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Abstract
Hydrogen bonds (HBs) involving water molecules are ubiquitous in nature. However an
accurate description of HBs with simulation techniques, including even quantum mechan-
ical approaches such as density-functional theory (DFT), is a major challenge. Mainly
because of a good balance between computational cost and accuracy, DFT has been
routinely applied to study water in various environments, for example, liquid water, ice,
adsorbed, and confined water, yet how well DFT exchange-correlation (xc) functionals
describe HBs between water molecules is unknown and indeed controversial. To address
this issue a series of systematic studies on water from different environments (represen-
tative of gas phase clusters, liquid water, and various phases of ice) have been performed
with a range of DFT xc functionals and, in principle, more accurate explicitly correlated
quantum chemistry methods.
For small gas phase water clusters (dimer to pentamer in their global minimum config-

urations) several hybrid xc functionals (where a fraction of exact exchange is included)
are found to be far superior to the more common and widely used pure DFT xc function-
als. Similarly on water clusters extracted from a simulation of liquid water the hybrid
functionals offer much improved performance. It is shown that the poor performance of
generalized gradient approximation (GGA) xc functionals for liquid water is because of
a poor description of the covalent O-H bond stretching of water molecules with GGA xc
functionals. This provides a possible explanation for the predicted low diffusion coeffi-
cients obtained in many previous GGA simulations of liquid water and raises a general
concern over the ability of pure GGA xc functionals to describe the intra-molecular de-
formation in other molecular liquids too, highlighting the importance of exact exchange
in simulations of molecular liquids.
Aiming to finally understand the significance of van der Waals (vdW) dispersion forces

in holding water molecules together, a systematic study of the four low-lying isomers of
the gas phase water hexamer was performed. This revealed that due to the lack of vdW
interactions no xc functional tested found the correct lowest energy structure of the
water hexamers. More open structures (“cyclic” or “book”) were favored over the more
compact “prism” isomer which is known (from explicitly correlated calculations) to be
the lowest energy isomer. This clearly indicates the importance of vdW forces in holding
water molecules together and indicates a need for an improved account of vdW forces
in conjunction with DFT xc functionals. A similar conclusion has been reached through
simulations on a range of ambient and high pressure phases of ice, where it is found that
vdW forces play a crucial role in determining the relative stabilities of the high density
phases.
Overall, significant contributions have been made to both better understand the nature

of the interactions between water molecules and to pinpoint the shortcomings in DFT xc
functionals to describe HBs among water molecules. This will aid in the development of
improved xc functionals and deepens our understanding of the gas and condensed phases
of water and other hydrogen bonded systems too.
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Zusammenfassung

Wasserstoffbrückenbindungen (Englisch: Hydrogen Bonds, HBs) zwischen Wassermo-
lekülen sind in der Natur allgegenwärtig. Trotzdem ist eine genau Beschreibung mit
Simulationstechniken, eingeschlossen auch quantenmechanische Ansätze wie z.B. Dichte-
funktionaltheorie (DFT), eine große Herausforderung. Hauptsächlich auf Grund der
guten Balance zwischen Rechenzeitaufwand und Genauigkeit wurde DFT routinemäßig
angewendet, umWasser in unterschiedlichen Umgebungen, wie z.B. flüssiges Wasser, Eis,
adsorbiertes und eingeschlossenes Wasser, zu untersuchen. Trotzdem ist nicht bekannt,
wie gut DFT Austausch-Korrelations (Englisch: Exchange-Correlation, xc) Funktionale
die HBs zwischen Wassermolekülen beschreiben – dies ist ein kontroverses Thema. Um
diesen Aspekt zu beleuchten, wurde eine Serie von systematischen Studien von Wasser in
unterschiedlichen Umgebungen (Gasphasen-Cluster, flüssiges Wasser und verschiedene
Phasen von Eis) mit einer großen Bandbreite von DFT xc Funktionalen und vom Prinzip
her genauer explizit korrelierten quantenchemischen Methoden durchgeführt.
Für kleine Gasphasen-Cluster (Dimere bis Pentamere in ihren globalen Minimum-

Konfigurationen) scheinen einige Hybridfunktionale (bei denen exakter Austausch in-
tegriert ist) den üblicheren und weit verbreitet genutzten puren DFT xc Funktionalen
gegenüber weit überlegen zu sein. In ähnlicher Weise gilt dies auch für Wasser-Cluster,
die aus Simulationen flüssigen Wassers extrahiert wurden. Es wird gezeigt, dass die
schlechten Ergebnisse der generalisierten Gradienten Approximation (Englisch: Gen-
eralized Gradient Approximation, GGA) xc Funktionale für flüssiges Wasser in der
schlechten Beschreibung der Veränderung der kovalenten O-H Bindungslänge der Wasser-
moleküle begründet liegen. Dies bietet eine mögliche Erklärung für die in vielen vorherge-
henden GGA Simulationen von flüssigem Wasser als zu klein vorhergesagten Diffusion-
skoeffizienten und macht daher die Fähigkeit purer GGA xc Funktionale zur Beschrei-
bung intra-molekularer Deformation in anderen molekularen Flüssigkeiten zu einem
Thema generellen Interesses, was die Bedeutung von exaktem Austausch für Simula-
tionen molekularer Flüssigkeiten unterstreicht.
Um die Bedeutung von van der Waals (vdW) Dispersionskräften beim Zusammen-

halten von Wassermolekülen endgültig zu verstehen, wurde eine systematische Studie
der vier energetisch niedrigen Isomere des Gasphasen-Wasser-Hexamers durchgeführt.
Daraus ging hervor, dass auf Grund des Fehlens von vdW Wechselwirkungen keines
der getesteten xc Funktionale die korrekte nieder energetischste Struktur des Wasser-
Hexamers gefunden hat. Offenere Strukturen (“zyklisch” oder “Buch”) sind gegenüber
dem kompakteren “Prisma” Isomer begünstigt – aus explizit korrelierten Rechnungen
ist bekannt, dass es sich bei letzterem um das niedrigst energetische Isomer handelt.
Dies zeigt deutlich die Bedeutung von vdW Kräften beim Zusammenhalten von Wasser-
molekülen und weist auf die Notwendigkeit einer verbesserten Berücksichtigung von vdW
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Kräften im Zusammenhang mit DFT xc Funktionalen hin. Simulationen einer Reihe von
Umgebungs- und Hochdruck-Phasen von Eis lieferten ein ähnliches Ergebnis – auch hier
fand man, dass vdW Kräfte eine enscheidende Rolle bei der Ermittlung der relativen
Stabilitäten der Phasen hoher Dichte spielen.
Alles in allem wurden bedeutsame Beiträge geleistet, zum einen die Natur der Wechsel-

wirkungen zwischenWassermolekülen besser zu verstehen und zum anderen die Schwächen
von DFT xc Funktionalen bei der Beschreibung der HBs zwischen Wassermolekülen
aufzuzeigen. Dies wird die Entwicklung verbesserter xc Funktionale fördern und unser
Verständnis der Gas- und kondensierten Phase von Wasser und anderen Wasserstoff
gebundenen Systemen vertiefen.
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1. Introduction

It is the hydrogen bond that determines the magnitude and nature of the
mutual interactions of water molecules and that is consequently responsible
for the striking physical properties of this uniquely important substance.

– Linus Pauling

Water is the most important substance on earth and considered to be one of the
fundamental ingredients for the source of life. Historically, water has been one of the most
investigated objects. Water possesses a special place in mythologies1 and for centuries it
was thought to be one of the “five elements”which the universe was assumed to be made
of2. The modern picture of water that it is a compound and comprised of the elements
hydrogen (H) and oxygen (O) was discovered only in the 19th century. In 1826, J. J.
Berzelius proposed the structure of water which is known today as H2O

3.
The water molecule has one of the simplest structures, yet collections of water molecules

exhibit various unique and important properties. To mention a few, water exists in the
liquid state at room temperature4, the density of liquid water decreases when solid water
(ice) melts, water under pressure flows faster, etc. Key to many of those properties are
the network of hydrogen bonds (HBs) that hold water molecules together. The hydro-
gen bond in water comes about as a result of an attractive interaction between the H
atom attached to a water molecule and the O atom of an adjacent water molecule. The
strength of HBs between water molecules are of a similar magnitude to thermal energy
(in the order of 15–30 kJ/mol), which are suitable to play important roles in reactions
occurring at normal temperature. The Uniqueness of the HBs in water also stems from
the ability of one water molecule to participate in as much as four HBs (in some cases
five). Also the strength of HBs highly depends on the orientation of water molecules and
they are cooperative5 in nature, which brings in more complexity with growing num-
bers of interacting water molecules. Hydrogen bonds are not only limited within water
molecules but also important when water interacts with other materials. This capability

1Even today a dip in the holy water of the river Ganges is believed to remove all sin and paves a way
towards the heaven.

2According to the Greek philosopher Aristotle (384 B.C - 322 B.C.) the universe consisted of fire, earth,
air, aether, and water. A review can be found in the book A Biography of Water [1].

3More than 99% of water on earth is H2O (more precisely 1H2
16O), whereas, few fractions of percent

are present with various isotopes of H and O (e.g., 2H, 3H, 17O). They exhibit different properties
than H2O. For example, melting temperature of 2H2

16O (277 K), also known as D2O, is 4 K higher
than H2O (273.4 K). This thesis will deal mostly with H2O and in few cases D2O.

4The molecular weight of water (18 a.m.u.) is too small and compared to other molecules of similar
weight water should boil well below 273 K.

5The strength of an individual hydrogen bond gets enhanced as the number of HBs increases.
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1. Introduction

makes water an excellent solvent and also helps to nucleate water on surfaces, playing
an important role, for instance, in cloud formation and many catalytic reactions. Inter-
actions of water with biologically relevant molecules, such as, proteins and DNA is also
obviously important to living entities [2, 3]. All these features have brought water in to
the center of attention in interdisciplinary fields of research and for many years now it
has been one of the major challenges of the physical sciences to understand the nature
of HBs associated with water.

For decades sophisticated experimental tools were the only techniques used to an-
swer various fundamental questions concerning HBs in water. One of the fundamental
properties which anyone would be interested in is how water molecules are arranged
in natural ice and liquid water. In this regard diffraction experiments with X-rays or
neutrons have provided significant insights. In 1935, Linus Pauling proposed the basic
structure of natural ice that each water molecule is attached with four others via HBs
with a tetrahedral arrangement [4, 5]. A definitive confirmation of this model came
through a neutron diffraction experiment in 1957 [6]. Even though the structure of ice
seems to be well accepted, the basic structure of liquid water is still ambiguous. Espe-
cially, recent X-ray absorption spectroscopy (XAS) measurements which have led to the
suggestion that in ambient liquid one water molecule is connected with only two other
water molecules via strong HBs [7]. This contradicts perceived wisdom that each water
molecule has four tetrahedrally coordinated HBs [8, 9]. Consequently, several studies
have been performed to clarify the issue but no definite conclusions have been reached
yet and the issue remains controversial (see, e.g., Refs. [10–32]).

Nowadays atomic scale simulations using computers (with efficient algorithms) have
evolved as an equally promising and alternative tool to experiments for understanding
materials. Computational techniques have been used to successfully verify experimental
observations and they are able to bring new insights and clarifications to the experimental
findings at the atomic level. Today this can be regarded as a parallel field to laboratory
experiments and quite regularly knowledge obtained from computers and experiments
are complimentary to each other. The rapid improvements in computer power together
with more efficient computer algorithms provides a huge scope to perform simulations
of high enough accuracy so that answers to questions like what the structure of liquid
water is or how ice particles form on certain dust particles can be obtained. Moreover,
accessing extreme physical conditions computationally is much simpler than to achieve
this in real experiments. For example, geophysical pressures of millions of atmospheres
representative of planetary cores require considerable effort to reach in a laboratory
experiment, yet for theory can be computed without any particular difficulty [33, 34].

The success of the computer simulations of materials rests upon an accurate modeling
of how atoms interact with each other. On the one hand there are pre-parameterized
empirical potentials which have been applied with considerable success in the past and
still nowadays represent the state-of-the-art to model large systems, such as biomolecules
with tens of thousands of atoms. The potential parameters are usually fitted to reproduce
some gas phase properties (e.g., the dipole moment, the dimer dissociation energy) or
to recover some liquid state properties at ambient conditions (e.g., heat of vaporization,
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density). Interestingly, the first such simple potential for water was made in 1933 [35]
and since then due to huge general interest more than a hundred other water potentials
have been proposed. But applications of empirical potentials are very much limited to
capture the properties of systems they are parameterized for and in most cases they
fail for other properties6. On the other hand there are techniques that are based on a
quantum mechanical description of the atoms, which are computationally much more
demanding but much more rigorous than empirical potentials. These methods do not
require any input from experiments, thus, they are often termed as ab initio methods.
Nowadays quite often the parameters for the empirical potentials are obtained from the
knowledge of the ab initio methods. In this thesis a variety of ab initio methods have
been employed aimed at achieving very high accuracy.

The essence of ab initio methods is to solve the Schrödinger equation or some analo-
gous quantum mechanical equation. The solutions of the Schrödinger equation describe
the quantum state of a system, possessing the information from which other physical
properties of the system can be derived. In practice it is extremely difficult to solve the
Schrödinger equation exactly for systems containing more than a few electrons. Thus
various approximate methods have been proposed and developed over the years and they
each have their own advantages and disadvantages. These methods are often categorized
in to wave function based and density-functional based approaches. Many of the wave
function based methods (e.g., quantum chemical approaches, quantum Monte Carlo)
are often more accurate than the methods based on density-functional theory (DFT).
In particular, coupled cluster is often considered as the “theoretical gold standard” and
routinely used for benchmark purposes. Unfortunately, with coupled cluster and other
wave function based methods the computational cost increases severely with the system
size and treating just a few tens of electrons becomes a bottleneck even with the world’s
largest computers and most efficient algorithms. In this respect DFT has emerged as
a very useful technique because it is capable of dealing with systems with hundreds or
thousands or even more electrons. Undoubtedly, DFT is the most popular ab initio
method nowadays, especially for condensed phase simulations and currently the only
practical method available for understanding the unique properties of HBs in the con-
densed phases of water. Since the first DFT simulation of liquid water was performed
in 1993 [38], DFT has continued to bring new insights to various properties of liquid
water [38, 39], ice [40–44], interfacial water [45–48], confined water [49], solvation [50],
adsorbed water [51–55], proton transfer [56], etc. However, as with all electronic struc-
ture methods, DFT has shortcomings. These shortcomings are mostly concerned with
accuracy.

DFT is exact in principle but in practice it requires an approximation for the treatment
of the so called electron exchange and correlation interactions. The exchange-correlation
(xc) energy contributes a small fraction to the total energy of a system but for the
accurate description of binding between atoms this turns out to be extremely crucial.
Two standard ways to calculate the xc energy are the local-density approximation (LDA)

6Recent review articles from Finney [36] and Guillot [37] briefly summarize some of the well known
limitations of several popular empirical potentials.
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and the generalized gradient approximation (GGA)7. These two xc functionals have been
extremely successful in various fields but they often fail for the treatment of weakly bound
systems (e.g., HBs and van der Waals bond). For purely van der Waals (vdW) bonded
systems both LDA and GGA are known to be inadequate. However, for H-bonded
systems or mixed H-bonded vdW bonded systems it is somewhat unclear how these
functionals perform. There are more sophisticated xc functionals than LDA and GGA
(as will be discussed in chapter 2) but how these perform and how to systematically
improve the performance of DFT xc functionals for weakly bonded systems remain open
questions. Some of these questions will be addressed in this thesis.

Regarding the treatment of HBs in the condensed phases of water with standard xc
functionals there exist numerous outstanding problems. In comparison to experiments
some of the well documented shortcomings are the following: (i) with standard xc func-
tionals the melting temperature of H2O ice is found to be 415 K [31] at ambient pressure8;
(ii) at ambient temperature the density of liquid water is found to be about 0.75-0.85
gm/cm3 [32] (experimental value is ∼0.99 gm/cm3); (iii) many xc functionals produce
much less diffusive and too higly structured liquid water at room temperature [10–32];
and (iv) the density and lattice energy of ice can be either too large or too small de-
pending on the choice of xc functional [41, 57]. So far it has not been possible to find a
single xc functional which can be used regularly for simulations involving water molecules
in gas, solid, and liquid phase with satisfactory results and, in general, a much better
description of water and ice with DFT is highly desired.

As a first step towards this, knowledge of how various xc functionals perform for indi-
vidual HBs between water molecules is essential and in this respect studies on small gas
phase water clusters are expected to bring new insights. Through a series of systematic
studies some of the key points addressed in this thesis are: (i) how accurate xc function-
als are in describing the absolute and relative strength of HBs in small water clusters; (ii)
what the shortcomings are and ways to systematically improve the description with stan-
dard xc functionals; and (iii) if the performance of xc functionals on clusters can explain
their behavior in the condensed phase. These questions are tackled by comparing the
DFT data to that from accurate reference data, obtained from explicitly correlated wave
function based methods, e.g., coupled cluster9, second order Møller-Plesset perturbation
theory (MP2), and quantum Monte Carlo (QMC).

The first specific issue addressed in this thesis is a systematic study on the global

7Description of LDA and GGA can be found in chapter 2.
8To date this is the only prediction of the melting temperature of H2O ice at an ab initio level. The
simulation was performed by treating the nuclei as classical particles, i.e., the quantum nature of
the nuclei was neglected. It is established that the experimentally observed properties of water are
significantly influenced by the quantum nature of H and a classical treatment will induce errors in the
simulations, however, the magnitude of the effect is still not quantified precisely. Studies made with
empirical potentials have suggested that quantum effects induce structural and dynamical changes
in the order of 25 to 50 K, i.e., quantum water can approximately be described by classical water at
elevated temperatures. Considering a difference of 50 K the estimated melting temperature is lowered
to 365 K, which is still ∼90 K above the experimental value.

9Specifically, coupled cluster with single and double excitations plus a perturbative correction for con-
nected triples [CCSD(T)] is employed here (see chapter 2 for more details).
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minimum conformers of the water dimer to pentamer. A variety of xc functionals are
considered and clear evaluations of each obtained. It is found that knowing how the xc
functionals behave for the water dimer does not clarify how it will behave for the larger
clusters. Consistently accurate binding energies (within 10 meV/H-bond) are achieved
only from a few hybrid GGA xc functionals considered, and good but slightly inferior
performance (within 20 meV/H-bond) for several GGAs tested.

A general perception is that if a functional produces HBs that are too weak within
water clusters, very likely it will predict understructured and too diffusive liquid wa-
ter. However, certain popular functionals display the opposite behavior in this respect
and this has remained without a satisfactory explanation for some time now. A close
investigation to understand this issue has revealed quite intriguing shortcomings with
GGA xc functionals regarding the description of the structural deformations of the water
monomers inside liquid water. Specifically, upon going from the gas phase to the liquid
phase the covalent O-H bonds of the water monomers are elongated and with the GGAs
this process is found to be energetically much too easy. As a result the performance of
pure GGAs for water clusters within liquid water is generally inferior to their perfor-
mance in the gas phase. A few hybrid functionals are again found to be more accurate
in this regard. This implies that one should be cautious when simulating liquid water
with GGA xc functionals.

van der Waals interactions are present everywhere, especially for weak bonded systems
vdW contributions can contribute significantly to the total binding. Exactly how im-
portant vdW interactions are for the interaction between water molecules is not known
conclusively neither at a quantitative nor a qualitative level. This knowledge is crucial
in conjunction with DFT since standard functionals are unable to capture vdW interac-
tions appropriately. In this respect a study of the low-lying isomers of water hexamers
has brought new insights. The four low-lying isomers of the water hexamer (commonly
known as “prism”, “cage”, “book”, and “cyclic”) provide a critical test for xc functionals
because energetically they differ from each other by only 10-20 meV/H2O. Surprisingly,
all the xc functionals are neither able to find the correct low-energy structure, (i.e.,
“prism”) nor they can produce the correct energetic ordering among the isomers. More-
over, it is found that this deficiency is attributed to the inaccurate description of vdW
interactions between water molecules. Indeed the correct energetic ordering was ob-
tained upon including vdW interactions explicitly with regular DFT energies. This is
one important illustration that vdW interactions are crucial for the interaction between
water molecules and special care needs to be taken when treating water with standard
DFT xc functionals.

