, we relax cubic zirconia in its
twelve-atom conventional unit cell as it is given in the AFLOW Library of Crystallographic
Prototypes. While usually relaxations are performed on the primitive cell of a structure, the
choice of the conventional cell for zirconia allows the free relaxation to converge to another
polymorph which has a different number of atoms in its primitive cell. It is therefore used as
a simple demonstrative example. As we will see later for bismuth oxide, there are indeed sys-
tems featuring different polymorphs with the same number of sites in the primitive cell. We
expect that the relaxation scheme would not be affected by a further increase of accuracy due
to larger basis sets or hybrid functionals.1 Figure 3.1 shows the convergence behavior of the

1 The calculations were performed using the ‘tier 1’ basis sets with ‘light’ settings that have been shown to
yield good results for the lattice parameters and cohesive energies for face-centered cubic gold, i.e. an accuracy
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Figure 3.1: Relaxation convergence for ZrO2. Unconstrained, i.e. free, (squares) and para-
metrically constrained (circles) relaxations are compared for the tetragonal (green) and cubic
(purple) phases. The cubic phase can only be maintained in a constrained relaxation. The
energy zero is set to 1 meV below the energy minimum.

free and constrained relaxations in comparison. The initial tetragonal structure is the same
as the cubic but with the aforementioned pairwise distortion of the oxygen atoms as seen in
Figure 2.1. Initially, the lattice constant is a ≈ 4.968 Å for both systems. The magnitude of
the initial pairwise distortion is chosen as 0.01 units in fractional atomic positions which cor-
responds to roughly 0.05 Å for the chosen lattice constant. This matches the distortions given
in [72]. Of course, different initial configurations will likely yield different results. The focus
here lies on showcasing the ability of the parametric constraints to converge to meta-stable
or unstable systems. Both, free and constrained relaxations maintain the correct tetragonal
symmetry, but we see an increase in efficiency by a factor of 3 when using constraints. Due to
only one parameter being optimized, the cubic phase is relaxed even quicker with constraints
in only four steps. In contrast, the free relaxation does not manage to converge within the
symmetry until the maximum forces are below the requested threshold. The full potential-
energy surface is high-dimensional and therefore much more complex than the simple sketch
along the a- and z-axis in Figure 2.2. It can comprise multiple other local minima or lo-
cal energy barriers that complicate the trajectory in the unconstrained relaxation. In fact, it
seems as if a small energy barrier needs to be overcome in step 25 to break the symmetry and
converge after 37 steps to an intermediate plateau which corresponds to a simple-cubic struc-
ture. Only when the convergence criterion, the threshold for the maximum force component,
is reduced further to 0.001 eV/Å, the tetragonal structure is finally reached after 114 steps.
This not only demonstrates that constraints are crucial to investigate this polymorph but also
that the results of a free relaxation depend strongly on the numeric settings. For both struc-

of 0.001 Å and 20 meV respectively. In the SCF cycles, the electron density was converged up to 10−6 eV/Å and
the atomic forces up to 5 × 10−4 eV/Å. The exchange-correlation functional was chosen to be PBEsol and the
relaxation is deemed converged when the maximum forces are below 0.005 eV/Å.
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tures we see an initial increase in energy in the unconstrained relaxation. Because the initial
lattice constant is chosen too small, the volume of the unit cell is increased significantly in
the first step. Because this works well, the next Quasi-Newton step is taken too large leading
to a counter-productive iteration that is neglected for further geometry updates.

As a second example for a material with different meta-stable phases, we investigate bismuth
oxide. Similarly to zirconia, its different polymorphs [73] exist only in certain temperature
ranges. Moreover, some of them can only be obtained in one direction: either heating the
material up or cooling it down. The low-temperature monoclinic α-phase transforms into
the high-temperature, face-centered cubic phase, denoted δ, upon heating at around 730◦C.
Further heating does not bring up new structures but leads to melting at approximately
825◦C [74]. Both, the low- and high-temperature phases are considered stable within their
temperature ranges. Only during the cooling process, one of the two meta-stable phases,
the tetragonal β- or the body-centered cubic γ-phase, can be obtained at roughly 650 ◦C or
approximately 640 ◦C, respectively [74]. Which of these structures is formed depends on the
cooling procedure. Cooling down to even lower temperatures, the β-phase eventually returns
to the stable α-Bi2O3 at around 300◦C. At which temperature the γ-phase transforms back to
α depends on the cooling rate [74]. Two more meta-stable polymorphs of Bi2O3 are known,
the orthorhombic ε- and triclinic ω-phase, which require very specific synthesis conditions
and are not considered here. To accurately describe monoclinic structures containing oxygen
it has proved helpful to add an f -orbital to the ‘tier 1’ basis sets for oxygen. This has been
found in benchmark calculations from [72] because bindings in such structures are often not
oriented along the main axes so that px-, py and pz-orbitals do not allow for the necessary
flexibility. Therefore, for Bi2O3 the ‘light’ settings were replaced by so called ‘intermediate’
settings and basis sets in FHI-aims which also bring along better accuracies.

As initial geometries for the meta-stable polymorphs we took the relaxed structures from
the Materials Project [79] with initial parameters taken from ICSD because this is a very
common starting point for high-throughput studies. For zirconia we chose the twelve-atom
conventional unit cell for the cubic structure to make the different unit cells commensurate
– to allow them being transformed into each other without adding or removing atoms. In
bismuth oxide the cubic γ-phase belongs to space group 197 and has 30 atoms in its primitive
cell. It it thus not commensurate with the 20-atom primitive cells of the β- and α-phases
and consequently could not relax to one of these structures in a free relaxation. This does
however not prevent the cubic phase from breaking its symmetry by seeking lower-energy
and lower-symmetry structures. Constrained and free relaxation behaviors are shown in
Figure 3.2 for the α-, β- and γ-phases of bismuth oxide. For the monoclinic α- and tetragonal
β-phases both, the free and the constrained relaxations converge in the correct structure
and the constraints accelerate the relaxation needing fewer steps until convergence. In the
low-temperature monoclinic polymorph 20% of all relaxation steps are saved (5 steps out
of 25) when constraints are used compared to the unconstrained case. As expected, the
step savings are larger for the higher symmetric tetragonal structure: instead of 66 steps
when all degrees of freedom relax freely, only 17 iterations are needed when the structure is
relaxed within the parameter space. A more crucial effect of the constraints can be observed
during relaxation of the γ-phase where a free relaxation yields to a previously unknown, non-
symmetric structure (space group 1) after 160 steps. Reaching one of the lower-symmetric
structures was unsuccessful due to the incompatible unit cells discussed above. Weather
the found structure is experimentally realizable potentially at higher pressures or in hetero-
epitaxy needs further investigations that are not the topic of this work.

Including the constraints instead, the body-centered cubic structure is conserved and con-
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Figure 3.2: Relaxation convergence for Bi2O3. The α- (blue) and β- (grey) phases converge
correctly in both, unconstrained (free) and constrained, relaxations whereas the γ-phase
relaxes to a hitherto unknown lower-symmetry structure without constraints.

verges in 42 steps. Unlike cubic zirconia, cubic Bi2O3 does not get close to convergence
until the symmetry is completely broken. There are no plateaus in the relaxation curve in
Figure 3.2 where the maximum force components drop significantly.

This example illustrates the usefulness for constraining relaxations to their structural proto-
types since a structure that relaxes to another symmetry does not represent the same material
anymore. While in ZrO2 one of the known phases is reached eventually, the final structure
in Bi2O3 might represent not only an unknown material but also potentially a structure that
is either not experimentally realizable or under very different conditions and with very dif-
ferent properties. Any further investigations on such a system are therefore either impossible
or yield results that are not representative for the initially chosen structural composition. It
may well be interesting to study this relaxed system but this way no new information about
the original prototype can be gained. Hence, blindly relaxing without constraints, when the
material of interest is in a particular known structure, can lead to wrong results that easily
stay undetected in high-throughput or machine learning studies especially when long and
complicated workflows are involved. A systematic way of detecting such errors would be
necessary which is extremely difficult due to the inconsistency of the symmetry breaking.
Likewise, correcting the departed geometries requires manual inspection and intervention
which is practical only for a small number of systems. Crystal structure prediction is one of
fields that could benefit from these constrained relaxations since often the newly discovered
structures need to be refined within exact known lattice types.
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Table 3.1: Summary of the materials used in the test dataset

AFLOW Prototype
Space
Group

# of
Materials

Atoms per
Unit cell

Free
Parameters

Full d.o.f. /
# Free Parameters

AB_oP8_62_c_c 62 8 8 7 4.71
A2B_oP12_62_2c_c 62 35 12 9 5.00

A2BC4_tI14_82_bc_a_g 82 35 7 5 6.00
A2BC4D_tI16_121_d_a_i_b 121 29 8 4 8.25

AB2_hP3_164_a_d 164 25 3 3 6.00
AB_hP4_186_b_b 186 37 4 2 5.25
AB_cF8_216_c_a 216 37 2 1 15.00

ABC_cF12_216_b_c_a 216 54 3 1 18.00
AB2_cF12_225_a_c 225 13 3 1 18.00

AB2C_cF16_225_a_c_b 225 14 4 1 21.00
AB_cF8_225_a_b 225 19 2 1 15.00

A_cF8_227_a 227 3 2 1 15.00
A2BC4_cF56_227_d_a_e 227 50 14 2 25.50

3.2 Bench-marking the Algorithm

We have seen that using the parametric constraints not only preserves symmetry in meta-
stable and unstable systems but also accelerates relaxations due to fewer degrees of freedom
being optimized. In a benchmark study, this is now quantified using 359 materials across
13 different structural prototypes covering eight space groups in four lattice systems. Most
calculations and analyses in this section have been performed by Thomas Purcell who ex-
tended the benchmark study to a representable amount of materials starting from a handful
of calculations by the author of this thesis. The structure prototypes were chosen to include
common materials in well-known structures, for example the Wurtzite, Zincblende, Rocksalt,
and Diamond structures as well as Half-Heuslers, Heuslers, and Fluorites. This ensures also
that the number of available materials within a prototype is sufficient to understand how the
method performs for different materials in the same structure. Additionally, a varied ratio of
all degrees of freedom over the number of reduced parameters was important for the choice
of the included prototypes. Table 3.1 summarizes the dataset grouped by AFLOW Prototype
and ordered by space group. Different composition types from elementary to quaternary and
varying number of atoms per unit cell are represented. In this high-throughput study the
Atomic Simulation Environment (ASE) [77] was used to transform the initial structures to
a consistent format. The original geometries are taken from AFLOW [3] or the Materials
Project [79] database. For high-throughput studies, these are very typical entry points to ob-
tain a large amount of different structures throughout all space groups. Of course, it is also
possible to manually construct the structure by choosing a space group and Wyckoff positions
therein. This defines the parameters needed for the parametric relaxation. All materials are
relaxed with the same numerical settings as zirconia from the previous section using both,
the PBEsol and PBE functionals.

Before quantitatively investigating the relaxation performance, the similarities between the
fully and constrained relaxed structures are studied. Structures can be compared using the
AFLOW-XtalFinder [80] which not only identifies the correct prototype of a material but also
allows to calculate the similarity between two structures or materials. It uses a misfit value
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Figure 3.3: Histogram of all misfit values between the fully and constrained relaxed structures
using AFLOW-XtalFinder. The horizontal line indicates the threshold of 0.1 below which
structures are matching. The bars represent different materials and are ordered by m for
each space group.

m proposed by Burzlaff and Malinovsky [81]

m = 1− (1−mlatt)(1−matom)(1−mfail) (3.1)

considering deviations between two sets of lattice vectors mlatt, displacements of atomic po-
sitions matom as well as a figure of failure mfail indicating that the distance between two
mapped atoms is larger then half the atom’s nearest neighbor. With m lying in the range
between zero and one, the mapping

m ≤ 0.1 : structures are similar

0.1 < m ≤ 0.2 : structures are within same family

m > 0.2 : structures are not compatible

determines whether two structures are considered a match or are at least within the same
family which means that they have common symmetry subgroups [81]. Figure 3.3 shows
a histogram of all misfits between the fully and constrained relaxed structures grouped by
space group and sorted by the misfit value m.2 Roughly 7% of all freely relaxed materials are
not similar to their initial structure anymore according to the AFLOW-XtalFinder when PBEsol
is used as exchange-correlation functional. In absolute numbers this corresponds to 26 of the
359 investigated materials. With the PBE functional this number slightly drops to 6%, so only
22 materials loose their initial structure (see Table 3.2). In fact, most of them do not even stay
in the same family, i.e. the misfit value lies much higher than 0.2. All these cases have similar
relaxation behaviors to what was seen for cubic zirconia and γ-bismuth oxide. Consequently,
constraining their relaxations is crucial to maintain the physical relevance of any further
computations or investigations. The average misfit value m is 0.07654 for PBE and 0.1322
for PBEsol. Apparently, the probability of breaking the symmetry in a free relaxation is larger

2 Here, AFLOW version 3.1.223 was used for the misfit calculations which ignores space group symmetry and
Wyckoff positions by default. Newer AFLOW versions give consistent results when the --ignore_symmetry flag
is used, because otherwise misfits are detected where symmetries do not match.
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when using PBEsol. Even when the extreme cases where m = 1 are excluded, the average
misfits compare 0.01630 for PBE and 0.02038 for PBEsol. It is likely that this tendency of
the PBEsol functional comes from general larger differences between the starting and relaxed
structures which would be supported by a larger number of steps until convergence.

Even when the structures are similar, the perfect symmetry is always broken to some de-
gree in a free relaxation because numerically the forces never completely vanish. The extent
of this symmetry breaking can be measured by calculating the space groups of the freely
relaxed structures and compare them with the initial space groups. For this, the popular
python package spglib is used which calculates the space group by first finding the primitive
cell and then its symmetry operations [82]. A symmetry operation maps all atoms in the
primitive cell to sites that are occupied by he same atom type within a tolerance distance
ε. Using the default tolerance factor of 10−5 Å, not a single structure preserves its space
group during a free relaxation. Increasing ε to 10−2 Å is required to obtain the initial space
groups for approximately 70% and 63% of all freely relaxed materials for PBE and PBEsol
respectively. Such an increase in accuracy is consistent with the results of a larger study on
symmetry calculations performed by Hicks et al. [34]. Table 3.2 lists the number of materials
within a prototype for which the free relaxation preserves the space group. In a parametri-
cally constrained relaxation, the symmetry is by definition always perfectly preserved. This
in turn can have a tremendous effect on the computational resources required for further
analyses and calculations. For example, phonon calculations are often performed using the
finite difference method where atoms are displaced in supercells according to the symmetry
of the system. Lower-symmetric systems require many more atomic displacements and cor-
responding also more force evaluations compared to highly symmetric systems. In particular
ab initio calculations of the forces in supercells can be very time-consuming, so that every
non-necessary computation effort is to be avoided. The widely used python package phonopy
calculates phonon spectra using the finite difference approach [51] and internally calculates
the symmetry of a structure with spglib’s default settings. Blindly relying on these out-of-
the-box solutions would increase the time to compute phonon properties in a way that can
be a bottle-neck in high-throughput studies. Feeding relaxed systems from parametrically
constrained relaxations with their perfect symmetries to phonopy circumvents this problem.

Apart from the advantages perfectly symmetric systems have on further calculations, there
is also an immediate effect of using the constraints for relaxations even when both, the free
and constrained relaxations end up in the same final structure. The number of steps taken
until the relaxation trajectory converges is significantly reduced on average by 33.11% and
52.43% for calculations with PBE and PBEsol respectively. Across all materials including the
relaxations with incorrect final structures the saving are 34.68% and 53.80% as noted in
Table 3.2. These step savings S are calculated as

S =
Nfree −Nconstrained

Nconstrained
× 100% (3.2)

with the numbers of steps needed to converge the free and constrained relaxations, Nfree and
Nconstrained respectively. As expected from the larger misfit values for the PBEsol functional,
the relaxed structures are further away from the starting structures compared to when using
PBE. Thus, the savings are higher for this functional because the free relaxation trajectories
are longer. Unfortunately, the savings are inconsistent across the different structural proto-
types. The total numbers of steps needed until the structures are relaxed are compared in
Figure 3.4 for the constrained and unconstrained relaxations with PBEsol. Each bar repre-
sents one material and for each space group these are sorted by descending number of steps

31



Table
3.2:

Sum
m

ary
ofthe

free
and

constrained
relaxation

perform
ance

by
A

FLO
W

prototype.

PB
E

PB
Esol

A
FLO

W
Prototype

Space
G

roup
#

of
M

aterials
A

verage
Savings

#
Preserved

Space
G

roup
Free

#
X

TA
L

M
atch

A
verage

Savings

#
Preserved

Space
G

roup
Free

#
X

TA
L

M
atch

A
B

_oP8_62_c_c
62

8
10.23

3
8

24.61
4

8
A

2B
_oP12_62_2c_c

62
35

10.84
19

29
18.32

20
33

A
2B

C
4_tI14_82_bc_a_g

82
35

40.32
29

32
59.98

28
34

A
2B

C
4D

_tI16_121_d_a_i_b
121

29
44.01

23
26

58.13
21

26
A

B
2_hP3_164_a_d

164
25

7.03
10

24
19.68

5
24

A
B

_hP4_186_b_b
186

37
30.34

23
36

41.68
19

36
A

B
_cF8_216_c_a

216
37

29.71
28

36
54.83

31
36

A
B

C
_cF12_216_b_c_a

216
54

33.35
44

54
74.03

36
46

A
B

2_cF12_225_a_c
225

13
57.63

8
9

54.20
7

9
A

B
2C

_cF16_225_a_c_b
225

14
19.77

12
14

80.02
7

12
A

B
_cF8_225_a_b

225
19

32.50
11

19
51.72

7
19

A
_cF8_227_a

227
3

35.12
3

3
47.62

3
3

A
2B

C
4_cF56_227_d_a_e

227
50

67.10
37

47
73.58

37
47

FullD
ataset

359
34.68

69.64%
93.87%

53.80
62.67%

92.76%

32



-100

-50

0

50

100

62 82 121 164 186 216 225 227

N
um

be
ro

fS
te
ps

Space Group

Free Constrained-100

-50

0

50

100

62 82 121 164 186 216 225 227

Figure 3.4: Comparison of the number of steps taken until convergence for the constrained
and free relaxations. Negative step numbers indicate that the constrained relaxation needs
more steps than the free relaxation. The left most bar for N2O is cut for visualization because
it takes 310 and 296 steps to converge in the free and constrained relaxations respectively.

in the free relaxation. Generally the trend of fewer constrained steps for higher-symmetric
systems can be observed as expected. Vice versa, as the number of reduced parameters gets
closer to the number of all degrees of freedom in a material, the savings decrease. Excep-
tions are however present as in space group 225 for the lead chalcogenides PbS, PbSe, and
PbTe. Seemingly, their potential energy surfaces exhibit some special features that are not
captured by the constraints leading to smaller savings compared to the free relaxations. Very
conspicuous are also the low average savings for the hexagonal prototype in space group
164. From Table 3.2 we see that only 5 of the 25 materials in this prototype remain in their
space group in a free relaxation with PBEsol although all except CoCl2 are considered match-
ing according to the AFLOW-XtalFinder. By driving the system out of its symmetry, the free
relaxation converges faster and the performance advantage of the constraints decreases. For
the two hexagonal materials platinum sulfide, PtS2, and vanadium chloride, VCl2, the con-
strained relaxation takes more steps to converge than the free relaxation. I found that this is
also observed for orthogonal OF2 and ThSe2 in space group 62 and is indicated in Figure 3.4
by negative step numbers. Different behaviors can lead to this inversion as exemplified in
Figure 3.5 but in all cases the optimizer takes unproductive steps. The additional degrees of
freedom in the free relaxation for PtS2 allow the optimizer to overcome problematic regions
in the PES faster and to converge in about half of the steps that the constrained relaxation
needs. In ThSe2, the parameter space even introduces a large energy barrier between the
initial and final structures that is not present in full space and prolongs the relaxation.

Not shown in Figure 3.4 are the calculations with the PBE functional where in some cases the
trajectories contain a few extra steps at the end where convergence is almost reached.

Despite the discussed outliers, the general trend of increased performance especially for
higher-symmetric structures is beneficial and provides, together with the symmetry preserva-
tion, a crucial advantage for many high-throughput studies.
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Figure 3.5: Relaxation trajectories for PtS2 (left) and ThSe2 (right). For both materials, the
constrained relaxation needs more steps to converge than the free relaxation.

3.3 Systems with Local Symmetries or Distortions

Thomas Purcell and the author contributed approximately equally to the work presented in
this section.

