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Abstract. Two-dimensional semiconductors are ideal model systems for investi-
gating the dynamics of the electron-phonon interaction under spatial confinement
of electronic excitations. In this contribution, the simultaneous quantum dynamics
of electrons and phonons on ultrafast timescales is theoretically addressed. Typical
examples include the ultrafast electron transfer at silicon surfaces, optical intersub-
band transitions in doped quantum wells, and non-equilibrium phonon generation
in graphene.

1 Introduction

Two-dimensional electron gases appear in different semiconductor and semimetal
nano-structures like quantum wells [1} 2, [3], graphene [4, 5, 6], and at surfaces
[7,18]. Recent experiments focus on the ultrafast dynamics of these 2D electron
gases. A theoretical description of relaxation processes in such systems at low
electronic densities and high temperature requires an understanding of how
electrons interact with the vibrations of the lattice (phonons)[9, [10].

The main goal of this paper is to give a brief introduction to the theory
of optical response for different electron gases and an overview of correspond-
ing experimental investigations. The paper is organized as follows: First, the
Hamilton operator is introduced and calculation techniques are presented.
Second, the phonon-induced relaxation dynamics of electronic excitations at
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the Silicon (001) 2x1 surface is described. Third and fourth, electron-phonon
scattering processes in quantum cascade lasers and non-equilibrium phonons
in graphene are described. Finally, the scattering-induced quantum emission
of an equilibrium 2D electron gas is addressed.

2 Theoretical framework

2.1 Hamilton operator

In order to investigate the dynamics of a 2D electron gas, including many-
particle effects, the Hamilton operator of the system has to be specified. Here,
we focus on the interaction of electrons with phonons. The Hamilton operator
for the free phonons and electron dynamics reads:

Hy = Zslkajkak + Z thobqu. (1)
lk q

The operators azrk, a;, and b:fl, bg are the creation and annihilation operators
for electrons and phonons. In most examples below, optical phonons with a
phonon frequency wro and quasi momentum q are considered, apart from
Section (3, where acoustic phonons have been included as well. For the elec-
tronic states, the 2D momentum k and a (sub-) band index [ are introduced
as quantum numbers. The electron phonon interaction reads [10] 11]:

Hgpr = Z gﬁk’?qaikan/k,biq—kh.a. . (2)

nk,n'k’,q

Here, g is the electron-phonon coupling element describing on the phonon-
induced electronic transitions. To describe optical excitation, the interaction
with the electrical field is included as well. As long as spontaneous emission
can be neglected, a classical description of the electrical field through the
vector potential A(t) within the dipole approximation is chosen [12]:

Hext—field = Z AP al g,k (3)
kn#n'

If spontaneous emission is considered, the interaction with the electromagnetic
field has to be formulated using photon operators ¢!, ¢ [13]:

'k’ k *
Hopiera = Z (F?LkKstKs + (Foiks) CKS) alkan/k’ (4)
kk'n#n’
Ho phin = thKSC}(sCKs' (5)
Ks

Here, photon modes are characterized by their momentum indices K, polar-
ization s and their frequency wgs.
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2.2 Dynamics

The electron dynamics of macroscopic quantities, such as the real space den-
sity, can be described via the electronic transitions p7 := (a!  a, ), electronic
(sub-)band densities fx := <ailka"k>, where (...) denotes the quantum me-
chanical expectation value of the operator combination. The equations for
these quantities are derived using the Heisenberg equation. As a typical ex-
ample the equation for the polarization is presented [11]:

d ’ AU
i = (e = )i+ A0S (prw - pii )
nk
v v 1 )"
+ Z <gm1 zq( m'l’ 7.q) + gml ,iq Zk,zq g::lk,iq (Sﬁk,iq>
nk,iq
oy k
g:znk zq zl zq) (6)

where phonon assisted quantities s%};q = (ajnlam,l,biq> appear. It is obvi-

ous that Eq. (6)) is not directly solvable, since it couples to phonon-assisted
densities, whose dynamics have to be derived as well:

*

d *
zhd ( ’l/zq) = (€m1 —Emr + hwiq) (Sm}l',iq)

TADY (pfn‘;(sz‘a/,iq)* et (s ))

nk

nk m'l i'q' * nk m'l i/q'
+ E gml,i’q’(Rnk,iq ) t Imlig Lk, iq

nk,i’q’
m'l nk,i'q’ m'l nk’,i'q’
gnk i'q’ (le iq ) gnk i'q’ Tml ,iq
+ E gnk il mla’nka W) (7)
nk,n’k’
ile .. . . mli'q"
Within the spirit of a correlation expansion, the terms Rnk,i S < a,nbigbis @
1 .
and T, qu = <alkam1bTiqbi/q'> are factorized at the second order Born level