Finally, knowing the importance of vdW forces in water clusters an attempt has been
made here to understand the influence of vdW forces in the condensed phases of water.
Various high and low pressure phases of crystalline ice are studied and their densities,
lattice energies, and bulk moduli are compared with regular DFT xc functionals and
vdW corrected versions of those. It is observed that the proportion of the lattice energy
coming from vdW interactions monotonously increases with the density of the ice phases.
As a consequence, vdW interactions play a crucial role in stabilizing the high density
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phases of ice. In addition, calculations predict that the effective volume of the water
molecules is reduced when vdW forces are accounted for.
The rest of this thesis is organized as follows. Chapter 2 provides a brief description of

the theoretical background of the computational methods used. How accurately various
DFT xc functionals can describe HBs among small gas phase clusters is illustrated in
chapter 3. The importance of vdW forces in gas phase water hexamers is discussed in
chapter 4. Chapter 5 describes the importance of monomer deformations for liquid water
simulations with GGA xc functionals. The importance of vdW forces in various phases
of crystalline ice is discussed in chapter 6. Finally, a summary and possible perspectives
for future research directions are presented in chapter 7.
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2. Theoretical Background

2.1. Electronic Structure Problem

A key aim of most electronic structure theory is to solve the non-relativistic time inde-
pendent many-body Schrödinger equation

ĤΨ({RA}, {ri, σi}) = EΨ({RA}, {ri, σi}) . (2.1)

For a system containing M nuclei and N electrons the many-body wavefunction (Ψ) is
a function of all the spatial coordinates of nuclei ({RA}, A = 1, ...,M) and spatial and
spin coordinates of electrons ({ri, σi}, i = 1, ..., N). The Hamiltonian (Ĥ) is a sum of all
possible interactions between electrons and nuclei. In atomic units (energy in Hartree
and length in Bohr), Ĥ can be expanded as:

Ĥ = −
N∑
i=1

∇2
i

2
−

M∑
A=1

∇2
A

2MA
+

N∑
i=1

N∑
j>i

1

|ri − rj |
+

M∑
A=1

M∑
B>A

ZAZB

|RA −RB|
−

N∑
i=1

M∑
A=1

ZA

|ri −RA|
(2.2)

In the above equation, MA is the ratio of the mass of nucleus A to the mass of an
electron and ZA is the atomic number of nucleus A. The ∇2

i and ∇2
A are the Laplacian

operators. The first two terms in Eq. (2.2) represent the kinetic energies of all the
electrons and nuclei, respectively. The third and fourth term, respectively, correspond
to the Coulomb repulsion between electrons and between nuclei. The fifth term is the
Coulomb attraction between electrons and nuclei. Eq. (2.1) is deceptively simple by
its form but enormously complex to solve. Ever since it was discovered it is a dream
of researchers to find reasonable approximations to reduce the complexity. The first
important approximation is obtained by decoupling the dynamics of the electrons and
the nuclei, which is known as Born-Oppenheimer approximation [58].

2.1.1. Born-Oppenheimer Approximation

The very essence of the Born-Oppenheimer approximation comes from the fact that the
nuclei are much heavier than the electrons. Even for the lightest nucleus, a proton,
its mass is approximately 2000 times larger than the electrons. So, in most cases the
timescale of the response of the electrons is a few orders of magnitude faster than that
of the nuclei, which allows the dynamics of the electrons and nuclei to be decoupled.
Through this simple approximation, nuclei can be treated as classical particles and can
be considered as static with respect to quantum particle electrons. Then for any given
nuclear configurations the electrons are assumed to remain in their instantaneous ground
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2. Theoretical Background

state. As a result, the second term in Eq. (2.2) can be neglected and the fourth term,
the repulsion between nuclei, can be treated as a constant for a fixed configuration of
the nuclei. The remaining terms in Eq. (2.2) are called the electronic Hamiltonian (Ĥe),

Ĥe = −
N∑
i=1

∇2
i

2
+

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

M∑
A=1

ZA

|ri −RA|
. (2.3)

The solution to a Schrödinger equation involving the electronic Hamiltonian (Ĥe) be-
comes

ĤeΨe({RA}, {ri, σi}) = EeΨe({RA}, {ri, σi}) . (2.4)

The electronic wavefunction (Ψe) depends on nuclear coordinates ({RA}) only paramet-
rically now, thus for fixed configuration of nuclei we suppress {RA}. Furthermore, for
simplicity we put together electronic spatial and spin coordinates ({ri, σi}) in to one
variable {xi} (i.e., {xi} = {ri, σi}) and rewrite Eq. (2.4) as

ĤeΨe({xi}) = EeΨe({xi}) . (2.5)

The total energy for some fixed configurations of the nuclei will also include the constant
nuclear repulsion term leading to,

Etotal = Ee +
M∑

A=1

M∑
B>A

ZAZB

|RA −RB|
. (2.6)

In general under the Born-Oppenheimer approximation the electronic structure problem
reduces to solving Eq. (2.5) and throughout this thesis equations resembling (2.5) and
(2.6) are solved and total energies are obtained.
However, one should bear in mind that the Born-Oppenheimer approximation is cer-

tainly not universally valid. It is well known that the Born-Oppenheimer approximation
will break down when there are multiple potential energy surfaces close to each other
in energy or crossing each other. Dissociative adsorption of molecules on metal surfaces
is a famous contemporary example. Similarly, reactions involving hydrogen and proton
transfer may be susceptible to breakdowns in the Born-Oppenheimer approximation.
More caution must be exerted when dealing with systems such as those (see, e.g., Refs.
[59–62]).
The major difficulty in solving Eq. (2.5) is the interaction between electrons, where

all the many-body quantum effects are hidden. Since the motion of the electrons is
correlated one should know the instantaneous coordinates of each electron, which es-
sentially requires the treatment of 3N variables for an N -electron system. Despite the
almost intractable nature of these interactions, many approximate methods have been
developed to solve Schrödinger or Schrödinger-like equations by mapping the N -electron
Schrödinger equation in to effective one-electron Schrödinger-like equations, which are
easier to tackle. Some of these approximate solutions, the ones made use of in this thesis,
will be introduced in the following. The different approximate schemes employed here
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2.2. Wave Function Based Methods

can be divided in to two major categories: (i) the wave function based methods, where
the many-electron wave function is the key; and (ii) density-functional theory (DFT), in
which electron density is the central quantity. Here, the wave function based methods
will be introduced first.

2.2. Wave Function Based Methods

As mentioned above the fundamental quantity for the wave function based methods is
the many-electron wave function, Ψ, whose correct functional form is far from simple.
The first step in the determination of Ψ is often simply an educated guess and then
reliance on the variational principle. The variational principle tells that the expectation
value of the electronic Hamiltonian (Ĥe) for any guessed or trial wave function is always
larger (upper bound) than the electronic ground state energy E0[Ψ0] and the equality will
hold only when the wavefunction is in the true ground state (Ψ0), i.e., (E[Ψ] ≥ E0[Ψ0]).
The advantage of the variational principle is that starting with a trial wave function one
can approach towards the ground state energy E0[Ψ0] by variationally improving the
quality of the wave function. In the following, the variational principle will be applied
to minimize the approximated Hartree-Fock wave function.

2.2.1. The Hartree-Fock Approximation

The Hartree-Fock (HF) approach is regarded as the fundamental first step in much of
quantum chemistry1. In the HF approach the wave function of interacting N -electrons,
Ψ({xi}), can be approximately described with a single Slater determinant. A Slater
determinant is nothing but a linear combination of the product of independent electron
wave functions ({ϕi(xi)}) (also known as spin orbitals) with all possible combinations of
the permutations of their coordinates. Also the Slater determinant satisfies the antisym-
metric property of the electronic wave function, which is essential because electrons are
fermions and obey Pauli’s exclusion principle. For an N -electron system the HF wave
function looks like

Ψ({xi}) ≈ ΨHF({xi}) =
1√
N !

ϕi(xi) ϕj(xi) . . . ϕN (xi)
ϕi(xj) ϕj(xj) . . . ϕN (xj)

...
...

. . .
...

ϕi(xN ) ϕj(xN ) . . . ϕN (xN ) .

(2.7)

In the Slater determinant each of the columns are labeled by spin orbitals and exchange of
two electron coordinates will interchange the two columns inside the determinant, thus

1In 1928, D. R. Hartree proposed a simplest possible ansatz [63] in which the total wave function of
interacting N -electrons [Ψ({xi})] is approximately taken as a product of N independent electrons
{ϕi(xi)}. But the Hartree wave function does not satisfy the antisymmetric property of the total
electronic wave function, which needs to be fulfilled since electrons are fermions. In 1930, V. Fock
proposed to use a Slater determinant instead of Hartree products to represent total electronic wave
function [64].
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satisfying the antisymmetric requirement. The antisymmetric property of the Slater
determinant can be simply realized considering a two-electron system:

Ψ(x1,x2) =
1√
2!

[
ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)

]
= −Ψ(x2,x1) . (2.8)

Now using the HF wave function the electronic energy can be written as,

EHF = ⟨ΨHF|Ĥe|ΨHF⟩

=

N∑
i=1

ˆ
ϕ∗i (xi)

[
− ∇2

i

2
+ V ext(xi)

]
ϕi(xi)dxi

+
1

2

N∑
i=1

N∑
j=1

ˆˆ
ϕ∗i (xi)ϕ

∗
j (xj)

1

|ri − rj |
ϕj(xj)ϕi(xi) dxi dxj

−1

2

N∑
i=1

N∑
j=1

ˆˆ
ϕ∗i (xi)ϕ

∗
j (xj)

1

|ri − rj |
ϕj(xi)ϕi(xj) dxi dxj . (2.9)

The above equation can be treated as an energy functional, EHF[{ϕ∗i (xi)}, {ϕi(xi)}], and
can be minimized variationally by applying Lagrange undetermined multiplier subject
to the constraints that the independent electron wave function {ϕi(xi)} are orthonor-
mal, i.e., ⟨ϕi(xi)|ϕj(xj)⟩ = δij . This leads to a mapping from a complex N -electron
Schrödinger equation in to effective one-electron Schrödinger-like equations

F̂iϕi(xi) = ϵiϕi(xi), F̂i = −∇2

2
+ V ext(xi) + V Hartree(xi) + V Exchange

i (xi) . (2.10)

F̂i represents a one-electron Hamiltonian, known as the Fock operator. ϵi and ϕi are
the corresponding eigenvalues and eigenvectors, respectively. The first two terms in F̂i

are, respectively, the kinetic energy of N independent electron and the external poten-
tial. The external potential, V ext(xi), is the Coulomb attraction on ith electron due to
all the nuclei. The third and fourth terms approximately account for the many body
electron-electron interactions. V Hartree(xi) is the Hartree potential, which is the Coulomb
repulsion between ith electron and the electron density produced by all electrons

V Hartree(xi) =

ˆ
n(xj)

|ri − rj |
dxj , n(xj) =

N∑
j=1

|ϕj(xj)|2 . (2.11)

The fourth term solely appears from the antisymmetric nature of the wave function
and is known as exchange potential (V Exchange

i (xi)). Unlike V ext(xi) and V Hartree(xi),

V Exchange
i (xi) does not have any classical analogy, and it can only be written as an

integral operator

V Exchange
i (xi)ϕi(xi) =

[
N∑
j=1

ˆ
ϕ∗j (xj)

1

|ri − rj |
ϕj(xi)dxj

]
ϕi(xj) (2.12)
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As evident from the above equation, V Exchange
i (xi) leads to an exchange of the variable in

the two spin orbitals. Furthermore, the exchange operator, V Exchange
i (xi) is said to be a

nonlocal operator, as the results of V Exchange
i (xi) operating on the spin orbital ϕi(xi) will

depend on the value of ϕi(xi) throughout all space. Also worth to mention is that when
i=j the last two terms in Eq. (2.9) cancel each other, and so by construction the HF
method is self interaction free. Eq. (2.10) is the usual form of the HF equation, which
is a linear eigenvalue problem and must be solved self consistently. The HF method
treats the exchange interaction between electrons with the same spin exactly and often
in the literature is described as an exact exchange approach2. The HF method is used
extensively to study various materials science problems, such as adsorption [65], defects
in solids [66], and electronic structure of insulators [67].

A major drawback though lies in the effective mean field treatment of the Coulomb
repulsion between electrons, which provides a inaccurate description of the spatial sep-
aration of the electrons as it would be in a complete many-electron interaction. This
missing part is widely designated as electron correlation [68]. Indeed, the difference
between the ground state HF energy and the exact ground state energy is used as a
standard definition of the correlation energy in quantum chemistry. The correlation
energy is typically a small fraction of the total energy. However, it can be a very im-
portant contribution to many systems of physical and chemical interest. For example,
the restricted HF method cannot describe the dissociation of H2 into two open-shell
H atoms. Or, at least one quarter of the strength of hydrogen bonds between water
molecules comes from correlations beyond HF (see chapter 3). In the following we will
briefly describe some of the methods which explicitly calculate the electron correlation
and are employed in this thesis.

2.2.2. Correlated Methods Beyond Hartree-Fock

In quantum chemistry, methods beyond HF aim to improve on HF by taking account
of electron correlation. Most of these methods require more flexible wave functions
than that of a single determinant HF and usually it is obtained by means of excitations
of electrons from occupied to virtual orbitals. A schematic diagram (Fig. 2.1) shows
examples of selected single (Φa

i ), double (Φab
ij ), and triple (Φabc

ijk) excitations. These
methods include configuration interaction (CI), Møller-Plesset perturbation theory, and
coupled cluster. For CI methods, a linear combination of ground-state and excited-
state Slater determinants is used rather than one single Slater determinant in HF to
approximate the wave function. However, CI was not been used in this thesis3, so it

2This nomenclature is popular in quantum chemistry community, however, in other popular method
like DFT, the definition of exchange is little different. Therefore, in the following it will be always
referred as Hartree-Fock exchange.

3It is well-known that truncated CI like CISD (truncated at double excitation level) is not size extensive
and that full CI calculations which are prohibitively expensive are limited to the smallest systems
like H2. In contrast, CCSD or CCSD(T) are size extensive and can be applied to larger systems. Out
of interest, corrections to truncated CI to recover size extensiveness have been proposed (J. Chem.
Phys. 101, 8908 (1994)). Nonetheless, in this thesis coupled cluster will be used for the high accuracy
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Figure 2.1.: A schematic diagram showing examples of selected single (Φa
i ), double (Φab

ij ), and

triple (Φabc
ijk) excitations. Φ0 refers to HF wave function. The figure is adapted from Ref. [69].

will not be further discussed. Møller-Plesset perturbation theory, as the name suggests,
treats electron correlation in a perturbative manner. And in the coupled cluster method,
the electron correlation is handled through use of a so-called cluster operator. Both
Møller-Plesset perturbation theory and coupled cluster will be briefly introduced.

Møller-Plesset Perturbation Theory

The principle of perturbation theory in general is to start from a simple model which
has been solved exactly or approximately and gradually add a small “perturbation” to
this simple model. If the disturbance is not so large, the various physical quantities of
interest can be obtained from the starting model.
Suppose we wish to solve the eigenvalue problem,

Ĥ|Ψk⟩ = (Ĥ0 + λĤ ′)|Ψk⟩ = ξk|Ψk⟩ , (2.13)

where Ĥ0 is the reference Hamiltonian whose solutions are known and form a complete
orthonormal set

Ĥ0|Φi⟩ = Ei|Φi⟩, i = 0, 1, 2, . . . ,∞ . (2.14)

Ĥ ′ is a small perturbative Hamiltonian (Ĥ ′ ≪ Ĥ0) and λ is a perturbation parameter
such that expanding in series of λ we can systematically improve the solutions of Ĥ0

so that they become closer and closer to the solutions of the total Hamiltonian Ĥ.
Expanding exact solutions in a Taylor series in λ,

|Ψk⟩ = |Ψ(0)
k ⟩+ λ|Ψ(1)

k ⟩+ λ2|Ψ(2)
k ⟩+ · · · (2.15)

ξk = ξ
(0)
k + λξ

(1)
k + λ2ξ

(2)
k + · · · (2.16)

calculations.
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Here the 0th order terms are known solutions of Eq. (2.14), i.e., |Ψ(0)
k ⟩=|Φ0⟩ and ξ(0)k =E0.

|Ψ(1)
k ⟩, |Ψ(2)

k ⟩, ... and ξ(1)k , ξ
(2)
k , ... are the first-, second-, etc. order corrections and the goal

here is to represent these unknown quantities in terms of known quantities, {Φi} and
{Ei}.
Using the intermediate normalization, i.e., for all k ⟨Ψk|Φ0⟩=1, it can be shown that

all ⟨Ψ(i)
k |Φ0⟩=0 for i=1, 2, .... Substituting Eq. (2.15) and Eq. (2.16) to Eq. (2.13) and

equating the coefficients of equal power of λ, the general expression for the nth order
perturbation becomes

Ĥ0Ψ
(n)
k + Ĥ ′Ψ

(n−1)
k =

n∑
i=0

ξ
(i)
k Ψ

(n−i)
k . (2.17)

Multiplying the above equation by ⟨Φ0| from left we get,

ξ
(n)
k = ⟨Φ0|Ĥ ′|Ψ(n−1)

k ⟩ . (2.18)

So, the nth order correction to the energy can be obtained from the (n-1)th order wave

function. Now to obtain ξ
(2)
k we expand the unknown first-order correction to the wave

function (Ψ
(1)
k ) as a linear combination of the solutions of Eq. (2.14)

Ψ
(1)
k =

∞∑
i̸=0

|Φi⟩⟨Φi|Ψ(1)
k ⟩ . (2.19)

From Eq. (2.17) we take the first order correction (n=1) and multiply with ⟨Φi| from
left and obtain the expansion coefficient

⟨Φi|Ψ(1)
k ⟩ = ⟨Φi|Ĥ ′|Φ0⟩

Ei − E0
. (2.20)

So the second order correction to the energy becomes,

ξ
(2)
k = ⟨Φ0|Ĥ ′|Ψ(1)

k ⟩

=

∞∑
i̸=0

⟨Φ0|Ĥ ′|Φi⟩⟨Φi|Ψ(1)
k ⟩

=

∞∑
i̸=0

⟨Φ0|Ĥ ′|Φi⟩⟨Φi|Ĥ ′|Φ0⟩
Ei − E0

, (2.21)

which is the sum of matrix elements of the perturbed Hamiltonian (Ĥ ′) over all the
known solutions of the reference Hamiltonian (Ĥ0).

So far the theory has been completely general. To apply perturbation theory to
electron correlation calculations, the unperturbed Hamiltonian (Ĥ0) must be selected.
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The most common choice is to take this as a sum over Fock operators which is defined
in Eq. (2.10), leading to the Møller-Plesset (MP) perturbative theory [70]:

Ĥ0 =

N∑
i=1

F̂i , (2.22)

and the perturbative Hamiltonian is

Ĥ ′ = Ĥ − Ĥ0 =

N∑
i<j

1

|ri − rj |
−
∑
i

V HF
i . (2.23)

V HF
i is the sum of Hartree and exchange potentials defined in Eqs. (2.11) and (2.12),

respectively. Now we start to derive the electron correlation energy by using MP theory,
especially, we focus on the second-order energy which is the MP2 method. First, the HF
wave function Φ0 is an eigenfunction of Ĥ0,

Ĥ0|Φ0⟩ = E0|Φ0⟩ (2.24)

and the second order correction to the energy can be obtained from Eq. (2.21), where
Φ0 is the HF reference wave function and Φi are all possible excited states. Since the
perturbation operator is a two-electron operator the matrix element involving triples,
quadruples, etc. excitations are zero. Among the single and double excitations, single
excitations do not contribute as shown below,

⟨Φ0|Ĥ ′|Φa
i ⟩ = ⟨Φ0|

(
Ĥ −

N∑
j=1

F̂j

)
|Φa

i ⟩

= ⟨Φ0|Ĥ|Φa
i ⟩ −

N∑
j=1

⟨Φ0|F̂j |Φa
i ⟩

= ⟨Φ0|Ĥ|Φa
i ⟩ − Ea⟨Φ0|Φa

i ⟩ . (2.25)

The first term in the above equation is zero due to the Brillouin theorem [71] and the
second one is also zero because of the orthogonality of the eigenvectors of the Fock oper-
ator. Therefore, the only term which contributes to the energy correction is the double
excitation. Denoting the occupied and virtual orbitals by (i, j, k, ...) and (a, b, c, ...), re-
spectively, Φab

ij represents doubly excited states, where two electrons from i and j orbitals
are promoted to a and b orbitals.

