Strain effects on the Electronic and Optical Properties of
InAs/GaAs Quantum Dots: Tight-binding Study
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Abstract. We present an atomistic investigation of strain effects on the electronic and optical properties of capped pyramidal
InAs/GaAs quantum dots (QD’s) within an empirical sp°s* tight-binding model with interactions up to 2nd nearest neighbors
and spin-orbit coupling. The strain is incorporated through the atomistic valence-force field model. We demonstrate that the
strain: (i) significantly increases the QD gap, (ii) induces a macroscopic spatial asymmetry in the ground state wave functions,
(iii) strongly enhances the oscillator strength of the fundamental optical transition and (iv) introduces a spatial anisotropy of

the optical absorption coefficient of this transition.
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FIGURE 1. Schematic view of the pyramidal InAs QD bu-

ried in the GaAs matrix. The supercell contains 85000 atoms.

We present a study of the influence of strain on the
electronic and optical properties of pyramidal InAs quan-
tum dots (QD’s) buried in GaAs matrices. The system
is characterized by a significant strain field inside and
around the InAs pyramid. Despite the many theoretical
studies addressing the electronic and optical properties
of such system (in the framework of the k- p model
[1], the empirical pseudopotential model [2] or the tight-
binding (TB) model [3]), no systematic investigations of
the influence of the strain on the electronic spectrum and
the related optical transitions have been carried out. We
employ an empirical sp°s* TB model with interactions
up to 2nd nearest neighbors and spin-orbit coupling [4],
that we generalized to include the effects of bond length
and bond angle deviations from the ideal InAs and GaAs
zinc-blende structure [5]. This approach allows for these
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FIGURE 2. QD bound state energies calculated by our TB
approach. Values here differ slightly from those given in Ref.
[5] due to corrected atomic relaxation algoritm adopted here.

effects to be selectively removed from the electronic-
structure calculation, giving quantitative information on
the importance of the strain effects on the electronic and
optical properties of QDs. Piezoelectric effects are not
included here.

Fig. 1 shows our model system. It consists in a pyrami-
dal InAs QD buried in a GaAs matrix. The equilibrium
atomic positions, employed for the electronic calcula-
tion, were obtained by minimizing the total elastic energy
within the Keating’s valence-force field model [6].

Fig. 2 shows, on the left side (QD), the QD bound
state energies calculated by our TB model by including
all strain effects in the TB Hamiltonian. We found two
bound electron states (|el) and |€2)) and two bound hole
states (|h1) and |h2)). In order to have a direct quanti-
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FIGURE 3. Isosurface plots of the charge densities ¢|¢(r)|*
relative to the states |el) (top) and |h1) (bottom). Each surface
corresponds to the 50% of the maximum charge-density value.

tative measure of the strain contribution, we compare,
in the same figure, these results with those of an artifi-
cially strain-unaffected QD, obtained from the same ato-
mic positions as the “physical” case by removing any
strain contribution from the TB Hamiltonian matrix ele-
ments. The comparison shows that the strain increases
the QD gap (€1 — €p1y) by about 35%, raising it from
the strain-unaffected value 937 meV to the value 1262
meV. This behavior comes mainly from the InAs band
gap increase when the InAs pyramid is compressed by
the surrounding GaAs matrix [5]. The figure shows that
the strain has an opposite effect on electron and hole sta-
tes: the former become shallower, approaching the GaAs
conduction-band edge, while the latter become deeper,
moving away from the valence-band edge.

Fig. 3 shows the strain effects on the charge den-
sity e|@(r)|? relative to the ground electron (|el)) and
hole (|h1)) bound states. Results for the “physical” QD
and for the strain-unaffected QD are compared. The fi-
gure shows that the strain introduces a macroscopic spa-
tial asymmetry between the directions [110] and [110],
which is a consequence of the different strain profiles
along these two directions, obtained from our atomistic
treatment [2].

Table 1 gives, on the first two lines, the effect of the
strain on the charge fraction AQ within the QD, calcula-

ted as AQ = '[QD |y(r)[*dr, for the electron state |el)

and the hole state |k1). For the “physical” dot, AQ for
|e1) and |k1) are comparable, while removing strain ef-
fects causes a strong difference in the AQ values for |el)
and |A1). In particular, we notice that removing the strain,
the electron state becomes more spatially confined (and
deeper, see Fig. 2), while the hole state becomes less spa-
tially confined (and shallower). This results in a stronger
overlap between these two states in the presence of strain,
suggesting a larger oscillator strength of the correspon-

TABLE 1. Charge fraction within the QD (first two
lines), InAs-normalized oscillator strength fon/ finas
and degree of anisotropy / (eq. (1)) of the |h1) — |el)
optical transition transition.

“Physical” Strain-unaffected

QD QD

le1) 64% 75%
1) 54% 11%
To/ finas 0.19 0.12
1 2.5% ~0

* within the numerical precision

ding optical transition. This is confirmed in the third line
of the table, where the oscillator strength fp of the fun-
damental optical transition |h1) — |el) (normalized with
respect to the oscillator strength fjn4s of the fundamental
optical transition in bulk InAs) in a “physical” dot and
in an artificially strain-unaffected dot are compared. The
results show that strain enhances the oscillator strength
of the fundamental optical transition by about 60%. The
last line shows the degree of anisotropy I of the oscil-
lator strength of the fundamental optical transition with
respect to the direction of the in-plane linearly polarized
light, defined as

_ letlp-i a0~ |(ellp-2_ )2 )

[{el]p-&,|A1)]>+|(el|p-2_|A1)[*’
where &, and &_ are unitary vectors along the directions
[110] and [110] respectively. The results demonstrate
that the strain introduces an anisotropy in the optical
absorption coefficient, as a result of the macroscopic
spatial asymmetry shown in Fig. 3.

In conclusion, we showed that the strain plays an im-
portant role in the electronic and optical properties of
InAs/GaAs pyramidal QD’s. It significantly increases the
QD gap, it enhances the oscillator strength of the funda-
mental optical transition, and it introduces a macroscopic
in-plane asymmetry of the ground state wave functions,
which leads to an in-plane anisotropy of the optical ab-
sorption coefficient of the fundamental transition.
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