Previously, we have seen the advantages that relaxing within a parameter-reduced space can
offer for stable, meta-stable and unstable structures. Maintaining symmetry and accelerat-
ing relaxations would however also be possible using symmetrized forces. The real benefit
and key advantage of this approach lies in the ability to locally break the symmetry for ex-
ample to include point defects. This can help to tremendously reduce relaxation times of
large unit cells containing defects when the supercell approach is used. Such an approach
studies how defects behave in real solid systems by sequentially increasing the unit cell sizes
and thereby the number of atoms, which in turn significantly increases the computational
resources needed in each step to calculate ab initio energies and forces, e.g. from DFT. Many
defects act on a short range order, so that their effect on the surrounding atoms rapidly di-
minishes with increasing distance. This allows including the defect in forms of additional
degrees of freedom in the parameter presentation discussed above. Here, as an example, a
polaronic distortion in rock-salt magnesium oxide, MgO, will be discussed [55]. The lattice
distortions for an electron hole polaron in MgO are Jahn-Teller like, which is typical for oc-
tahedral structures like rock-salt. Figure 3.6 shows the conventional unit cell of MgO. When
an electron hole is placed in the unit cell, the surrounding oxygen and magnesium atoms are
attracted and repelled from the hole, respectively, as indicated by the arrows. Here, the hole
was located on a fixed oxygen atom in the center of the cell. In parameter space, this move-
ment along a line through the center of the cell is realized by calculating the unit distance
vector of each atom with position ri to the fixed atom in the center at r0 and distort its initial
“perfect” position in this direction. The distorted position is then

r′i = ri + λi
ri − r0
|ri − r0|

. (3.3)

The sign of this small perturbation, λ, is negative for oxygen and positive for magnesium.
Using such constraints, the main interactions are of electrostatic nature assuming that all
other perturbations have only a minor effect on the final geometry and can be mapped onto
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Figure 3.6: Ball-and-stick model of rock-salt MgO with oxygen as red balls and magnesium
as grey balls. Arrows indicate the additional degrees of freedom for a constrained relaxation
of the electron hole polaron when the hole sits at the center oxygen. Oxygen is attracted to
the hole while magnesium atoms are repelled from it.

these radial Coulomb distortions. For a supercell with N atoms, this creates N − 1 addi-
tional parameters {λi} that enable relaxing the polaronic distortion using our parametric
constraints.

An important property of a polaron is its binding energy

E∓binding = Epolaron(N ± 1)− Eperfect(N ± 1) (3.4)

where E+
binding refers to electron removal (hole polaron) and E−binding to an electron addition

(electron polaron). This formula does not contain corrections for the finite-size effect.

For the DFT calculations the HSE 06 functional for the exchange-correlation was used with a
screening parameter of ω = 0.11 Bohr−1 and a fraction of exact exchange α = 1 as suggested
in [55]. Because of the localized charge of the electron hole, it is necessary to use this
more accurate and costly hybrid functional. As convergence criteria for the self-consistent
field cycles 10−4 eV/Å was chosen for the density and forces while the total energy and the
eigenvalues were converged to 10−5 eV and 10−2 eV, respectively. Following the settings from
Kokott et al., five Kohn-Sham energy states above the occupied levels are computed and the
relaxation is deemed converged when the forces are below 10−4 eV/Å. Using the constraints
from Equation (3.3) for MgO, the relaxation trajectory for the hole polaron can be compared
to the free relaxation as shown in Figure 3.7 in terms of the uncorrected polaron binding
energies. The notation of the supercells is relative to the conventional cubic unit cell, so that
the 2 × 2 × 2 super cell doubles the length of each unit cell vector resulting in a 64-atom
supercell, while the 3 × 3 × 3 supercell contains 216 atoms. Only 11 steps are needed by
the constrained relaxation to converge the distorted 64-atom supercell, which is only one-
eighth of the steps needed in the unconstrained case. Even more significant are the savings
in the 216-atom supercell: 10 steps instead of 234 steps are taken to converge the distorted
geometry, which is equivalent to 96% saved relaxation steps when using the constraints. The
fact that the step number with constraints does not increase with the number of atoms in the
cell reflects that less fine-tuning is needed to converge the distortions due to other weaker
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Figure 3.7: Uncorrected polaron binding energy and its relaxation behavior in the 2 × 2 × 2
and 3× 3× 3 charged supercells for free and constrained relaxations. Dashed lines represent
the final binding energies in the constrained relaxation.

non-Coulombic interactions. Another effect of the chosen constraints is the slightly higher
energy. Although the final geometries are almost identical (with an AFLOW mismatch value
of m ≈ 0.007 and m ≈ 0.003 for the 64- and 216-atom cells respectively), tiny changes in
the freely relaxed atomic positions can sum up to a significant energy contribution especially
in very polar materials. Here, this energy difference in the polaron binding energy is only
78.4 meV for the 2× 2× 2 supercell and 69.1 meV for the 3× 3× 3 supercell. In both cases,
the free and constrained relaxation, the finite supercell size leads to artificial interactions of
the polaron with its periodic images. Hence, increasing the size of the supercell diminishes
these artifacts and leads to a 89.2 meV and 79.1 meV lower binding energy of the polaron in
the constrained and free relaxation, respectively.

If more accurate results are necessary or the constraints are deemed too restrictive, it is
possible to use the constrained relaxation as a starting point and continue from the relaxed
constrained geometry with a free relaxation or additional parameters to account for more
degrees of freedom. This way, a large amount of steps might still be saved while maintaining
accurate results.
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Chapter 4

Summary: Advantages and Risks

In this part of the thesis, a new relaxation scheme has been proposed, which uses a parameter-
reduced representation of a material’s structure to constrain a geometry relaxation. Trans-
formation of both, the structure as well as the atomic and generalized lattice forces, creates
a parameter space that is much smaller than the full (9 + 3N)-dimensional space in which an
unconstrained relaxation typically is performed. This naturally reduces the number of avail-
able directions in which a structure can change and fixes the system to the chosen shape. If a
structure prototype is known, this is a useful way to ensure that the symmetry and the exact
prototype are kept during a relaxation. In the last chapter, we presented how such constraints
are useful to maintain the perfect structure of meta-stable or unstable systems. Also stable
systems were shown to benefit from the approach: The fewer parameters are optimized, the
faster a relaxation converges, which is particularly useful for highly-symmetric systems. Fur-
ther, adding or removing individual parameters gives the user a high degree of flexibility to
selectively break or preserve local symmetries, for example around defects or distortions as
shown at the example of polaronic distortions in MgO.

It has to be noted however that in many cases, a free and unconstrained relaxation is favor-
able. Predicting new crystal phases is not possible when a structure is strongly constrained.
The local minima on a reduced potential-energy surface projected along the parametric rep-
resentation may not always coincide with the real local minima on the full PES. Statements
about the stability of such a parametrically converged system at zero Kelvin are therefore
only possible after a subsequent unconstrained relaxation.
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Part II

Semantic Data Management in
Computational Materials Science:

Meta-data and Ontologies
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Chapter 1

Towards a semantic world in
materials science

The huge amount of data that have been and are being produced in materials science has led
to the fourth paradigm of research: The era of big data-driven science [83]. Consequently,
new ways to store and annotate data are necessary to ensure findability, accessibility, interop-
erability and re-usability of data and their meta-data, in short to fulfil the FAIR principles [9],
see Section 1.2. Therefore a machine-readable and even machine-actionable representation
of knowledge is highly desirable.

1.1 Metadata

Any data produced needs some form of annotation if it is meant to be stored and to be found.
This annotation data is the simplest form of meta-data, which is often defined as data about
data. However, depending on the context certain types of information may or may not be
recognized as meta-data but rather as data (or vice versa).1 A definition of meta-data is
needed that circumvents these cases and clearly distinguishes between data and meta-data.
In [84] meta-data of a given data object is defined as the “set of attributes that is necessary to
locate, fully characterize, and – ultimately – reproduce other attributes that are identified as
data. The meta-data include a clear and unambiguous description of the data, and their full
provenance.”. This definition is well suited for science because it emphasizes the role of data
reproducibility. In practical terms, the meta-data structure to annotate data in a database
is defined and organized in a meta-data schema. In accordance with the given definition,
the Metainfo [2] was designed and implemented as part of the Novel Materials Discovery
(NOMAD) Laboratory and consists of a unique name, a human-readable description, expected
format (e.g. scalar, string, array), allowed values (e.g. array shape, explicit lists, intervals)
and provenance in form of a hierarchy. It annotates and structures data in the NOMAD
Archive, the largest database for atomistic calculations containing billions of normalized data
objects calculated by more than 40 different codes.

1For example, consider a DFT total-energy calculation of a crystal with certain atomic positions and a crystal
unit cell. The total energy is the desired result and therefore seen as data, whereas the atomic positions and the
unit cell have served as input to the calculation and may therefore be called meta-data of this calculation. Further
analysis and computations can use this total energy as input, thereby reclassifying it as meta-data for another
calculation.
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1.2 The FAIR Principles

The so called FAIR Principles [9] were compiled by the FORCE11 group2 in 2016 and are
nowadays widely accepted guiding principles for data storage. As already stated above, they
aim at improving findability, accessibility, interoperability and re-usability. These four terms
can be seen as subsequent steps to achieve FAIR compliance. Even before these guidelines
were published, the NOMAD Repository and Archive had already implemented most of the
concepts.

Findable: First of all, data and their respective meta-data should be easy to find. Human-
readable descriptions as well as machine-readable meta-data ensure automatic discovery of
stored data. This requires assignment of globally unique and persistent identifiers often
realized in form of uniform resource identifiers (URIs). Rich meta-data need to be defined to
describe data and identify it explicitly. On the technical side the data and meta-data should
be registered in searchable resources.

Accessible: Once found, accessibility needs to be ensured using the data identifier and stan-
dardized, open and free protocols allowing for authentication and authorization if needed.3

Moreover, meta-data should be accessible even when data are no longer available.

Interoperable: Interoperability concerns the ability to integrate with other data as well as
different applications or workflows. This can be achieved by using formal, broadly applicable
languages or formats for knowledge representation. Furhter referencing other (external)
meta-data or data enhances interoperability. One way to improve interoperability is the use
of ontologies (see Section 1.3).

Re-usable: Finally, enabling and optimizing re-use of data would be the largest benefit of
data storage. This is particularly important for data that is hard to reproduce, e.g. due to
computational complexity. Re-use can mean the use in a different application, setting or
workflow. Accurate and relevant description attributes, data usage licenses, detailed prove-
nance, community standards help achieving re-usability. In NOMAD, we prefer the “R” to
refer to re-purposing or recycling of data rather than reusing to emphasize that data can be
used for other purposes than the initial one it has been produced for.

1.3 Ontologies and Knowledge Graphs

Originally, ontology is the philosophical study of being, and it concerns everything related
to existence. Nowadays, computer science has borrowed the word from philosophy to de-
scribe a new form of semantic knowledge organization system. Within the last twenty years,
ontologies have gained increasing interest in computer science and data intensive research
fields as can be seen by evaluating the number of publications concerning this topic on the

2https://www.force11.org/group/fairgroup
3Note, that not the data themselves are required to be open for everyone, but only the protocols. FAIR data is

not necessarily open data.
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Figure 1.1: Record counts for Web of Science entries on the topic “Ontology”. Blue bars
represent the entries for all fields, whereas the orange bars (plotted on top of blue bars)
stand for materials science related fields (excluding engineering) and are scaled by a factor
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Web Of Science (WOS)4 in Figure 1.1. One milestone was the development and publication
of the Gene Ontology in 2000 [85], which is the most cited paper for this topic on WOS.
Since then, ontologies have established quite well in the area of biology and medicine. The
authors’ analysis of the Web of Science entries shows that about 20% of all publications with
the topic “Ontology” are in a biological or medical related field. Physics, chemistry and ma-
terials science together only hold 3% of the publications reflecting that ontological methods
are being explored only recently in these fields. Interestingly, 15% is already published in the
engineering areas. The leader is of course computer science, which makes up almost 69% of
all publications.

Although the idea of semantic technologies is already quite old, recent developments led to
recognition of ontologies also in industry. This is reflected in the appearance of ontologies
(and graphs) in Gartner’s most recent hype cycle for emerging technologies from July 2020.
Companies worldwide use this famous diagram to evaluate modern technologies for adoption
and investment even though the graph has been criticized for its lacking justification. Inter-
estingly, ontologies are placed in the “trough of disillusionment” illustrating that the public’s
high expectations from the past could not be met.

1.3.1 What is an Ontology?

Defining “ontology” is not such an easy task as even until today, multiple different definitions
co-exist and are being constantly discussed. Originally a computational ontology was defined

4www.webofknowledge.com
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by Gruber in 1993 as an “explicit specification of a conceptualization” [86]. This leaves open
many questions, so that since then several modifications and extensions to this definition
emerged. One widely accepted extension is by Studer et al. in 1998:
Definition 1 (Ontology [87]). “An ontology is a formal, explicit specification of a shared
conceptualization.” where ‘formal’ means the ontology should be machine readable; ‘explicit’
requires all concepts, properties, relations, functions, constraints and axioms to be explicitly de-
fined; ‘shared’ emphasizes that the ontology represents consensual knowledge, e.g. that it is
accepted by a group; and ‘conceptualization’ is a abstract model of some phenomenon in the
world.

Still, this definition is somewhat cryptic and abstract, so that another definition that is more
helpful for beginners will be given:
Definition 2 (Ontology [88]). “An ontology is a formal description of knowledge as a set
of concepts within a domain and the relationships that hold between them. To enable such
a description, we need to formally specify components such as individuals, classes, attributes,
relations, restrictions, rules, and axioms. As a result, ontologies do not only introduce a sharable
and re-usable knowledge representation but can also add new knowledge about the domain.”

In short, an ontology is a knowledge organization system (KOS) with strong semantics. Tradi-
tional KOS exhibit only weak or no semantics, popular types are classifications or controlled
vocabularies. They are often designed along typical search paths and not as actual domain
representations. An example of a traditional KOS is a directory structure on a computer –
files are put into folders where the user would typically search for them and not where they
objectively and context-independently belong to. There is no meaning for a file to be in a
particular folder; it is therefore not an instance or a subclass [89]. In contrast, ontologies
are designed to represent objects in a semantic way regardless of whether this corresponds
to human interaction. Instantiation and subclassing are essential in ontology development.
Figure 1.2 depicts the semantic ladder that shows different knowledge organization systems
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Figure 1.2: Semantic ladder of knowledge organization systems. Redrawn after [10].

ordered from weak to strong semantics with the ontology on the upper-most step. The ladder
also lists the respective languages in which these systems are represented.
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1.3.2 The Web Ontology Language and its Profiles

Ontologies and other graph-based representations can be written as a number of triple state-
ments. Such a triple consists of a subject, a predicate and an object, which are visualized
typically as two nodes connected by an edge (the predicate), i.e. as a directed graph.

The standard data model for directed graphs is the Resource Description Framework (RDF).
All data in RDF are statements about resources and their relationships, and are modeled as
triples. While subject and predicate always are resources, the object can also be a literal. A
resource is identified uniquely by a uniform resource identifier (URI) or its extension, the
internationalized resource identifier (IRI). A subset of such URIs are the well known URLs.
Multiple syntaxes exist in which RDF statements can be formalized, such as XML or more
human-readable syntaxes like Turtle. Storing RDF triples in a traditional relational database
is not very efficient. Instead the preferred database type is a triplestore, also called RDF
store.

RDF Schema [90] semantically extends RDF by classes and properties and therefore serves
as a data schema to describe RDF resources. It provides a basic vocabulary and allows to
formalize taxonomies – simple forms of ontologies. Similarly to object-oriented programming
languages classes can be instantiated. In contrast however, a class is not defined through its
properties, but a property is described by defining its domain (subject class) and range (object
class), i.e. the classes that are connected by this property.

The Web Ontology Language (OWL) [91] extends RDF Schema to express relations between
classes, cardinality, equality, characteristics of properties and much more. Every OWL docu-
ment is a RDF document. OWL exists in three variants of different complexity and expressiv-
ity. These so called OWL profiles are OWL Lite, OWL DL and OWL Full. OWL Lite supports
classification hierarchy and simple constraints but is too simple for most use cases. OWL DL
provides maximum expressivity while staying computationally complete and decidable. One
limitation is that a class cannot be at the same time an instance of another class. It is based
on description logic, hence the name DL. This is the standard variant of OWL that is mainly
used in ontologies nowadays. The main reason OWL DL evolved was to enable reasoning
software. Such reasoners can infer logical consequences within the description logic frame-
work. OWL Full has no computational guarantees but allows maximum freedom with RDF.
For example, a class can at the same time be a collection of individuals and an individual
itself. Due to its complexity, full reasoning with all its features will likely never be possible
with OWL Full.

Intrinsic to OWL ontologies is the open-world assumption [92]: Every statement that is al-
lowed can be true irrespective of our knowledge about its truth. In practice this means for
example that distinct mutually exclusive concepts should be defined to be distinct, otherwise
a reasoner could assume that an individual can perfectly be an instance of both classes.

1.3.3 Ontology vs. Knowledge Graph vs. Property Graph

In computer science, two types of statements are distinguished (following [89, 93]). The
terminological component, consisting of so called TBox statements, defines classes and prop-
erties. An example are classes and properties in an object-oriented programming language.
The TBox builds the framework to express actual facts or data. In the assertion component,
made of ABox statements, such facts or data are expressed using the vocabulary defined by
the TBox. Staying with the example of object-oriented programming, instances of a class

45



belong to the ABox. Properties defined in the TBox are used to relate two or more instances
or to connect literal values (numbers, strings) to the instance. It is often stated that TBox and
ABox together form a knowledge base consisting of the vocabulary and the data. In graph-
based knowledge representations, the TBox is typically an ontology and data expressed using
it (the ABox) is stored in a knowledge graph together with the ontology. Ontologies are
however not restricted to classes and properties. They can also contain instances of classes,
in particular when these instances are part of the specification for a domain. Weather an
instance belongs to an ontology depends on the scope and purpose of the respective ontol-
ogy, hence there is no clear right or wrong. An example of ABox statements (instances) that
are part of an ontology comes later in this thesis when a Structure Ontology is developed
by the author (see Section 2.2). There, the class CrystalSystem is created (TBox) and also
its seven instances (ABox) representing the crystal systems in three dimensions are added to
the ontology. Whenever the distinction between ABox as part of an ontology and ABox as
actual data representation becomes important this will be clarified using the terms ontolog-
ical individuals (or instances) and data individuals (or instances). Strictly, this separation is
important only for the description logic profile of the Web Ontology Language (OWL DL),
because it breaks down in OWL Full where a class can also be an individual.

Another type of graph databases are labeled property graphs. Both, knowledge graphs and
property graphs have nodes and edges. Property graphs differ from knowledge graphs in
that values can be assigned not only to the nodes but also to the edges. Moreover, subject
and object in a triple do not necessarily need to be resources. However, property graphs are
lacking semantics and do not have a standardized data model. The Resource Description
Framework (RDF) used for ontologies and knowledge graphs does not support these edge
properties. One recent development in this direction is the extension RDF* [94] proposed in
2019. More and more applications support the usage of RDF* but it is not yet a recommended
standard of the World Wide Web Consortium (W3C).

1.3.4 Ontology Development

Ontologies can be developed either bottom-up or top-down. Both approaches have their
advantages. Bottom-up starts with what is already there and builds on that by converting
and connecting. It is the practical approach to quickly be able to query and use the ontology,
and populate it with existing data to build a knowledge graph. The top-down approach on
the other side starts from the concepts and defines the domain semantically correct without
caring for usability with existing databases. Deciding for one or the other strategy strongly
influences whether and how the ontology will be used.

Before an ontology can be developed, the domain and scope of the ontology need to be
set [95]. One way to define the scope is to formulate competency questions that the ontology
should be able to answer. These are usually very different from the kind of questions that
the respective knowledge graph – the knowledge base using the ontology – can answer. For
example the ontology about crystal structures can answer the question “What is the crystal
system for space group 12?” because the crystal systems and space groups are part of the
ABox specification in this ontology. However the question “Which space group has cubic
Silicon?” cannot be answered because it requires data about cubic Silicon, which is not part
of the ontology. Some people use the term competency question for both types of questions.
As this can lead to confusion, this work strictly separates them and refers to the second type
as applications or use cases.

Once domain and scope are defined, one should consider reusing existing ontologies. These
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can be either upper ontologies like BFO5 (Basic Formal Ontology), DOLCE6 (Descriptive On-
tology for Linguistic and Cognitive Engineering) or ontologies covering closely related do-
mains with an overlap of concepts. In materials science, there is also EMMO 7, the European
Materials Modeling Ontology, that can serve as an entry point and upper ontology.