ξ
(2)
k =

occ∑
i<j

vir∑
a<b

⟨Φ0|Ĥ ′|Φab
ij ⟩⟨Φab

ij |Ĥ ′|Φ0⟩
E0 − Eab

ij

(2.26)

The matrix elements between the HF and the doubly excited state are given by two-
electron integrals over molecular orbitals. The difference in total energy between two
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2.2. Wave Function Based Methods

Slater determinants becomes a difference in molecular orbital energies. Thus the explicit
expression for MP2 becomes,

EMP2 = ξ
(2)
k =

occ∑
i<j

vir∑
a<b

[
⟨ϕiϕj |ϕaϕb⟩ − ⟨ϕiϕj |ϕbϕa⟩

]2
ϵi + ϵj − ϵa − ϵb

(2.27)

In the above equation, the ϕi, ϕj are the occupied orbitals and ϕa, ϕb are the virtual
(unoccupied) orbitals. The ϵi, ϵj , ϵa, and ϵb are the corresponding orbital energies.
MP2 shows improvements over HF in many respects in electronic structure calculations

[72, 73]. For example, MP2 can capture (at least approximately) the weak non-covalent
interactions like dispersion for which HF completely fails. Also the geometry (G3 test set
[74]) predicted fromMP2 shows much improvement over HF compared with experimental
measurements [75]. It is worth cautioning, however, that Møller-Plesset perturbation
theory is far from a panacea. For example, it is not appropriate for metallic systems
and for some molecular properties like spectroscopic constants which are not necessarily
converged when going to high orders, or the convergence is slow or oscillatory [76]. Thus
higher order corrections, e.g., MP3 (3rd order) or MP25 (25th order) will not definitely
bring better results than MP2! Despite this, MP2 is a very powerful and useful post-HF
method considering its accuracy and scaling (N5) and widely used in electronic structure
calculations of gas phase or molecular systems.

Coupled Cluster Methods

The coupled cluster method was introduced into quantum chemistry by Č́ıžek and
Pauldus [77, 78] in the 1960’s and emerged as perhaps the most reliable, yet compu-
tationally affordable method for the approximate solution of the electronic Schrödinger
equation and the prediction of molecular properties [69, 79, 80]. A short account of this
method is given now.
The coupled cluster wave function can be written as

Ψcc = eTΦ0 = (1 + T +
1

2!
T 2 +

1

3!
T 3 + · · · )Φ0 . (2.28)

Here Φ0 is a Slater determinant and the cluster operator T is composed of a series of
connected operators

T = T1 + T2 + T3 + · · ·+ Tn , (2.29)

which can be expanded in terms of its components that introduce single (Φa
i ), double

(Φab
ij ), triple (Φabc

ijk), etc. excitations into the wave function,

T1Φ0 =
occ∑
i

vir∑
a

taiΦ
a
i ,

T2Φ0 =
occ∑
i<j

vir∑
a<b

tabijΦ
ab
ij . (2.30)

...
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2. Theoretical Background

These Tn contributions are referred to as connected since they can not be reduced further.
However, by virtue of nonlinear terms in the exponential expansion, we have, in addition,
the disconnected (but linked) higher order excitations like, T 2

1 , T1T2, T
2
2 , etc. The

exponential operator eT can be written as

eT = 1 + T1 + (T2 +
1

2
T 2
1 ) + (T3 + T1T2 +

1

3!
T 3
1 )

+(T4 + T3T1 +
1

2
T 2
2 +

1

2
T2T

2
1 +

1

4!
T 4
1 ) + · · · (2.31)

The first term generates the reference HF and the second all singly excited states. The
terms in the first set of parenthesis generate all doubly excited states, and so on.

With the coupled cluster wave function in Eq. (2.28), the Schrödinger equation be-
comes

ĤeTΦ0 = EeTΦ0 . (2.32)

Multiplying from left by ⟨Φ0| and integrating gives

E = ⟨Φ0|ĤeT |Φ0⟩

= ⟨Φ0|Ĥ(1 + T +
1

2!
T 2 +

1

3!
T 3 + · · · )|Φ0⟩ . (2.33)

Note that Ĥ is at most a two-particle operator and then T is at least a one-particle
excitation operator. We can simplify the above equation to

E = ⟨Φ0|Ĥ(1 + T +
1

2!
T 2)|Φ0⟩ . (2.34)

This is the natural truncation of the coupled cluster energy equation and it only depends
on the form of Ĥ not on that of T or on the number of electrons.

Till now, everything is exact. Expansion of the cluster operator T up to TN would
mean all possible excited determinants are included and the coupled cluster results would
equal those obtained from full CI calculations. However, in practice a truncation of T
must be performed. Only including T1 does not improve anything upon Hartree-Fock
because of Brillouin’s theorem. So the lowest approximation starts from T2. If T is
expanded as T1+T2, this will be referred to as CCSD, which is the coupled cluster
method with single and double excitations. Now we focus on CCSD to get E in Eq.
(2.34). If T = T1 + T2, then Eq. (2.34) becomes,

E = ⟨Φ0|Ĥ|Φ0⟩+ ⟨Φ0|Ĥ|T1Φ0⟩+ ⟨Φ0|Ĥ|T2Φ0⟩+
1

2
⟨Φ0|Ĥ|T 2

1Φ0⟩

= E0 +

occ∑
i

vir∑
a

tai ⟨Φ0|Ĥ|Φa
i ⟩+

occ∑
i<j

vir∑
a<b

(tabij + tai t
b
j − tbi t

a
j )⟨Φ0|Ĥ|Φab

ij ⟩ , (2.35)

and the first matrix elements are zero (Brillouins theorem) and the second matrix ele-
ments are just two-electron integrals over molecular orbitals. The energy can be written
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2.3. Density-Functional Theory

as,

E = E0 +

occ∑
i<j

vir∑
a<b

(tabij + tai t
b
j − tbi t

a
j )(⟨ϕiϕj |ϕaϕb⟩ − ⟨ϕiϕj |ϕbϕa⟩) . (2.36)

The above equation is the expression of the energy obtained from CCSD, with the
coefficients of single and double excitation generally obtained iteratively. Once these
coefficients are known, the energy and wave functions can be calculated.
CCSD calculations are already very expensive, scaling as N6 where N is the number

of basis functions in the calculation, and to go beyond CCSD makes the calculations
extremely demanding. For example, CCSDT which iteratively treats the third-order
excitations, scales as N8 which makes it practically unfeasible for anything but the
smallest of systems. To avoid this demanding scaling, the triple excitations can be
obtained in a perturbative manner, with an approach widely known as CCSD(T) [81].
Starting from the energy at the CCSD level and following the procedure outlined in Eq.
(2.18), the triple excitation energy can be expressed as [82]

ET
CCSD =

occ∑
i<j<k

vir∑
a<b<c

⟨Φ0|(1 + Λ1 + Λ2)H̄CCSD|Φabc
ijk

ϵi + ϵj + ϵk + ϵa − ϵb − ϵc
, (2.37)

where H̄CCSD = e−(T1+T2)Ĥe(T1+T2) and Λ is the deexcitation operator and expressed in
second quantization as,

Λ1 =
∑
i,a

λia i
† a

Λ2 =
1

4

∑
i,j,a,b

λijab i
† a j† b , (2.38)

where i†, j† are creation operators and a, b are annihilation operators. CCSD(T) is
often considered as the “gold standard” method of quantum chemistry due to its very
high accuracy. For example, CCSD(T) predicts the binding energy of the water dimer to
be 217.6 meV [83] which is in a good agreement with the experimental value of 216.8 meV
[84]. In general, the results from CCSD(T) calculations are often used to benchmark
other theoretical methods like MP2 and DFT [85, 86].

2.3. Density-Functional Theory

Density-functional theory (DFT) differs from the wave function based methods by using
the electron density n(r) as the central quantity. An important advantage of using the
electron density over the wave function is the much reduced dimensionality. Regardless
of how many electrons one has in the system, the density is always 3 dimensional. This
enables DFT to readily be applied to much larger systems, hundreds or even thousands
of atoms become possible. Partly for this reason, DFT has become the most widely
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2. Theoretical Background

used electronic structure approach today, particularly in the condensed matter physics
community. In this section, a basic introduction to DFT will be given. Authoritative and
comprehensive discussions of DFT can be found in a range of excellent review articles
[87–90] and textbooks [91, 92].
First, the electron density is defined as

n(r) = N

ˆ
· · ·
ˆ

|Ψ(x1,x2, . . . ,xN )|2dσ1dx2 · · · dxN (2.39)

where {xi} represents both spatial and spin coordinates. n(r) determines the probability
of finding any of the N electrons within the volume r but with arbitrary spin while the
other N -1 electrons have arbitrary positions and spin in the state represented by Ψ. This
is a nonnegative simple function of three variables, x, y, and z, integrating to the total
number of electrons,

N =

ˆ
n(r) dr (2.40)

2.3.1. Thomas-Fermi Model

That the electronic energy can be expressed in terms of the electronic density was first
exploited back in 1920s by Thomas and Fermi [93, 94]. In Thomas-Fermi model, the
kinetic energy of the electrons is derived from the quantum statistical theory based on
the uniform electron gas, but the electron-nucleus and electron-electron interactions are
treated classically. Within this model, the kinetic energy of the electrons is defined as,

T [n] = CF

ˆ
n5/3(r) dr , with CF =

3

10
(2π2)2/3 = 2.871 . (2.41)

From the above equation, the approximation is made that the kinetic energy of the
electrons depends exclusively on the electron density. By adding the interaction between
electron-nucleus and electron-electron, a total energy in terms of electron density is
obtained,

E[n] = CF

ˆ
n5/3(r) dr− Z

ˆ
n(r)

r
dr+

1

2

ˆ ˆ
n(r1)n(r2)

|r1 − r2|
dr1 dr2 (2.42)

The second and third terms are the electron-nucleus and electron-electron interactions,
respectively.
The importance of this simple Thomas-Fermi model is not how well it performs in

computing the ground state energy and density but more as an illustration that the
energy can be determined purely using the electron density.

2.3.2. Hohenberg-Kohn Theorem

In 1964, Hohenberg and Kohn first derived the fundamentals of density-functional theory
which allows to express electronic Hamiltonian as a functional of n(r) [95]4. This formally

4Also this was realized much earlier through Hellmann-Feynman theorem [96, 97].
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relies on two key theorems: (i) there exists a on-to-one correspondence between external
potential v(r) and electron density n(r); and (ii) the ground state electron density can
be found by using a variational principle.
In the electronic Hamiltonian only v(r) depends explicitly on the configuration of the

nuclei. If the first theorem is proven, then from n(r) one can obtain v(r) within a trivial
additive constant and the whole electronic Hamiltonian can be expressed as a functional
of n(r). This makes DFT a formal theory and more systematic over Thomas-Fermi
model. The proof is done in a simple and extremely elegant manner using the principle
of reductio ad absurdum, and this is derived for a non-degenerate system5. Suppose
there is a collection of electrons enclosed into a box influenced by an external potential
v(r). Assuming the electron density of this system is known and it also determines v(r)
and thus all properties. If there is another external potential v′(r) which differs from
v(r) by more than a constant that can also give the same electron density n(r) for the
ground state, then we will have two different Hamiltonians Ĥ and Ĥ ′ whose ground
state electron density is the same but the normalized wave function Ψ and Ψ′ would be
different. Then we will have

E0 < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩

= E′
0 +

ˆ
n(r)[v(r)− v′(r)] dr (2.43)

where E0 and E′
0 are the ground-state energies for Ĥ and Ĥ ′, respectively. Similarly, we

can get

E′
0 < ⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|Ĥ ′|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩

= E0 −
ˆ
n(r)[v(r)− v′(r)] dr (2.44)

Adding Eq. (2.43) and Eq. (2.44) we get, E0 + E′
0 < E′

0 + E0, which is an obvious
contradiction. So there are no two different external potentials that can give the same
n(r). Thus n(r) uniquely determines v(r) (to within a constant) and all ground-state
properties.
Now for a given v(r) we can write the energy Ev explicitly as a function of the electron

density n(r):

Ev[n] = T [n] + Vne[n] + Vee[n]

=

ˆ
n(r)v(r) dr+ FHK [n] , (2.45)

where

FHK [n] = T [n] + Vee[n] (2.46)

Here note that FHK [n] is only dependent on n(r) and independent from any external
potential v(r). Thus FHK [n] is a universal functional of n(r).

5For degenerate systems see the article from M. Levy, Phys. Rev. A 26, 1200 (1982).
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The second Hohenberg-Kohn theorem demonstrates that the ground state energy can
be obtained variationally, with the density that minimizes the total energy being the
exact ground state density. This is expressed as:

E0[n0] ≤ Ev[n] (2.47)

Following from the first part of the theorem, suppose the ground state wave function is Ψ
and its related electron density is n(r). Thus the n(r) uniquely determines the external
potential v(r). If there is another wave function Ψ′ with a arbitrary variation from Ψ
and its electron density is n′(r), then we can obtain,

⟨Ψ′|Ĥ|Ψ′⟩ =
ˆ
n′(r)v(r) dr+ FHK [n′] = E[n′] ≥ E[n] (2.48)

So the energy will reach the minimum only when the electron density is the ground-state
electron density.
If FHK [n] were a known and sufficiently simple functional of n(r), the problem of

determining the ground-state energy and density in a given external potential would be
rather easy since it requires merely minimization of a functional of the three-dimensional
density function. However, it is not and the major part of the complexities of the
many-electron problem are associated with the determination of the universal functional
FHK [n].

2.3.3. The Kohn-Sham Equations

In 1965, Kohn and Sham published a paper which transformed density-functional the-
ory into a practical electronic structure theory [98]. Kohn and Sham recognized that
the failure of Thomas-Fermi theory mainly resulted from the bad description of the
kinetic energy. To address this problem (similar to the Hartree-Fock approach) they
re-introduced the idea of non-interacting electrons moving in an effective field.
The functional form of FHK [n(r)] is written as a sum of the kinetic energy of non-

interacting electrons (Ts), the Hartree energy (EHartree), and all the many-body quantum
effects are put together in to the exchange and correlation energy (Exc). So the energy
functional obtained in the previous section now becomes,

E[n] =

ˆ
n(r)v(r) dr+ FHK [n(r)]

=

ˆ
n(r)v(r) dr+ Ts[n(r)] + EHartree[n(r)] + Exc[n(r)] . (2.49)

The next step in this electronic structure problem is to define an effective potential,

V eff =
δ{
´
n(r)v(r) dr+ EHartree[n(r)] + Exc[n(r)]}

δn(r)

= v(r) +

ˆ
n(r′)

|r− r′|
dr′ + vxc(r) , (2.50)
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where vxc(r) is the exchange-correlation potential defined as:

vxc(r) =
δExc[n(r)]

δn(r)
. (2.51)

This leads to the central equation in Kohn-Sham DFT which is the one-electron Schrödinger-
like equation expressed as: [

− 1

2
∇2 + V eff

]
ϕi = ϵiϕi (2.52)

Here {ϕi} are the Kohn-Sham one-electron orbitals and the electron density is defined
as,

n(r) =
N∑
i=1

|ϕi|2 . (2.53)

The ϵi’s are the energies of the Kohn-Sham one-electron orbitals. Clearly this is a
Hartree-Fock-like single particle equation which needs to be solved iteratively. Finally,
the total energy can be determined from the resulting density through

E =

N∑
i=1

ϵi −
1

2

ˆ ˆ
n(r)n(r′)

|r− r′|
+ Exc[n]−

ˆ
vxc(r)n(r) dr (2.54)

Equations (2.50), (2.52), and (2.53) are the celebrated Kohn-Sham equations. Note
that the V eff depends on n(r) through Eq. (2.53). So the Kohn-Sham equation must
be solved self-consistently. The general procedure is to begin with an initial guess of
the electron density, construct the V eff from Eq. (2.50), and then get the Kohn-Sham
orbitals. Based on these orbitals, a new density is obtained from Eq. (2.53) and the pro-
cess repeated until convergence is achieved. Finally, the total energy will be calculated
from Eq. (2.54) with the final electron density. If each term in the Kohn-Sham energy
functional was known, we would be able to obtain the exact ground state density and
total energy. Unfortunately, there is one unknown term, the exchange-correlation (xc)
functional (Exc). Exc includes the non-classical aspects of the electron-electron interac-
tion along with the component of the kinetic energy of the real system different from
the fictitious non-interacting system. Since Exc is not known exactly, it is necessary to
approximate it, which is the focus of the next section.

2.3.4. Exchange-Correlation Functionals

For practical use of the Kohn-Sham equations we must know what the form of the
exchange-correlation energy functional is. However, the exact form of Exc is not known
and may never be known (in a closed mathematical form). Thus since the birth of DFT
some sort of approximations for Exc have been used. By now there is an almost end-
less list of approximated functionals with varying levels of complexity. Rather recently
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Figure 2.2.: Schematic diagram of“Jacob’s ladder”of exchange-correlation functionals proposed
by J. P. Perdew.

a useful way for categorizing the many and varied Exc functionals that exist has been
proposed by Perdew and is known as “Jacob’s ladder” (Fig. 2.2) [99]. In this scheme
functionals are grouped according to their complexity on rungs of a ladder which lead
from the Hartree approximation on “earth” to the exact exchange-correlation functional
in“heaven”. Furthermore, functionals can be categorized into non-empirical (formulated
only by satisfying some physical rules) and empirical (made by fitting to the known re-
sults of atomic or molecular properties). The first few rungs of this ladder are now
briefly discussed as a means to introduce some of the most common types of exchange-
correlation functionals in widespread use (many of which have been tested in this thesis):

(a) The local-density approximation (LDA):

In this approach a real inhomogeneous system is divided into infinitesimal volumes,
and the electron density in each of the volumes is taken to be constant. The exchange-
correlation energy for the density within each volume is then assumed to be the exchange-
correlation energy obtained from the uniform electron gas for that density. Thus, the
total exchange-correlation energy of the system can be written as

ELDA
xc [n] =

ˆ
n(r)ϵunifxc (n(r)) dr , (2.55)

where ϵunifxc is the exchange-correlation energy per particle of the interacting uniform elec-
tron gas of density n(r). In practice, exchange and correlation are calculated separately.
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The analytical expression for the exchange energy is known exactly6:

ELDA
x [n] = −3

4

(
3

π

)1/3 ˆ
n4/3(r) dr . (2.56)

The correlation energy is more complicated and generally obtained by fitting to the
many-body studies of Gell-Man and Brueckner and Ceperly and Alder [100, 101]. Mod-
ern LDA functionals tend to be exceedingly similar, differing only in how their cor-
relation contributions have been fitted to the many-body free electron gas data. The
Perdew-Zunger (PZ) [102], Perdew-Wang (PW) [103] and Vosko-Wilk-Nusair (VWN)
[104] functionals are all common LDA functionals.

Strictly, the LDA is valid only for slowly varying densities. Experience with calcu-
lations of atoms, molecules, and solids shows that Eq. (2.55) can in general also be
applied to these systems. Indeed LDA works surprisingly well, especially for metals. A
partial explanation for this success of the LDA is systematic error cancelation: Typically,
in inhomogeneous systems LDA underestimates correlation but overestimates exchange,
resulting in unexpectedly good values of ELDA

xc . This error cancelation is not accidental,
but systematic, and caused by the fact that for any density the LDA satisfies a number
of so-called sum rules [105–108].

However, recent studies have shown that LDA tends to overestimate cohesive energies
by ∼15-20% and underestimates lattice constants by ∼2-3% for metals and insulators
[109–111]. Problem with LDA becomes more severe for weakly bonded systems, such as
vdW and H-bonded systems. For example, the binding energy of the water dimer and
the cohesive energy of bulk ice are both >50% too large with LDA compared to the ex-
perimental values [40, 41, 57]. Also long range vdW interactions are completely missing
in LDA. For this reason LDA has not been used in any of the work reported in this thesis.

(b) The generalised gradient approximation (GGA):

It was realized very early that only the local uniform density at each given point is not
a reasonable approximation for the rapidly varying electron densities of many materials,
and that the gradient of the density (∇n(r)) needs to be included. A first attempt was the
so-called gradient-expansion approximations (GEA), where one tries to systematically
calculate gradient corrections of the form |∇n(r)|, |∇n(r)|2, |∇2n(r)|, etc., to the LDA.
In practice, the inclusion of low-order gradient corrections almost never improves on the
LDA, and often even worsens it [112]. Higher-order corrections are exceedingly difficult
to calculate.