((gZAkaq)2 or coupled to higher-order correlations within a self-consistent Born
approximation [14} [15]. In second-order Born approximation, we obtain e.g:
(aibkamlbfiqbi,q,) R~ <a2kaml><bTiqbZ,q,>. Depending on the situation, occuring

phonon occupations n;q = (bquzq> might be treated within a bath approxi-
mation or calculated dynamically within the same second-order Markov Born
approximation to consider non-equilibrium phonon distributions. Here, as ex-
ample, the dynamic phonon density equation, later discussed for calculations

non equilibrivum calculations in graphene, is given[16]:

2



4 Marten Richter et al.
. 2w |
Ny =
aT 9k,q
i,k

25(—eik + Eiktq — iwg)

[(nq + 1)f7,k+quk anz-{_( iIchq}‘ (8)

We have introduced f i := fix and f; = (1— fix) and kept indices relevant for
the graphene case. Within the same level of the Born-Markov approximation,
the equations for the electron distributions read [10] [11]:

d /zn ' out
a.fnk :22( nk l_fnk‘)_ nk fnk‘>7 (9)
n};m =3 Z 9 k: 6(enk — €niy  hwiq)(ng + 5 . + )fn’k:’
n nk,iq q q 2
k’q:l:
' out 1 1
Fnk =3 Z gnkzq 67l’<5_671'k'i??‘("jlq)(nq—"_ 2 + )( fn k')
k:'qi

Egs. (849) form a selfconsistent set of equations. To describe the system ac-
curately enough in a weak coupling regime, the used approximations might
already be sufficient. For stronger coupling regimes, the influence of higher
electron-phonon couplings have to be included at least approximatively (cf.
[14, [15]).

3 Phonon-induced relaxation dynamics at the Silicon
(001) 2x1 surface

Due to the interest in device miniaturisation, electron relaxation effects at
semiconductor surfaces play an increasing role in recent research. In con-
trast to embedded low-dimensional quantum systems (quantum dots quan-
tum wells), where the band structure and the matrix elements gn,c 1q May be
described a few parameters (effective masses, dielectric constant, etc. [17]),
ab initio calculations are typically necessary to calculate the dynamics of a
surface structure [18]: In our approach, density-functional theory (DFT) is
used to obtain Kohn-Sham-orbitals to calculate the matrix elements, e.g. Eq.
(6),(2). The evaluation of the dynamics is performed in two steps: first, the
DFT calculations are processed for a silicon (001) 2x 1 surface and all interac-
tion matrix elements gﬁ;ck; q and the relevant electronic bandstructure e, are
determined from the Kohn-Sham wavefunctions, and, in a second step, are
inserted into the dynamical equations (9). Equation (9 ) describes the electron
relaxation dynamics for fixed phonon distributions (bath approximation), af-
ter the injection of a non-equilibrium electron occupation via optical excitation
[11].

The resulting dynamics of the phonon-induced relaxation of hot electrons
within the conduction bands for the silicon (001) 2x1 surface [7, 8] is dom-
inated by two timescales, cf. Fig. [1, which shows the partial relaxation from
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surface states to bulk states on short times and then back to surface states
after longer times. The two timescales can be rationalized to different relax-
ation processes due to acoustic and optical phonons and specific features of
the bandstructure of the Si (001) surface. In addition to the bulk bands, a
surface-related conduction band (D°""-band) is partly located in the semi-
conductor band gap (and thus constitutes the conduction band minimum at
the I'-point).

While the relaxation within the bulk and within the D4°""-band is fast
(1 ps), the interband relaxation from the bulk to the D°""-band is much
slower [8| [11} [19]. Starting from an optical excitation process with a 1.69 eV
pulse of 50 fs duration, the relaxation of optically injected electrons is rather
complex: Initially, almost the whole population in the conduction bands is
found in the D°""-band at an energy about 0.4 eV above the bulk conduc-
tion minimum. In Figure1 this can be seen by a real space population located
near the surface after injection at ¢ = Ops (lhs). At a later timestep (2 ps),
the conduction band population distributes into the bulk: by phonon emis-
sion, a part of the population is transfered from the D°""-band to the bulk
bands [15]. At the end of the relaxation, we find the entire population near the
surface again. The final quasi equilibrium state is the total conduction band
minimum (a D9°""_state at the I'-point), and all relaxation channels lead to
this final energetically lowest state, spatially located at the surface.

By combining the density matrix formalism with density-functional theory
and applying it to a silicon 2x1 (001) surface structure, the timescale for the

0 ps

2 ps

190 ps

Fig. 1. Projection of the conduction band population into real space for timesteps
of 0, 2 and 190 ps. While the initial population is strongly localized at the surface,
the population partly shifts to the bulk at 2 ps, and finally returns into a surface
state (minimum of D4*"-band).
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fast relaxation process in the D™ band of about 1 ps has been obtained in
good agreement with experimental findings |7, 8, [19].