Now, important terms in this domain need to be identified and can then be defined as classes
in a class hierarchy. The next step is defining properties (or slots) of classes and their facets.
Facets include the domain and range of the property as well as value type and cardinality.
In general, they determine which type of subjects and objects are allowed in a statement
with this property. To be more precise, if a property P (A,B) with A as domain and B as
range is used on an individual a to relate it to individual b, a reasoner automatically infers
that a is an instance of A and b is an instance of B. These properties can then be used
to add restrictions onto classes. It is important to note that there are no relations between
classes but only between individuals of these classes that are specified with class restrictions.
Restrictions can be either existential (indicated often by ∃) or universal (indicated by ∀).
An existential restriction of the form A

p−→ B ensures that an instance a of class A always
is connected to some instance b of class B via p. In contrast, a universal restriction of the
same form would indicate that an instance a of class A can only be related via p to another
instance b if b is an instance of class B. Generally, there are three types of properties p:
Object properties relate individuals to other individuals whereas datatype properties link
individuals to literal values like strings or integers. The third type is annotation properties
used for human readable labels, descriptions or similiar non-semantic annotations. The latter
are ignored by reasoners.

Finally, ontological instances can be created and possibly linked using the defined proper-
ties.

A reasoner can and should be used to validate the ontology by inferring logical consequences.
Reasoning helps finding inconsistencies in the ontology, so it should assist the development
at all stages.

To test whether all competency questions can be answered with the ontology, they have to be
formulated as SPARQL queries, as introduced in Section 1.3.6.

1.3.5 Building a Knowledge Graph

Building an ontology is only the first step in creating a semantic linked data network. The
real benefit lies in using the ontology to express data that would have previously only been
stored in traditional databases – in the best case. The vision of an ultimate knowledge graph
for materials science is very similar to the vision of the Semantic Web [96]. It is to create a
“giant global graph” [96] that makes the most use out of all the information spread across
different databases or websites respectively.

Two distinct strategies [97] can be applied to express data as RDF. Graph materialization is
the process of converting data from existing formats to RDF using the ontology as annotation
and loading it into a triplestore. As all data are made available in graph format, SPARQL
(see Section 1.3.6) can extract triples directly making this approach favorable for further
processing or data analysis. In principle even a reasoner can be used to infer new triples,

5https://basic-formal-ontology.org/
6http://www.loa.istc.cnr.it/dolce/overview.html
7https://emmo.info/
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however reasoning on large triplestores of ontological individuals is still very inefficient and
a topic of current research [98]. Depending on the pace of database updates, a triplestore
may rapidly become outdated. Frequently rerunning the transformation and reloading the
triples into the triplestore may be necessary in this case as a form of synchronization. This is
however very costly in terms of time, memory and CPU. A lot of storage space is occupied by
a triplestore due to the heavy RDF format.

On the other hand lies the query rewriting strategy utilizing rule based mappings to fetch
data from the database at run-time. Run-time here refers for example to a user query. The
graph-based representation of only query-relevant data is then realized. Heterogeneous data
sources are queried as virtual RDF graphs by a rewritten query using a declarative rule lan-
guage such as RML – the RDF Mapping Language or R2RML for relational databases. This
approach ensures that always the most recent data are fetched and it scales better with large
data sets. When complex data analysis is required, performance decreases quickly due to the
created overhead.

The use and application of such knowledge graphs include semantic search, context-related
recommendations, data validation and transparency due to data provenance. Promising is
in particular the idea to discover new interesting information by using network analysis and
visualization tools.

1.3.6 Accessing Ontologies and Linked Data with SPARQL

As semantic query language for databases, SPARQL is the means of choice. It resembles SQL
in large parts with the difference that is designed for graphs. Four different request types are
summarized in Table 1.1. Apart from those, also update requests in form of INSERT state-
ments are possible for triplestores. Typically, a SPARQL query is sent, e.g. via HTTP, to a
SPARQL endpoint that is able to process the query. Federated queries over multiple SPARQL
endpoints are possible as an extension using the SERVICE keyword. Parts of this query are
then sent to a remote endpoint. This is an extension that is standardized and widely used
Multiple other extensions exist whose availability depends on the SPARQL implementation.
For example, SPARQL supports only very simple mathematical operations. Filtering for more
complex quantities whose computation requires some post-processing is therefore not possi-
ble. A solution to this can be the use of custom functions. Most SPARQL implementations
allow for the definition of such custom functions but the language and implementation varies
a lot between providers. For really complex post-processing a mixture of SPARQL with other
frameworks might be the better choice.

Let us quickly review the most important aspects and keywords in a SPARQL request to
better understand the examples snippets in the following chapters. Every SPARQL request
has a WHERE clause, which contains the graph pattern (or triple pattern) to match. Such

Keyword Query Purpose

SELECT Extract data like raw values (Table, CSV, JSON)
CONSTRUCT Construct a new graph (RDF) from information retrieved
ASK Answer simple true or false questions
DESCRIBE Extract RDF graph about information related to one resource

Table 1.1: Request types in SPARQL.
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Figure 1.3: Visualization of an example ontology.

patterns look like one or more normal RDF triples where subjects, predicates and objects
can be replaced by variables (starting with “?”). Matching triples in the queried triplestore
or graph database are then returned. Before the WHERE clause stands the query clause, i.e.
one of the keywords in Table 1.1. In a SELECT query, the variables that make up the headers
of the requested table are given. For a CONSTRUCT query, another graph pattern is required
that is then created as output. Prefixes for names spaces can be defined at the very top
of a SPARQL request and used to shorten full URIS. Additionally, results can be ordered or
grouped by specific quantities using the ORDER BY and GROUP BY keywords below the WHERE
clause. Queries can include sub-queries that are handled first and whose results can be used
in an outer query. The BIND keyword binds values such as strings, URIs or numbers to a
variable.

1.4 Visualization and Interactive Exploration

1.4.1 Ontology Visualization

In the graph-based visualization of ontologies classes are usually depicted as circles or el-
lipses. Instances of these classes that might exist within the ontology are typically not shown
at all. Sometimes only the number of instances is indicated by a small figure and the circle
size is then scaled by this number as in Figure 1.3. In this work, we use VOWL [99], in par-
ticular WebVOWL8, for ontology visualization. Hierarchical structures are presented using
the rdfs:subClassOf property with dashed lines. This ontology example graph also shows
the definition of an object property as black arrow: Class A is the domain and Class B is the
range of this property. In the definition of the subclass Class AA this pre-defined property
is then used in a restriction stating that for each instance aa there exists (∃) some instance
b that is related to aa via ObjectProperty indicated by a blue arrow. Finally, a datatype
property with a literal in its range is visualized. Such literal values are shown as rectangles.
This convention will be used throughout the remaining thesis.

Unfortunately, conceptual modeling is not restricted to such easy examples. Nested statement

8http://www.visualdataweb.de/webvowl/
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and nested restrictions are often needed to correctly describe what a concept means. If in
the above example b would only be related to a if it is at the same time an instance of Class
C (not shown), this could not be depicted anymore. In fact, VOWL does not even show half
of this statement but ignores it completely. Visualizing these combined restrictions does not
seem to be the focus in the community as there are no attempts to solve this issue yet.

For large ontologies like the DBPedia [100] or the Gene Ontology [85] this graph-based
visualization is not practical anymore and only implemented for local user-driven exploration
around a concept of interest. Web-based interfaces with search engines and tabular views of
definitions are used instead.

A recent comprehensive overview of ontology visualization methods and tools is given in
[101].

1.4.2 Knowledge Graph Visualization

Visualizing ontologies is already a challenging task when complicated statements are in-
volved. Because an ontology is in its structure more complicated than a knowledge graph, it
should be easier to visualize the latter. Considering the data character of knowledge graphs
however it becomes clear that often an even larger amount of individuals and therefore nodes
are involved. Not only can this mean that the graphical rendering of knowledge graphs be-
comes performance-critical but such visualization would also be impossible to interpret for
a human. Extracting valuable information is the most important goal of visualization and a
large, densely connected network with multiple different node- and edge types is not always
the best choice for this.

In general, it is a good idea to follow Shneiderman’s visual information seeking mantra [102]:
“Overview first, zoom and filter, then details-on-demand”. As discussed, a graph-based
overview is not always practical or applicable to knowledge graphs. Zooming and filtering
can be translated to searching for keywords of interest, e.g. via SPARQL. Details-on-demand
means further exploring related objects and properties with more complex SPARQL queries
including filters and possibly visualizing the query results as simplified networks (see Section
1.4.3). A network-based navigation tool for material databases and similarities was proposed
only very recently in [103].

Often users’ questions are directly expressible within SPARQL so that no visualization is nec-
essary and a simple text output is sufficient to answer the question. A comprehensive but not
up-to-date overview of Linked Data visualization tools is given by Dadzie and Rowe [104].
General guidance how to develop visualization tools for linked data is given by the Linked
Data Visualization Model [105].

1.4.3 Complex Networks and Network Analysis

Networks, sometimes also called graphs, are a collection of nodes and edges9. In a complex
network the collective behavior differs substantially from the one of individual components.
The field of complex network analysis studies the properties, behaviors and structures of such
networks. Social networks are most often used as real-world examples but also neurons in
our brain forming neural networks or communication infrastructures are just a few examples
showing that network structures exist in almost every imaginable field.

9Nodes are sometimes called vertices and edges may be called links.

50



Probably the first attempt to utilize the methods of complex networks and network analysis
in the Materials Sciences was called “Materials Cartography” where fingerprints based on
their bandstructures and densities of states were calculated [106]. Investigating network
dynamics over time is another interesting idea recently used to predict materials discovery
and synthesizability [107]. A third example how networks have recently gained interest in
Materials Science is the representation of a generalized n-dimensional convex hull as a phase
stability network of all inorganic materials [108].

The main difference between a network and a knowledge graph is that in networks usually
only one type of nodes and one type of edges is present. A knowledge graph can be in-
terpreted as a directed multi-dimensional multi-mode graph. When two types of nodes are
present, a network is called bipartite or two-mode network. Similarly, k types of nodes the
network is k-partite or a multi-mode network. Multi-dimensional refers to the presence of
more than one edge type. For convenience however such a network is often projected onto a
one-mode network to be able to use existing network analysis algorithms. A more in-depth
introduction to networks can be found for example in [109, 110, 111].

For an individual node, its degree, namely the number of edges connected to it, is an inter-
esting measure. A high degree can indicate particularly influential behavior. The number
of incoming edges, the so called in-degree and vice-versa the out-degree can also be consid-
ered separately. A network can form clusters of nodes: communities have more nodes within
its group then to other groups and cliques are defined as a collections of nodes where each
pair of nodes is connected. An important measure to detect communities is the modular-
ity [112, 113]

Q =
∑
i

(eii − a2i ) = Tr(e)− ||e2|| , (1.1)

where the k × k-symmetric matrix e has elements eij that represent the fraction of edges
in the network that connect two nodes in the communities i and j, so that an appropriate
community division has a high value for its trace. Further, it is ai =

∑
j eij and ||x|| stands

for the sum of the elements in x. Global or local clustering coefficients can give insight about
the clustering behavior of the network. Real-world networks are often scale-free, i.e. their
degree distribution follows a power law

P (k) ∝ k−γ , (1.2)

where γ is positive and P (k) stands for the fraction of nodes with degree k. Another type
of network is the small-world network where the neighbors of two random nodes are likely
to be neighbors too and therefore the number of edges between any two nodes is relatively
small.

These are just a few examples of network characteristics. Analyzing a network requires
choosing the most appropriate features to ensure interpretability, which is a challenging task
given the huge amount of algorithms available today.

1.5 Current Status in the Materials Sciences

In the last years, several databases and repositories have been created and maintained with
different focuses [2, 114], like the Materials Project [4], the Materials Cloud [115], the
Open Quantum Materials Database (OQMD) [29], the Theoretical Crystallography Open
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Database (T-COD) [116], the electronic structure project (ESP) [117], the Open Materials
Database [118] and AFLOW [3], to name some important ones. Meta-data schemes exist for
some of them to annotate data and make it accessible through an application programming
interface (API). However, most of these repositories do not store the full input and output
data, thereby not ensuring data provenance. Additionally most databases are designed for
only one specific computer code. The approach of the OPTIMADE consortium is providing
an API for a subset of common meta-data items that is independent of the specific models
of each database [119]. Another initiative is CECAM’s electronic structure library (ESL) with
plans to develop the electronic structure common data format (ESCDF) [120]. As a flexible
hierarchical data structure for materials storage the physical information file (PIF) has been
suggested [121]. OpenKIM is a knowledge base for interatomic models, simulation codes
and necessary reference data [122].

There is also a number of attempts to create an ontology for materials sciences. Some of
them are very specific domain ontologies, like PLINIUS [123] for ceramics or an ontology
engineering materials [124]. More general ontologies are MatOnto [125], PREMΛP [126],
Materials Ontology [13], MatOWL [127], Materials Design Ontology [12] or the European
Materials and Modeling Ontology (EMMO)[128]. A more detailed overview of some related
ontologies can be found in Appendix B. This thesis focuses on EMMO as an upper ontology for
the materials sciences (see Section 1.5.1) and uses it as framework for the newly developed
ontologies.

In the following two sections, the EMMO as well as the different aspects of NOMAD are
explained in more detail because they build the foundation for any work presented in the
next chapters.

1.5.1 European Materials and Modelling Ontology

The European Materials and Modelling Council aims to develop a standard representational
framework for the applied sciences, the EMMO [128]. It combines theories from physics,
philosophy, and information and communication technologies. Starting from the concept
of space-time, it allows in principle to define everything. Any real world object in EMMO
extends in space and time. All relations are classified according to the following four primitive
families:

1) Taxonomy defines the classification. An example is the subClassOf relation (subclass-
ing in the sense of “is a”).

2) Mereotopology includes Parthood and Slicing. For example the hasPart relation that
defines the components by which an object is built from.

3) Semiotic is the branch of representational relations like standsFor or hasProperty.

4) Set theory is the theory of membership. A collection is made of unrelated items and
links to them using the hasMember relation.

Most important for real world descriptions is the parthood relation, which can be subdivided
into different kinds: A component can be a spatial, temporal or spatio-temporal part of an
object. It is called a direct part if there is no additional parthood layer in between. A part is
proper if it is smaller than the object itself. This differentiation makes it possible to provide a
full description of the construction of complex objects. In many cases the use of the simple
hasPart property may be sufficient.
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Figure 1.4: Extract from the NOMAD Metainfo. Black terms are meta-data and red values
represent data. Sections (italic) structure quantities (roman). Black arrows indicate a refer-
ence relationship. Based on a draft courteously provided by Fawzi Mohamed.

The philosophical nature of EMMO can be illustrated at an example: Processes are defined
as temporal parts of anything that stands for real world objects. A subclass is semiosis, the
process that has the participant Intepreter that produces a Sign to represent another par-
ticipant, the Object. For example, density functional theory is an ElectronicModel, which
subclasses Icon and is therefore a Sign. As such it is a participant of some semiotic pro-
cess. Although this might be the correct philosophical classification using Peirce’s sign theory,
it seems too complicated and unnecessary for any physical applications. EMMO is a pure
TBox ontology, hence there are no ontological instances. Even the mathematical concepts
of Number, Integer and Real are defined as classes although for numerical data other on-
tologies typically use datatype properties in connection with built-in datatypes for the values.
The benefit of having all these classes is unclear and no applications exist in which this has
proven useful. Thus, EMMO will be only used as an orientation and its principles will be
followed where it is deemed reasonable.

1.5.2 NOMAD: Repository, Archive and Metainfo

With the Novel Materials Discovery (NOMAD) Repository a common place for full input and
output storage was created supporting over 40 different codes. To date over 107 million
total energy calculations are stored in more than 11 million entries. All data is normalized
and accessible in a unified, code-independent form in the NOMAD Archive. It also includes
original data from AFLOW, OQMD and Materials Project databases.

An API is available to explore both, data as well as meta-data that are used to annotate and
structure data. This particular meta-data schema is called the NOMAD Metainfo [2] and
annotates and structures data from electronic-structure theory or force-field calculations. As
of July 2020 a new version of the Metainfo is available where the definitions are not stored in
JSON files anymore but as python objects and are directly accessible through the API. A few
concepts were also renamed, which is why the following explanation differs terminologically
slightly from [2].

There are four different types of meta-data in the NOMAD Metainfo:
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1) Quantities are the labels to the values (strings, scalars, vectors, ... ) that are parsed by
the parsers. In a relational database, these are the headers to the columns in a table.

2) Sections represent the different parts of a computer simulation (e.g. a section for the
simulated system, a section for the simulation method). Sections can contain other
sections (a) and quantities (b), so the sections build an hierarchical structure. Sections
can also refer to other sections (c). Sections would be the tables in a relational database.

3) Categories are meta-data for the meta-data. They describe the type of data labeled by
a “Quantity” or contained in a “Section” (d). For example, different energy values may
all be related to the same abstract type “energy”. Categories are also nested and build
a hierarchy (a).

4) Dimensions are themselves “Quantities” but with the additional property of being in-
tegers that define the length of one dimension of another non-scalar “Quantity” (e).

This means, the NOMAD Metainfo already contains 5 types of relations between the meta-
data: (a) is subclass of, (b) is part of, (c) has reference, (d) has category and (e) has dimension.
Following the discussion in Section 1.1 meta-data (in particular quantities) and data are com-
parable to keys and values in a key-value list respectively. Metainfo’s quantities are however
rich objects with attributes like description, shape, units, datatype, category and an affilia-
tion to a section. Figure 1.4 illustrates the difference between meta-data and data and shows
how sections structure the quantities. The same figure also names the most important sec-
tions. The upper section_run contains everything related to a single program run. Direct
children are for example the quantities program_name or program_version. It also includes
subsections like section_system that stores information concerning the simulated system
(molecule, crystal, ...) and data to construct the system like atomic positions and lattice vec-
tors of a crystal unit cell. The section_method groups meta-data related to the calculation
method, e.g. the basis set or exchange correlation functional in DFT calculations. Finally,
section_single_configuration_calculation is the output of a calculation for a specific
configuration of the system. It can be viewed as the result section containing for example
total energies, densities of states, band structures, forces and more.

The NOMAD universe fulfills the FAIR principles from Section 1.2 and is constantly improving
on it even further. For example, in this thesis especially improving findability and interop-
erability is addressed using semantic technologies. Proving a rich human- and machine-
readable meta-data schema – the Metainfo – and unique paths (similar to URIs) for each
term and data item ensures findability (F). An API and search resources connected with the
NOMAD Archive make data and meta-data accessible (A). Using widely adopted formats and
languages like JSON and python improves interoperability (I) with external services. Stor-
ing full input and output of the calculations as well as annotating all data and not only the
important parts for a specific application makes data better re-usable/re-purposable (R). The
ontologies developed in the following Chapter 2 aim to further refine interoperability.
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Chapter 2

The Ontological Baseline for
Materials Representation

This chapter introduces three ontologies that have been developed for Materials Science.
They build the semantic baseline for representing materials. Their layered structure is vi-
sualized in Figure 2.1 as a stack with the most fundamental ontology “Core” at the bottom
providing general basic concepts.

Figure 2.1: The NOMAD Ontology stack shows the hierarchy of the developed ontologies.
At the bottom is the core ontology providing all basic concepts that are missing in EMMO.
Building on this the top-down Structure and Properties ontologies are developed. Parallely,
the NOMAD Metainfo as bottom-up ontology accompanies the two (Chapter 3)

2.1 Core Ontology

Before being able to describe materials structures and properties we need to identify several
basic concepts that are important for the definition of more specific materials-related con-
cepts. The concept of arrays and their representations is particularly important. Another
example are basic mathematical operations and relations allowing us to assign values or de-
scribe functional dependence between physical quantities are needed for a correct semantic
descriptions of the physics.
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2.1.1 Representing Arrays

How to represent arrays in an ontology is a still unsolved issue in ontology research with
several approaches. The easiest class able to represent a numerically ordered collection of
items is the RDF Sequence container (rdf:Seq) which can be used together with container
membership properties rdf:_nnn where nnn is a positive integer with no leading zeros. An
RDF List (rdf:List) follows a different approach. It is a linked nested list where the first
item is pointed to by the rdf:first relation and the rest of the list by the rdf:rest relation.
This way multiple nested lists need to be accessed to read an item in the middle of the list.
Only when the whole list is read in sequential order, this concept does perform well. For
a general array definition where regular access to single items is required, large RDF Lists
can quickly become a performance bottleneck because many lookups will be required. The
Ordered List Ontology 1 was developed to represent music playlists or track lists on records. A
olo:OrderedList has a olo:Slot which in turn has a positive integer as index and an item
associated with it. Items are any resources and can also be related to their previous and
next items. An interesting approach is the RDF Data Cube Vocabulary 2 which is very suitable
for tables where each column and row have a specific meaning that is also an ontologically
defined concept. Practically, this is not always feasible. All of the above methods have in
common that the representation of higher-dimensional arrays is very complicated. Deeply
nested structures would be created which makes querying for specific items costly. An onto-
logical representation of arrays in computational materials science requires highest flexibility
in these terms because user’s requests can not be foreseen and depend on the use-case.