Eventually it was found that instead of power-series-like gradient expansions one could
apply more general functions of n(r) and ∇n(r). Such functionals, of the general form

EGGA
xc [n] =

ˆ
fGGA (n(r),∇n(r)) dr , (2.57)

6Note that this definition differs from the average over the HF exchange energy.
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are the second generation functionals (sitting on the second rung of Jacob’s ladder)
known as GGAs.
GGAs are often called “semi-local” functionals due to their dependence on ∇n(r). For

many properties, for example geometries and ground state energies of molecules and
solids, GGAs can yield better results than the LDAs. Especially for covalent bonds and
weakly bonded systems many GGAs are far superior to LDA. Overall though because
of flexibility in the choice of fGGA a zoo of GGA functionals have been developed and
depending on the system under study a wide variety of results can be obtained.
The functional form of fGGA is taken as a correction to the LDA exchange and cor-

relation while (again) ensuring consistency with known sum rules. Within GGA the
exchange energy takes the form

EGGA
x [n] =

ˆ
n(r)ϵunifx (n(r)) FGGA

x (s) dr . (2.58)

FGGA
x (s) is the exchange enhancement factor and tells how much exchange energy is

enhanced over its LDA value for a given n(r). The choice of Fx makes one GGA differ
from another. Here s is a dimensionless reduced gradient

s =
|∇n(r)|

2(3π2)1/3n(r)4/3
. (2.59)

So as to illustrate what Fx(s) is like two very popular GGA exchange functionals applied
in this thesis are now briefly discussed. They are Perdew-Burke-Ernzerhof (PBE [113])
and Becke88 (B88 [114]) functionals, which have the following forms:

FPBE
x (s) = 1 + κ− κ

(1 + µs2/κ)
(2.60)

FB88
x (s) = 1 +

βx(s)2

C
[
1 + 6βx(s) sinh−1(x(s))

] , x(s) = 2(6π2)1/3s (2.61)

In PBE, κ and µ are parameters obtained from physical constraints (non-empirical). In
B88, C and β are parameters obtained from empirical fitting (empirical). When the
density gradient is zero, FGGA

x (s) = 1 and so we return to the LDA exchange. Fig.
2.3 shows the behavior of these two enhancement factors as a function of s. For slowly
varying densities (small s) they coincide but differ when the density change is rapid
(large s).
The functional form to the gradient corrected correlation energy (EGGA

c ) is also ex-
pressed as complex function of s. A few of the most popular gradient corrected correla-
tion functionals are PBE [113], PW91 [115] Lee-Yang-Parr (LYP [116]), and Perdew86
(P86 [117]). Usually LYP and P86 correlation are applied together with B88 exchange.
GGAs are always necessary for a reasonable description of HBs [118–120] and some of
the popular GGAs for treating HBs are PBE, BLYP, PW91, BP86, etc.

(c) The meta-GGAs:
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Figure 2.3.: GGA enhancement factors of PBE [113] and B88 [114] exhange funtionals.

These are the third generation functionals (third rung of Jacob’s ladder) and use
the second derivative of the density, ∇2n(r), and/or kinetic energy densities, τσ(n) =
1/2Σi|∇φi(n)|2, as additional degrees of freedom. In gas phase studies of molecular
properties meta-GGAs such as the TPSS [121] functional have been shown to offer im-
proved performance over LDAs and GGAs [110, 122–124].

(d) The hybrid functionals:

These fourth generation functionals add“exact exchange”calculated from the HF func-
tional to some conventional treatment of DFT exchange and correlation. The philosophy
behind the hybrid functional is simple and rooted in the “adiabatic connection” formula,
which is a rigorous ab initio formula for the exchange-correlation energy of DFT [125].
One conventional expression of this formula is:

Exc =

ˆ 1

0
Uλ
xcdλ , (2.62)

where λ is an interelectronic coupling strength parameter that switches on the 1
|ri−rj |

Coulomb repulsion between electrons and Uλ
xc is the potential energy of exchange and

correlation at λ. This formula connects the non-interacting reference system with the
fully interacting one at density n(r). Recognizing that the non-interacting λ = 0 limit
is nothing more than HF exchange, it is expected that exact exchange must play a role
in “better” of exchange-correlation functionals and thus LDA and GGA exchange and
correlation functionals are mixed with a fraction of HF exchange.
The most widely used, particularly in the quantum chemistry community, is the

B3LYP [126–128] functional which employs three parameters, a1−3 (determined through
fitting to experiment) to control the mixing of the HF exchange and density functional
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exchange and correlation. It has the following form:

Exc = ELDA
xc + a1(E

HF
x − ELDA

x ) + a2∆E
GGA
x + a3∆E

GGA
c . (2.63)

Here B88 and LYP are used as GGA exchange and correlation. Reformulating this to
eliminate two parameters leads to an equation of the form

Exc = EGGA
x + a(EHF

x − EGGA
x ) (2.64)

and setting a=1/4 (based on the grounds of perturbation theory [68]) leads to a class
of functionals with only as many parameters as their underlying GGAs. If PBE is
the GGA used in Eq. (2.64) we arrive at the hybrid PBE0 functional [129]. Another
popular hybrid functional worth mentioning here is BH&HLYP [125], which has 50% HF
exchange. Such functionals have been shown to offer noticeably improved performance
over LDA and GGA functionals for the calculation of gas phase properties of molecules
and solids [123, 124, 130–132].

In the fourth rung another class of functionals exists and they are known as hybrid
meta-GGA functionals. As the name suggests it is combination of meta-GGA and hybrid
functionals with suitable parameters fitted to various molecular databases. Among many,
MPWB1K [133] and PW6B95 [124] have been used in this thesis.

Beyond these few rungs of Jacob’s ladder, there are other xc functionals of increasing
complexity. However, adding complexity by climbing higher on Jacob’s ladder or by
obeying more and more constraints [109] does not necessarily bring improved perfor-
mance in total energies. This will become more apparent in chapter 3, where it is shown
that H-bond energies do not necessarily improve upon going from GGAs to meta-GGAs
to hybrids and beyond.

With growing number of xc functionals (and their acronyms) tailored to improve
molecular or solid state properties it is difficult to remember which functional is good
for what. In the following chapters more than 10 different functionals are used and brief
descriptions of those are summarized in Table 2.2.

2.4. Basis Sets

In this section, the concept of the basis set will be introduced. Basis sets are almost
always necessary to practically solve the electronic Schrödinger equation. Essentially,
almost all electronic structure methods today rely on an expansion on the unknown
wave function in terms of a set of basis functions. Any type of basis function may in
principle be used like exponential, Gaussian, polynomial, plane-wave, spline, Slater type
orbitals, and numeric atomic orbitals, etc. However, some issues are useful to consider
when selecting basis functions:

• The basis functions should allow for the wave function/density to be accurately
described with as low a computational cost as possible.
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• The behavior of the basis functions will ideally capture some of the physics of the
problem. For example, for bound atomic or molecular systems this means functions
should go to zero when the distance between the nucleus and the electron becomes
large. Or in a condensed matter system basis functions with a periodicity matching
the crystal lattice can be useful.

For these and other reasons atom centered orbitals like Gaussian functions have become
very popular in the calculations of chemical problems. Gaussian orbital basis sets have
been used in this thesis and also numeric atom-centered basis sets. These basis sets
will be now discussed and later plane wave basis sets will be introduced, which are very
popular for electronic structure calculations of condensed matter systems.

2.4.1. Atom Centered Localized Basis sets

Two most popular atom centered localized basis sets have been employed in the thesis
and those are briefly discussed in the following.

I. Gaussian Functions

Early in quantum chemistry, Slater type orbitals (STO) were used as basis functions
because of their similarity with the solutions of the hydrogen atom. The Slater type
orbitals have the form in spherical coordinates,

ϕi(ζ, n, l,m, r, θ, φ) = Nrn−1e−ζrYlm(θφ) , (2.65)

where N is the normalization constant, and Ylm are the spherical harmonic functions.
n, l, and m are the quantum numbers: principal, angular momentum, magnetic, respec-
tively. ζ is called the “exponent”. The exponential dependence on distance reflects the
exact form of the hydrogenic orbitals. However, the calculation of the three- and four-
center two-electron integrals with Slater orbitals is extremely slow and has no analytical
form. Thus in modern quantum chemistry calculations, the Slater orbitals are generally
restricted to atomic and diatomic systems.
In contrast, it is much faster to work with Gaussian functions in the evaluation of the

two-electron integrals than STO functions. Thus for this pragmatic reason, Gaussian
functions have become the most popular basis functions in quantum chemistry. Numer-
ous quantum chemistry codes employ Gaussian functions as basis sets. The Gaussian
function type orbital (GTO) has the following form in Cartesian coordinates:

g(ζ, lx, ly, lz, x, y, z) = Ne−ζr2xlxylyzlz . (2.66)

Note that the lx, ly, lz in Cartesian coordinates are not the quantum numbers but
instead parameters. However, the sum of them, L = lx + ly + lz is analogous to the
angular momentum for atoms, to mark function as s-type (L = 0), p-type (L = 1),
d-type (L = 2), and f -type (L = 3), etc. The Gaussian function described in Eq. (2.66)
is generally known as a primitive Gaussian function. It is very common to group several
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primitive Gaussian functions into one Gaussian function and this new Gaussian function
is known as a contracted Gaussian function,

g(c) =
∑
i

aigi(p) , (2.67)

where c and p designate contracted and primitive, respectively. By contracting, several
primitive Gaussians into one, the computational effort can be reduced through the op-
timization of several coefficients in one go. When using Gaussian function basis sets it
is far from trivial to decide what set of (contracted) Gaussian functions are appropriate
for the system under investigation. Generally some experience is required. However, the
minimum basis set which must be used corresponds to the number of atomic orbitals in
the system. For example, the minimum basis set for hydrogen is just a single s-function.
For the first row elements in the periodic table, this means two s-functions and one set
of p-functions (2px, 2py, 2pz). For almost all practical problems the minimum basis set
description is inadequate. The next improvement is to double all the basis functions
(but with different exponent ζ) which produce the double zeta (DZ) type basis. For
hydrogen, a DZ basis set will use two s-functions (1s, 1s′). For the first row elements in
the periodic table, this means four s-function (1s, 1s′, 2s, 2s′) and two sets of p-functions
(2p, 2p′). When the basis set has three sets of basis functions for each orbital, you will
get the tripe zeta (TZ) basis and so on. As we will see below, it is common to make a
distinction between core and valence electrons, with more sets of basis functions (larger
zeta) allocated to the valence electrons compared to the core electrons.
Further improvements can be achieved by adding so-called polarization or diffuse func-

tions. Although a free isolated atom will have spherical symmetry, the atoms in a
molecule or some other chemical environment will exhibit some distortions in their elec-
tron density. To take account of this effect through the basis set, we need to augment
basis sets with additional functions of larger angular momentum. For example, hydrogen
will be augmented by adding a p orbital into its minimum basis set. In a similar spirit,
so-called diffuse functions are sometimes also included in the basis set. The purpose of
adding diffuse functions is to improve the description at large distances from the nuclei.
This is especially important for anions as the additional electrons are loosely bound to
nuclei. In general, diffuse functions have a very small exponent, ζ, typically from 0.01
to 0.1, so it will extend far from the nucleus.

Pople and Dunning Basis Sets

Many and various Gaussian basis sets exist. Here we focus on the two different classes
of Gaussian basis sets used in this thesis: Pople style basis sets and the correlation
consistent basis sets of Dunning and co-workers [134–136]. For the Pople style basis sets,
it is better to take an example to explain the meaning of the notation. For example, a 6-
31G basis set is a double split valence basis set. This notation means that the core orbitals
are described by one contracted Gaussian function comprised of six primitive Gaussians.
The valence orbital has been split into two contracted Gaussians, one comprised of three
primitive Gaussians and the other just one primitive Gaussian. As another example a

28



2.4. Basis Sets

6-311G basis set is a triple split valence basis set. The core orbital is still a contraction
of six primitive Gaussians. However the valence is now split into three parts which are
contractions of three, one, and one primitive Gaussians, respectively.
Normally, the basis sets are obtained from the HF atomic calculations [137]. When

coming to molecular calculations, the basis functions are augmented with polarization
functions accounting for the distortion from the atomic state in the molecular envi-
ronment. However, there is not a clear way to achieve systematic improvements with
increasing number of basis functions. Thus the convergence is not easy to guarantee and
the choice of the basis set is sometimes drawn from the researcher’s own experience. In
contrast, the correlation consistent basis sets, from Dunning’s group, are designed to sys-
tematically recover the correlation energy with the increasing size of the basis sets. The
name“correlation consistent”refers to the fact that the basis sets are designed so that the
functions which contribute similar amount of correlation energy are included at the same
stage, independent of the function type. For example, the contributions from 2d and
1f function are similar, so they belong to the same group and will be added together.
By this way, Dunning proposed a series of correlation consistent basis sets, cc-pVDZ
(3s2p1d), cc-pVTZ (4s3p2d1f), cc-pVQZ (5s4p3d2f1g), and cc-pV5Z (6s5p4d3f2g1h)
where the number of contracted Gaussian functions are indicated in brackets. These
basis sets can also be augmented with additional diffuse functions, which have smaller
exponents for every angular momentum channel. This is denoted by the new prefix“aug”
and their inclusion is crucial for describing weakly bound systems. As the key feature
of the correlation consistent basis set is to systematically improve with basis set size,
there are several different ways to extrapolate the results to the CBS limit, which will
be discussed below.

II. Numerical Atom-Centered Basis Sets

Another type of atom centered basis set employed in this thesis is the numeric atom-
centered orbitals (NAO). NAOs have the following functional form:

ϕi(r) =
ui(r)

r
Ylm(θφ) , (2.68)

where Ylm are spherical harmonics and the radial function ui(r) is numerically tabulated
and fully flexible to achieve any desired shape. As with GTOs, ui(r) is taken as localized
function but the choice of the functional form depends on the researcher’s experience.
Here, in particular we describe the functional form implemented in the FHI-aims [138]
computer code. ui(r) is taken from the solution of the Schrödinger-like equation:[

− 1

2

d2

dr2
+
l(l + 1)

r2
+ vi(r) + vcut(r)

]
ϕi = ϵiϕi (2.69)

vi(r) is the potential which defines the main behavior of ui(r) and vcut(r) is a steeply
increasing confining potential, which ensures a smooth decay of each radial function
to be strictly zero outside a confining radius. For each species the minimal basis con-
sists of a number of atomic orbitals, constructed by choosing vi(r) as the corresponding
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self-consistent free-atom radial potential. Like GTOs the minimal basis are further aug-
mented with higher angular momentum polarization functions, which are suitably chosen
from various hydrogen-like, cation-like, or atom-like radial functions with a variable con-
finement potential vcut(r). The polarization basis functions typically arise in groups of
different angular momenta, spd or spdf , and are thus organized in so-called tiers. The
number of the tier thereby denotes the accuracy of the basis set. The different basis sets
used in the present work are given in detail in Appendix B.

Basis Set Superposition Error

Localized basis functions, such as GTOs or NAOs, are prone to a problem known as basis
set superposition error (BSSE) [139]. When two fragments A and B approach each other
to form the new species, fragment A feels the basis functions of fragment B and fragment
B also feels the basis functions of fragment A. Effectively each fragment feels a larger
basis set than what it has as an isolated fragment and in so doing artificially stabilizing
the cluster. One widely used method to assess the BSSE is the Counterpoise correction
scheme of Boys and Bernardi [140]. To illustrate how this method works, consider the
binding energy of the dimer (AB). The binding energy (Ebind) can be expressed as,

Ebind = E(AB)ab −E(A)a − E(B)b (2.70)

where E(AB)ab, E(A)a, and E(B)b are the energy of AB, monomer A, and monomer
B, respectively. The subscript indicates the corresponding basis set for AB, A, and B.
Because of the incompleteness of the basis set for A and B, there exists a BSSE in Ebind.
When using the Counterpoise method, the BSSE can be evaluated with,

∆EBSSE = E(Ã)ab + E(B̃)ab − E(Ã)a − E(B̃)b (2.71)

where E(Ã)ab and E(Ã)ab, respectively represents the energy of monomer A and B in the
structure it adopts in the dimer (AB) and with the full basis set of the dimer available.
E(Ã)a and E(Ã)b are then the energies of A and B, respectively, with only their own
basis functions but again in the structure they adopt in the dimer. Thus Eq. (2.71) gives
the difference between the energies of each fragment with the corresponding monomer
and the full dimer basis sets. Obviously, the artificial enhancements each monomer gains
in the dimer can be established and eliminated if desired by obtaining a corrected binding
energy: Ebind −∆EBSSE.
If high accuracy is desired, BSSE should be removed. However, removal of BSSE

is not sufficient to guarantee high accuracy in, e.g., binding energies because of the
incompleteness of the basis sets. Fortunately, there are well established extrapolation
schemes that can alleviate basis set incompleteness errors, which will be introduced in
the following section.

Extrapolation to the Complete Basis Set Limit

As we have emphasized, one particular feature of Dunning’s correlation consistent basis
sets is that they systematically allow the correlation energy to be improved with increas-
ing basis set size. This systematic convergence provides opportunities to extrapolate
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to the CBS, which could remove the errors from the incompleteness of the basis set.
Quite often the first step of the extrapolation is to separate the extrapolation of the
Hartree-Fock energy and the electron correlation energy [141].
Many extrapolation schemes have been developed for obtaining estimated CBS energy

with Dunning’s basis sets [135, 141–144]. For the extrapolation of the Hartree-Fock
energy, the extrapolation is mostly done with expressions like,

EHF(X) = EHF
CBS +Ae−BX , (2.72)

where X is the highest angular momentum quantum number in a basis set, i.e., 2 for
aug-cc-pVDZ, 3 for aug-cc-pVTZ, 4 for aug-cc-pVQZ, 5 for aug-cc-pV5Z, etc. EHF

X is
the corresponding HF energy and EHF

CBS CBS is the HF energy at the CBS. A and B
are the fitting parameters. For electron correlation extrapolation, there are yet more
options. For example, one of the popular three-parameter extrapolations schemes is,

Ecorr(X) = Ecorr
CBS +

C

X3
+

D

X5
(2.73)

where Ecorr
X is the corresponding electron correlation energy for a given cardinal number

(X) and Ecorr
CBS is the electron correlation energy at the CBS. C and D are again the

fitting parameters.
Later in this thesis extrapolation methods are used. To illustrate how the extrapolation

schemes work the variation of the HF energy and electron correlation energy of a water
molecule is shown in Fig. 2.4. The energy of a single molecule has been calculated with
aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets and the extrapolations were
done for the HF energy and correlation energy by using Eq. (2.72) and Eq. (2.73),
respectively. Two features of Fig. 2.4 are apparent and worth very briefly commenting
upon. First, EHF and Ecorr exhibit uniform convergence to the CBS limit upon increasing
basis set size. Second, the variation in EHF with basis set size in considerably (about
3 times) smaller than Ecorr and EHF is much faster in approaching the CBS limit than
Ecorr.

2.4.2. Plane Waves

The majority of the calculations in this thesis are performed with atom centered localized
basis sets. However, some calculations (in chapter 5) for periodic systems are carried
out with plane wave basis sets and pseudopotentials. Also the approach of combining
plane wave basis sets and pseudopotentials is the workhorse of the present day DFT
calculations for periodic systems, so, such methods are briefly described here.
For the treatment of periodic systems, like solids, plane wave basis sets have become

the natural choice because of Bloch’s theorem. In a periodic potential, U(r), where
U(r + R) = U(r) and R is the Bravais lattice vector, Bloch’s theorem says that the
eigenfunctions of the one-electron Hamiltonian H = −1

2∇
2 + U(r) can be written as a

product of a plane wave (eik·r) and a function, µn,k(r), having the same periodicity as
the potential U(r) :

ϕn,k(r) = eik·rµn,k(r) , (2.74)
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Figure 2.4.: Extrapolation of (a) the Hartree-Fock energy (EHF(X)) and (b) electron correlation
energy (Ecorr(X)) of a water molecule using Eq. (2.72) and Eq. (2.73), respectively. The
electron correlation calculations are done at the MP2 level. The energy zero in both plots is the
extrapolated CBS limit.

where µn,k(r + R) = µn,k(r). Here the index k represents a set of plane waves within
each primitive unit cell and for each k the index n is a second quantum number, the so
called “band index”.
Bloch’s theorem allows to expand the electronic wave function in terms of a discrete

set of plane waves. But for a periodic solid which has electrons in the order of Avogadro’s
number the spacing of the k points goes to zero and k can be considered as a continuous
variable. So far the infinite number of electrons in the solid are accounted for by an
infinite number of k points, and only a finite number of electronic states are occupied at
each k point. The occupied states at each k point contribute to physical quantities such
as the electronic potential, electron density, and total energy of the solid. However, the
electronic wave functions at k points that are very close together will be almost identical.
Hence it is possible to represent them over a region of k space only by that at a single
k point. Efficient methods have been devised to choose special finite sets of k points,
for obtaining an accurate electronic potential, electron density, and total energy. In this
thesis, the method proposed by Monkhorst and Pack [145] has been used, in which a
uniform mesh of k points is generated along the three lattice vectors in reciprocal space.
The magnitude of any error in the total energy or the total energy difference due to
inadequacy of the k point sampling can always be reduced to zero by using a denser set
of k points. Therefore, it is crucial to test the convergence of the results with respect to
the number of k points in general.
Now expanding the periodic function µn,k(r) with plane waves whose wave vectors are

reciprocal lattice vectors (G) of the periodic crystal:

µn,k(r) =
∑
G

Cn,G eiG·r , (2.75)

so the electronic wave function can be rewritten as

ϕn,k(r) =
∑
G

Cn,k+G ei(k+G)·r . (2.76)
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While solving one electron Schrödinger-like equation with an effective periodic poten-
tial, e.g., the Kohn-Sham potential defined in Eq. (2.50), Kohn-Sham wave function
can be expanded with plane wave basis sets as described in Eq. (2.76). As a result Eq.
(2.52) can be rewritten as∑

G′

[1
2
|k+G′|2δG,G′ + V eff(G−G′)

]
Cn,k+G′ = ϵn Cn,k+G , (2.77)

where δG,G′ is the Kronecker δ and reflects that the kinetic energy is diagonal and ϵn
are the electronic energies. The above equation is the basic Schrödinger-like equations
of a periodic crystal with a plane wave basis set.
Here the sum over G′ tells that one needs an infinite number of plane waves to solve

Eq. (2.77). However, the coefficient Cn,k+G for the plane waves with small kinetic energy
are typically more important than those with large kinetic energy. Thus the plane wave
basis set can be truncated to include only plane waves that have kinetic energies less
than a particular energy cutoff Ecut,

1

2
|k+G|2 ≤ Ecut . (2.78)

Employing a finite basis set introduces a new source of inaccuracy, which can be reduced
by increasing the number of plane waves or Ecut. Therefore, appropriate convergence
tests have to be performed in order to find an Ecut that is sufficiently converged to
compute the property of interest with the required accuracy.