4 Scattering response and spatiotemporal wavepackets
in Quantum Cascade Lasers

In this section, ultrafast dynamics of the subband population and spatial elec-
tronic density evolution in quantum cascade lasers is considered. The quantum
cascade laser (QCL) is an electrically pumped intersubband laser consisting of
up to several hundreds of quantum wells [20, 21]. Via scattering and tunneling
processes, the electrons move from the injector into the active region of one
period where the laser transition takes place. The electrons are then collected
in the injector of the next period, leading to a cascade of emitted photons.
Through engineering of the quantum well widths and potential offsets, the life-
times and energies of the quantum states can be designed to obtain optimal
lasing conditions. For instance, in many THz devices, an inversion is obtained
by depleting the lower laser subband on a short time scale via emission of
longitudinal optical (LO) phonons [cf. Fig. 2(a)].

In our approach, the interaction of the electronic system with LO phonons
and ionized doping centers is described within a second order Born-Markov
and bath approximation [cp. Eq. (9)]. The complex multi-period structure
is modelled by considering only interaction of next-neighbor elementary cells
of the superlattice and applying periodic boundary conditions to the density
matrix and the coupling elements [22].

In Fig. 2(b), the dynamics of the subband populations f, = 2/A , fuk
of the THz QCL structure, discussed in Ref. [23], is shown at T = 10 K.
Here, a strong 170 fs pump pulse saturates the gain inversion at the tran-
sistion 3 — 2, leading to Rabi flopping of the involved subbands [22]. After
the passage of the pulse, non-radiative relaxation from the lower laser state
into subband 1 via phonon emission depletes the population in subband 2,
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Fig. 2. (a) Resonant phonon design of THz QCL with the laser states 2, 3. The tran-
sition 2 — 1 depletes the lower laser level through phonon emission. (b) subband
population dynamics for an excitation with a strong ultrafast pulse. (¢) Correspond-
ing spatiotemporal evolution of the electronic density (barriers are shown).
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while the upper laser state 3 is refilled due to elastic scattering from the in-
jector states of the prior period. The population dynamics is dominated by
incoherent evolution after the passage of the pulse i.e. by the cooling of the
electron distributions within the spatially extended structure. Fig. 2(c) shows
the corresponding spatiotemporally resolved evolution of the electronic density
n(z,t) =2/A%, & (2) &m(2) 24, (), where &,(2) denotes the envelope
of the quantum confined state (white denotes excess, black decreased density
compared to the stationary values). Shortly after the pulse, the electronic den-
sity in level 3 in the active region is reduced due to the gain saturation of the
laser transitions. After this, the system slowly returns to the stationary state
on a picosecond time scale. In addition, coherent effects such as density (gain)
oscillations between the injector and the active region can be observed. They
result from a coherent charge transfer through the main tunneling barrier
connecting the two regions [24] 25].

As can be seen, optically induced electron-phonon scattering dynamics in
quantum cascade laser reveals the relaxation channels of the structure as well
as coherent effects due to resonant tunneling through the barriers[22].

5 Non-equilibrium phonon dynamics in graphene

When peeling off the graphite constituting slices of honeycomb-arranged car-
bon atoms to the thinnest possible form, mono-layered 2D-graphite’ — or
graphene — can be produced. Due to its unique electronic properties, graphene
has recently drawn a lot of attention: For example, theoretical investiga-
tions focused on the quasiparticle properties and dynamics of so-called Dirac-
Fermions [20] or electron-phonon interaction [27]. Recently also ultrafast re-
laxation processes of photo-excited electrons have been studied in experiments
[6].

In this section, the relaxation of an optically excited conduction band car-
rier population into thermal equilibrium by energy dissipation through phonon
emission is discussed [16]. It turns out that, for a proper understanding, the
dynamics of photo-excited electrons and heated phonons in graphene has to
be treated simultaneous. Given optical phonon energies of almost 200 meV
and an intermediately strong electron-phonon interaction, the latter process
provides an efficient cooling mechanism in this two dimensional system. The
relevant quantities for the dynamics are the interband coherence pg at wave
vector k, the valence (v) and conduction (¢) band population fi (i = ¢,v), as
well as the phonon occupation number n4 at wave vector g, all defined around
Eq. (6) in the introduction. We treat the electron-phonon interaction within
second-Born Markov equations, known as Bloch-Boltzmann-Peierls equations,
Egs. (8),(9). To determine the electron-phonon coupling (EPC) matrix ele-
ments g q Kohn anomalies in the phonon dispersions are used [27]. The EPC
matrix elements describe intravalley (I'-phonons) as well as intervalley (K-
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Fig. 3. (a) After laser excitation into the conduction band electrons in the graphene
sample relax via intra- and intervalley scattering with optical phonons.(b) shows
the temporal evolution of the conduction band occupation f.r times the DOS. Here
fer has been integrated with respect to the angle. (c¢) shows the occupation of the
I" — Ea4,p0 phonon mode of graphene for different times.

phonons) scattering processes. Due to the anisotropic optical matrix elements
[28] anisotropic optical excitation and relaxation processes occur.