Therefore a simple but effective way to express arrays in an ontology was developed in the
Core ontology as shown in Figure 2.2a. Each array has at least one array component indicated
by the existential (∃) class restriction hasArrayComponent. An array component cannot itself
be an array, it represents an elementary part of an array. It must have a value that is not
an instance of another class but a literal value like an integer or a string. To identify its
position within the array, each array component additionally has either a numerical index
or a multi-dimensional index which is a vector and thereby itself an array. The often used
x-, y- and z-components of vectors in three-dimensional space are special subclasses with
predefined numerical indices. In this model it is easy to access a single item anywhere in a
multi-dimensional array. A draw-back of any ontological array representation discussed so
far is the required storage space. Because every single item, its value and index are annotated
and written out explicitly in RDF, the file size can be more than an order of magnitude greater
than saving it for example in JSON format. Having a native way of storing numeric arrays via
a dedicated data-type in the same manner as integers, strings, decimals are defined in XML
Schema3 would be preferable.

2.1.2 Mathematical Operations

Semantically expressing physical quantities is only possible when mathematical relations are
taken into account. One prominent example is the band gap of semiconductors and insulators
which is an energy difference. Defining the mathematical concept of subtraction is therefore
needed to express how the band gap is related to the energy bands. Existing ontologies on
mathematics have focused on the classification of math concepts like in OntoMathPRO [129].

1http://purl.org/ontology/olo/core#
2https://www.w3.org/TR/vocab-data-cube/
3https://www.w3.org/TR/xmlschema-0/
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Figure 2.2: Extract from the Core ontology inheriting from EMMOs Mathematical branch.
Purple concepts are from EMMO, blue are new in the Core ontology. Black solid lines rep-
resent property definitions while blue solid lines denote class restrictions using ∃ and ∀ for
existential and universal restrictions respectively.
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Using these concepts to connect real-world physical quantities is however entirely new and
no appropriate maths ontologies or similar attempts could be found in literature. Therefore,
the Core ontology includes concepts for basic algebraic operations like addition, subtraction,
multiplication and division as shown in Figure 2.2b at the example of subtraction. Making
these classes equivalent to the respective classes in the mathematics ontology OntoMathPRO

would be a strong statement. Any future changes in either our or this external ontology like
additional relations to other ontologies can possibly lead to reasoning issues. Therefore the
mathematical concepts in our ontology are defined as subclasses of their existent counterparts
in the external math ontology so that only the Core ontology is affected if something changes.
The four operations are defined in a very general way as mathematical operations with an
input and an output. More complicated operations like derivatives or Fourier transforms
can be defined in the same way. Even though this approach is machine-readable, it is not
machine-actionable, that means the computer does not know how to calculate the difference
or Fourier transform. OWL ontologies do not allow for this kind of operational definitions.
Theoretically, it would be possible to develop a software similar to a reasoner that interprets
the individuals of these mathematical classes and calculates the results. In practice however,
these are still dreams of the future.

2.1.3 Generic Properties

Two philosophies can be followed in ontological modeling:

1) It is possible to define each property with a very specific domain and range, so that it
can only ever be used on the same type of instances. It has the advantage that by simply
looking at the property an instance’s type is obvious. However, this might require a very
large amount of properties that are principally very similar. For example the subtraction
operation from Figure 2.2b could be equally defined using sub-properties hasMinuend,
hasSubtrahend and hasDifference.

2) Another approach is to keep the number of properties to a minimum. This way a user
querying a knowledge graph does not need to know the specific sub-property and can
still request a certain type of instance by adding this restriction to the instance itself.
Such models tend to have a higher re-usability.

Here, simplicity and re-usability are considered particularly important, so that the second
method is chosen throughout the whole ontology modeling process. The list of required
properties has grown during the iterative ontology development. Whenever possible without
introducing too much reasoning complications, the EMMO properties hierarchy was used to
classify new properties into one of the four property types from Section 1.5.1. The most im-
portant property is the data-type property hasValue which can be used whenever an object’s
value is specified regardless of its data-type. In the ontology and knowledge graph commu-
nity such generic property is rarely used because each value usually has its own data-type
property. In materials science, a single value can represent a complex concept that is better
defined as an instance of a class (e.g. a total-energy value). Table 2.1 lists newly created ob-
ject properties that have been identified as necessary in an alphabetical order. Sometimes the
semantic difference between two properties is small: characterizes and determines seem
similar but while the first refers to a characterization process that characterizes a material in
a particular state, the second is applied to properties of a material that are determined by a
specific technique. When a physical quantity isFunctionOf another quantity, this refers to a
mathematical relation whereas if it dependsOn another object this can mean something more
general.
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Table 2.1: Alphabetical list of newly defined generic object properties in the Core ontology.

characterizes hasClassification hasOutput
dependsOn hasImaginaryPart hasProjection
determines hasInput hasRealPart
isDerivedFrom hasInverse hasRepresentation
isFunctionOf hasLabel hasStatistics
isInverseProportionalTo hasMeanValue resultsFrom
isProportionalTo hasMeasure refersTo
isSpannedBy hasMethod usesModel
hasArrayComponent hasNumericalIndex

Of course this list is not complete. There are many more generic property concepts that could
be included. The listed ones are however sufficient for all applications within this work.

2.2 Structure Ontology

The second layer in the ontology stack (Fig. 2.1) is the structure ontology that was devel-
oped mainly for crystals – the workhorse of solid-state materials science. Aiming to represent
crystals is therefore the logical first step for any materials science related ontology devel-
opment. While a number of different dictionaries with standardized nomenclature for most
crystallographic concepts is provided in the International Tables of Crystallography [130]
(Crystallographic Information Framework, short CIF, dictionaries), no Crystal ontology has
established yet. Only recently, the EMMO efforts are being extended to create an ontology
based on CIF which is still work-in-progress. As described in Section 1.3.4, competency ques-
tions can be formulated to restrict domain and scope of an ontology. The following questions
are examples for what should be answerable with the structure ontology. The list is by no
means complete but gives a good overview of the capability of the ontology.

• What is a crystal made of?

• How can a crystal be represented?

• What is the crystal system for space group 12?

• How many different crystal systems exist?

• Which concepts lead to the lattice system classification?

The first two questions describe what a crystal is and how scientists talk about it. For the
last three questions the definition of symmetry concepts is required. To further clarify which
concepts should be defined in the ontology, a word list was collected with most common
terms used in this domain (Table 2.2). Sometimes there are several words that describe the
same underlying concept. An example is the “basis” which is just another word for the atoms
and their positions in the crystal unit cell. Once the words and the concepts behind those are
set, relations between them can be defined. Not all concepts from the word list are included
yet in this ontology, in particular more in-depth discussion is needed to formalize concepts
like surface or defect.
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Table 2.2: Word list for structure ontology (incomplete), not alphabetically ordered, but
neighborhood might suggest semantically connected concepts.

Crystal Atom species Crystal symmetry Wyckoff multiplicity
Crystal unit cell (Chemical) element Crystal point group Wyckoff letter
Conventional unit cell Bravais lattice Space group Wyckoff site symmetry
Primitive unit cell Brillouin zone Crystal system Hermann Mauguin
Super cell Periodic boundary conditions Lattice system Surface
Lattice Crystal structure Crystal family Boundary
Lattice vector Structure prototype Lattice centering Interface
Basis Reciprocal space Wyckoff position (Point) Defect
Atom postions k point Schönflies symbol Distortion
Fractional positions High-symmetry point Pearson symbol Vacancy

2.2.1 Crystal Unit Cell as Representation of a Crystal

In computational solid state physics, crystals are almost always represented via their crystal
unit cells. One could say that a crystal unit cell is part of a crystal. However this parthood
relation brings multiple incorrect implications: If a crystal unit cell is a spatial direct part of
a crystal, then the atoms are not direct parts of the crystal, but only of the unit cell. The unit
cell is not unique so that multiple different unit cells can be chosen to represent a crystal.
Also, as a human-made model, the unit cell should not be made existential part of a crystal.
A better alternative is to introduce the object property hasRepresentation to connect any
unit cell to a crystal (as shown in Figure 2.3a). Different classifications for unit cells and
their Fourier transforms, reciprocal unit cells, can be defined. Primitive cells are defined to
contain exactly one lattice point. Note, that a lattice point is not to be confused with the
atomic sites because one lattice point is occupied by an atomic basis which can consist of
more than one atom. If the primitive cell is constructed in a special way using the so called
Voronoi or Dirichlet construction, it is called a Wigner-Seitz cell. This construction leads to
a polyhedron shaped cell which has the symmetry of the crystal. The Wigner-Seitz cell in
reciprocal space is the Brillouin zone. In contrast, most other unit cells form parallelepipeds
and are spanned by three lattice vectors. Conventional cells also have the crystal’s symmetry
but are not primitive. The characterization of a unit cell into these types can happen via
boolean datatype properties (isWignerSeitzCell, isConventionalCell, isPrimitiveCell)
or subclassing (of the classes WignerSeitzCell, ConventionalCell, PrimitiveCell). Any
instance of these classes is equivalent to having the respective datatype property value “true”
(although this is not depicted in Figure 2.3a). The domain of these datatype properties is a
union of the crystal unit cell class and the reciprocal unit cell class indicated in the Figure by
the union symbol ∪. In other words, they can be applied to any instance that instantiates any
of these two classes.

Just like a crystal, a unit cell contains atoms, i.e. it connects to the atom concept with the
spatial direct parthood relation. In contrast to a crystal, a unit cell is characterized by a
well-defined number of atoms and atom species which is included using integer datatype
properties. This representation is visualized in Figure 2.3a. The volume of the crystal unit
cell, a measure often used to compare different structures, can be modelled using the prede-
fined Volume class in EMMO.
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Figure 2.3: Excerpts from the Structure ontology developed in this thesis. Purple classes and
properties are inherited from the EMMO. The small white numbers in the blue nodes indicate
the number of ontological instances that exist for this class.
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Query 2.1: WHERE part of a SPARQL Query for structural prototypes, their spacegroups and
crystalsystems as defined in the structure ontology (CSO).

WHERE{
?proto a cso:StructurePrototype .
?proto cso:hasSymmetry ?spacegroup .
?spacegroup core:hasClassification ?crystalsystem .
?crystalsystem a cso:CrystalSystem .

}

2.2.2 Crystal Symmetry

Another very important aspect to consider when representing materials is symmetry. Apart
from the computational advantages in exploiting symmetry, these concepts are often used
to search and find specific groups of materials – in particular because a material’s structure
strongly influences its properties. Figure 2.3b shows how the different classifications like
space group and crystal system connect to each other. Besides the class definitions forming
the TBox, this ontology also contains ontological instances which build the ABox. Here such
ontological instances make sense from a semantic perspective: Each space group can exist
only once, it is the same every time it is being used to describe a crystal structure. An example
for such an individual is the space group with the short symbol Pn-3n and the international
number 222 that is classified to belong to the cubic lattice system and crystal system. In an
ideally linked data world, any crystal in any database would refer to the respective individuals
in this ontology and not only saving the values as strings locally. This would create a world
wide net of linked crystal structures and enable searches across domains and resources.

2.2.3 AFLOW Prototypes Knowledge Graph

The AFLOW Library of Crystallographic Protoypes [31, 32, 33] has already been used in
Part I of this thesis to perform a high-throughput study across many different spacegroups
in Section 3.2. Until 2021, three editions of this library have been published featuring 1100
different structural prototypes. Within this thesis, the author creates a knowledge graph
representation of these prototypes using the freshly developed Structure Ontology. First,
RML-based mappings are written to transform the tabular overview of the library from JSON
format4 to an RDF format using the Core and Structure ontologies for annotation. For sym-
metry information, it is sufficient to map the space group to the ontological space group
instances. This already allows access to other information like crystal system and lattice sys-
tem as stored in the ontology. How access to the ontological crystal system instance is gained
with a SPARQL query is demonstrated in Query 2.1 showing the WHERE part of this request.
For an overview of all prototypes and how they are distributed across the different crystal
systems a network-based visualization in Figure 2.4 is created using Gephi [131]. Including
information about the number of atoms and atom species per unit cell is possible for example
through node sizes and colors as it is done here. For smaller networks an additional layer
of information can be encoded in the node shapes. From the network plot it is obvious that
only few prototypes belong to the triclinic crystal system covering only the two lowest sym-
metry space groups. Another fact that can be extracted from this figure is that prototypes in

4http://aflowlib.org/CrystalDatabase/js/table_sort.js
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Figure 2.4: Network representation of AFLOW Prototypes (green nodes) in all seven crystal
systems (small black center nodes) visualized from the knowledge graph created in this work.
Prototype nodes are size-scaled by the number of atoms in the unit cell and color scaled by
the number of atom species where darker shades indicate more different atom species per
unit cell.

the trigonal and hexagonal crystal systems (hexagonal crystal family) have fewer prototypes
with many atoms of many different species in their unit cells which would correspond to large
dark green nodes. In detail, two extreme cases are the 105-atom unit cell of trigonal pro-
totype A_hR105_166_bc9h4i is made of only one atom type, and six different atom species
are used in hexagonal prototype A3BCD3E15F3_hP52_173_c_b_b_c_5c_c with 52 atoms per
unit cell.

An interesting use-case would be to observe the allowed and occupied Wyckoff positions
within each space group. So far the structure ontology does only include the Wyckoff po-
sitions as concepts. It requires more effort to add the allowed general and special Wyckoff
positions explicitly to each space group instance. Creating the AFLOW knowledge graph,
the occupied Wyckoff sites can then be added to each prototype. This allows for easy in-
vestigations which Wyckoff positions are rarely or even never occupied and which ones are
predominantly used. Because the AFLOW prototypes are based on well known structures, this
can indicate how to construct novel so far unknown structures that are possibly interesting
for crystal structure prediction. Due to the close relationship between a material’s structure
and its properties, such unexplored geometric configurations might be potential candidates
to discover novel phenomena or identify new materials classes.

2.3 Properties Ontology

Up to this section, this work considered only structural information of materials. Although
one could think of such information as being properties, the structure forms a more funda-
mental part in defining a material compared to electrical or optical properties. Furthermore,
it is possible to talk about structures and their features without having a particular chemical
composition of this structure in mind. Our decision to separate structure and properties is
also supported by the existence of structure libraries like the AFLOW Library of Crystallo-
graphic Prototypes [31, 32, 33].

EMMO distinguishes between properties and quantities. A quantity like 10 kg is only a prop-
erty when it is assigned to an object because properties are always the result of an observa-
tion process. In EMMO, a property is either subjective or objective where only the latter results
from a well-defined observation procedure. Furthermore objective properties can be either
nominal if their value can not be quantified or quantitative in which case it can be measured,
modelled or conventional (e.g. specified by a vendor), see Fig. 2.5a. EMMO already defines
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(a) Properties (b) Quantities

Figure 2.5: Hierarchy of quantities and properties in EMMO depicted as a screenshot from
the classes and object properties overviews in the Protégé ontology editor.

many basic quantities like force, energy or electric charge and classifies them according to
the international system of quantities (ISQ) [132].

Now, we develop the materials-properties ontology which aims at specifying more concrete
quantities as being properties of crystals, crystal unit cells or their constituents. In an on-
tology designed to represent materials properties there is no need for quantities that are not
properties. A quantity related to an object via EMMO’s hasProperty relation will automat-
ically be inferred to be a quantitative property when a reasoner is run due to the defined
range of the relation.

2.3.1 What is a Material?

To be able to discuss properties, the definition of a material has to be clarified first. Within
the last year, we have been involved in several discussion with the OPTIMADE community
with the goal of building an ontology for materials databases. The very open view of what
a material is, is also reflected in the formal definition of a material that has come up during
these meetings: “Something that can be expressed by a materials model”. Such a model is
described by a specific set of parameters specifically tied to that model. Instead of modeling
materials, the focus has been shifted to conceptualize and relate materials models.

A more intuitive way is to regard a material as a collection of configurations of this material.
Such a configuration can be a state that exists only for a limited time (due to vibrations,
fluctuations or phase transitions etc.). We will call this a material snapshot and it can be
represented by a single geometric configuration. Modifying this configuration even slightly
alters also the electronic properties. In the NOMAD Metainfo such a snapshot is called sys-
tem. For each system the total energy or even the full energetic spectrum can be calculated.
Some more complex properties require multiple snapshots to be measured or computed. For
example, the thermal conductivity can be calculated from molecular dynamics simulations
on thousand of slightly different geometric configurations all snapshots of one single mate-
rial.

This is a typical use case for a materials knowledge graph. A material node (an instance of a
material) in this graph would be connected to multiple individual snapshots represented by
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section_system in NOMAD each of which can have simple properties like energies, atomic
forces etc. calculated with specific methods. This can be used for the identification of the
relaxed state of the material, i.e. the configuration with the lowest energy and vanishing
forces which can be marked as representative system for this material. Complex properties
can directly be connected with the materials node and the configurations it has been obtained
from thereby also tracking provenance. In practice however, it is very complicated to identify
entries in NOMAD that belong together after they have been uploaded unless there is a clear
description and links provided by the uploader.

2.3.2 Properties Classification

Multiple different classifications for materials properties exist: Often, physical properties are
categorized as being either intensive or extensive according to how the property changes
when the system size or amount of material changes. Extensive properties are additive and
increase or decrease with the extent of the system like mass, volume or entropy. Intensive
properties do not change with the system size as for example density or temperature. Vol-
ume and mass of the crystal unit cell are structural properties which belong to the structure
ontology. Division of two extensive properties usually gives an intensive value: mass divided
by volume yields the density. Moreover, there exist properties that fall in neither of these
two categories. Therefore, this distinction will not be made in our ontology because it would
only complicate the class hierarchy. Another way to categorize properties is to assign them
to domains: One distinguishes mechanical, electrical, optical and thermal properties. More
domains like magnetics or acoustics as well as manufacturing-related concepts can be de-
fined. A clear distinction is not straight-forward for all properties, so that often one property
belongs to multiple classes. Especially when a material is used in the engineering industry,
the microscopic and macroscopic levels are separated. Our ontology incorporates this view
via materials models and classifies for example the crystal unit cell as emmo:MesoscopicModel
and a crystal structure as an emmo:AtomisticModel.

2.3.3 Modeling the Band Structure

One of the most important concepts used by materials scientists to describe the electronic
structure of a periodic solid is the energy band structure. Even though it is a simplified model
of the real energetic structure in a material, it is used extensively and will therefore be in-
cluded as a property of a crystal snapshot. The band structure is made up of energy bands that
are formed by energies with the same band index and continuously varying wave vector k.
Following the picture a material scientist has in mind when thinking of a band structure , the
bands are modeled as spatial direct parts (using the EMMO relation hasSpatialDirectPart)
of the full band structure. Each band also has spatial direct parts which are the individual
measured or computed energy values which make up a band.

In principle every solid material has energy bands. However only for periodic solids (crys-
tals) the band structure can be visualized along the paths between high symmetry points
in the Brillouin zone. Amorphous materials do not have a Brillouin zone. Therefore a more
general concept is needed to describe the energetic spectrum of any material, such as a three-
dimensional random sampling of the crystal combined with statistical methods. We will focus
on crystals here because they are one of the most important solid materials types. Figure 2.6
depicts the ontological concept of the valence-conduction band gap using the isDerivedFrom
relation. Whether a particular band gap, represented by a band gap instance, is a direct band
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Code 2.2: Nested definition statement for the valence conduction band gap as defined in the
subClassOf field in the ontology editor Protégé.

inverse(hasOutput) some
(SubtractionOperation and

( (hasInput some (Minuend and ConductionBandMinimum)) and
(hasInput some (Subtrahend and ValenceBandMaximum))

)
)

gap (or not) is indicated at data level using the boolean datatype property isDirectBandGap.
The ontology contains a more semantic description of the relation using the subtraction op-
eration in a nested statement given in Listing 2.2. None of the known ontology visualization
tools are however able to visualize these nested triples. Additional blank classes would need
to be introduced making the graph too complicated. Band index and occupation as well as
spin channels (up/down) have been modeled as datatype properties. Of course the spin in
quantum physics is a more complex concept earning an own class. As an electronic model
is developed here, it is clear that the spin is 1

2 and can be oriented either up or down lifting
spin degeneracy of the energy bands. In fact, a representation of the symmetry group of the
wavefunction is also assigned to a band, however this is often not discussed.