2.5. Pseudopotentials

It is well established that most physically interesting properties of solids are largely
determined by the valence electrons rather than the core electrons. Meanwhile, the
deeply bound core electrons within plane-wave basis sets, require a huge amount of
basis functions for their description. Thus this leads to a contradiction that the less
important core electrons will consume a lot of the computational cost. To alleviate this
problem, the pseudopotential approximation replaces the strong ionic potential with a
weaker pseudopotential. In general, there are two main purposes of the pseudopotential
formalism. First, to use a much weaker pseudopotential to get rid of core electrons
which due to their deep potential would need to be described by many plane-wave
basis functions. Second, to eliminate the rapid oscillations of the valence electron wave
functions in the core region. These issues are shown in Fig. 2.5(a), where it can be
seen that the pseudopoential is much weaker than the all-electron one and that the
pseudo wave function has no radial node inside the core region. It is essential within
the pseudopotential scheme that outside the core region, the pseudo potential and wave
function becomes the same with the corresponding all-electron ones (Fig. 2.5(a)).
The most common general form of a pseudopotential is,

Vps =
∑
lm

|Ylm⟩Vl(r)⟨Ylm| . (2.79)
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Figure 2.5.: (a) Schematic illustration of all-electron (dashed lines) and pseudopotential (solid
lines) and their corresponding wave functions. The radius at which the all-electron and pseudo-
electron values match is designated as rc. (b) Oxygen 2p radial wave function (solid line) and
corresponding pseudo wave function by using the norm-conserving HSC [148] (dotted line) and
Vanderbilt ultrasoft [151] methods (dashed line). The figure is taken from Ref. [151].

One important class of pseudopotentials are so called norm-conserving pseudopotentials.
Norm conserving pseudopotentials require that the all-electron and pseudo wave func-
tion agree beyond a chosen radius (rc) and that the integrated density inside rc for the
all-electron wave function and pseudo wave function are the same (“norm conservation”).
There are many types of norm-conserving pseudopotentials from different authors such
as Troullier and Martins [146], Kerker [147], Hamann, Schlüter, and Chiang [148], Van-
derbilt [149], Goedecker-Teter-Hutter [150].

One issue with the norm-conserving pseudopotentials is that they can not generate
smoother pseudo wave functions than the all-electron one when coming to the first row
elements like O and the localized transition metals like Ni due to the “norm conserva-
tion” rule. This situation can be seen in Fig. 2.5(b) for the oxygen 2p orbital. There is
hardly any improvement for the norm-conserving pseudopotential over the all-electron
counterpart. To circumvent this difficulty, Vanderbilt [151] made a radical modification
to break the norm conservation rule and relax the condition that the pseudo wave func-
tion inside the core region must have the same charge (or integrated density) as the
all-electron wave function. By this way, rc can be chosen to a larger value and the the
pseudo wave function can be made much softer than the all-electron wave function (Fig.
2.5(b)). Clearly, this introduces a deficit in the charge inside the core region and it is
compensated with additional localized atom-centered charges. The additional charges
are defined as the charge difference between the all-electron and pseudo wave functions
and for convenience they are also pseudized. This kind of pseudopotential is called an
ultrasoft pseudopotential, which enables much lower plane-wave cut-offs to be used in the
calculations. The combination of DFT, plane-wave basis set, and pseudopotentials has
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become a well-established methodology in electronic structure calculations of condensed
matter.

2.6. Brief Summary

As already stated that a variety of methods have been employed in this thesis. In this
section a few acronyms associated with electronic structure theory, which will appear
often in the following chapters are briefly summarized in Table 2.1 and 2.2.

Table 2.1.: This table summarizes various acronyms related to
electronic structure theory, which are described in this chapter and
often will be referred to in the following chapters. Columns from
the left are read as: (i) Acronym; (ii) Brief description of the the-
ory; (iii) Typical scaling with number of basis functions (N); (iv)
General performance with advantages and limitations.

Name Description Scale Performance

Wave function based methods

HF Hartree-Fock. In the HF many elec-
tron wavefunction is approximately
taken as a single Slater determinant.
This allows to simplify the interacting
N -electron system intoN independent
electron system. The many-body ef-
fect is captured via Coulomb repulsion
with the mean all-electron density and
the exchange interaction due to anti-
symmetric nature of the wavefunction.

N4 HF is self interaction free and applied
to molecules and solids. But it has
no electron correlation and thus, insuf-
ficient for metals and underestimates
van der Waals and hydrogen bonded
systems.

MP2 Møller-Plesset perturbation theory.
MP theory is in the same spirit
of the Rayleigh-Schrödinger perturba-
tion theory. Here the reference Hamil-
tonian is taken to be the HF Hamil-
tonian and the perturbative Hamilto-
nian is a two-electron operator. The
first significant contribution of elec-
tron correlation comes from 2nd order
energy correction (referred as MP2).
MP2 only involves sum over doubly
excited determinants.

N5 MP2 is the cheapest (beyond HF)
wave function based method to cap-
ture correlation. It shows improve-
ment over HF in many cases, espe-
cially, hydrogen bonded systems but
overestimates pure vdW interactions.
The success of MP2 relies on error
compensations and the results do not
necessarily improve while going for
higher order corrections. (e.g., MP3,
MP4,· · · MP10,· · · )

Continued to Next Page. . .
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Table 2.1 – Continued

Name Description Scale Performance

CCSD Coupled cluster theory with single and
double excitations. Electron correla-
tion is calculated with single and dou-
bles excitations up to infinite order,
which allows to incorporate correla-
tions of the disconnected higher order
excitations as products of the ampli-
tudes of single and double excitations.
It is a big advantage over MP2 theory.

N6 So far CCSD is applied only for
molecules (with few hundreds of elec-
trons). CCSD results in many cases
are inferior to MP2 and in general un-
derestimates hydrogen bond energies
and weak bonds.

CCSD(T)Coupled cluster theory with single and
double excitations and perturbative
corrections for connected triples exci-
tations. Here the CCSD Hamiltonian
is taken as the reference Hamiltonian.
Connected triples are found to be ex-
tremely crucial for dispersion bonded
systems.

N7 It gives almost exact answers for a
variety of molecular systems and of-
ten referred as the “gold standard”
method in quantum chemistry. It
captures vdW interactions accurately.
But as the computational cost in-
creases rapidly it is applied to systems
with few tens of electrons only.

Density function based methods

DFT Density-functional theory. In DFT
the ground state energy of a system is
obtained from the ground state elec-
tron density. In principle DFT is ex-
act method but in practice approxi-
mations are needed to capture many-
electron exchange-correlation (xc) in-
teractions. The performance of DFT
depends on the choice of xc functional.

N3 The most popular ab initio approach
for simulations of condensed phases
and molecules. With some xc func-
tionals it can reproduce experimen-
tal cohesive energies of a wide vari-
ety solids within 10% and lattice con-
stants within 3%. It can be applied
for systems with several thousands of
electrons. It suffers from self interac-
tion problem and poor description of
long range der Waals interactions with
most standard xc functionals.

Continued to Next Page. . .
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Table 2.1 – Continued

Name Description Scale Performance

LDA Local-density approximation. In LDA
the electronic exchange-correlation
(xc) energy is a functional of the lo-
cal density [n(r)] only and the corre-
sponding xc energy is obtained from
the uniform electron gas having the
same density.

N3 It is valid only for systems with slowly
varying densities. Overestimates co-
hesive energies of metals and insula-
tors by ∼10%-20% and H bond ener-
gies by >50%. Long range vdW inter-
actions are are not captured.

GGA Generalized gradient approximation.
In GGA the electronic exchange-
correlation (xc) energy is taken to
be a functional of the local density
[n(r)] and the gradient of the den-
sity [∇n(r)]. In practice the gradi-
ent correction to the xc energy is in-
troduced by enhancing LDA xc en-
ergy as a function of reduced gradient
(|∇n(r)|/n(r)4/3).

N3 GGAs describe hydrogen bonded and
other weakly bound systems much
better than LDA. Generally under-
estimates cohesive energies of metals
and insulators. For system with larger
density gradient performance of func-
tionals depends strongly on the choice
of the enhancement function. Long
range vdW interactions are poorly de-
scribed.

meta-
GGA

The electronic exchange-correlation
energy is taken to be a functional of
the local density [n(r)], the gradient
of the density [∇n(r)], and the kinetic
energy density [∇ψ(n(r))].

N3 It does not improve much over the
GGAs. It provides better surface en-
ergies and in some cases describes
weakly bound systems better than
GGAs.

hybrid-
GGA

It is hybrid mixture of GGA xc func-
tionals with some fraction of Hartree-
Fock exchange.

N4 It remedies self interaction error some
extent and gives much better band
gaps and reaction barrier heights than
LDA and GGAs. Description of met-
als are worse than GGAs. It is more
expensive than GGAs and technically
hard to apply for periodic systems.
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2. Theoretical Background

Table 2.2.: This table briefly summarizes descriptions of several
DFT exchange-correlation xc functionals employed in the thesis.
Columns from the left are read as: (i) Exchange-Correlation func-
tionals (XC ) (ii) Generalized-gradient approximation (GGA) ex-
change (top) and correlation (bottom) (iii) Percentage of Hartree-
Fock exchange; (iv) Empirical (E) or non-empirical (NE); (v) Brief
description; and (vi) References.

XC X/C HF E/NE Description Ref.

GGA[n(r), ∇n(r)]

BLYP B88
LYP

0% E Becke’88 with Lee-Yang-Parr correlation. It
underestimates hydrogen bond energies but is
very popular for the simulation of liquid wa-
ter.

[114,
116]

BP86 B88
P86

0% E Becke’88 exchange and Perdew’86 correlation.
It has been shown to improve descriptions of
weak interactions and hydrogen bonds.

[114,
117]

mPWLYP mPW
LYP

0% E Modified (“m”) Perdew-Wang’91 exchange
and Lee-Yang-Parr correlation. It has only
been tested for weakly bound systems and
typically underestimates hydrogen bond en-
ergies.

[116,
152]

PBE PBE
PBE

0% NE Perdew-Burcke-Ernzerhof ’96. It is the most
popular functionals for solids and also con-
densed phase water simulations. PBE tends
to overestimate hydrogen bond energies.

[113]

PBE1W PBE
PBE

0% E A modified version of PBE with “1” opti-
mized parameter (74%) in PBE correlation. It
is especially designed to improve interactions
among water (“W”) molecules.

[113,
153]

PW91 PW91
PW91

0% NE Perdew-Wang’91. It is very popular for simu-
lations of ice and also applied to other solids
It typically overestimates hydrogen bond en-
ergies.

[115]

Continued to Next Page. . .
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2.6. Brief Summary

Table 2.2 – Continued

XC X/C HF E/NE Description Ref.

revPBE revPBE
PBE

0% E A revised (“rev”) version of PBE exchange
with κ = 1.245 in Eq. 2.60. It improves
molecular atomization energies but underesti-
mates cohesive energies of solids and hydrogen
bond energies.

[113,
154]

XLYP X
LYP

0% E Here the exchange (“X”) is a linear combi-
nation of Becke’88 and Perdew-Wang’91 ex-
change and the parameters are obtained by
fitting to certain molecular databases. For hy-
drogen bond energies it is weaker than PW91
but stronger than BLYP.

[155]

meta-GGA[n(r), ∇n(r), ∇ψ(n(r))]

TPSS TPSS
TPSS

0% NE Tao-Perdew-Staroverov-Scuseria functional
derived by following PBE with kinetic energy
density as an additional parameter in the
enhancement factor. It provides improved
performance especially for surface energies
and produces weaker hydrogen bonds than
PBE.

[121]

hybrid-GGA[n(r), ∇n(r), HF]

BH&HLYP B88
LYP

50% E “H&H” stands for half & half, which means
50% contribution comes from HF exchange
and other 50% from GGA exchange, Becke’88.
It gives better thermochemical properties and
hydrogen bond energies than BLYP.

[125]

B3LYP B88
LYP

20% E 3-parameter hybrid functional with Becke’88
exchange Lee-Yang-Parr correlation. Formu-
lation of this functional is given in Eq. 2.63.
The parameters are a1 = 0.2, a2 = 0.72, and
a3 = 0.81. It provides poor description of
metals but it is the most popular functional
to obtain thermochemical properties, reaction
barrier heights, etc.

[126–
128]

Continued to Next Page. . .

39



2. Theoretical Background

Table 2.2 – Continued

XC X/C HF E/NE Description Ref.

B3P86 B88
P86

20% E Same as B3LYP but with different GGA cor-
relation, i.e., Perdew’86. It tends to improve
non bonded weak interactions over B3LYP.

[114,
117]

B98 B98
B98

21.9% E Becke’98 functional optimized on molecular
databases to obtain better thermochemical
properties.

[156]

PBE0 PBE
PBE

25% NE Hybrid functional based on GGA PBE. Here
“0” refers to zero empirical parameter. 1/4
contribution from Hartree-Fock exchange is
based on the grounds of perturbation theory.
It provides much weaker cohesive energy for
solids than PBE and reduces the overbinding
trend in PBE for hydrogen bond energies.

[113,
129]

X3LYP X
LYP

21.8% E With the same spirit as B3LYP having differ-
ent exchange (linear combination of Becke’88
and Perdew-Wang’91 exchange) and modified
mixing parameters (a1, a2, and a3). It im-
proves over B3LYP for non-bonded interac-
tions, especially, hydrogen bond energies.

[155]

hybrid-meta-GGA[n(r), ∇n(r), ∇ψ(n(r)), HF]

MPWB1K mPW
B88

44% E Based on modified Perdew-Wang’91 exchange
and Becke’95 correlation. It was optimized to
provide improved results for thermochemistry,
thermochemical kinetics, hydrogen bonding,
and weak interactions.

[133]

PW6B95 PW91
B95

28% E 6-parameter functional based on Perdew-
Wang’91 exchange and Becke’95 correlation.
It has been shown to provide improved results
for thermochemistry and non bonded interac-
tions.

[124]

40



3. The Accuracy of DFT xc Functionals for
Water Clusters in the Gas Phase

3.1. Introduction

As has been said, density-functional theory (DFT) is the most popular theoretical ap-
proach for determining the electronic structures of polyatomic systems. It has been
extensively and successfully used to tackle all sorts of problems in materials science,
condensed matter physics, molecular biology, and countless other areas. Many of these
studies have involved the treatment of systems containing hydrogen bonds (HBs). HBs
are weak (10-30 kJ/mol ≈ 100-300 meV/H-bond) bonds of immense widespread impor-
tance, being the intermolecular force responsible for holding water molecules together
in the condensed phase, the two strands of DNA in the double helix, and the three
dimensional structure of proteins [2].
Despite enormous success, questions like how good DFT is for HBs or what the best

exchange-correlation (xc) functional is for treating HBs are far from uncommon for devel-
opers and practitioners of Kohn-Sham DFT. Clearly imprecise and vague questions it is
nonetheless important to answer them, once, of course, terms like “good”and“best”have
been defined and consideration made to the properties of interest (energetic, structural,
dynamical, electronic). Indeed considerable effort has been expended in an attempt to
answer questions like these [119, 120, 153, 157–169].
One particularly important class of H-bonded systems, arguably the most important,

are small water clusters. Small water clusters have been implicated in a wide range of
phenomena (for example, environmental chemistry and ice nucleation [52, 170, 171]).
Moreover, they are thought to provide clues as to the properties of liquid water, ice and
water under various conditions and environments. Along with this widespread appli-
cation there have also been various benchmark studies specifically aimed at accessing
the performance of various xc functionals in treating gas phase water clusters [153, 157–
159, 161, 162], adsorbed clusters [51, 55, 171–176], and liquid water [10–32]. However,
the ability of DFT to quantitatively describe HBs between H2O molecules in either small
water clusters or the liquid state remains unclear. This is particularly true in light of
recent experimental and theoretical studies which have raised concerns over the ability
of DFT to reliably describe the structure and properties of liquid water [10–32].
It is now well established that the simplest approximation to the electron xc potential,

the local-density approximation (LDA), is inappropriate for treating HBs. For example,
the dissociation energies of small water clusters and the cohesive energy of ice are over-
estimated by >50% with the LDA [40, 41, 57, 177, 178]. However, despite widespread
practical application and several recent benchmark studies it remains unclear precisely
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3. The Accuracy of DFT xc Functionals for Water Clusters in the Gas Phase

how well the many popular post-LDA functionals perform at describing HBs between
water clusters. Generalized gradient approximation (GGA) functionals such as PBE
[113], PW91 [115], and BLYP [114, 116], for example, are widely used to examine liq-
uid water [12, 19, 179–181], ice [41, 182–184] and adsorbed water [182, 185], yet ask
three experts which one is “best” and one is likely to receive three different answers.
Likewise unanimity has not been reached on the performance of the many meta-GGA
or hybrid functionals that are available, such as TPSS [121], PBE0 [129], and B3LYP
[116, 126–128]. Part of the reason for the lack of clarity stems from the fact that in
previous benchmark studies insufficiently complete basis sets were employed and that
comparisons were restricted to the simplest H-bonded systems involving H2O, namely
the H2O dimer and trimer. Basis set incompleteness effects can, of course, mask the
true performance of a given functional and, as will be shown below, the ability of a given
functional to accurately predict the strength of the HBs in the dimer or even the trimer
does not necessarily reveal how well that functional will perform even for the next largest
clusters, tetramers and pentamers.
In this chapter the ability of several GGA, meta-GGA, and hybrid xc functionals to

compute the energy and structure of HBs between H2O molecules is evaluated. This
study is restricted to the established lowest energy conformer of four smallest H2O clus-
ters (dimer, trimer, tetramer, and pentamer), [186–188], which, for orientation purposes,
are shown in Fig. 3.1. Section 3.2 and 3.3 demonstrate the generation of the bench-
mark data and the DFT data itself. In section 3.4 details of the results and analysis are
provided together with a summary in section 3.5.