Results of the coupled dynamics are shown in Figure|3. Electron relaxation
of a photo-excited non-equilibrium distribution takes place on a femtosecond
timescale, but is dramatically slowed down after 20 fs. The early drastic elec-
tron cooling (b) results in formation of a finite population of the initially quasi
unoccupied phonon modes (c). Hot phonons (c) clearly reduce the possibility
of energy dissipation by the electronic system after 20 fs.

Our findings provide insight into the ultrafast dynamics of the first 500
fs after excitation not yet accessible by experiment. We show that generation
of non-equilibrium (hot) phonons has a noticeable impact on the relaxation
dynamics of the excited carriers.

6 Terahertz light emission

In this section we focus on the spontaneous terahertz (THz) quantum emis-
sion from a 2D equilibrium electron gas in a doped semiconductor quan-
tum well [I3]. Only one subband in effective mass approximation inside the
quantum well is considered. The interaction of the electron gas with the
light field is treated using a quantized light field Eq. (5) considering a spa-
tially inhomogeneous and frequency dependent dielectric function of the well
environment[29, [30, [13] [31]. This allows one to incorporate also the sample
geometry and the influence of transversal optical (T'O)-phonons of the bar-
rier material, having similar resonance frequency as the electron gas THz
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Fig. 4. Geometric setup of the terahertz quantum light emission.
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Fig. 5. Luminescence of a Fermi distribution in a GaAs quantum well in AlGaAs
for parameters T' = 300K, m = 0.07m., well width 10 nm and a electron density of

n =1.2-10"%m™2 (a) for a free standing quantum well, (b) in GaAs barrier phonons
(¢) including finite sample boundaries and (d) additionally with AlAs phonons.

emission. Emission perpendicular to the quantum well is observed, cf. Fig.
4. This geometry selects intraband emission for the electron gas (not inter-
subband processes), since the dipole moment is in-plane with the quantum
well and leads to a mostly perpendicular emission. The quantum light emis-
sion is calculated using a correlation expansion approach in second-order Born
approximation and describes a momentum and energy conservation ensuring
joint process of electron-phonon and electron-photon interaction. We find the
following formula for the stationary light emission of a specific mode k,o
[32, 13]:

Opmge = Z 27T|9q‘Z‘C(wka)|2|ngg|2fc+q” (1= fe)-
cq

[+ ng) 6(wko + e — Eetqy +wLo)
+nq 6(Wko + Ec — Ectqy — wro)], (10)

where ( is the Heitler-Zeta function and mg, is the photon number, which
is directly connected to the observed stationary emission spectra S(wg,)
hwis Oymi, . Inspecting the spectra given by Eq. (10) shows, that the photons
are generated through the stimulated/spontaneous emission (1+n4) or the in-
duced absorption (nq) of a phonons , where ng4 is the phonon occupation. The
emission is propertional to a Pauli blocking term fe4, (1— fe) and the phonon
occupation, jointly participating in the emission process. The argument of the
delta function ensures energy conservation. It is possible to evaluate Eq. (10)
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with different quantization schemes for the photons, cf. Fig. 5. In Fig. 5 (a)
the electron gas of a free standing quantum well in vacuum leads to a broad
THz emission spectrum with an enhancement at the TO-phonon-frequency.
After including also barrier TO-phonons inside an infinitely extended sample
[cf. Fig. 5 (b)], the emission at the TO-phonon frequency is furthermore in-
tensified and a longitudinal-transversal splitting between LO- and TO-phonon
frequency appears. Considering additionally the geometric constrains due to
a finite sample in the quantization, the emission at the LO-frequency is inten-
sified while it is suppressed at the TO-frequency (cf. Fig.[5 (¢) ). This occurs
because the photon modes in the finite sample geometry at LO-frequency are
stronger at the quantum well position while the TO-frequency modes are re-
duced at this position. Furthermore, in Fig. 5 (d) also AlAs-like phonons of
the barrier material are included.

Obviously the quantum light THz emission from intrasubband processes
inside a quantum well is assisted by electron-phonon relaxation and is strongly
influenced by the TO-phonons of the sample.

7 Summary

We have applied a non-equilibrium density matrix approach to a broad variety
of 2D electron gases. Based on a unified approach for the electron-phonon
interaction, the combined electron-phonon dynamics is shown to determine the
features of electron cooling and their spatiotemporal propagation in systems
of different character: silicon surfaces, THz quantum cascade lasers, graphene,
and GaAs quantum wells.
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