The concept schema shown is equivalently valid for vibrational band structures in which the
allowed energetic states of phonons are described. Instead of the k-points in momentum
space, the phonon wave vector, q, is then plotted on the x-axis.

As the number of physical properties that can be defined is incredibly large, it is important to
focus on a particular application or sub-field and the relevant properties therein. Data from
the NOMAD Repository will be used in this thesis to build knowledge graphs, so that focusing
on electronic properties is a good starting point.
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Chapter 3

NOMAD Metainfo Ontology

The previous chapter introduced a collection of ontologies that was created top-down to
avoid bias towards a particular database or meta-data schema. On the other hand, following
the practical bottom-up approach (see Section 1.3.4) it seems natural to transform the well
established NOMAD Metainfo from Section 1.5.2 to an ontology. In fact, it does already fulfill
a number of requirements of an ontology: Each meta-data item has a unique identifier given
by a path, a name as well as a rich human-readable description, several attributes, and its
format as python object or JSON file makes it machine-readable too. Five different relations
including two parallel hierarchies for the sections and the categories provide basic semantics
to the meta-data structure making it superior to traditional meta-data schemas.

To ensure extensibility of the Metainfo ontology and synchronization with the current Metainfo
implementation, two ontology layers were created. The pure Metainfo ontology fetches meta-
data definitions via the NOMAD API, creates an ontology from them and stores it in the OWL
format. Anything else like rules, additional classification or relations to other ontologies is
stored in the extended Metainfo ontology that imports the pure one.

3.1 The Pure Metainfo Ontology

Each Metainfo item is represented as on ontological class and inherits from one of the four
meta-data types from Section 1.5.2, i.e. Section, Quantity, Dimension or Category. Real data
from calculations in the Archive can then instantiate these classes. The object properties by
which they are connected are embedded in the EMMO properties hierarchy as shown in Fig-
ure 3.1b. Three relations are sub-properties in the mereotopological branch: hasReference
as a participant of some referencing process, and hasQuantity and hasSubSection as parts of
a section. All others are classified as sub-properties of hasConvention in the semiotic branch
of EMMO. The meta-data types and their relations build the upper structure for the Metainfo
ontology and are displayed in Figure 3.1a.

As can be seen, NMI_dimension is defined as a subclass of NMI_quantity. In fact, the current
Metainfo implementation (as of July 2020) does not strictly distinguish between quantities
and dimensions anymore. However, because this distinction is useful, the classification is
re-introduced in the next chapter within the extended ontology to increase findability and
semantics.

When the Metainfo is used to annotate real data, it quickly becomes obvious that a concept for
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Figure 3.1: Overview of the upper structure of the NOMAD Metainfo Ontology.

a single NOMAD entry is necessary to completely ensure unique identification of data. Such
an entry in the NOMAD Archive is represented by the ontology concept NOMADEntry.

Multiple conceptional decisions need to be made during ontology development one of which
was how to include multi-dimensionality of quantities. While array representation was al-
ready discussed in Section 2.1.1, now the shape of a quantity is to be described. First,
variable and fix dimensions need to be treated differently. The meta-data atom_positions
has the shape [number_of_atoms, 3], so the first dimension is a variable depending on the
system and the second dimension is fix and represents the 3 components x, y, z. Whereas
the variable component can be class, it does not make sense to create a class for each pos-
sible fix dimension. Therefore, an object property for variable dimensions is appropriate
but fix variables are better described using a datatype property with range integer. This
is also the reason why the technique of dimension chaining using hasFirstDimension and
hasNextDimension relations does not work. Figure 3.1a only shows object properties but in
principle multiple hasFixDim properties would point away from NMI_quantity. A datatype
property hasNumberOfDimensions for the quantities additionally ensures user-friendly acces-
sibility. Five variable and fix dimensions are sufficient to describe all quantities defined in the
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Figure 3.2: Subclass hierarchy for energy categories in the NOMAD Metainfo Ontology.

Metainfo to date.1

Quantities usually are expected to be provided in a specific datatype like integer, string or
real. Here, external datatype classes from EMMO are used which at the same time avoids
redundancy and improves interoperability and re-usability. The Metainfo also gives specifica-
tions for the units of a quantity using the python module Pint. For the ontology, these units
are replaced by EMMO units and related using EMMO’s hasReferenceUnit property. EMMO
relates units to their corresponding concepts in IUPAC [133] and QUDT [134].

In ontologies, the subclass-of relation is equal to an is-a statement. If A is subclass of B,
then A is a B and therefore inherits all properties of B. For the NOMAD Metainfo, the only
meta-data type that can be expressed hierarchically using is-a statements are the categories.
An example of different energy categories in the Metainfo ontology and their hierarchy is
presented in Figure 3.2. This categorization provides a semantic layer to the remaining
Metainfo terms.

Although the word “subsection” suggests some kind of subclass relation between sections,
in fact a subsection does not contain the same things as its parent section. For this reason,
the hasSubSection relation was created. All sections and their relations are shown in Figure
3.3 colored by communities that were identified using the modularity measure introduced in
Section 1.4.3.

A particularly cumbersome part is transferring references from the current Metainfo imple-
mentation to the ontology. If a section like section_system refers to another section, it
contains a quantity (e.g. system_to_system_ref) which has a Proxy object as value pointing
to the actual system. However, such Proxy links are not representable within the Metainfo.
The value is only given in the Archive when real data is considered. In the same manner, the
ontology only defines the object property hasReference (Fig. 3.1a) but contains no further
restrictions on its usage. It is only used to link individuals once they have been created (a
process referred to as instantiation or ontology population). This work uses SPARQL to find
referenced sections in the materialized knowledge graph and relates such instances after-
wards.

The pure NOMAD Metainfo ontology counts 4272 axioms, 629 classes, 16 object properties
and 6 datatype properties including directly referenced or subclassed external classes. It is a

1 The use of edge properties was avoided here to eliminate any incompatibility issues for such a funda-
mental relation. However, it would be a perfect use-case for an edge property to specify which dimension a
hasVarDimension or hasFixDimension relation refers to.
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Figure 3.3: Sections in the NOMAD Metainfo represented as network with arrows visualizing
the hasSubSection relations. Sections are grouped into communities using the modular-
ity measure. Labels are size-scaled by out-degree. Note that the highest level section is
section_run here. Any meta-data concerning the NOMAD entry are not displayed for sim-
plicity.
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Query 3.1: SPARQL CONSTRUCT Statement to classify quantities that are used as variable
dimensions for other quantities. Refer to Section 1.3.6 for details of the SPARQL syntax.

PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>
PREFIX nmi: <https ://nomad -coe.eu/ontology/metainfo/pure#>

CONSTRUCT {
?dimension owl:subClassOf nmi:NMI_dimension .

}
WHERE {

?quantity rdfs:subClassOf [
a owl:Restriction;
owl:onProperty ?vardim;
owl:someValuesFrom ?dimension
] .

FILTER (? vardim IN (nmi:hasVarDim1 , nmi:hasVarDim2 ,
nmi:hasVarDim3 , nmi:hasVarDim4 , nmi:hasVarDim5) )

}

pure T-Box ontology, so it does not declare any individuals.

3.2 The Extended Metainfo Ontology

In the second layer of the NOMAD Metainfo Ontology further classification and relations are
introduced that enhance semantics.

First, some Metainfo quantities are used as dimensions for other quantities. This classifica-
tion is however not directly accessible in the Metainfo schema. The respective triples are
therefore created within the extended ontology using the SPARQL Query 3.1 to identify these
dimension quantities and create the respective triples.

Second, several Metainfo terms have information in their human-readable descriptions that
are not captured by the schema. One of these is the method with which a quantity has
been calculated. The object property hasMethod was therefore created which is equivalent to
stating “was calculated using the method”. New links are created in the Metainfo Ontology
using this relation. Table 3.1 shows all method-value pairs that could be extracted from the
Metainfo descriptions.

Categories already structure the Metainfo, albeit lacking semantic definitions and relations
themselves. Referencing more semantic ontologies is therefore a means to enhance inter-
operability. Basic physical quantities like energy or force are present already in EMMO and
therefore also represented in the Properties Ontology from the last chapter. All symme-
try concepts that have been defined in the Structure ontology are made equivalent using
owl:EquivalentClass statements.

In so called General Concept Inclusion (GCI) Axioms [135] it is possible to express general
statements that can be interpreted as simple rules. Above, triples were constructed using
SPARQL to include a classification based on a query. GCIs are an alternative approach that is

73



Table 3.1: Methods meta-data (right) describing value meta-data (left) as given in Metainfo
human descriptions.

Metainfo term is related via hasMethod to

energy_C XC_functional
energy_X XC_method
energy_XC XC_method
energy_van_der_Waals van_der_Waals_method
energy_van_der_Waals_value energy_van_der_Waals_kind
stress_tensor stress_tensor_method
stress_tensor_value stress_tensor_kind

Figure 3.4: Screenshot of General Class Axioms in Protégé to semantify the NOMAD
Metainfo. After reasoning all classes satisfying the LHS of SubClassOf are subclasses of the
RHS.

less flexible but includes the rules themselves leaving it to the reasoner to infer the results.
This is especially useful when an ontology is still growing or changing. Such general class
statements have a left hand side (LHS) and a right hand side (RHS) combined by either
of rdfs:subClassOf, owl:EquivalentClass or owl:disjointWith. Each side can consist of
anonymous classes that do not have names themselves. In Figure 3.4 general class axioms are
listed in the simplified human-readable Protégé syntax. Concepts in the NOMAD Metainfo
Ontology are related to concepts in EMMO and the NOMAD ontologies. The structure of
each statement is the same: the LHS is stated to be a subclass of the RHS. A reasoner can
then infer for all classes that fulfill the LHS that they are subclasses of whatever is stated on
the RHS. Because the pure Metainfo Ontology contains relations to categories, dimensions
or physical units they may be used to infer that a certain Metainfo quantity is a subclass of
a specific physical quantity. For example anything that has a unit of Joule is an energy or an
array containing energies in its components depending on its number of dimensions.

3.3 Enhancing the NOMAD Metainfo with DCAT

The Data Catalog Vocabulary [136], usually only referred to as DCAT, is an RDF vocabulary
for data catalogs and datasets published on the Web. It aims to enhance interoperability
between different data repositories as well as discoverability of datasets within these. High
level abstract meta-data about things like the title, creator and creation time as well as access
rights and landing pages are annotated using the DCAT vocabulary and made available in
a linked data format such as RDF. External applications can use this DCAT description and
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enable dataset searches across multiple otherwise heterogeneous data catalogs. The second
version, DCAT v2, is a recommendation of the World Wide Web Consortium (W3C) as of
2004 and widely used across the Web. The European Union public sector uses DCAT as a
foundation for open dataset descriptions. An example for a search application is the Google
Dataset Search 2 fetching datasets that are structured and annotated using either schema.org
or DCAT. Datasets from the Materials Project or OQMD are already findable via the Google
Dataset Search. It requires a structured markup of each dataset’s landing page to find and
identify it as dataset but does not crawl the databases directly. Within the STREAM project3,
we develop a mapping of meta-data to the DCAT vocabulary which is presented in this section.
The conceptual mapping was done by this thesis’ author in collaboration with the TIB. We
further created a DCAT interface for NOMAD that is accessible through a dedicated DCAT
API 4. On a technical side, this was mainly realized by Markus Scheidgen from the NOMAD
Laboratory. To make NOMAD data findable in the Google Dataset Search such standardized
meta-data descriptions need to be added as markup to each dataset’s landing page. Google
crawls the HTML source code of these pages and extracts meta-data markup to index the
dataset. DCAT borrows properties from other vocabularies like the DCMI Metadata Terms
by the Dublin Core Metadata Initiative (DCMI) [137] and the PROV Ontology (PROV-O) for
provenance information [138].

While it is possible to simply describe the Metainfo schema within the DCAT specification
using the dcat:Catalog class, it is more useful to represent the information stored for each
NOMAD entry in DCAT format. This way, external dataset search engines can access this
information and find relevant NOMAD entries. An individual entry in the NOMAD Archive
corresponds to a dcat:Dataset, because it represents a collection of data. This is a crucial
distinction to the NOMAD usage of the term “dataset” where multiple Archive entries are
combined in a single dataset. There is no equivalent in DCAT for a NOMAD dataset.

NOMAD’s DCAT interface provides descriptive data about NOMAD entries in DCAT format.
The technical realization refrains from using RML to define mappings from NOMAD to DCAT,
since an RML processor would be necessary to generate the actual RDF files. As there are
no RML processing implementations for Python, the mappings where implemented directly
in Python using rdflib [139] to avoid the technical complexity of adding non-Python compo-
nents in the NOMAD architecture.

Only very few DCAT dataset properties have exact matches in the NOMAD Metainfo, many
are only similar concepts. It is possible to relate them as narrower or broader concepts, how-
ever this decreases findability. Thus, they are still mapped directly even though these slight
differences should be kept in mind when further concepts are added to the Metainfo. Ta-
ble 3.2 summarizes relevant properties of a dcat:Dataset for which related NOMAD terms
exist or their values are known. Datatype properties marked with “DT” are easy to map as
they require only literal values such as strings as given in NOMAD. More complicated are the
object type properties (“O”) where the value needs to be a resource. Creator and publisher
are properties with the recommended range foaf:Agent [140]. Such an agent can be for
example an organization or a natural person. An instance of this class is created first for
each author and uploader (or respective publishing organization) to be able to map these
persons (or organizations) stored in NOMADs user management system to the DCAT vocab-
ulary. On the other hand, the contact information pointed to using dcat:contactPoint is
recommended to be provided using the vCard Ontology [141]. Because of the open-world

2https://datasetsearch.research.google.com/
3The Fritz Haber Institute is one of five partners in the BMBF-funded project STREAM: semantic representa-

tion, linking and curating of quality-ensured materials data. More info at https://stream-projekt.net/.
4https://nomad-lab.eu/prod/rae/dcat/

75

https://datasetsearch.research.google.com/
https://stream-projekt.net/
https://nomad-lab.eu/prod/rae/dcat/


Property of Dataset DT/O NOMAD Metainfo term or value Comment

dct:description DT comment comment does not
always contain a
description

dct:title DT formula chemical formula was
chosen as title

dct:issued DT upload_time issued means the
official publication
date

dct:modified DT last_processing
dct:isReferencedBy O references
dct:creator O authors
dct:publisher O uploader publisher and

uploader does not
need to be the same

dct:identifier DT calc_id historically there is
also entry_id,
upload_id

dcat:landingPage O [1] can be constructed but
not a Metainfo term

dct:license O CC BY 4.0 known, but not a
Metainfo term, might
change in future

dct:language O English known, but not a
Metainfo term

dcat:contactPoint O section User mapping through use
of vCard class

prov:wasGeneratedBy O section program_info needs definition of
programs as software
agents in PROV-O

dcat:theme O needs definition of
SKOS concepts like
“Material”, “Molecule”

dct:type O needs definition of
concepts like
“Computer simulation
of physical object”

dcat:distribution O API, JSON Distribution objects
need to be created

Table 3.2: Datatype (DT) properties and object (O) properties for a dcat:Dataset and the
corresponding terms in NOMAD as well as comments about concerns. If not a Metainfo term
but known directly it is marked blue.
[1] http://nomad-lab.eu/prod/rae/gui/entry/id/[upload_id]/[calc_id]
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assumption that is made in OWL, an instance of vCard:Individual can at the same time be
an instance of foaf:Agent. In this way, the dct:creator and dcat:contactPoint proper-
ties point to the same individual. This choice was taken to avoid duplication and enhance
semantics because it is immediately clear that the creator is also the contact point.

The concepts mapped so far are very general and not specific for materials science. A user
querying a particular material can therefore only get hints about which materials repositories
contain relevant data by checking the chemical formula. Whether a dataset describes a com-
puter simulation or an experiment as described in NOMADs domain keyword is not part of the
DCAT representation. Mapping it via the dct:type property requires such concepts to be for-
malized in a controlled vocabulary such as the DCMI Type Vocabulary. Similar is true for the
dcat:theme property with the range skos:Concept – formalizing materials classes or other
features of a material in SKOS concepts [142] would enable the usage of this property.

Additionally, NOMADs DCAT API provides information about the distribution types: each
NOMAD entry is distributed in multiple ways – via the API, in JSON format and as raw data.
The respective access (or endpoint) URLs, media types and other related information are
specified using DCAT.

3.4 A Knowledge Graph of Hybrid Organic-Inorganic Perovskites

3.4.1 Graph Materialization

As a first subset of NOMAD entries, a dataset on hybrid organic-inorganic perovskites (HOIP)5

with different structures [143] is chosen to populate the knowledge graph. This materials
class is promising in solar cell technology [144, 145]. Since their first use as photo-voltaic
cells in 2009, efficiencies have rapidly increased. In 2021, an efficiency of 25.6% has been
reported for perovskite solar cells [146]. The chosen dataset contains 8076 NOMAD en-
tries on 1346 different HOIPs combining 16 organic cations, 3 group-IV cations and 4 halide
anions.

As explained in Section 1.3.5, two different strategies are commonly followed to create a
knowledge graph: graph materialization or query rewriting in the form of mappings. Be-
cause the data model of the Metainfo ontology was directly inherited from its original, on-
tological concepts can be instantiated and a knowledge graph is created without the need
for complicated rules and mappings. This direct applicability is the immediate benefit of the
bottom-up approach. The NOMAD Python API can be used to query and retrieve the dataset
from the NOMAD Archive. Automatically looping through the section structure and creating
resources from each item is then easily possible using the python packages owlready2 [147]
or RDFlib [139]. Items are linked using the ontological relations from Section 3.1. Some of
the items in the Metainfo are reference objects. They are used for example to indicate for
which system and with which method a particular calculation output was obtained. These
items are encoded as Proxy objects when retrieving them via the API. During the KG creation,
they are replaced by actual links between the respective sections using the hasReference re-
lation. Such references are resolved with simple SPARQL queries enabled by RDFlib. Here,
the queries are performed within an individual knowledge graph representing one NOMAD
entry and finish very fast. However, it has to be kept in mind that performing a large number
of queries on a large knowledge graph can quickly become performance-critical.

5Dataset DOI: 10.17172/NOMAD/2017.03.15-1
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The size of the resulting RDF files can similarly increase rapidly when many triples are cre-
ated, for example if large arrays are transformed. Each single element in an array is an
individual array component node with a value and an index that can itself be a vector (see
Core Ontology in Section 2.1). For smaller arrays this representation works well, but band
structures as stored in NOMAD can easily have tens of thousands of elements. As an example
consider a VASP calculation on SrZrO3

6 whose legacy JSON representation has a file size
of 1.1 MB. Execution of the conversion to RDF/Turtle format takes almost 5 minutes on a
standard laptop and results in a 24 MB large Turtle file, which is a factor of 22 times larger
than the original JSON file. Depending on the use-case for these newly created knowledge
graphs, it is not always necessary to store numeric arrays in this storage-consuming manner.
A much smaller file can be obtained by storing all arrays above a certain size as strings. This
threshold was here chosen to be 5: any array with more than 5 elements is saved as string
value. Of course, this way the semantics can not be leveraged but if needed such strings can
easily be parsed as NumPy arrays. The final size of the RDF file using this compromise is
256 KB which is even smaller than the legacy JSON representation. Almost half of the con-
version time is spent converting between different RDF syntaxes to maintain compatibility
between owlready2 and RDFlib. Designing a better framework can therefore significantly
reduce this time. Naturally, this is a problem that is straight-forward to parallelize because
each entry forms its own knowledge graph. Using NOMADs Python API however, pagination
and Proxy objects have to be dealt with that are incompatible with standard parallelization
techniques.

To provide a single point of access to a given dataset or data repository, all RDF files can
be loaded to a triplestore together with the used ontologies. Dozens of different triplestore
implementations are available, both open-source and proprietary ones many of which have
native SPARQL support and provide a SPARQL endpoint. Here, the proprietary triplestore and
graph platform Stardog is used which natively supports edge properties using RDF*/SPARQL*
as well as provides basic visualization.

3.4.2 Semantification on Instance Level

The extended Metainfo Ontology includes statements about the equivalence of some of its
classes to classes in the Structure Ontology. For example the nmi:crystal_system is equiv-
alent to cso:CrystalSystem. This means that all instances of one class are also instances
of the other class. However, when creating the knowledge graph for the HOIP dataset, only
string values are attached to the nmi:crystal_system instances. Neither the ontology nor a
reasoner can know which string values correspond to which instances in the Structure On-
tology. When this connection is not directly created during the graph materialization, two
such instances can be connected using the owl:sameAs relation. A reasoner can then infer
the equality of these instances. Similarly to the crystal system, also space group and bravais
lattice have equivalent classes in both ontologies. These sameAs-relations are added to the
knowledge graphs using SPARQL INSERT or CONSTRUCT statements as given in Query 3.2.
While the querying is performed on a triplestore and INSERT statements would add the new
triples directly to the graph, all knowledge graphs will finally be published in RDF format, so
that the CONSTRUCT request is chosen whose results can be stored in RDF format together
with the data.