3.2. Accurate Reference Dissociation Energy: MP2

For a systematic benchmark study such as this, reliable reference data is essential. Ex-
periment is, in principle, one source of this data. However, experimental dissociation
energies are simply not available or do not come with sufficiently small error bars for
all the H2O clusters examined here. Further, with the aim to systematically evaluate
the performance of many DFT xc functionals it becomes impractical to compute all the
small contributions to the experimental dissociation energy that come on top of the total
electronic dissociation energy - an easily accessible total energy difference - such as zero
point vibrations, relativistic contributions1, etc. The obvious alternative source of ref-
erence data are the results obtained from correlated quantum chemistry methods such
as second order Møller Plesset perturbation theory (MP2) [70] or coupled-cluster the-
ory [190]. Indeed such methods have been widely applied to examine H-bonded systems
[119, 120, 123, 164, 186, 189, 191–197]. In particular coupled-cluster with single and dou-
ble excitations plus a perturbative correction for connected triples (CCSD(T)) produces
essentially “exact” answers if sufficiently accurate basis sets are used. For example, the
best CCSD(T) value for the dissociation energy (defined in Eq. 3.3) of the water dimer
is at 217.6±2 meV [83] in good agreement with the appropriate experimental number

1At CCSD(T) level the relativistic effects are estimated to reduce the magnitude of the dissociation
energy of the water dimer by <0.5 meV/H2O [83, 189].
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3.2. Accurate Reference Dissociation Energy: MP2

Dimer Trimer

q

f

Rhb

Tetramer Pentamer

Figure 3.1.: Structures of the four water clusters examined here in their global minimum energy
configurations. The dashed lines indicate HBs. Some of the structural parameters of the H-bond
are indicated alongside the dimer. In the trimer, tetramer, and pentamer there is one H-bond
per water molecule.

of 216.8±30 meV [84, 198]. However, since the computational cost of CCSD(T) scales
as N7, where N is the number of basis functions, the most extravagant use of compu-
tational power is required for CCSD(T) calculations with large basis sets. MP2, on the
other hand, scales as N5 and when compared to CCSD(T) for water dimers and trimers
at the CBS limit, yields dissociation energies that differ by no more than 2 meV/H-bond
[189, 194]. In addition, a recent study of water hexamers using CCSD(T) with an aug-
cc-pVTZ basis set revealed that the MP2 and CCSD(T) dissociation energies of various
hexamer structures differ by <3 meV/H2O [199]. Thus MP2 is a suitable method for
obtaining reference data with an accuracy to within a few meV/H-bond. Such accuracy,
which is well beyond so-called chemical accuracy (1kcal ≈ 43 meV), is essential in studies
of H-bonded systems. Since MP2 geometries are not available for all four clusters ex-
amined here new MP2 structures are computed for each one. All calculations have been
performed with the Gaussian03 [200] and NWChem [201] codes2 and all geometries were
optimized with an aug-cc-pVTZ basis set within the “frozen core” approximation, i.e.,
correlations of the oxygen 1s orbital were not considered. Although the aug-cc-pVTZ
basis set is moderately large (92 basis functions/H2O), this finite basis set will introduce
errors in predicted MP2 structures. However, a test with the H2O dimer reveals that the
aug-cc-pVTZ and aug-cc-pVQZ MP2 structures differ by only 0.004 Å in the O-O bond
length and 0.16◦ in the H-bond angle (ϕ, Fig. 3.1). Likewise, Nielsen and co-workers
have shown that the MP2 O-O distances in the cyclic trimer differ by 0.006 Å between
the aug-cc-pVTZ and aug-cc-pVQZ basis sets with all other bonds differing by <0.003 Å
[197]. For present purposes these basis set incompleteness errors on the structures are

2Here Gaussian03 [200] and NWChem [201] codes are used interchangeably, since total energies of the
water clusters obtained from the two codes differ by no more than 0.4 meV per water molecule.
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Figure 3.2.: (a) Variation in the MP2 dissociation energy for the H2O dimer without a counter-
poise correction for basis set superposition error (BSSE) (labeled MP2) and with a counterpoise
correction for BSSE (labeled MP2(CP)) as a function of basis set size. The extrapolated complete
basis set (CBS) dissociation energy for the H2O dimer with MP2 is also indicated. (b) Variation
in the dissociation energy for the H2O dimer with and without a counterpoise BSSE correction
as a function of basis set size for three different DFT functionals. The basis set labels on the
X axis of (a) and (b) indicate aug-cc-pVXZ basis sets, where X=3, 4, and 5. Lines are drawn
to guide the eye only. All structures were optimized with an aug-cc-pVTZ basis set consistently
with MP2 and with each DFT functional.

acceptable and it seems reasonable to assume that the aug-cc-pVTZ structures reported
here come with error bars of ±0.01 Å for bond lengths and ±0.5◦ for bond angles.
Total energies and dissociation energies are known to be more sensitive to basis set

incompleteness effects than the geometries are. To obtain reliable MP2 total energies
and dissociation energies the aug-cc-pVTZ, aug-cc-pVQZ (172 basis functions/H2O) and
aug-cc-pV5Z (287 basis functions/H2O) basis sets are employed in conjunction with the
well-established methods for extrapolating to the CBS limit. Usually the extrapolation
schemes rely on extrapolating separately the Hartree-Fock (HF) and correlation contri-
butions to the MP2 total energy. For extrapolation of the HF part Feller’s exponential
fit [202] is used:

EHF(X) = EHF
CBS +Ae−BX , (3.1)

where X is the cardinal number corresponding to the basis set (X=3, 4, and 5 for the
aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets, respectively). EHF(X) is the
corresponding HF energy, EHF

CBS is the extrapolated HF energy at the CBS limit, and
A and B are fitting parameters. For the correlation part of the MP2 total energy an
inverse power of highest angular momentum equation is followed [203–205]:

Ecorr(X) = Ecorr
CBS +

C

X3
+

D

X5
, (3.2)

where Ecorr(X) is the correlation energy corresponding to X, Ecorr
CBS is the extrapolated

CBS correlation energy, and C and D are fitting parameters. Various extrapolation
schemes available in the literature [144, 202–207] are tested and differences between all
the predicted CBS values are found to be no more than 1.2 meV/H-bond. The scheme
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3.3. DFT Dissociation Energy

provided by Eqns. (3.1) and (3.2) is opted here because it is found that with input from
triple-, quadruple-, and pentuple-ζ basis sets this method was best able to predict the
total energy of a water monomer and dimer explicitly calculated with an aug-cc-pV6Z
basis set (443 basis functions/H2O). Having obtained MP2 CBS total energies for the
H2O monomer and each of the H2O clusters, the MP2 CBS dissociation energies (Dn

e )
per H-bond are calculated as,

Dn
e = (EnH2O − nEH2O)/nH−bond , (3.3)

where EnH2O is the total energy of each cluster with n H2O molecules, EH2O is the total
energy of a H2O monomer, and nH−bond is the number of HBs in the cluster. The CBS
MP2 dissociation energies found here for the dimer, trimer, tetramer, and pentamer are
215.8, 228.5, 299.9, and 314.4 meV/H-bond, respectively3. These values are all within
0.5 meV/H-bond of the previous MP2 CBS dissociation energies reported by Xantheas
et al. [192]. The various errors accepted in producing these values (MP2 (valence only)
treatment of correlation, aug-cc-pVTZ structures, extrapolation to reach the CBS, etc.)
will lead to errors in the reference data from the exact electronic dissociation energies
on the order of ±5.0 meV/H-bond at most. With the present aim to evaluate the
performance of various DFT xc functionals such errors are acceptable.

3.3. DFT Dissociation Energy

In a study such as this there is an essentially endless list of functionals that one could
consider evaluating. Here 16 different functionals are examined. They are chosen be-
cause either they are widely used or have been reported to perform particularly well
for H-bonded systems in predicting dissociation energies and structures of the above
mentioned clusters. Specifically the following xc functionals are chosen to optimize
structures of each cluster: (I) PW91 [115] - an extremely popular non-empirical GGA
widely used in calculations of bulk ice [41, 208, 209] and other H-bonded systems [119];
(II) PBE [113] - the twin of PW91 that has again been widely used and tested for
H-bonded systems [120, 123, 191]; (III) PBE1W - a parameterized empirical variant
of PBE specifically designed to yield improved energetics of HBs [191]. (IV) TPSS
[121] - the meta-GGA variant of PBE, recently used in simulations of liquid water and
evaluated for small water clusters [19, 123, 191, 191, 210]; (V) PBE0 [129] - a so-called
parameter free hybrid variant of PBE, also recently tested for water [19, 123, 196, 211];
(VI) BLYP - Becke88 [114] exchange combined with LYP [116] correlation, a popular
functional for liquid water simulations [12, 19, 179–181]; (VII) B3LYP [116, 126–128] -
the extremely popular Becke three parameter hybrid functional combined with LYP non-
local correlation, which has, of course, been widely used to examine H-bonded systems
[19, 123, 195, 196]; (VIII) mPWLYP - a combination of a modified PW91 exchange
functional (mPW) [152] with the LYP correlation functional, found to be the most accu-
rate pure GGA for the energetics of HBs in water dimers and trimers [191]. (IX) BP86

3The corresponding CBS HF dissociation energies at the MP2 structures are 148.0, 140.8, 187.6, and
200.8 meV/H-bond for the dimer, trimer, tetramer, and pentamer, respectively.
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- an empirical GGA combining Becke88 [114] exchange and Perdew86 [117] correlation
that is well-tested for hydrogen bonded systems [196, 211]; (X) X3LYP [155] - another
empirical hybrid functional designed to describe weak (non-covalent) interactions that
is becoming a familiar name for calculations of water [19, 123, 161]; (XI) XLYP [155] -
the non-hybrid GGA version of X3LYP, also tested for H-bonded systems [123]; (XII)
B98 [156] - another hybrid functional, said to perform extremely well for water clusters
[123, 191]; (XIII) MPWB1K [133] - a one parameter hybrid meta-GGA using mPW
[152] exchange and Becke95 [212] correlation, said to be the joint-best for HBs between
water molecules [123, 191]; (XIV) PW6B95 [124] - another hybrid meta-GGA combin-
ing PW91 [115] exchange and Becke95 [212] correlation, found to be the other joint-best
functional for the HBs between water molecules [191]; (XV) B3P86 - Becke 3 parameter
hybrid functional combined with Perdew86 nonlocal correlation, found to be best func-
tional for H-bonded systems in a recent benchmark study [123]; and (XVI) BH&HLYP
[114, 116, 125] - said to offer similar performance to B3P86 for H-bonded systems [123].

As with MP2, the question arises as to what basis sets to use in order to ensure that the
DFT results reported here are not subject to significant basis set incompleteness errors,
which would cloud evaluations of the various functionals. There are no established
extrapolation schemes for DFT. However, it is well-known that DFT total energies are
less sensitive to basis set size than explicitly correlated methods such as MP24 [79, 213,
214]. Indeed from the plot in Fig. 3.2 it can be seen that the computed DFT dissociation
energies converge much more rapidly with respect to basis set size than MP2 does (c.f.
Figs. 2(a) and 2(b)). Specifically, upon going from aug-cc-pVTZ to aug-cc-pV5Z the
dissociation energy of the H2O dimer changes by only 1.0, 2.7, and 1.5 meV for the
PBE, TPSS, and PBE0 functionals, respectively. Further, with the aug-cc-pV5Z basis
set the counterpoise corrected and uncorrected dissociation energies essentially fall on
top of each other, with the largest difference for the dimers and trimers being 0.45
meV/H-bond with the TPSS functional. In addition, upon going beyond aug-cc-pV5Z
to aug-cc-pV6Z the dimer dissociation energies change by only 0.24, 0.11, 0.19, 0.25
meV for the PBE, TPSS, PBE0 and BLYP functionals, respectively. Thus the DFT
dissociation energies reported in the following will all come from those obtained with the
aug-cc-pV5Z basis set, which is sufficiently large to reflect the true performance of each
functional at a level of accuracy that is reasonably expected to approach the basis set
limit to within about 0.5 meV/H-bond or better.

4In LDA, GGA, and standard hybrid DFT xc functionals (and HF) the motion of a given electron
is unaffected by the instantaneous position of the other electrons, whereas in the wavefunction-
based approaches such as MP2 this is not the case and the short range electronic interactions which
inevitably occur give rise to cusp conditions, notably the (electronic) Coulomb cusp. Such cusp
conditions, which standard DFT xc functionals are free of, yield wavefunctions that are exceedingly
difficult to describe exactly with finite basis sets. See Helgaker et al. for more details [79]. Since
the importance of using large basis sets for MP2 is clear from Fig. 3.2, it is cautioned that even the
largest Pople-style basis set, 6-311++G(3df,3pd), yields an MP2 dissociation energy for the water
dimer of 230 meV/H-bond, which at ∼15 meV from the MP2/CBS number, is not necessarily of
sufficient accuracy to serve as a reliable benchmark.
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3.4. Results

Table 3.1.: Comparison of the MP2 complete basis set dissociation energies to those obtained
with various DFT functionals computed with an aug-cc-pV5Z basis set for four different water
clusters. DFT dissociation energies that come within ±5.0 meV of the corresponding MP2
value are indicated in bold. The numbers in parenthesis indicate the percentage cooperative
enhancement in the H-bond strength compared to the dissociation energy of the dimer. Averages
of the signed and unsigned errors in the dissociation energies of all DFT functionals from the
corresponding MP2 numbers over all four clusters are also provided as ME (mean error) and
MAE (mean absolute error). The DFT functionals are ordered in terms of increasing MAE.
All structures were optimized consistently with MP2 and with each DFT functional with an
aug-cc-pVTZ basis set and all values are in meV/H-bond (1Kcal/mol = 43.3641 meV).

Dimer Trimer Tetramer Pentamer ME MAE

MP2 215.8 228.5 (5.9) 299.9 (38.9) 314.4 (45.7) — —
X3LYP 213.8 221.9 (3.8) 298.3 (39.5) 316.0 (47.8) -2.2 2.9
PBE0 214.5 224.6 (4.7) 302.7 (41.1) 320.9 (49.6) 1.0 3.6

mPWLYP 218.5 226.0 (3.4) 305.4 (39.8) 323.7 (48.1) 3.8 5.0
B3P86 203.5 220.0 (8.1) 299.4 (47.1) 316.5 (55.5) -4.8 5.9
PBE1W 207.9 216.6 (4.0) 294.9 (41.8) 312.7 (50.4) -6.6 6.6

BH&HLYP 213.2 219.5 (2.9) 291.3 (36.6) 308.3 (44.6) -6.6 6.6
PBE 220.1 233.5 (6.1) 316.4 (43.8) 334.8 (52.1) 11.6 11.6
B98 205.6 211.4 (2.8) 285.9 (39.1) 303.1 (47.4) -13.2 13.2
TPSS 196.4 209.4 (6.6) 288.8 (47.0) 307.5 (56.6) -14.1 14.1
B3LYP 197.4 206.3 (4.5) 280.1 (41.9) 297.2 (50.6) -19.4 19.4
PW6B95 200.9 210.5 (4.8) 276.8 (37.8) 292.7 (45.7) -19.4 19.4
MPWB1K 199.1 210.6 (5.5) 276.3 (38.8) 292.3 (46.8) -20.1 20.1

BP86 184.4 205.7 (11.6) 282.5 (53.2) 300.8 (63.1) -21.3 21.3
PW91 232.5 244.9 (5.1) 330.8 (42.3) 350.5 (50.8) 25.0 25.0
XLYP 191.4 198.6 (3.8) 272.2 (42.2) 288.9 (50.9) -26.9 26.9
BLYP 180.7 191.7 (6.1) 264.9 (46.6) 281.2 (55.6) -35.0 35.0

3.4. Results

3.4.1. Dissociation Energy

In Table 3.1 the computed dissociation energies obtained with MP2 and with each of
the DFT functionals are reported. To allow for a more convenient comparison of the
performance of the various functionals in Fig. 3.3(a) the difference between the DFT and
MP2 dissociation energies (∆Dn

e ) are plotted as a function of water cluster size. In this
figure positive values correspond to an overestimate of the dissociation energy by a given
DFT functional compared to MP2. So, what do we learn from Table 3.1 and Fig. 3.3(a)?
First, the functionals which offer the best performance for the clusters examined are the
hybrid X3LYP and PBE0 functionals, coming within 7 meV/H-bond for all four clusters.
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Of the non-hybrid functionals the pure GGAs mPWLYP and PBE1W perform best,
coming within 12 meV/H-bond for all four clusters. Second, the very popular BLYP and
B3LYP functionals consistently underbind: B3LYP predicts HBs that are ∼20 meV too
weak; and BLYP predicts HBs that are ∼35 meV too weak. Third, PBE overestimates
the binding in the dimer and trimer ever so slightly, coming within 5 meV/H-bond, but
for the tetramer and pentamer drifts away to yield errors of ∼20 meV/H-bond. Fourth,
PBE and PW91 exhibit a non-negligible difference. Although it is often assumed that
identical numerical results should be obtained from these two functionals this is not the
case here; PW91 is consistently 12-14 meV/H-bond worse than PBE. Both functionals,
however, exhibit a similar tendency towards increased overbinding as the cluster size
grows. Indeed it is clear from Fig. 3.3 that all PBE-related functionals (PBE, PW91,
PBE1W, TPSS, and PBE0) show this trend, which in the case of TPSS means that it
gets within ∼7 meV/H-bond for the pentamer starting from an error of ∼20 meV/H-
bond for the dimer. Likewise PBE1W gets closer to the reference value as the cluster size
grows. Finally, despite previous suggestions to the contrary [123, 191, 211], none of the
other functionals particularly stand out: B98 underbinds by just over 13 meV/H-bond,
and BP86 exhibits a rather strong variation in performance with cluster size, ranging
from a 30 to 14 meV/H-bond error. B3P86 shows similar behavior to BP86, although
the magnitude of the error is much less and indeed for the tetramer and pentamer
B3P86 gives values close (within 3 meV/H-bond) to MP2. MPWB1K and PW6B95
both underbind by ≥20 meV/H-bond.

Another interesting aspect of the results of the present study is that the performance
of some functionals differs appreciably from one cluster to another. For example, PBE is
only ∼4-5 meV/H-bond away from MP2 for the dimer and trimer but >15 meV/H-bond
away from MP2 for the tetramer and pentamer. Conversely, TPSS is ∼20 meV/H-bond
off MP2 for the dimer but within 7 meV/H-bond of MP2 for the pentamer. Other
functionals which show strong variation in performance with cluster size are PW91,
BP86, and B3P86, and the functional in the admirable position of showing the least
variation, consistently predicting HBs that are ∼35 meV too weak, is BLYP. The general
conclusion of this analysis, however, is that it is not necessarily sufficient to use the
performance of a given functional for a single system, such as for example the H2O
dimer, as a guide to how that functional will perform for HBs between H2O molecules
in general. Indeed the results reported here indicate that H-bond test sets such as the
“W7” test set [191] for water would benefit from the inclusion of structures other than
dimers and trimers.

Also to note an interesting conclusion of the present study is the non-negligible differ-
ence between the H-bond energies predicted by PBE and PW91; with PW91 consistently
being 12-14 meV/H-bond worse than PBE. A similar discrepancy, although in a rather
different area of application - surface and defect formation energies of metals - has been
identified by Mattsson and co-workers [215]. Specifically they found that the PW91 and
PBE monovacancy formation energies of Al differed by ∼30-40 meV. Evidences from
this study together with the findings of Mattson and co-workers it does not seem wise
to expect identical numerical results from PBE and PW91.
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Figure 3.3.: (a) Difference in the dissociation energy (∆Dn
e ) in meV/H-bond of the various DFT

functionals compared to MP2, plotted as a function of cluster size. Positive values correspond
to an overestimate of the dissociation energy by a given DFT functional. (b) Average value of
the MP2 and DFT O-O distances (RO-O) as a function of cluster size. The inset zooms in on
the dimer region. (c) Difference in the average O-O distance (∆RO-O) between MP2 and DFT.
Positive values correspond to an overestimate of the average O-O distances by a given DFT
functional. (a)-(c) All DFT energies are calculated with an aug-cc-pV5Z basis set on geometries
optimized consistently with each functional with an aug-cc-pVTZ basis set. Lines are drawn to
guide the eye only.

3.4.2. Cooperativity

An important aspect of the energetics of HBs is that they tend to undergo cooperative
enhancements, which for the present systems implies that the average strengths of the
HBs between the water molecules increases as the number of HBs increases. The fact that
the HBs in water clusters undergo cooperative enhancements is now well established [2,
170, 216], as is the importance of cooperativity in many other types of H-bonded systems
[2, 185, 217]. The ability of each functional is evaluated to correctly capture the computed
MP2 cooperative enhancement, defined as the percentage increase in the average H-
bond strength compared to that in the H2O dimer. These numbers are reported in
parenthesis in Table 3.1. It is fond that all functionals capture the correct trend, i.e.,
the average H-bond strength increases upon going from dimer to pentamer. In addition,
most functionals get the absolute percentage enhancement correct to within 5%. The
notable exceptions are BP86, B3P86, and TPSS which for the tetramer and pentamer
predict cooperative enhancements that exceed the MP2 values by 10-15%.
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Table 3.2.: Mean absolute error (MAE) of various DFT functionals from MP2 for five different
structural parameters, averaged over the four water clusters examined here. The numbers in
bold all have MAE ≤0.010 Å for bond lengths and ≤0.50◦ for bond angles. Mean errors (ME)
are given in parenthesis. All structures were optimized consistently with MP2 and with each
DFT functional with an aug-cc-pVTZ basis set. The order of the functionals is the same as in
Table 3.1.

∆RO-O (Å) ∆Rhb (Å) ∆RO-H (Å) ∆ϕ (◦) ∆θ (◦)

X3LYP 0.002 (-0.002) 0.003 (-0.003) 0.001 (0.000) 0.21 (0.21) 1.04 (1.04)
PBE0 0.024 (-0.024) 0.023 (-0.023) 0.002 (-0.001) 0.77 (0.77) 0.69 (0.69)
mPWLYP 0.012 (0.012) 0.008 (-0.004) 0.012 (0.012) 0.61 (0.47) 0.51 (0.51)
B3P86 0.042 (-0.042) 0.051 (-0.051) 0.003 (0.001) 1.00 (1.00) 0.77 (0.77)
PBE1W 0.011 (0.009) 0.010 (-0.006) 0.011 (0.011) 1.13 (1.13) 0.13 (0.13)
BH&HLYP0.006 (-0.003) 0.015 (0.015) 0.013 (-0.013) 0.48 (-0.17) 1.52 (1.52)
PBE 0.024 (-0.024) 0.046 (-0.046) 0.012 (0.012) 1.43 (1.21) 0.13 (0.13)
B98 0.016 (0.016) 0.015 (0.015) 0.001 (-0.001) 0.52 (0.52) 0.66 (0.66)
TPSS 0.018 (-0.018) 0.037 (-0.037) 0.010 (0.010) 1.28 (1.25) 0.22 (0.22)
B3LYP 0.009 (0.009) 0.007 (0.007) 0.001 (0.001) 0.31 (0.31) 0.93 (0.93)
PW6B95 0.026 (0.026) 0.029 (0.029) 0.006 (-0.006) 0.29 (0.24) 0.81 (0.81)
MPWB1K 0.006 (0.006) 0.016 (0.016) 0.012 (-0.012) 0.38 (0.31) 1.09 (1.09)
BP86 0.028 (-0.028) 0.051 (-0.051) 0.014 (0.014) 1.58 (1.46) 0.11 (0.11)
PW91 0.038 (-0.038) 0.038 (-0.038) 0.012 (0.012) 1.44 (1.21) 0.29 (0.29)
XLYP 0.040 (0.040) 0.028 (0.028) 0.011 (0.011) 0.53 (0.49) 0.37 (0.37)
BLYP 0.031 (0.031) 0.015 (0.015) 0.009 (0.009) 0.69 (0.64) 0.37 (0.37)

3.4.3. Geometry

Now aiming to answer the question how good are the structures predicted by each DFT
xc functional, five key structural parameters of the H2O clusters that are evaluated here:
(i) The distance between adjacent oxygen atoms involved in a H-bond, RO-O; (ii) The
length of a H-bond, given by the distance between the donor H and the acceptor O,
RO···H = Rhb (Fig. 3.1); (iii) The H-bond angle, ∠(O · · ·H-O) = ϕ (Fig. 3.1); (iv) The
internal O-H-bond lengths of each water, RO-H; and (v) The internal H-O-H angle of
each water, ∠(H-O-H) = θ (Fig. 3.1). In Table 3.2 the mean absolute error (MAE)
and mean error (ME) between the MP2 values and those obtained from each functional,
averaged over all four clusters, are listed for each of the above parameters. This provides
an immediate overview for how the functionals perform. Summarizing the results of this
table, X3LYP, BH&HLYP, B3LYP, and MPWB1K perform the best for O-O distances.
All those functionals yield results that are essentially identical to MP2, coming within
estimated MP2 bond distance error bar of 0.01 Å. B3P86 is the worst functional in terms
of O-O distances, with a MAE of 0.04 Å. Largely, these conclusions hold for the related
quantity, Rhb, although now B3P86, BP86, and PBE perform worst with MAE values of
∼0.05 Å. In terms of the H-bond angle, ϕ, X3LYP, B3LYP, PW6B95, MPWB1K, and

50



3.4. Results

BH&HLYP are essentially identical to MP2 coming within estimated MP2 error bar for
angles of 0.5◦ and again PW91, PBE, and BP86 are the worst being ∼1.5◦ away from
MP2. For the internal O-H-bond lengths no functional is worse than ∼0.015 Å and for
the internal H-O-H angles, θ, all functionals are within ∼1.5◦ of MP2.
One specific aspect of the structures of the small cyclic water clusters examined here,

that is known from experiment and previous calculations [170, 218] is that the average
O-O distances between the H2O molecules in the clusters shorten as the cluster size
increases. This trend is, of course, related to the cooperative enhancement in H-bond
strengths discussed already. As can be seen from the plot of computed O-O distances
versus cluster size in Fig. (3.3(b)) all functionals correctly capture this effect: the ∼0.2
Å shortening in the O-O bond distances upon going from dimer to pentamer predicted
by MP2 is also captured by every DFT functional. To look at this issue more closely and
specifically to examine how each functional varies with respect to MP2, the difference be-
tween the MP2 and DFT O-O distances for the four clusters are plotted in Fig. (3.3(c)).
Positive values in Fig. (3.3(c)) indicate that the DFT O-O bonds are longer than the
MP2 ones. To be noted here that the average MP2 O-O distances for the dimer, trimer,
tetramer and pentamer are 2.907, 2.787, 2.732, and 2.716 Å, respectively. As indicated
already in the previous discussion, X3LYP, B3LYP, BH&HLYP, and MPWB1K perform
the best at predicting the correct O-O bond length for each cluster; coming within 0.01
Å of the MP2 values on every occasion. Indeed the consistent closeness of the X3LYP
O-O distances to the MP2 ones is remarkable. PBE0 is a little worse than X3LYP for the
O-O distances, predicting bonds which are consistently about 0.02-0.03 Å too short. Of
the other functionals B3P86 stands out as predicting the shortest O-O distances (always
∼0.04 Å less than MP2) and XLYP and BLYP predict the longest O-O distances, always
at least 0.02 Å longer than MP2.

3.4.4. Requirement for Large Basis Sets

Here of the functionals tested X3LYP and PBE0 are found to offer exceptional perfor-
mance for the HBs in small water clusters in their global minimum energy structures.
However, a previous benchmark study on the ability of most of the functionals considered
here to describe the energetics of HBs between water molecules has arrived at somewhat
different conclusions [191]. Specifically, a MAE of 19.5 meV/H-bond has been reported
for PBE0, worse than the MAE of 3.6 meV/H-bond obtained here. In addition, MAEs
of 5-7 meV/H-bond have been reported with the PW6B95, MPWB1K, and B98 func-
tionals, suggesting improved performance for these functionals over what is found here.
In that study the so-called MG3S basis set (identical to 6-311+G(2df,2p) for H2O) was
used. By comparing the performance of the above-mentioned functionals with the MG3S
and the aug-cc-pV5Z basis sets for the four clusters under consideration here it appears
that the incompleteness of the MG3S basis set is the main reason for the small discrep-
ancy. The results, illustrated in the histogram in Fig. (3.4), reveal that the dissociation
energies obtained with the MG3S basis set are consistently ∼18 meV (0.42 kcal/mol)
per H-bond larger than those obtained with the aug-cc-pV5Z basis set. Thus although
PW6B95, MPWB1K, and B98 perform well with the MG3S basis set (all within ±7
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Figure 3.4.: Mean error (ME) in the dissociation energies obtained with aug-cc-pV5Z and
MG3S basis sets for five selected functionals for the four clusters examined here. Positive values
correspond to an average overestimate of the dissociation energy compared to MP2 for the
clusters. All errors are measured relative to the reference CBS MP2 values calculated here.

meV/H-bond of MP2 for the clusters considered here), they all exhibit a propensity to
underbind when the more complete aug-cc-pV5Z basis set is used. Conversely, PBE0 and
one other functional tested, mPWLYP, which predict too strong HBs with the MG3S
basis set (MAEs of 18.1 and 22.3 meV/H-bond for the PBE0 and mPWLYP functionals,
respectively, for the clusters examined here) actually perform very well with the more
complete aug-cc-pV5Z basis set (MAEs of 3.6 and 5.0 meV/H-bond for the PBE0 and
mPWLYP functionals, respectively). The small and systematic overbinding due to the
incompleteness of the MG3S basis set has also been pointed out by Csonka et al. [210].

3.4.5. Relevance to Other H-bonded Systems

It is important to know if the results and conclusions arrived at here are of general rele-
vance to H2O molecules in other environments and to other types of H-bonded systems.
Some parallels with DFT simulations of liquid H2O can be seen. It is generally found, for
example, that (when everything else is equivalent) BLYP liquid H2O is less structured
(i.e., the first peak of the O-O radial distribution function (RDF) has a lower maximum)
than PBE liquid H2O [12, 19, 179–181]; consistent with the weaker HBs predicted by
BLYP compared to PBE. Similarly, the first simulations of liquid H2O with hybrid DFT
functionals (B3LYP, X3LYP, and PBE0) have recently been reported [19] and the trend
in the position of the first peak in the O-O RDF can be interpreted as being consistent
with the current observations. Specifically it was found (although the error bars are large
because the simulations were short (5 ps)) that the position of the first peak in the O-O
RDF moves to shorter separation upon going from B3LYP to X3LYP to PBE0, which
is consistent with the small decrease of the O-O distances (Fig. (3.3(b))) and increase
in H-bond strengths along this series (Table 3.1). Looking at other H-bonded systems
with slightly stronger (for example, NH3 · · ·H2O) or slightly weaker HBs (for example,
NH3 · · ·NH3) than those considered here it is known, for example, that PBE generally
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overestimates these H-bond strengths slightly: PBE overestimates NH3 · · ·H2O by ∼30
meV and NH3 · · ·NH3 by 6 meV [120]. Likewise, BLYP and B3LYP have been shown
to underestimate a range of H-bonded systems by 20-30 meV/H-bond [119]. However,
the general performance of X3LYP and PBE0 for other H-bonded systems has not been
evaluated yet in any great detail with suitably large basis sets. In light of the present re-
sults it will be interesting to see how well these functionals perform for other H-bonded
systems. Likewise mPWLYP and PBE1W are not widely used. Since they are pure
GGAs (without any contribution from HF exchange) they will offer computational sav-
ings compared to X3LYP and PBE0, particularly for condensed phase simulations, and
would thus be interesting to explore further for other H-bonded systems.

3.5. Summary

In summary, MP2 CBS values for the dissociation energies of small H2O clusters (dimer
to pentamer) in their global minimum energy structures were computed. This data has
been used to evaluate the performance of 16 DFT functionals. All DFT energies reported
here have been obtained with an aug-cc-pV5Z basis set, which for DFT is sufficiently large
to enable the true performance of each functional to be assessed, absent from significant
basis set incompleteness errors. Among the functionals tested it is found that PBE0
and X3LYP perform best for the energetics of the HBs considered here; always being
within 10 meV/H-bond of MP2. In terms of the structures X3LYP offers outstanding
performance, predicting structures essentially identical to MP2 for all four clusters. Of
the pure GGAs considered mPWLYP and PBE1W perform best. A small but non-
negligible difference in the results obtained with PBE and PW91 has been identified,
with PBE consistently being 12-14 meV/H-bond closer to MP2 than PW91.
In closing it should be noted that, although X3LYP and PBE0 predict the most

accurate H-bond energies, it is important to remember that all functionals considered
here do reasonably well. If, for example, one’s definition of “good” is so-called chemical
accuracy (1kcal/mol ≈ 43 meV/H-bond) then it is clear from Fig. (3.3(a)) that all
functionals achieve chemical accuracy for all clusters. The problem is, of course, that
for bonds as weak as HBs, chemical accuracy is a rather loose criterion since it amounts
to around 20-30% of the total bond strength.
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4. Water Hexamers: The Importance of
van der Waals Interactions

4.1. Introduction

Having obtained the accurate performance of various DFT xc functionals for the equi-
librium structures of the water dimer to pentamer, the study is extended to the water
hexamers. The water hexamer is extremely interesting and warrants particular atten-
tion because it provides a critical test for DFT xc functionals. This is mainly because
there are four distinct isomers of the water hexamers, which are energetically within
10-20 meV/H2O of each other. The isomers are known most commonly as the “prism”,
“cage”, “book”, and “cyclic” isomers (Fig. (4.1)). Which one has the lowest energy on
the Born-Oppenheimer potential energy surface with or without corrections for zero
point vibrations or the experimental ground state structure at finite temperature has
been a matter of debate for some time [118, 159, 192, 199, 219–225]. This chapter
is focussed exclusively on the question of the lowest total energy isomer without zero
point corrections, for which a consensus from wave function based methods appears to
have emerged recently in favor of the prism isomer as being the lowest energy structure
[159, 192, 199, 224, 226]. How many of the widely used xc functionals such as PBE,
BLYP, and B3LYP perform for the relative energies of these isomers remains unclear,
although there are indications that these and other DFT xc functionals are likely to
encounter problems for the hexamer [162, 178, 227, 228]. Other often cited reasons for
being interested particularly in water hexamers are that they represent a transition from
cyclic structures favored by smaller water clusters to 3D structures favored by larger
water clusters. And, that water hexamers are believed to be important constituents of
liquid water and known to be building blocks of various phases of ice [5].
In this chapter the ability of several popular xc functionals to describe the energies

and structures of the four water hexamers mentioned above is addressed. Comparisons
are made with reference data generated here with 2nd order Møller-Plesset perturbation
theory (MP2) at the complete basis set (CBS) limit. The total energy ordering (i.e.,
neglecting zero point energies and finite temperature effects) predicted by MP2 and
DMC is the same and in the order prism<cage<book<cyclic. However, all popular
and widely used xc functionals tested fail to predict the correct ordering of the isomers,
instead, they opt for either the book or cyclic isomers as the lowest energy ones. This
discrepancy is largely attributed to the inability of DFT to correctly capture the van
der Waals (vdW) interaction between widely separated molecules in the clusters. By
including a empirical C6R

−6 correction we are able to explain the origin of the failure of
the tested xc functionals and recover the correct energetic ordering between the different
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Prism Cage

Book Cyclic

Rhbf

q

Figure 4.1.: Structures of the four isomers of the water hexamer considered here (obtained with
MP2 and an aug-cc-pVTZ basis). The dashed lines indicate HBs, with the conventional number
of HBs each cluster is assumed to have (prism = 9; cage = 8; book =7; and cyclic = 6). Some
of the structural parameters discussed in the text are included alongside the cyclic structure.

conformers.

The remainder of this chapter contains a brief description of the computational details
in section 4.2 and details of the DFT and MP2 results in section 4.3. Analysis with many-
body decomposition and DFT+vdW dissociation energies are described in the following
section 4.3.4 and 4.3.5. Conclusions are summarized in section 4.4.

4.2. Computational Details

In order to generate accurate MP2/CBS dissociation energies of the hexamers the same
methodology is employed as described in chapter 3.2. To judge the performance of the
DFT xc functionals a smaller subset of the tested functionals in chapter 3.3 is used
here with same computational protocol. Dissociation energies per H-bond of the clusters
are calculated as Eq. 5.4. and since the number of HBs is different for each isomer1

dissociation energies per water are also calculated.

1For these hexamers it is invariably assumed that the prism, cage, book, and cyclic isomers have 9,
8, 7, and 6 H-bonds, respectively, [118, 192, 224]. In Fig. 4.1 these conventional H-bond numbers
are used. However, it is interesting to note that upon inspection of the optimized MP2 and DFT
structures of the four hexamers and employing several standard geometric definitions of HBs between
water molecules it is found that the number of HBs counted depends sensitively on which definition
is used.
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4.2.1. van der Waals Correction

It is well known that most popular xc functionals generally show unsatisfactory perfor-
mance for van der Waals (vdW) forces, which inherently arise due to non-local correla-
tions [160, 229, 230]. An accurate and efficient estimation of vdW forces in conjunction
with DFT xc functionals is not straightforward and is currently a matter of widespread
discussion. Some of the approaches which have been popular with a certain degree of
success for molecules as well as condensed phases are the following: (i) explicit addition
of a pair-wise C6R

−6 correction [231–234]; (ii) DFT xc functionals explicitly accounting
for non-local correlation [235]; (iii) using maximally localized Wannier functions [236];
(iv) modified pseudopotentials [237]; and (v) interaction of the instantaneous dipole
moment of the exchange hole [238].

Here the first method is employed, which is fairly simple, however, consistently accu-
rate results have been obtained with the C6R

−6 correction and it has a well established
physical basis [239]. The C6R

−6 correction method was early proposed for correcting
HF calculations [240], and specifically applied to DFT by Wu and Yang [231], Grimme
[232] and Jurečka et al. [233]. With this approach the pairwise vdW interaction (Edisp)
is calculated by:

Edisp = −
∑
j>i

fdamp(Rij , R
0
ij)C6ijR

−6
ij , (4.1)

where, C6ij are the dispersion coefficients for an atom pair ij, Rij is the inter-atomic
distance, R0

ij is the sum of equilibrium vdW distances for the pair, and fdamp is a damping

function. The damping function is needed to avoid the divergence of the R−6
ij term at

short distances and reduces the effect of the correction on covalent bonds. As used by
many, a Fermi-type function fdamp is chosen, which is given as

fdamp(Rij , R
0
ij) =

(
1 + exp(−d( Rij

SrR0
ij

− 1))

)−1

, (4.2)

where d determines the steepness of the damping function (the higher the value of d, the
closer it is to a step function), and sR reflects the range of interaction covered by the
chosen DFT xc functional [233].

The success of this approach solely relies on the choice of the parameters mentioned
above and two different sets of parameters are used here. In the first set all the parame-
ters are obtained from empirical fitting to some database. C6 coefficients are taken from
the work of Wu and Yang [231], which were empirically fitted to the accurate molecular
C6 coefficients. R0

ij values are taken from Bondi’s vdW radii [241]. More precisely, for

the atom pairs the following radii and vdW coefficients (in a.u.) are used: R0
H−H = 4.54,

R0
O−O = 5.74, R0

O−H = 5.28, C6H−H = 2.78, C6O−O = 12.14, and C6O−H = 5.67. The
value of d was set to 20 and sR is 0.80 for BLYP, 1.00 for PBE and 1.03 for PBE0.
These values of d and Sr were obtained by fitting to the intermolecular binding energies
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of the S22 database2 at the CBS limit for all DFT xc functionals3 In this case vdW
corrected calculations were performed using plane-wave CPMD [242] code with hard
pseudopotential of Goedecker et al. [150] with an energy cutoff of at least 200 Ry.

The second set of parameters employed is from the scheme by Tkatchenko and Scheffler
(hereby denoted as TS) [234]. The major improvement in the TS scheme comes from
the fact that C6ij and R

0
ij coefficients can be derived self-consistently from DFT electron

density. Thus, the C6 coefficients become functionals of the electron density (n). This
also allows subtle necessary variation in the C6[n] coefficients depending on the molecular
environment without any empirical fitting. The scheme involves three key elements:
(i) Hirshfeld partitioning of the electron density to calculate the relative polarizability
of an atom inside a molecule; (ii) The use of very accurate reference free-atom static
dipole polarizabilities and C6 coefficients, calculated with converged wavefunction-based
methods; and (iii) Accurate combination rules to derive heteronuclear C6 coefficients
from static dipole polarizabilities and C6 coefficients of homonuclear atoms. The scheme,
which turns out to be very accurate (5.6% mean absolute relative error on a database
of 148 experimental C6 coefficients), is implemented in the FHI-aims code [138]. It is
found that this is particularly important for water clusters where H atoms participating
in a H-bond can yield different values of C6 and R0 from those not involved in a H-bond
(and from the values used in empirical schemes). The only parameter that needs to be
fitted though for the choice of DFT xc functionals is Sr. The fitting is done again on
S22 database [243] and optimized values of Sr turned out to be 0.62, 0.94, and 0.96
for BLYP, PBE, and PBE0 functionals respectively. Calculations with this scheme are
performed using the FHI-aims code [138] and NAO basis till tier3. Convergence tests of
the NAO basis set is described in Appendix B.

Since three different basis sets (Gaussian, plane-waves, and NAO) are used, care has
been taken about the convergence of the results using each of basis set and a comparison
of the results using the three different basis sets is also illustrated in Appendix C.

4.3. Results

First, MP2 reference data are presented and discussed in comparison with CCSD(T) and
diffusion Monte Carlo (DMC). Following this the accuracy of the 12 xc functionals are
evaluated. Later, a many-body decomposition of the total dissociation energies as well
as details of the importance of accounting for vdW forces are discussed.

2The S22 database contains several H-bonded, vdW bonded and mixed bonded dimer structures. More
details can be found in Ref. [233].