6upload_id: 3xtCpsST9Wb7NEAV6ADGQ, calc_id: wDjLmh7A5kgSTtKqYzfgBqaJt8OI

78



Query 3.2: SPARQL Insert statement for adding instance equality between Metainfo instances
and Structure Ontology instances. Refer to Section 1.3.6 for details of the SPARQL syntax.

prefix nmi: <https ://nomad -coe.eu/ontology/metainfo/pure#>
prefix core: <https ://nomad -coe.eu/ontology/core#>
prefix cso: <https ://nomad -coe.eu/ontology/structure#>
prefix xsd: <http :// www.w3.org /2001/ XMLSchema#>

CONSTRUCT{
?NMI_CS owl:sameAs ?CSO_CS .

}
WHERE{

# Crystal System
# --------------
?NMI_CS a nmi:crystal_system ;

core:hasValue ?CS_string .
BIND(IRI(CONCAT(str(cso:CS) ,?CS_string)) as ?CSO_CS)

}

3.5 Applications to Real Life Problems

3.5.1 The Search for a Better Solar Cell Material

One often noted example of an application for an ontology is the semantic search. It differs
from traditional keyword-based search in that it not only offers webpages or links but truly
answers the user’s question [148]. Examples for such search engines are Wolfram Alpha
and the Google Knowledge Graph [149]. In contrast, a traditional faceted search gives the
user options to constrain the number of search results based on so called facets [150]. For
materials science, consider the example of the search for good or better solar cell materials.
A semantic search engine would need to answer the question

(i) “What material is a good solar cell material?” or

(ii) “Which basic materials properties are needed for making a material a candidate for a
good solar cell material?”.

Clearly, to answer such questions the underlying search engine needs detailed knowledge
of solar cells or what makes a good solar cell. Such information can be encoded in an on-
tology. Ideally, the ontology would include only the basic physics describing the physical
phenomenon and an autonomous intelligent agent could determine the resulting required
properties (such as the band gap or the effective mass). Unfortunately, no such agents ex-
ist yet and ontologies themselves cannot think, so the physical, economical and biological
requirements for a solar cell material need to be explicitly stated in an ontology. Question
(ii) is already answerable with such an ontology. Finally, to answer question (i), the ontol-
ogy would help to formulate a faceted search against a number of knowledge graphs from
different domains. The search then becomes semantic as the facets that are being queried
are automatically identified by the ontology. Finding candidate materials in this way is today
still unrealistic because too much information is still missing or unavailable to give valuable
answers to such a complex multi-domain question.
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Faceted searches in the domain of computational materials science are already realized within
many of the available DFT simulation databases, e.g. NOMAD, AFLOW, OQMD or Materials
Project. Nevertheless, in the following we will investigate the different aspects of a potential
new solar cell material and discuss a simple example how different domains can be connected
with the help of ontologies. This example was realized and implemented by the author of
this work utilizing the NOMAD repository as primary data source.

The maximal theoretical efficiency for single p-n junction solar cells is given by the Shockley-
Queisser limit and was recently calculated to be 33.7% for a band gap of 1.34 eV [151].
This optimal band gap value is already one of the most fundamental criteria in the search
for solar cell materials. How the conduction and valence bands behave around this band
gap is important for the efficiency of solar cells and is captured by the effective masses of
the electrons and holes. A strongly curved conduction band yields a small effective mass and
therefore a large charge carrier velocity leading to fast circuit reaction times. Additionally the
material should of course be stable as well as obtain a strong optical absorption coefficient,
be low in cost, not be toxic or hazardous and in the optimal case be compatible with existing
technology.

Stability can refer to different concepts: Nuclear stable materials are isotopes that do not
decay spontaneously and are therefore not radioactive. Thermodynamical stability occurs
when a material is in chemical equilibrium with the environment, i.e. it is in its lowest en-
ergy state. Typically, the free energy is investigated to include finite temperature effects like
the vibrational motion of the nuclei. Thermodynamically, a material is stable if its free energy
is lower than the free energy of all possible decompositions into elementary, binary, ternary
(and so on) compounds. For this, often the convex hull of stability is constructed depicting
the formation energy as a function of the chemical composition [152]. Because free energy
calculations are costly and often not available for enough materials to create a convex hull
function, the total energy at 0 K can be used instead for the convex hull construction to ob-
tain a first stability estimation if zero point motion is neglected. Total energy calculations are
available for a huge amount of compositions and, if missing, not too expensive to run. NO-
MAD does not relate individual calculations to each other. This makes estimation still tedious
to extract from existing data. The NOMAD AI Toolkit 7, was specifically designed to utilize
artificial intelligence to fill the gap of missing data by predicting materials properties and also
to gain insights about relationships. Another aspect of stability are meta-stable states as seen
in Part I of this thesis. An example is diamond which is stable only at very high pressures and
meta-stable at normal temperatures and pressures. Its conversion to the stable graphite phase
is however hindered by a large activation barrier. Also meta-stable heterostructure alloys are
a topic of current research to discover materials with specific functionalities [153].

Optical absorption spectra can be obtained using for example time-dependent DFT. Even
though a few codes supported by NOMAD provide possibilities to calculate light-matter in-
teraction, no standardized meta-data keys are defined in the Metainfo due to the lack of
available data. The code-specific keyword dmol3_optical_absorption occurs only twice as
test entries in the whole NOMAD Archive.

The cost is an economic factor that is probably impossible to predict for novel compounds
that have never experimentally been realized. Simple estimates based on the abundance
(and cost) of the constituent chemical elements neglect the cost of synthesis and fabrication
and are therefore too rough to be valuable measures. In fact, prices of chemical elements
are listed on Wikipedia 8 but converting the table to a linked data format is tedious. It re-

7https://nomad-lab.eu/services/AIToolkit
8https://en.wikipedia.org/wiki/Prices_of_chemical_elements
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Query 3.3: SPARQL Query for substances that have an effect (wdt:P1542) that is either
intoxication (wd:Q18621601) or a subclass of it (wdt:279).

PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
PREFIX wd: <http :// www.wikidata.org/entity/>
PREFIX bd: <http :// www.bigdata.com/rdf#>

SELECT ?substanceLabel ?effectLabel ?formula
WHERE{

?substance wdt:P1542 ?effect .
?effect wdt:P279* wd:Q18621601 .
?substance wdt:P274 ?formula .

SERVICE wikibase:label {
bd:serviceParam wikibase:language "en" .

}
}

quires a mapping to ontologies and vocabularies that are designed for this domain. Intensive
literature research is needed to ensure proper usage of existing ontologies. If none exist,
new ontologies or vocabularies have to be developed first to be able to express the tabulated
prices for chemical elements in a knowledge graph format. The benefit was regarded as too
low to follow this path.

Biological aspects like toxicity and hazardousness are similarly difficult to find for compound
materials and in general unavailable for any novel materials. Most publicly available data
repositories for chemical compounds include only biomedically or pharmacologically relevant
substances, such as PubChem [154], ChEBI [155], National Cancer Institute Thesaurus [156]
or the National Drug File Reference Terminology [157]. Chemicals are often part of a com-
plex classification that does not allow for an easy true-or-false statement about its toxicity.
Furthermore, the chosen HOIP dataset has no overlap with these databases and the author’s
search for appropriate databases containing some of our HOIP materials was not successful.
DBPedia’s properties dbp:health and dbp:flammability are unfortunately rarely used. In
Wikidata, a substance can have an effect which is a subclass of intoxication (Query 3.3).
This includes however ethanol and other industrially harmless compounds. In total, 42 re-
sults are returned none of which is a perovskite. Alternatively, a substance can itself be a
subclass of some noxa (contaminants) (Query 3.4). This results in a much longer list of
819 distinct substances. The chemical formulas follow the Hill system 9 with few exceptions.
Comparing these formulas with the respective entries annotated by the NOMAD Metainfo key
chemical_formula_hill can filter out any of the harmful substances from the HOIP dataset.
Unfortunately, there is however again no overlap, so that this filter has no effect. In fact,
none of the materials studied in our HOIP dataset have a corresponding entry in one of the
mentioned databases where toxicity information is stored. Filtering by the contained ele-
ments that are potentially harmful is too hard as a constraint, especially because many useful
materials contain such elements, for example lead in methylammonium lead iodide.

9In the Hill system, carbon atoms come first in the chemical formula, then hydrogen atoms and the remaining
elements follow in alphabetical order.
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Query 3.4: SPARQL Query for substances that are instances of a subclass of noxa
(wd:Q50379880).

SELECT ?xLabel ?substanceLabel ?formula
WHERE{

?substance wdt:P31 ?x .
?x wdt:P279* wd:Q50379880 .
?substance wdt:P274 ?formula .

SERVICE wikibase:label {
bd:serviceParam wikibase:language "en".

}
}

Figure 3.5: Simplified schematic view of the dataset enhancement workflow. A dataset from
NOMAD containing multiple entries is converted to individual knowledge graphs. Further
investigation, symbolized by the magnifier, can add additional links that connect the knowl-
edge graphs finally building one large KG. These new relations (blue lines) can have edge
properties (red).

3.5.2 Dataset Enhancement and Connections

Traditionally, when a research study builds on an existing dataset, this dataset is often cited
by its DOI or by the publication in which it has been presented. Newly created knowledge
can include for example connections between original data points or additional data values
that enhance the original dataset. Such information are however hidden in text form and are
unaccessible for a computer if no direct links are created. In Figure 3.5, a schema is shown
how the knowledge graph approach is used in this work to overcome this limitation. One
realistic and useful application of representing data as knowledge graphs is the ability to add
new research results directly to the original graphs or at least directly using the IRIs of the
original data. Due to the unique IRI representation of each data point, it is straight-forward
to re-use such data. Sometimes access to the original triplestore is not given, so that new
data can not directly be added to the existing graphs. In these cases simply referring to the
respective IRIs is sufficient for a software agent (like a SPARQL endpoint) to understand the
equality of two data points.

Due to the photo-voltaic interest in hybrid organic-inorganic perovskites [158], let us con-
sider in more detail the electronic spectra of the materials in our dataset. As explained in
Section 3.5.1, a material’s band gap and the behavior of the energy bands around it play
the most important role for its photo-electric functionality. The region of the band structure
around the band gap of a potential new solar cell material is therefore likely to resemble the
band structure of other well-known photo-voltaic materials. Because the search for solar cell
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Figure 3.6: The components of the Tanimoto similarity coefficient visualized. Left: two indi-
vidual functions, middle: intersection of the two functions, right: union of the two functions.
Based on a plot courteously provided by Martin Kuban.

materials is focused on finding better materials, it is necessary to provide a reference point.
Two very promising HOIP materials for the light-harvesting active layers in solar cells are
methylammonium lead iodide (CH3NH3PbI3, also MAPbI3) [159, 160] and formamidinium
lead iodide (HC(NH2)2PbI3 or FAPbI3) [161, 146]. They can therefore serve as reference
materials and be compared to other perovskites in the dataset.

Density Of States Similarity Measure

The density of states (DOS) is a derived property that integrates values of the energy dis-
persion relation (band structure) over all states and k-points. It measures the number of
available states at a particular energy. Very flat bands result in a high DOS whereas steep
energy bands show up as low values in the DOS.

As introduced by Isayev et al. [106] DOS fingerprints can be defined representing the DOS as
a binary descriptor. Sampling the DOS diagram into equally sized 256 bins and discretizing
their values in 32 bits results in a 1024 byte fingerprint. The NOMAD encyclopedia imple-
ments a modification of this descriptor developed by Martin Kuban available through the
python package nomad_dos_fingerprints. It improves the fingerprints by using a non-uniform
grid where the bins are distributed around a reference energy by a Gaussian function. [162]
This leads to a denser binning around this reference value which usually lies in the band
gap region. More bins with smaller widths are desired in this region especially when photo-
electric properties are investigated. The fingerprints of two materials are then used to cal-
culate the Tanimoto coefficient [163] as a quantitative similarity measure. The Tanimoto
similarity coefficient Tc as used here is also called Jaccard index and defined as the ratio
between the intersection and the union of two sample sets A and B

Tc(A,B) =
|A ∩B|
|A ∪B|

, (3.1)

where

0 ≤ Tc(A,B) ≤ 1 . (3.2)

A Tanimoto coefficient of 0 indicates no similarity at all whereas a value of 1 means that the
two samples are identical. Figure 3.6 shows two distributions A and B (left) as well as their
intersection (middle) and their union (right). For bit arrays like the DOS fingerprints, A and
B are bit vectors and Tc can be calculated as

Tc(A,B) =
A ·B

A2 +B2 −A ·B
. (3.3)
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In the NOMAD encyclopedia, for each material that has a calculated DOS the top five materi-
als with most similar densities of states are shown. Standard settings are an energy intervall
of (−10, 5) eV with the Gaussian centered around µ = −2 eV and a width of σ = 7 eV. The
python package nomad_dos_fingerprints10 can be used to manipulate the Gaussian param-
eters, control the region in which the fingerprint is calculated or simply calculate Tc for
materials that are not in the NOMAD Encyclopedia.

Similarity Relations as Edge Properties

Within this thesis, fingerprints and similarity measures are calculated for the chosen dataset
of hybrid organic-inorganic perovskites. With an eye on the application as photo-voltaic
materials, the DOS fingerprints are constrained to the region around the band gap. Because
in this region there will naturally be only few states, many of the bins will be empty leading
to a very small filling factor f (the number of ‘1’ bits divided by the number of all bits in
the fingerprint). When this filling factor approaches zero, this indicates that the region is too
small to capture the surrounding bands. The fingerprint becomes therefore meaningless. 11

For the fingerprint calculation, the normalized density of states is used in which the energies
are given relative to the highest occupied energy state. An asymmetric interval capturing the
top 1 eV region of the valence band and the lower region of the conduction band is therefore
reasonable. Assuming appropriate band gaps are smaller than 2 eV, the upper limit of the
interval can thus be chosen to be 3 eV. With the Gaussian center at µ = −0.5 eV and a width
of σ = 1 eV, this yields an average filling factor of f = 0.042±0.016. This is appropriate when
compared with standard settings (the full energy range) where f = 0.016 ± 0.003. For each
two fingerprints, the similarity Tc is calculated.

The similarities are added to the existing knowledge graphs enhancing the original dataset.
Further studies on the same data can then make use of these relations more easily. First,
we define a symmetric object property that expresses the quantitative similarity between two
instances of the same class (isQuantitativeSimilarTo). To provide full provenance this
can and should be used together with another specifically defined datatype property for the
similarity value (hasSimilarityValue) and an annotation property describing the method
with which this was calculated (hasSimilarityMethod). Because such relations are quite
generic, they are added to the Core ontology from Section 2.1. For each pair of densities
of states, a triple following the syntax in Code snippet 3.5 is then created. Here, so called
edge properties as introduced in Section 1.3.3 are used with the novel RDF∗ specification. To
avoid blowing up the graph, it is useful to only add this relation when the similarity value is
greater than a threshold value, e.g. Tc > 0.5. Finally, these triples can either be added to the
triplestore using SPARQL INSERT or simply be stored separately.

Similarity Network

Visualization of RDF∗-based knowledge graphs is still rarely possible due to its novelty. For
a network of similar DOSs with only one node type, one edge type and a similarity value
that can be included as an edge weight, it is sufficient to utilize existing network tools. In

10https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-dos-fingerprints
11 An alternative approach would be to calculate two fingerprints: one for the occupied bands right below and

one for the unoccupied bands right above the band gap. In combination with the band gap value itself, this would
be a better measure for the bands’ behavior. Here, we stick however with only one fingerprint to simply showcase
the procedure.
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Code 3.5: Schematic triple expressing the similarity between two DOSs and the similarity
value and method using edge properties.

<< DOS_1 core:isQuantitativeSimilarTo DOS_2 >>
core:hasSimilarityValue Tc ;
core:hasSimilarityMethod "Tanimoto coefficent calculated

using NOMAD DOS Fingerprint with parameters: ..." .

Figure 3.7: Network of densities of states (nodes) that are connected when their similarity
values are Tc > 0.7 (weighted edges). The network is layouted using a force-directed graph
algorithm. The nodes are colored by their modularity class and size-scaled by their degree.
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Figure 3.7 the densities of states of our perovskite materials and their similarities are shown
in a typical network layout using the force-directed graph drawing algorithm called Force
Atlas as implemented in Gephi. Nodes represent densities of states and are connected by
edges when their Tanimoto similarity is Tc > 0.7. Compared to a complete graph, in which
each node is linked to every other node, this network shows 7% of all possible edges. As
can be seen, it is still densely connected. Note that a different similarity threshold leads to a
different network structure. The Tanimoto coefficient is reflected in the edge weights which
determine the edge thickness.

We now run a modularities calculation which allows coloring the nodes according to different
communities they belong to [164]. As introduced in Section 1.4.3, a modularity calculation
divides the graph into communities according to the fraction of edges in a given group relative
to that fraction in a random graph. In short, same colored nodes form a community which
has more connections within the community than to nodes outside of it. This measure gives a
rough overview of the network structure. Coloring the nodes by their contained halogen atom
or group-IV atom does not yield such a clear cluster structure. It would be interesting to also
look at the graph when all nodes are colored by their contained organic cation. Unfortunately,
it is impossible to extract all the 16 different organic cations from the chemical composition
in Hill form as stored on NOMAD. Seven of the cations share common Hill formulas:

• Dimethylammonium and Ethylammonium (C2H8N),
• Trimethylammonium, Propylammonium and Isopropylammonium (C3H10N), and
• Tetramethylammonium, Butylammonium (C4H12N) .

Because the materials also have the same symmetries, their differences are encoded in the
atomic positions and not easily accessible. We therefore only distinguish the reduced chemi-
cal formulas of the cations. As found in [165], for methylammonium lead iodide, the organic
cation contributes only to the core states of the DOS and should thus not be reflected in the
similarity measure around the band gap. However, in our network in Figure 3.7 non-carbon-
containing compositions cluster on the top having clearly less similarity to carbon-containing
compositions occupying the bottom half of the graph. A further separation of the occupied
and unoccupied parts of the DOS likely leads to a clearer distinction as the iodide p-state
largely dominates the occupied part of MAPbI3 whereas the lead p-state dominates the unoc-
cupied DOS part but with generally fewer states [165]. In such a separated picture, materials
with the same halogen or group-IV atom would likely have similar DOSs in the negative or
positive regions relative to the Fermi level respectively.

Another interesting layout is the Circle Pack Layout in which the position of a node is deter-
mined by a number of node attributes. In Figure 3.8, we created a network featuring three
hierarchies: The outer hierarchy is given by the halogen atom, the middle layer is structured
according to the contained group-IV atom and within these each node position refers to one
of the 12 different chemical compositions of the organic cations. The node colors reflect the
same modularity classes as in Figure 3.7. Additionally, all nodes are size-scaled by their de-
gree, i.e. the number of edges connected to them. Grey nodes are isolated, i.e. the DOS is not
similar to any other DOS with Tc > 0.7. The number of grey isolated nodes are significantly
higher in the fluorine square. Fluorine is the lighest halogen in the periodic table and the
element with the highest electronegativity and therefore very reactive.

The knowledge graph allows us to identify materials with similar DOSs relative to the well
known perovskites MAPbI3 and FAPbI3. With respect to the reference MAPbI3, the per-
ovskites with the most similar DOSs are MASnBr3 with Tc ≈ 0.848 and MASnI3 with Tc ≈
0.838. Both have already successfully been synthesized [166, 167] and its photovoltaic
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Layer 2

Layer 3

Figure 3.8: Circle pack layout of DOS similarity network structured in three hierarchies:
halogen atoms, group-IV atoms and chemical composition of the organic cations. The order
of the cations is shown in the outset with grey circles. Nodes are sized scaled by their degree
and colored by modularity.
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Table 3.3: Materials with a DOS that is (in the region around the band gap) similar to the
DOSs of methylammonium lead iodide (MAPbI3 or CH3NH3PbI3) or formamidinium lead
iodide (FAPbI3 or HC(NH2)2PbI3) with a Tc > 0.7.

Similar to MAPbI3 Tc Similar to FAPbI3 Tc

CH3NH3SnBr3 0.848 C(NH2)3SnBr3 0.792
CH3NH3SnI3 0.838 OHNH3PbI3 0.776
HC(NH2)2PbCl3 0.800 NH2NH3GeBr3 0.770
NH2NH3PbBr3 0.782 NH2NH3GeI3 0.767
C(NH2)3PbBr3 0.774 C(NH2)3PbCl3 0.756
C2H8NPbI3 0.744 OHNH3SnI3 0.744
CH3NH3GeBr3 0.740 NH4PbF3 0.726
CH3NH3PbCl3 0.736 C3H5N2GeBr3 0.722
CH3NH3GeI3 0.732 C3H5N2PbCl3 0.716
HC(NH2)2SnCl3 0.728 NH4SnF3 0.714
C3H10NPbBr3 0.724 NH2NH3SnI3 0.714
C3H8NPbI3 0.722 HC(NH2)2SnI3 0.714
NH4PbCl3 0.714 C3H5N2PbBr3 0.709
CH3NH3PbBr3 0.713 CH3C(NH2)2PbBr3 0.707
OHNH3GeI3 0.708 C2H8NGeCl3 0.706

performance has been studied [168, 169]. For FAPbI3 the two most similar materials are
C(NH2)3SnBr3 with Tc ≈ 0.792 and OHNH3PbI3 with Tc ≈ 0.776. While the latter, hydrox-
ylammonium lead iodide, has been synthesized and physico-chemically characterized [170],
the former, guanidinium tin bromide, was only been synthesized with the chemical composi-
tion G2SnBr4 [171], with guanidium abbreviated with G (equal to C(NH2)3).

A list of all similar materials (with Tc > 0.7) identified for these two compounds is given in
Table 3.3.

For the purposes of easier visualization we left out the information whether the band gaps
are direct or indirect. It would be another option to color the nodes according to this or to
choose different node shapes. The actual size of the band gap could also be encoded in the
node size. In the sense of network statistics we chose to include the node degree instead. A
lot of different network visualizations are realizable each of one has their own insights and
advantages. Picking only two is enough to showcase how such a procedure of information
processing works.

It has to be noted that for a solar cell material candidate even more information are interest-
ing. By capturing the region around the band gap of the DOS we included a valuable part
of the electronic structure. However, electron and hole effective masses, that are crucial for
the efficiency of a solar cell, require knowledge about the band curvature which is lost in
the DOS when more states are close to the valence and conduction band edges. Automat-
ing effective mass calculations and including them in the approach as additional features is
therefore more likely to enhance the quality of the approach. Furthermore, selection rules
for the optical transitions have been neglected completely in our methodology so far. It is
thus obvious that we have presented an oversimplified graph-based version of the search for
solar cell materials which without graph technologies is already much more mature.

In March 2021, a paper by Veremyev et al. was published [103] that presents a very similar
approach. Using different types of similarity and distance measures for the density of states,

88



they create a network, where each material node is linked to another one when the similarity
is above a certain threshold. In contrast to this work, they deliberately refrain from using
edge weights. 27000 ISCD materials are included in this network so that materials with very
different structures and compositions are connected. They perform a handful of different
network analyses and propose an interactive network-based visualization tool for these kind
of investigations, as mentioned in Section 1.4.2. The negative and positive energy regions
are handled separately as was suggested above. Hence, the band gap itself is explicitly left
out of the similarity measure and included only as classification for the nodes into metals,
semiconductors and insulators. In turn, this leads to the network showing similarities be-
tween materials with very different band gaps. With the photo-voltaic application in mind,
this was intentionally avoided here.
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Chapter 4

Clean Data in Heterogeneous
Catalysis

The previous example of conducting studies on existing datasets to create new (derived)
information is a typical situation not only in computational materials science. Often, exper-
imental data are handed over to the theoreticians and computational scientists to extract
further value from it. Experimental data can enter either as reference values for computer
simulations, as parameters in functions or functionals or even as input data for machine
learning studies. The latter case can in the best case create knowledge that is valid beyond
the initially used experimental dataset and is therefore especially interesting. This chapter
handles such a scenario in the field of heterogeneous catalysis.

4.1 The Importance of Clean Data in Catalysis

Heterogeneous catalysis is a highly complex function of a material which is affected by multi-
ple interacting processes. A full computational modelling of such high-dimensional problems
using first-principles methods is unfeasible. Data science and AI techniques therefore provide
new means to investigate and understand the underlying chemistry. A pre-requisite to utilize
such approaches is a sufficiently diverse high-quality dataset. Although over the last decades
large amounts of high-quality data on catalysts and catalytic processes have been produced,
datasets are often incomparable because different inconsistent conditions were applied or
published datasets are incomplete. Only recently, the idea of handbooks was proposed [172]
in which minimum requirements for catalyst investigations shall be defined for each class of
reactions. Of course, this requires also commitment of the communities to comply with such
standardized procedures for catalytic synthesis, testing and characterization. This ensures
the availability of sufficiently good data for future AI studies or modern data analytics ap-
proaches. As an example a “Clean Data Handbook” for the selective oxidation of short-chain
alkanes over mixed metal oxide catalysts was published [172]. Thirteen such metal-oxide
catalysts were synthesized and studied within the development of this handbook and can be
used for further analysis forming a consistent and complete dataset.

Providing guidelines for standardized measurements and experiments is only the first step
towards a digitalized and FAIR data infrastructure in catalysis research. The optimal goal
is storing and annotating data in a consistent way that fulfills the FAIR principles from Sec-
tion 1.2. In this chapter, an ontology for catalyst characterization and testing was developed
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with the specific purpose of representing existing experimental tabular data using this ontol-
ogy.

4.2 A Path towards Ontological Representations in Heterogeneous
Catalysis

Just like most field concerned with specific materials functions, the field of catalysis is too
wide and complex to unify all concepts and knowledge in one ontology. In this work, the
purpose is to show how an ontology can be used to

a) create a unified representation of data,

b) link different parts of a complex experiment,

c) combine multiple layers of data and knowledge.

The focus lies on applicability of the ontology and the ability to use it for representations of
existing tabular datasets on catalytic characterization and testing. Therefore, we apply here
a bottom-up ontology development approach to gain maximum usability. All work in this
chapter was done by the author. All data was provided by the group of Annette Trunschke at
the Inorganic Chemistry Department at the FHI.

4.2.1 Conceptual Modeling

In the beginning of the modeling process stands the question whether there are existing
ontologies that can be re-used. While general crystallographic concepts have been mod-
eled in multiple different approaches as could be seen in the last chapter, chemistry is
largely lacking ontological representations so far. The IUPAC International Chemical Iden-
tifier (InChI) [173] offers a standardized way to identify chemical substances by text labels.
More recently, this idea was extended and an international chemical identifier for reactions
was suggested (RInChI) [174]. Furthermore, an open repository for chemical reactions on
catalytic surfaces, the Catalysis-Hub.org [175], is available containing more than 110 000
chemisorption and reaction energies from electronic structure calculations on surfaces using
DFT. Such databases improve the findability and accessibility of relevant data and thereby
progress the FAIR compliance of the field of catalysis. The aforementioned identifiers ad-
ditionally address findability and interoperability issues ensuring more important aspects of
the FAIR principles. Ultimate re-usability of knowledge and data including their semantics
requires semantic technologies such as ontologies. Ready-to-use ontologies are however still
missing in heterogeneous catalysis. The ChEBI Ontology for chemical entities of biological
interest [155] includes the concept of a catalyst as a “role” of a material. CheBI’s database
and ontology also includes a number of important chemical substances that will be re-used
in this work whenever possible.

Catalyst Characterization

Catalyst characterization refers to the general material properties of the catalyst during all
stages of the catalytic reaction. According to the “Clean Data Handbook”, there are three
such stages at which the catalyst material should be characterized:
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1) The “fresh” catalyst is obtained after synthesizing, calcining, pressing and sieving the
raw catalytic material.

2) The “activated” catalyst is obtained when the catalyst material is put under catalytic
reaction conditions which can include for example a thermal treatment. Typically, this
happens during an “induction” period before the reaction takes place. This process is
called Activation.

3) During the catalytic reaction the catalyst may undergo dynamic re-structuring and is
classified as “spent” after the reaction.

Although most fundamental properties of the catalytic material will not change during the
whole process, some will be altered and relevant properties may even change significantly.
This makes it necessary to fully characterize the catalyst at all three stages to ensure com-
pleteness of the dataset. Conceptually, we will model these stages as temporal parts of the
catalyst material because they exist only for a limited time. The hasTemporalPart relation
is already defined in EMMO. Fresh, activated and spent catalyst are therefore neither sub-
classes of the catalyst material nor instances of it. The term we chose to represent the overall
class for such temporal parts of a (catalyst) material is “snapshot” (see also Section 2.3.1).
Whereas the overall catalytic performance is still a property of the catalyst material, each of
its snapshots has its own set of characterizing properties such as electronic structure, struc-
tural composition etc. We then add all the different suggested characterization experiments
(or short characterizations) for each type of catalyst snapshot as classes to the ontology.
The different characterizations are further made subclasses of BasicCharacterization and
AdvancedCharacterization where the subclass relations are equivalent to “is-a” statements
in natural language, see Section 1.5.1. In other words, each of the characterization has mul-
tiple superclasses (the opposites of subclasses), i.e. for example one characterization is a
subclass of FreshCatalystCharacterization as well as BasicCharacterization. Such a
characterization experiment uses one or more preferred experimental techniques which de-
termine for example structural or electronic properties of the bulk or surface. The example
characterization above is further defined by its use of the technique XRD which implies that
the bulk structure is determined via measurements of the electron density. Including the con-
cept of “characterization experiment” in the ontology creates a natural connection between
the catalyst snapshot, its property and the used experimental technique. This allows flexibil-
ity if the same property was measured more than once with different techniques. Another
approach to add information on experimental techniques would be to use edge properties in
the form of nested statements similarly to the similarity relations in Section 3.5.2. Because
such edge properties are a very new thing in knowledge graphs and rely on the realiza-
tion in RDF*, there might be compatibility issues when graphs containing such features are
loaded into older triplestores. It is thus a good idea to avoid complicated descriptions and
unestablished new methods whenever possible. The choice to include the “characterization
experiment” in the ontology further enables the classification into basic and advanced (or
mandatory and obligatory) characterizations at ontology level.

Catalyst Testing

Catalytic performance refers to how well a catalyst is suited to aid a chemical reaction to-
wards desired reaction products. It is measured and compared in terms of multiple proper-
ties of which the three most important are the catalyst activity, stability, and selectivity. The
selectivity always refers to a desired reaction product, so that one usually speaks about the
“selectivity towards reaction product p”. Because different ways to measure and calculate
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Figure 4.1: Excerpt from the Catalysis ontology developed by the author of this thesis show-
ing the conceptual model of catalytic performance and how it is related to the underlying
chemical reaction. All visualization specifics are as described in Section 1.4.1. Purple rela-
tions are imported from the EMMO and red color indicates imports from the ChEBI ontology
(the blue-red node is a local class related to ChEBI via an equivalence statement).

these performance properties exist, the used formulas always have to be distributed along
with the data values. In the catalysis ontology we develop, we will therefore only provide
the concepts and relate them to measures that are used to quantify it. Used formulas for the
calculations can be included at data level to describe specific data points. This means that
data properties are provided that can be utilized to annotate the used performance measures
as strings. Such strings are of course lacking any semantics. Offering semantic descriptions
of multiple different established or even not so established ways to calculate and measure
such properties go however beyond the scope of the current work.

Related concepts that are often used to evaluate the catalytic performance are the yield Yj
of a reaction product j and the conversion Xi of a reactant i. The conversion is used as a
direct measure for the activity of the catalyst while the ratio of product yield and reactant
conversion gives the selectivity of the catalyst towards this particular reaction product. Figure
4.1 illustrates that a catalytic material’s performance can never be regarded isolated but
is closely related to the reaction and its constituents. The concept of a chemical reaction
is imported from the ChEBI ontology. As mentioned before, the ChEBI ontology defines
“catalyst” as a role of a material – we also import that definition and use it in our ontology.
The class CatalyticMaterial can have assigned all fixed properties such as the chemical
formula. It is what we usually have in mind when we talk about a catalytic material. We also
assign the catalytic performance properties to it. Its temporal parts, the CatalystSnapshots,
represent the material at the different stages: before, during and after the catalytic reaction
which are distinguished in the characterization.
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Conditions of Catalysts

Whether a material shows its function as a useful catalyst often depends on various condi-
tions. An example is the applied reactor technology which depends on the specifics of catalyst
and reaction. In turn, different catalyst formulations are required for different reactor types
or feed compositions [172]. Some process conditions are temperature, pressure, mass of
the catalyst material, volume flow rate or feed compositions. The developed ontology in-
cludes the concepts of a gasfeed which flows through a chemical reactor. Specifying types
of different reactors like fixed-bed or fluidized-bed reactors [176], and other experimental
specifics require a dedicated ontology concerned with experimental instruments and other
equipment. Such an instruments ontology called “Materials Science Lab Equipment” ontol-
ogy is currently being developed within the STREAM project by our project partner at the KIT
also with a focus on catalytic experiments.1

4.2.2 Knowledge Graph of Catalytic Propane Oxidation

Experimental data on the characterization and testing of different catalysts in propane (C3H8)
oxidation reactions will serve as a first use-case. Representing these data with the help of
the Catalysis ontology as a knowledge graph opens new possibilities on data handling and
semantic enhancement. All data was produced according to the Clean Handbook [172] in the
“Catalysis on Oxides” research group, led by Annette Trunschke at the Inorganic Chemistry
Department of the Fritz Haber Institute. In particular the following three reactions occur
simultaneously in such experiments

2 C3H8 + O2 −→ 2 C3H6 + 2 H2O (4.1)

C3H8 + 2 O2 −→ C3H4O2 + 2 H2O (4.2)

C3H8 + 5 O2 −→ 3 CO2 + 4 H2O . (4.3)

In fact, propylene (C3H6) and acrylic acid (C3H4O2) are only partial combustion products.
Without a proper catalyst to control the reaction, they will eventually be further oxidized
to carbon dioxide when temperatures are sufficiently high [177]. Carbon monoxide (CO) is
another partial combustion by-product in these reactions. Obviously, the greenhouse gases
CO and CO2 are undesired products whereas propylene (C3H6) and acrylic acid (C3H4O2)
are valuable chemical substances and therefore the preferred outcomes.

Out of the thirteen different catalyst materials that have been investigated, nine vanadium-
containing ones were chosen to populate the knowledge graph. Although vanadium com-
pounds have wide applications as catalysts especially in alkane oxidation [178], the underly-
ing mechanism are still being investigated, so that this group of materials is a good starting
point for further studies. Only properties that are comparable across the different materials
were considered, such as the normalized unit cell volume instead of the lattice constants, or
the relative atomic contents of oxygen, carbon or vanadium. The original experimental data
is given in tabular form (CSV format) and can be mapped to a graph format using the RDF
Mapping Language (RML).

Given that only the catalyst stability, propane conversion, yields of different reaction products
are given in the catalyst testing data tables, it is useful to calculate and add the selectivity to

1The ontology development can be followed in the Git repository: https://github.com/stream-project/
ontology.
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Query 4.1: SPARQL Update Request to add selectivity as catalytic performance property.
It searches for yields that are properties of a reaction product or by-product and propane
conversions that are properties of a catalyst of that same reaction. These quantities are
then divided and bound to another variable for the selectivity value. For the new selectivity
instance a new resouce identifier is also created. Refer to Section 1.3.6 for details of the
SPARQL syntax.

prefix cat: <http ://nomad -coe.eu/ontology/catalysis#>
prefix core: <http ://nomad -coe.eu/ontology/core#>
prefix dat: <http ://nomad -coe.eu/data/catalysis#>

INSERT{
?s a cat:Selectivity ;

core:hasValue ?sval .
cat:refersTo ?prod .

?cat cat:hasProperty ?s .
}
WHERE {

?rxn (cat:hasProduct | cat:hasByProduct ) ?prod ;
cat:hasCatalyst ?cat .

?cat cat:hasProperty ?propconv .
?propconv a cat:PropaneConversion ;

core:hasValue ?propconvval .
?prod cat:hasProperty ?y .
?y a cat:Yield ;

core:hasValue ?yval .

BIND(?yval / ?propconvval as ?sval)
BIND(STRAFTER(STR(?y), "yield_ ") AS ?yield)
BIND(IRI(CONCAT(str(dat:) ,"selectivity_", ?yield)) AS ?s )

}

the knowledge graph afterwards. With the yield Yk of the product k and the propane conver-
sion Xpropane, the selectivity of the catalyst towards product k can be calculated as

Sk = Yk/Xpropane , (4.4)

according to [172]. A SPARQL update request using the INSERT statement can be sent to the
triplestore where the knowledge graph is stored. Query 4.1 calculates the selectivity on the
fly and adds the new triples to the graph.

Now that the selectivity is added to the KG, let us work with the KG to grab some interesting
information. To find out which product or by-product a catalyst is most selective towards, we
run Query 4.2 (see below). The result is given in Table 4.1. As can be seen many of the cat-
alysts are most selective towards the unwanted total combustion product CO2 or the partial
combustion by-product CO. The most favorable reaction product acrylic acid is only preferred
by the MoVTeNbOx catalyst. Although this could be seen also in the original data, we have
shown here a machine-actionable approach to answer such questions via SPARQL queries.
Acrylic acid is formed after propane has transformed to propylene, but before the total oxida-
tion product CO2. The respective propane conversion can therefore only have intermediate
values when selectivity towards acrylic acid is high, in accordance with [179].

96



Query 4.2: SPARQL Query for the reaction product a catalyst is most selective towards. A
subquery is used to first find the highest selectivity value for each catalyst material. The
associated reaction product is then identified in the outer query.

prefix cat: <http ://nomad -coe.eu/ontology/catalysis#>
prefix core: <http ://nomad -coe.eu/ontology/core#>
prefix dat: <http ://nomad -coe.eu/data/catalysis#>

SELECT ?x ?prod ?maxsel
WHERE{

?x a cat:CatalystMaterial ;
core:hasProperty ?y .

?y a cat:Selectivity;
core:hasValue ?maxsel ;
cat:refersTo ?prod .

{
SELECT ?x (MAX(?yval) as ?maxsel)
WHERE {

?x a cat:CatalystMaterial ;
core:hasProperty ?y .

?y a cat:Selectivity;
core:hasValue ?yval .

}
GROUP BY ?x
}

}
ORDER BY ?x

Table 4.1: Result to Query 4.2. Reaction product “prod” towards which a catalyst “x” is
most selective (“maxsel”). For this table the values of “maxsel” were rounded to 3 decimals.
The underlying knowledge graph was created from data tables from the group of Annette
Trunschke at the Inorganic Chemistry Department of the FHI.

x prod maxsel

dat:A-VPP dat:co_A-VPP 0.499
dat:MoVOx dat:co_MoVOx 0.301
dat:MoVTeNbOx dat:acrylacid_MoVTeNbOx 0.667
dat:V2O5 dat:co_V2O5 0.604
dat:VPP dat:co2_VPP 0.457
dat:VWPOx dat:co_VWPOx 0.511
dat:a-VOPO4 dat:propene_a-VOPO4 0.568
dat:a-VWOPO4 dat:co_a-VWOPO4 0.378
dat:b-VOPO4 dat:propene_b-VOPO4 0.607
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4.3 Bridging the Data and Meta-data Levels

4.3.1 Materials Genes from Artificial Intelligence

Recently, the data from the Trunschke group at the FHI used in the previous section has
been reported and used by Foppa et al. [179] to perform an AI study to investigate which
characteristics of a catalyst material are most relevant for its catalytic performance. These
key parameters can be called materials genes emphasizing the fundamental intrinsic role they
play in catalytic processes and reactions. The symbolic regression method SISSO [180], in
particular multi-task SISSO [181] was used which identifies descriptors for a target property.
Such a descriptor can be a relatively complex non-linear analytical expression constructed
from multiple input parameters, the so called primary features. The complexity of these
expressions is beyond what a human could produce but still simple enough to be readable.
Here, the target property is the selectivity of a catalyst towards acrylic acid and the primary
features are all the characterizing properties of the different materials. The identified descrip-
tor finally contains only ten of these materials properties and hence gives insight into which
chemical and physical phenomena are most important for the catalytic selectivity.

Adding this newly created knowledge to our knowledge graph would increase the informa-
tion density and connect the found formula with the original dataset. Optimally, a ready-to-
use machine learning ontology would be used to include the SISSO study on heterogeneous
catalysis. As SISSO is relatively new and used mainly in scientific context, such an ontology
does not exist. In fact, available ontologies on Machine Learning algorithms (e.g. [182])
seem to be quite incomplete and can therefore only serve as a starting point to taxonomically
embed more and newer algorithms such as SISSO. Detailed information about the method
will be given in a text description as datatype property while the AI study itself is presented
mainly as a black box. In other words, we neglect the information that SISSO creates candi-
date descriptors from multiple primary features to obtain specific target properties and then
selects the best descriptors and identifies their coefficients. The only information we add to
the knowledge graph is which characterization properties were selected as most relevant for
the selectivity towards acrylic acid. It is the part of the study that is useful to gain scientific
insight.

On the other hand, using this result, selectivities can likely also be predicted for other cata-
lyst materials whose catalytic performances have not been studied experimentally. In com-
putational materials science, this is an established way to screen a wide materials space for
potential new candidates. A prerequisite is that any new material is similar enough to the
ones used to build the model, so that the following found formula for the selectivity in [179]
still holds:

S(SISSO)
acrylic acid(T ) = cS1 (T )

(V pore
fr

)2 Wrxn, wet

EσA, act

1(
xV

s, rxn, C3 − xV
s, act

)
aC–O

act xC
s,fr
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fr V pore
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1
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xV
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)(
xV

s, rxn, dry + xC
s, fr

)
 . (4.6)

cS1 (T ) and cS2 (T ) are temperature-dependent coefficients and V pore are the pore volumes
where the indices fr and act refer to the fresh and activated catalysts. The work function of
the catalyst is denoted by W and the EσA is the activation energy of the conductivity. Wher-
ever the subscripts rxn, wet, rxn, dry, rxn, C3 occur, the quantity refers to the catalyst material
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under reaction conditions where a wet, dry or C3 gas feed was used as is defined in the catal-
ysis handbook [172]. xV

s and xC
s are the surface contents as atomic percentage of vanadium

(V) and carbon (C). Finally, aC–O is the fraction of surface carbon assigned to C–O bonds. It
is obvious that these primary features from which the formula is built are of experimental
nature and depend on the multiple different reaction conditions. When only catalytic charac-
terization properties but no performance measures are available for a catalytic material, the
selectivity can be calculated. Predicting selectivities was not done within [179], but we will
here shortly sketch how future predictions can be added to the knowledge graph. While the
measured selectivities are added directly as properties of the catalyst material, they should
be distinguishable from such predicted selectivities. Several options are possible to indicate
the predictive character:

(a) An additional class PredictedProperty may be defined and used to characterize all
instances referring to predicted values. More relations to link the prediction model
(machine learning study or formula) are also possible.

(b) One or more datatype properties may be ontologically defined and then used to distin-
guish between measured and predicted values including their prediction method.

(c) An object-type property can relate a predicted value via a relation of the form wasPredictedBy
to the used model.

Option (a) is the one where the fact that this particular quantity was predicted is most ob-
vious. The choice depends mainly on the purpose of a knowledge graph containing such
information.

4.3.2 Breakdown of the Knowledge-Graph Approach

Modeling this identification of the most relevant properties is possible with different ap-
proaches:

1) Edge properties as already introduced in the last chapter can be used. The (inner) base
triple statement would here include the information that a ML Study/SISSO has identi-
fied the most relevant characterization properties. The edge property (outer statement)
would then specify that this refers to the selectivity towards acrylic acid.

2) Multiple relations that are specific for this SISSO approach can be defined:
identifiesDescriptor, hasTargetProperty, and even hasPrimaryFeature if needed.

The use of edge properties is interesting because no machine learning specific ontology def-
initions exist yet and SISSO specific properties may be too specific for a real ontology. On
the other hand, the traditional way of using two relations is more compatible with exist-
ing triplestores and other graph-based technology regarding the novelty of the RDF∗ syntax
incorporating edge properties. For this exact reason, the second approach is chosen, even
though this means that two very specific relations need to be created. Let us examine what
this means in practice:

First, an instance dat:mlstudy of the ontology class MachineLearningStudy is created and
related to another instance dat:sisso of the class SISSO. As primary features the character-
izing property instances in the knowledge graph from Section 4.2.2 can be used and linked
directly with dat:mlstudy. The target property is the selectivity towards acrylic acid. In
Query 4.1, we have added selectivity instances to the knowledge graph for the differet cata-
lyst materials. Each of these selectivities is an instance of the Selectivity class and refers
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to an instance of the acrylic acid class in the ChEBI ontology. Choosing these instances as
target properties is however misleading because SISSO only needs one target property. It is
therefore important to emphasize that the target property is the concept of selectivity towards
acrylic acid. It would be desirable to connect the dat:mlstudy instance directly with the
class Selectivity with the restriction that it needs to refer to acrylic acid. Relating instances
with classes is however not permitted within the OWL DL profile. Similarly, the selected final
descriptor can be created as an instance of the AnalyticalExpression class in EMMO, but
the quantities that it is created from, must be classes because they do not belong to a spe-
cific catalyst material anymore. The machine-learned conclusion, namely the found analytic
expression, is meant to be valid for possibly more catalyst materials than only the nine ones
in this dataset. Knowledge has been created using data with the ML approach; it has identi-
fied conceptual relations that do not belong to the data level anymore. These relations also
don’t relate instances with classes of the ontology directly, but do so only when certain other
criteria are met. For instance, identified relevant quantities are the atomic percentage at the
surface of vanadium atoms or the workfunction measure in a wet gas feed. Although this can
be expressed through the means of OWL, it does not belong to the ontology level, because it
is not consensual knowledge (yet) that was agreed upon in a community as the definition of
an ontology requires.

This suggests that the strict separation between conceptual and data level is sometimes not
appropriate. For our view on the world as citizens handling real-world objects this distinction
works fine. More abstract knowledge created not by humans but by machines does not fit
into this world view and therefore the approach breaks down. Hence, we suggest a different
innovative perspective how to express information that is neither consensual concepts nor
pure data. Another layer in between the ontology and the knowledge graph is added to
represent these kinds of research results. Such a “concept” knowledge graph or “machine
learning layer” can exist only in OWL Full, the non-decidable profile of OWL for which not
only no reasoning tools exist today but it might never be possible to develop any.

Adding knowledge at this intermediate level is possible through SPARQL Update Requests as
could already be seen for the selectivity above. However, restrictions to the classes create lots
of nested statements which complicates the syntax of SPARQL requests very quickly. Here, it
is therefore easier to create OWL statements with an ontology editor. Afterwards all ontology-
specific headers are manually removed and the whole graph can be given a name indicating
its intermediate nature. Such “named graphs” are like meta-statements, giving one or more
triples a unique name and thereby allowing to distinguish where these triples came from or
what their meaning is. Here, it contains in particular the information which level (ontology,
knowledge graph or concept KG) the triples belong to. Storing all levels together in one large
triplestore is still possible while maintaining provenance and the hierarchy.
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Discussion and Outlook

In the first part of the thesis, a new relaxation scheme was presented which incorporates
parametric constraints in a symmetry-reduced (or constrained) space. This algorithm can be
used to relax meta-stable and unstable systems that are otherwise hardly addressable. As
examples for such systems, zirconia and bismuth oxide were studied. Using a test-set of 359
different materials across different space groups and structure prototypes, the performance of
the constrained relaxation was investigated. Strict symmetry preservation was shown for all
materials and an average saving in the number of relaxation steps of about 50%. Finally, an
electron hole polaronic distortion in rock-salt magnesium oxide was relaxed with parametric
constraints demonstrating the unique advantage of the method to allow for local symmetry-
breaking with known distortion patterns. For all calculations presented, the full input and
output data are available in the NOMAD repository 2. The methodology and results have al-
ready been published in [78] and cited several times of which at least two references use the
constrained relaxation algorithm [53, 183]. This suggests a profound impact in the commu-
nity of computational materials science. Monitoring how the symmetrized forces deviate from
the full forces possibly allows the identification of new stable phases. The flexibility and gen-
eralizability of the constraints furthermore allow the extension and application to molecular
systems, interfaces or transition states. Implementation in other electronic-structure theory
codes is possible straightforwardly as well as including other types of coordinates.

It has been demonstrated that the new relaxation scheme can aid the search for novel ma-
terials in high-throughput studies by significantly reducing relaxation times and at the same
time maintaining the correct symmetries and structures.

In part II of this thesis, we investigated how far semantic technology is able to further
accelerate the search for novel materials. Multiple ontologies and knowledge graphs were
built and used to annotate large amounts of data and store it in a linked data manner. Three
newly developed top-down ontologies provide the semantic framework for crystal structures
and materials’ properties. Using the AFLOW Prototypes that have already been exploited in
part I, a prototype knowledge graph was created revealing the distribution of well-known
prototypes across the symmetry groups. Parallel, the comprehensive meta-data schema,
the NOMAD Metainfo, was transformed to an ontology and semantically enhanced using
a two-layer ontological structure ensuring extensibility. A dataset of hybrid organic-inorganic
perovskites from the NOMAD Archive was converted to a knowledge graph of electronic-
structure calculations using the Metainfo Ontology. Such a knowledge graph can easily be
connected with new research results on the same data as discussed for the example of simi-
larities between densities of states. Based on that, for two common photo-voltaic perovskites,
similar materials were provided. As a second application, a completely different topic was

2https://doi.org/10.17172/NOMAD/2019.10.19-1
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touched: Heterogeneous catalysis experiments are modeled in another ontology describing
catalytic characterization and performance testing. For a single data table the experimental
results of such a study were mapped to the ontology. Thus, a small knowledge graph of
nine different Vanadium-containing catalysts for the propane oxidation reaction was created.
Similarly to the perovskites dataset, additional information can be added straight-forwardly
which is demonstrated at the example of selectivity. This latter case includes an AI study that
outputs a formula enabling selectivity predictions. It became clear that the strict separation
between ontology and knowledge graph layer is not always appropriate. For machine learn-
ing or AI studies where data is used to create new knowledge at a conceptual level, only the
non-decidable variant OWL Full is able to express such research results. Another perspective
is to consider a machine community. Let us assume that a machine-learned result has been
confirmed by several different ML models or with different parameters sets so that it can
be identified as robust. In this case there is a consensus within a machine community with
respect to this result. It therefore qualifies as conceptual knowledge that a community has
agreed upon and can go into an ontology. Such an approach could enable also automatic
ontology creation or extension based on ML or even based on meta-studies on previous ML
investigations.

All ontologies developed throughout this thesis are available on the Git repository of the
STREAM project3. The knowledge graphs for the HOIPs including their enhancements are
published at https://edmond.mpdl.mpg.de/imeji/collection/mrPWUu1nzadKKUfY in RD-
F/Turtle format.

We have seen how knowledge graphs based on domain ontologies can be used to link research
results that would traditionally stay unconnected. This way enhanced linked-data sources
of information with a high degree of connectivity are created. It is crucial to understand
however, that information is not knowledge. Creating knowledge would mean to find new
relationships or identify trends in data. This creation of knowledge does not work as expected
though:

a) The often praised reasoning capabilities are insufficient to infer new logical conse-
quences that are not trivial for a scientist. This is because existing reasoning software
can only reliably work with description logic.

b) Exploiting tools and algorithms developed for complex networks is technically possible
but usually not meaningful because such networks are assumed to have only one type
of nodes and one type of edges (like social networks). For example, a cluster of nodes
called a community can only be interpreted when all nodes represent the same concept,
e.g. a person or a material. Knowledge graphs are by nature multi-dimensional (differ-
ent edges) k-partite (different nodes) networks for which no useful analysis algorithms
are known.

Hence, the procedure to gain interesting new insights on particular research questions is
equivalently complex in knowledge graphs and traditional databases or datasets. Another
layer of statistical analyses a.k.a. machine learning algorithms may be able to detect patterns
in big data regardless of whether it is stored in relational or graph databases. Tradition-
ally, a scientist has the necessary background knowledge to choose the right ML algorithm
and input parameters. If an ontology contains that background knowledge in a formalized
machine-understandable way, it can in principle act like a brain and an autonomous agent
can utilize this “brain” to take these choices instead. The amount of this knowledge is how-
ever extremely vast, accumulating decades of experience and is often combined with intuition

3https://github.com/stream-project/ontology/tree/nomad
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and vague notions. It would likely take many years and lots of top scientists to create such
a comprehensive ontology, comparable to the development of large software packages like
FHI-aims or AFLOW. The SISSO approach already implements the idea of letting the com-
puter decide which concepts are most important to predict materials’ properties. A scientist
still has to choose a set of primary features first, but then relevant materials’ descriptors are
identified intelligently by the machine.

In the field of manufacturing, ontologies can be used to aid the design processes of construc-
tion lines and optimize several key industrial resources, e.g. the aerospace assembly lines in
Airbus are modeled in an ontology [184, 185]. This is not transferable to the field of materials
science where workflow design highly depends on the specific research question.

Furthermore, the stack of available semantic technologies that are ready-to-use today does
not provide the necessary tools scientists in the natural sciences such as physics need to rep-
resent their research in an appropriate and efficient way. A crucial example is the lack of easy
and efficient handling of numeric arrays. Storing each single array element as a unique re-
source is extremely storage-expensive and further neglects possible mathematical operations
between arrays. Also, often the semantic annotation of each single element is unnecessary.
Truly semantic relations between physical quantities are often encoded in complex mathe-
matical formulas, operations or workflows. Re-formulating those within the OWL framework
is impossible and including existing software codes or scripts does not provide the desired
semantic connections. In general, there is no support for the inclusion of external scripts
for example in the SPARQL query language nor are there basic frameworks for mathemat-
ical operations or rules within OWL. Since physics and chemistry are highly mathematical
fields, they do not benefit enough from such linguistically motivated technologies. Indeed,
ontologies can help automatically understand the context-dependent meaning of words and
phrases in a running text. The already well-annotated and structured data in computational
materials science databases however does not profit from that.

It can be concluded that the value semantic technologies bring to the materials sciences is
very limited at the moment. This is also reflected in the prominent Gartner Hype Cycle
where ontologies are currently (2020) in the through of disillusionment. Excessive expecta-
tions have grown in the last years about the idea of what an ontology is helpful for. With
more realistic applications appearing now, this has led to a great disappointment. Eventually,
ontologies will find their place in the technology stack at an intermediate level, e.g. as the
brain behind AI technologies.
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Appendix A

Semantic technologies: Technical
Background

Ontologies and knowledge bases use the same languages and data models, which will be
explained here.

RDF

RDF – the Resource Description Framework – is a standard data model for expressing objects
as resources and their relationships. There are multiple syntaxes for it, e.g. RDF/XML or
Turtle. An RDF file consists of triples of the form Subject Predicate Object. Each of the
three is a “resource” identified by a unique resource identifier (URI) or its extension, the
internationalized resource identifier (IRI). For example the well known URLs are subsets of
URIs.

RDF Schema

RDF Schema extends RDF by classes and properties and therefore serves as a data schema to
describe RDF resources.

OWL

The Web Ontology Language (OWL) extends RDF Schema to express relations between
classes, cardinality, equality, characteristics of properties and much more. Every OWL docu-
ment is a RDF document. OWL exists in three variants of different complexity and expres-
sivity. OWL Lite supports classification hierarchy and simple constraints but is too simple
for most use cases. OWL DL provides maximum expressivity while staying computationally
complete and decidable. One limitation is that a class cannot be at the same time an instance
of another class. It is based on description logic, hence the name DL. This is the standard
variant of OWL that is mainly used in ontologies nowadays. OWL Full has no computational
guarantees but allows maximum freedom with RDF. Due to its complexity, full reasoning will
most likely not be possible.
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Turtle

Turtle is nowadays the most popular syntax to express RDF documents (and therefore also
ontologies). It has a very compact textual form that makes it easy to read for humans.

Triple store

A triple store or RDF store is a database for the storage of triples. If a set of triples is annotated
with a name it is called named graph or quad store.

SPARQL

SPARQL is a recursive acronym for the SPARQL Protocol And RDF Query Language. As the
name suggests it is mainly used for querying RDF databases, i.e. triple stores. Syntax wise is
it comparable with SQL.

RML/R2RML

The RDB to RDF Mapping Language (R2RML) maps data in relational databases (RDB) to
the RDF data model. RML extends this capability to define mappings of data in other formats
too.
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Appendix B

Related Ontologies for Materials

Materials Design Ontology

Materials Design Ontology(MDO) 1, which defines concepts and relations to cover knowledge
in the field of materials design. MDO is designed using domain knowledge in materials
science (especially in solid-state physics), and is guided by the data from several databases
in the materials design field. (OPTIMADE) It has recently been extended using text mining
on thousands of journal articles. [186]

MatOnto

MatOnto 2 – an extensible ontology, based on the DOLCE upper ontology, that aims to repre-
sent structured knowledge about materials, their structure and properties and the processing
steps involved in their composition and engineering. The primary aim of MatOnto is to
provide a common, extensible model for the exchange, re-use and integration of materials
science data and experimentation.

MatSeek

MatSeek 3 provides a federated search interface over the critical materials science databases.
Based on an OWL ontology (MatOnto), it provides a single Web-based search interface to
the Inorganic Crystal Structure Database (ICSD),3 the Ionic Radii database,4 and the US
National Institute of Standards and Technology (NIST) Phase Equilibria Diagrams (PED)
Database.

Materials Ontology

The Materials Ontology 4, which consists of several sub ontologies corresponding to sub-
stance, process, environment, and property, is developed using the ontology language of the

1https://arxiv.org/pdf/2006.07712.pdf
2https://aaai.org/Papers/Symposia/Spring/2008/SS-08-05/SS08-05-003.pdf
3https://ieeexplore.ieee.org/document/4763655
4https://datascience.codata.org/articles/abstract/10.2481/dsj.008-041/
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Semantic Web, OWL, which enables the definition of a flexible and detailed structure of ma-
terials information. A versatile "materials data format" is built on the Materials Ontology as
a component of the materials information platform and is applied to exchange data among
three different thermal property databases, maintained by two major materials science re-
search institutes in Japan.

Data Science Ontology

The Data Science Ontology 5 is a knowledge base about data science that aims to catalog the
concepts of data science, semantically annotate popular software packages for data science,
and power new AI assistants for data scientists. Written not in OWL but in Monocl (https:
//arxiv.org/pdf/1807.05691.pdf).

MatOwl

MatOWL 6 is an OWL ontology extracted from the MatML schema, the extensible markup
language developed especially to facilitate the exchange of materials information.

PREMΛP

The Platform for Realization of Engineered Materials and Products (PREMΛP) 7 enables har-
nessing available knowledge, learning emerging knowledge and continually creating new
knowledge. It consists of an ontology-based, knowledge-assisted method and platform to
capture, structure, configure and reuse knowledge for designing materials and engineer-
ing systems. The PREMΛP ontology provides extensible representation of data and knowl-
edge.

5https://www.datascienceontology.org/
6https://www.researchgate.net/publication/220390027_Semantic_Query_on_Materials_Data_

Based_on_Mapping_MatML_to_an_OWL_Ontology
7https://link.springer.com/chapter/10.1007%2F978-81-322-1050-4_105
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Appendix C

Software for Working with Ontologies
and Knowledge Graphs

As a physicist/materials scientist a lot of new tools and software are necessary to work with
ontologies. An overview of some useful software will be given here.

Protégé

Protégé is a graphical program to explore and develop ontologies and suitable for begin-
ners. Lots of plugins allow to run a reasoner or to visualize the ontology or parts of it as
well as a simple SPARQL queries can be used for validating. It has been used to develop
ontologies.

owlready2

The python library owlready2 enables using and developing ontologies within Python. For
more advanced ontology developers it might however be too restrictive. It has been used
to convert the Metainfo to an ontology and to populate the developed ontologies with real
data.

rdflib

Another python library is rdflib which allows handling RDF graphs including manipulating
them. Because OWL is an RDF format it can be read in using rdflib but no ontology val-
idation is happing. It has been used for converting between different formats (turtle, n3,
rdf/xml).

Yarrrml

Yarrrml provides means to express RML-based mapping rules in the human-readable YAML
format. Together with an RML processor like RMLmapper, it can be used to create linked
data.
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VOWL and WebVOWL

VOWL is a visualization tool for ontologies. It provides an online version accessible easily for
everyone, WebVOWL.

Graphviz

Graphviz is simple open source graph visualization software supporting basic graph lay-
outs.

OwlViz

OwlViz is a plugin for Protege with is able to easily display is a hierarchies on an ontol-
ogy.

Gephi

Gephi [131] is a graphical network visualization and analysis tool and has a semantic web
plugin to directly extract a graph/network via SPARQL queries from an ontology or knowl-
edge graph. It supports various algorithms for layouting and has a Graphviz plugin.

Apache Jena

Apache Jena provides open source software for graph databases, SPARQL endpoints and
more.

Stardog

Stardog is a commercial provider for RDF databases, knowledge graphs and SPARQL end-
points. Its Stardog Studio is an integrated development environment (IDE) with lots of capa-
bility and has been used to write and run SPARQL queries.
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