3Also by fitting to reproduce the MP2 2-body energies of 48 dimers (obtained from four hexamers)
starting from BLYP, parameters are scanned over the range 0.8 ≤ sR ≤ 1.5 and 20 ≤ d ≤ 40.
Interestingly, the set of parameters which yielded the smallest MAE for the 48 dimers are sR = 0.82
and d = 20, which are nearly the same as those found from the S22 databse.
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Table 4.1.: Dissociation energies of the four water hexamers obtained from various elec-
tronic structure approaches: MP2/CBS; diffusion quantum Monte Carlo (DMC) (Ref. [158]);
CCSD(T)/CBS (Ref. [226]); 12 different DFT exchange-correlation functionals computed, unless
indicated otherwise, with an aug-cc-pV5Z basis set; and HF at the CBS limit. The most stable
isomer from each method is indicated in bold and the relative energies of the other isomers are
given in parenthesis. Mean errors (ME) and mean absolute errors (MAE) in dissociation energies,
averaged over the four hexamers in comparison with MP2 are also given. All structures were
optimized consistently with MP2, HF and each DFT functional with an aug-cc-pVTZ basis set.
DFT xc functionals are arranged here with increasing value of MAE from MP2. All values are
in meV/H2O (1kcal/mol = 43.3641 meV).

Method Prism Cage Book Cyclic MAE ME

MP2 332.3 331.9 (0.4) 330.2 (2.1) 324.1 (8.2) — —
DMC 331.9 329.5 (2.4) 327.8 (4.1) 320.8 (11.1) — —

CCSD(T) 337.6 336.1 (1.5) 332.4 (5.2) 324.4 (13.2) — —
PBE0 322.9 (8.0) 325.3 (5.7) 330.9 330.8 (0.1) 5.9 -2.1

mPWLYP 323.2 (10.4) 325.9 (7.7) 333.6 333.3 (0.3) 6.9 -0.6
X3LYP 317.2 (8.8) 319.2 (6.8) 325.8 (0.2) 326.0 8.5 -7.6
PBE1W 315.2 (6.9) 314.8 (7.3) 322.1 321.5 (0.6) 11.3 -11.3
PBE 336.1 (9.5) 339.4 (6.2) 345.6 344.1 (1.5) 11.7 11.7
B98 305.3 (7.3) 306.8 (5.8) 312.6 312.5 (0.1) 20.4 -20.4
TPSS 303.9 (12.8) 302.8 (13.9) 313.6 (3.1) 316.7 20.4 -20.4
PW91 351.4 (10.2) 354.7 (6.9) 361.6 360.3 (1.3) 27.3 27.3
BP86 294.9 (13.6) 297.4 (11.1) 308.5 306.6 (1.9) 27.8 -27.8
B3LYP 294.4 (12.3) 297.1 (9.6) 305.1 (1.6) 306.7 28.8 -28.8
XLYP 287.9 (10.0) 286.9 (11.0) 296.3 (1.6) 297.9 37.4 -37.4
BLYP 273.6 (16.2) 277.4 (12.4) 287.5 (2.3) 289.8 47.6 -47.6
HF 222.9 (12.2) 224.4 (10.7) 230.6 (4.5) 235.1 101.4 -101.4

4.3.1. Reference Dissociation Energies: MP2

Following the procedure outlined above, MP2 dissociation energies at the CBS limit
are obtained for the prism, cage, book, and cyclic hexamers of 332.3, 331.9, 330.2, and
324.1 meV/H2O, respectively (see Table 4.1)4. Thus with MP2 the prism is the most
stable structure and the energetic ordering of the isomers is prism<cage<book<cyclic.
Note that this is consistent with the previous MP2/CBS study of the water hexamer
reported by Xantheas et al. [192]5 The DMC calculations also have found the prism

4It is somewhat difficult to determine the precise “error bar” associated with calculated MP2/CBS esti-
mates. However, as noted before (chapter 3) through comparisons of MP2/CBS and CCSD(T)/CBS,
the error [due to MP2 (valence only) treatment of correlation, aug-cc-pVTZ structures, extrapolation
to reach the CBS, etc.] is not likely to be more than 5 meV/H-bond.

5All the dissociation energies calculated here come within ∼1.3 meV/H2O of Ref. [192]. These differ-
ences are small. Most of it can be attributed to the use of different extrapolation methods. Applying
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to be the most stable isomer and predict the same energetic ordering as MP2 [158].
Clearly, the cyclic is the least stable isomer while the prism and the cage isomers appear
energetically very close as they only differ by about two standard errors. Moreover, the
absolute dissociation energies obtained with MP2 are within 4 meV/H2O of DMC for
all four clusters (Table 4.1). The sequence prism<cage<book<cyclic is also consistent
with recent CCSD(T) calculations [159, 199], and the absolute binding energies from
CCSD(T) [226] are some 1-6 meV/H2O larger than MP2/CBS dissociation energies
calculated here. Therefore, it is clear that all the explicitly correlated wave function
based methods [MP2, DMC, CCSD(T)] predict the same low energy structure – prism –
and the same energetic ordering: prism<cage<book<cyclic. With this consensus from
different methods now it seems that the question of which isomer is the lowest energy
on the Born-Oppenheimer potential energy surface (in the absence of contributions from
zero point vibrations) is resolved in favor of the prism, and that suggestions to the
contrary are not correct [162]. There remain, of course, minor differences in the relative
energetic ordering of some structures on the order of 5 meV/H2O [notably CCSD(T)
predicts particularly unstable book and cyclic structures compared to MP2, with DMC
being in between]. Resolving such small remaining differences is beyond the scope of
the current study, which instead now focuses on how the various DFT functionals do in
describing the energies and structures of these clusters.

4.3.2. DFT Dissociation Energies

Considering now the results obtained with the various DFT xc functionals, the key
questions to be answered are: (i) if the DFT xc functionals tested are able to predict the
correct energetic ordering of the four hexamer isomers; and (ii) what are the absolute
errors in the total dissociation energies for each of the isomers. The answer to the
first question is simple. All popular and widely used functionals tested fail to predict
the correct minimum energy isomer. Instead of identifying the prism as the minimum
energy conformer, all xc functionals tested either opt for the cyclic or book conformers
(Table 4.1). This includes the X3LYP and PBE0 functionals, which, in the previous
chapter, were identified as the most accurate xc functionals of those tested on the global
minimum structures of small water clusters. It is somewhat discouraging that most of
the xc functionals tested despite being immensely popular for liquid water simulations,
fail to predict the correct low energy structure for a system as seemingly simple as six
water molecules. However, the failure is not entirely unexpected given that according
to the wave function methods all four structures are so close in energy (within 10-15
meV/H2O).

With regard to the second issue of how well the functionals perform at predicting the
absolute binding energies of the clusters, the best functionals are PBE0, mPWLYP, and

the extrapolation scheme used by Xantheas et al. [192] (extrapolating the dissociation energies with
a 4, 5 polynomial and taking double-, triple-, quadruple, and pentuple-ζ values) the dissociation
energies obtained by us (Xantheas) are 331.54 (331.45), 331.19 (330.94), 329.59 (329.63), and 324.19
(324.22) meV/H2O for the prism, cage, book, and cyclic, respectively. Thus when the same extrap-
olation scheme is used results agree to within 0.3 meV/H2O.
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X3LYP, producing mean absolute errors (MAE) averaged over the four clusters of 6, 7,
and 9 meV/H2O. PBE and PW91 produce errors of 12 and 28 meV/H2O, respectively.
B98 and TPSS both have a MAE of 20 meV/H2O. B3LYP and BLYP under-bind by
∼29 and ∼48 meV/H2O, respectively. All of these conclusions are largely consistent
with the previous study on smaller water clusters (chapter 3).
Looking more closely at how the functionals perform for specific clusters, in Fig.

4.2(a) and 4.2(b) the difference between each functional and MP2/CBS (∆Dn
e ) for all

four isomers are plotted. Since each cluster nominally has a different number of HBs,
and a general interest is also in the description of HBs, in Fig. 4.2(b) the error per
H-bond for each of the clusters are plotted. Fig. 4.2 proves to be very illuminating and
from it the following key conclusions are extracted: (i) Upon moving from the prism
to the cyclic isomer (as plotted in Fig. 4.2), all xc functionals display a trend towards
increased binding; (ii) Most functionals underbind the prism, with PBE and PW91 being
the only exceptions; (iii) As shown before for the dimer to pentamer (chapter 3), here also
BLYP performs consistently when the error per H-bond is considered, coming around
∼35 meV/H-bond off MP2. Likewise XLYP yields very similar errors for all four isomers
when considered on a per H-bond basis. Later on these conclusions will be discussed
further.
Another interesting finding is that the calculations on different water hexamers agree

within 0.1 meV/H2O between the all-electron Gaussian03 and FHI-aims codes and within
1.5 meV/H2O between Gaussian03 and the pseudopotential plane-wave CPMD code
(Table C.1). The latter value is most probably due to the difference in treatment of
core electrons, however this difference is still very small for all practical purposes. This
level of agreement is also achieved for the smaller clusters (dimer to pentamer) in their
equilibrium geometries (Table C.1). This again reinforces that the basis sets employed
here are sufficiently large to reflect the true performance of a given xc functional, absent
of basis set incompleteness errors.

4.3.3. Geometry

Let us now consider the quality of the geometrical predictions made by the various xc
functionals. The five key structural parameters of the H2O clusters (some of them are
shown in Fig. 4.1) evaluate are: (i) The distance between adjacent oxygen atoms involved
in a H-bond, RO-O; (ii) The length of a H-bond, given by the distance between the donor
H and the acceptor O, RO···H = Rhb (Fig. 4.1); (iii) The H-bond angle, ∠(O · · ·H-O) = ϕ
(Fig. 4.1); (iv) The internal O-H-bond lengths of each water, RO-H; and (v) The internal
H-O-H angle of each water, ∠(H-O-H) = θ (Fig. 4.1).
In Table 4.2, the MAE and ME of each xc functional compared to MP2 and averaged

over all four clusters are reported. This provides a broad overview of how each func-
tional performs, revealing that for structural predictions X3LYP is the most accurate
functional. X3LYP outperforms all other functionals for almost all structural parame-
ters considered with an average error of only 0.02 Å for the bond lengths and 0.5◦ for
the bond angles. Considering the predicted O-O distances, on average, X3LYP, mP-
WLYP, PBE1W, TPSS, B98, B3LYP, BLYP, and XLYP predict slightly longer (0.008
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Figure 4.2.: Difference in the dissociation energy (∆Dn
e ) in (a) meV/H2O and (b) meV/H-bond

between the various DFT xc functionals and MP2. In (b) the generally accepted number of HBs
in the prism, cage, book, and cyclic isomers of 9, 8, 7, and 6, respectively, have been used.
Positive values correspond to an over-estimation of the dissociation energy by a given DFT xc
functional. To note that the reference MP2 dissociation energies are at the CBS limit whereas
for the DFT xc functionals an aug-cc-pV5Z basis set has been employed. Lines are drawn to
guide the eye only.

to 0.082 Å) distances, whereas, PBE0, PBE, BP86, and PW91 produce slightly shorter
O-O distances (0.017 to 0.034 Å). This conclusion also holds for the related quantity
Rhb. For the O-H-bond length, RO-H, on average all functionals perform reasonably well
coming within 0.02 Å. In particular the results for X3LYP, PBE0, B98, and B3LYP are
nearly identical to MP2. For the internal H-O-H angle θ, the MAE from all the func-
tionals is within ∼1.0◦. Finally, for the H-bond angle, ϕ, X3LYP, B3LYP, PBE0, and
mPWLYP perform the best, all coming within 1.0◦. For this quantity, however, several
functionals exhibit quite large discrepancies. Specifically, XLYP, PBE1W, and TPSS
yield average MAEs of 3.7◦, 3.9◦, and 6.0◦, respectively. Going from cyclic to book to
cage to prism, the H-bond angles in the clusters become increasingly non-linear (179◦

for cyclic, ∼160◦ − 170◦ for book, ∼152◦ − 166◦ for cage, and ∼135◦ − 168◦ for prism)
and it appears that certain xc functionals struggle to reliably describe such non-linear
HBs. Indeed closer inspection reveals that the largest errors in ϕ are encountered for
the prism isomer. In this isomer there are two water molecules that are each involved in
donating two hydrogen bonds (the molecules labeled dd for double donor in Fig. 4.3),
and according to MP2 the HBs these molecules donate are very bent (i.e., values of ϕ
∼135◦). Several of the xc functionals fail to describe these very non-linear essentially
putative HBs, and for one or both of the waters in the prism sacrifice a single very
non-linear H-bond to enable the other to become more linear and hence stronger (Fig.
4.3). TPSS fails for both double donor water molecules and PBE1W and XLYP fail
to describe one of them. The limitations of functionals such as those considered here
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Table 4.2.: Mean absolute error (MAE) of the various DFT functionals from MP2 for five differ-
ent structural parameters, averaged over the four water hexamers examined here. The numbers
in bold all have MAE ≤0.010 Å for bond lengths and ≤0.50◦ for bond angles. Mean errors (ME)
are given in parenthesis. MP2 and DFT (and HF) structures were optimized consistently with
MP2 and with each DFT functional (and HF) with an aug-cc-pVTZ basis set. The DFT+vdW
structures were optimized with a numerical atom-centered basis set (FHI-aims code). The order
of the DFT xc functionals is the same as in Table 4.1.

∆RO-O (Å) ∆Rhb (Å) ∆RO-H (Å) ∆ϕ (◦) ∆θ (◦)

PBE0 0.023(-0.017) 0.028(-0.018) 0.002(0.000) 0.96(-0.01) 0.69(+0.69)
mPWLYP 0.021(+0.021) 0.019(+0.008) 0.013(+0.013) 0.95(-0.25) 0.49(+0.49)
X3LYP 0.009 (+0.008) 0.012(+0.009) 0.000(0.000) 0.48(-0.29) 0.98(+0.98)
PBE1W 0.062(+0.045) 0.096(+0.051) 0.011(+0.011) 3.98(-0.64) 0.32(+0.03)
PBE 0.032(-0.019) 0.055(-0.036) 0.014(+0.014) 1.87(+0.12) 0.24(+0.18)
PBE
+vdW

0.026 (-0.022) 0.044(-0.039) 0.012(+0.012) 1.11(+0.26) 0.21(+0.03)

B98 0.025(+0.025) 0.028(+0.028) 0.001(-0.001) 1.07(-0.20) 0.66(+0.66)
TPSS 0.094(+0.040) 0.155(+0.058) 0.011(+0.011) 6.03(-0.87) 0.58(+0.53)
PW91 0.039(-0.034) 0.060(-0.051) 0.014(+0.014) 1.59(+0.15) 0.36(+0.33)
BP86 0.032(-0.026) 0.055(-0.046) 0.016(+0.016) 1.65(+0.27) 0.28(+0.16)
B3LYP 0.019(+0.019) 0.020(+0.020) 0.000(+0.000) 0.61(-0.28) 0.89(+0.89)
XLYP 0.092(+0.082) 0.113(+0.091) 0.011(+0.011) 3.73(-0.99) 0.52(+0.52)
BLYP 0.039(+0.039) 0.029(+0.028) 0.012(+0.012) 1.29(-0.20) 0.39(+0.39)
BLYP
+vdW

0.030 (-0.026) 0.052(-0.044) 0.013(+0.013) 1.94(0.59) 0.63(+0.63)

HF 0.165(+0.165) 0.200(+0.200) 0.026(-0.026) 1.66(-1.39) 1.62(+1.62)

in describing non-linear putative HBs in water clusters has also recently been pointed
out by Shields and Kirschner [166]. There it was argued that vdW dispersion forces are
critical to the binding of such weak H-bond structures. More evidences will be shown
below in support of the above statement.

4.3.4. Many-body Decomposition of The Dissociation Energies

To identify precisely where the problem with the DFT xc functionals lies in correctly
describing the energetic ordering of the various isomers, a many-body decomposition of
the total dissociation energies of the hexamers is performed. This has involved decom-
posing the total interaction energy within the clusters into 1-body, 2-body, · · · , 6-body
contributions. Such many-body expansions have before proved useful in understanding
the binding in H-bonded clusters (including water clusters). A full description of the
procedure involved can be found in Refs. [244–247]. Very briefly, the total 1-body en-
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Figure 4.3.: Structures of the prism isomer optimized with MP2 and the PBE1W and TPSS
xc functionals. Dashed lines indicate HBs. For PBE1W one H-bond is broken and for TPSS two
HBs are broken, each broken H-bond being associated with a double donor (dd) water molecule.
The other HBs which get stronger as a result of the bond breaking are also indicated. A very
bent H-bond angle of 136◦ is also shown in the upper triangle of the PBE1W structure.

ergy is the energy cost incurred upon deforming all six monomers from the equilibrium
isolated monomer structure to the structures they assume in a given hexamer. The
total 2-body interaction energy is the sum of all possible dimer interactions within the
hexamer, i.e., the total energy (gain) to form all possible water dimers within a given
hexamer from each of its (deformed) monomers. The total 3-body interaction corre-
sponds to the energy (gain) to form all possible trimer combinations (excluding dimer
interactions inside the trimers), and so on for the 4-, 5-, and 6-body interactions. Such a
many-body decomposition for the prism and cyclic conformers are performed, since the
prism conformer is favored by the wave function approaches and the cyclic conformer is
favored by many of the DFT xc functionals. The decomposition, the results of which are
reported in Table 4.3, has been performed with MP2 (with an aug-cc-pV5Z basis set)
and with the X3LYP, PBE0, and BLYP xc functionals. To enable an exact comparison
between MP2 and the various xc functionals, absent of any contributions arising from the
slightly different structures obtained with the different approaches, the MP2 geometries
are used for all decompositions.

Let us first consider the MP2 reference data. For each cluster a small positive 1-body
energy of ∼17 meV/H2O is observed. The 2-body interaction is attractive (negative)
and at –244 meV and –283 meV/H2O for the cyclic and prism isomers, respectively,
comprises by far the largest contribution to the many-body expansion. The 3-body
interaction is also large and overall attractive: –84 and –64 meV/H2O for the cyclic and
prism structures, respectively. Indeed because of their magnitude the 2- and 3-body
interactions almost decide what the total dissociation energies are. The 4-, 5-, and 6-
body terms are all considerably smaller. These results are consistent with those reported
by Xantheas et al. [245] with a smaller basis set.

Turning attention towards the performance of the DFT xc functionals, first the two
more accurate xc functionals are considered for which the many-body decomposition
has been performed (PBE0 and X3LYP). For the 1-, 4-, 5-, and 6-body contributions,
reasonably good agreement with MP2 is found. As said before, these terms are small
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Table 4.3.: Many-body contributions to the total dissociation energies of the cyclic and prism
isomers as obtained fromMP2, X3LYP, PBE0, BLYP, and BLYP+vdW. For the MP2 many-body
decomposition an aug-cc-pV5Z basis set is employed and so the total MP2 dissociation energies
differ slightly from the MP2/CBS values given in Table 4.1. Likewise, to avoid complications
from the slightly different optimized structures obtained from MP2 and the DFT xc functionals,
the DFT many-body decompositions are performed on the optimized MP2 structures (with
an aug-cc-pV5Z basis set for the DFT energies). Values in the parenthesis are the difference
between each functional and the MP2 results. Negative values indicate a gain in energy, i.e.,
a net attraction when all the n-body interactions of a given class are summed up, and positive
values a net repulsion. All values are in meV/H2O.

Cyclic

MP2 X3LYP PBE0 BLYP BLYP+vdW

1-body +16.6 +12.9 (-3.7) +16.5 (-0.1) +2.4 (-14.2) +2.0 (-14.6)
2-body -244.2 -231.2 (+13.0) -240.8 (+3.4) -175.8 (+68.4) -227.8 (+16.4)
3-body -83.6 -92.1 (-8.5) -92.8 (-9.2) -97.7 (-14.1) -97.7 (-14.1)
4-body -16.0 -13.9 (+2.1) -8.1 (+7.9) -14.8 (+1.2) -14.8 (+1.2)
5-body +0.5 -1.7 (-2.2) -6.4 (-6.9) -1.9 (-2.4) -1.9 (-2.4)
6-body -0.9 +0.0 (+0.9) +1.2 (+2.1) +0.0 (+0.9) +0.0 (+0.9)
Total -327.6 -326.0 (+1.6) -330.4 (-2.8) -287.8 (+39.8) -340.2 (-12.6)

Prism

MP2 X3LYP PBE0 BLYP BLYP+vdW

1-body +16.7 +14.4 (-2.3) +17.3 (+0.6) +3.4 (-13.3) +3.2 (-13.5)
2-body -283.4 -263.6 (+19.8) -274.4 (+9.0) -191.8 (+91.6) -278.0 (+5.4)
3-body -63.8 -61.3 (+2.5) -59.3 (+4.5) -79.3 (-15.5) -79.3 (-15.5)
4-body -5.2 -7.6 (-2.4) -5.2 (0.0) -2.8 (+2.4) -2.8 (+2.4)
5-body -2.6 +1.4 (+4.0) -3.7 (-1.1) +0.1 (+2.7) +0.1 (+2.7)
6-body +2.2 -0.1 (-2.3) +2.5 (+0.3) +0.1 (-2.1) +0.1 (-2.1)
Total -336.1 -316.8 (+19.3) -322.8 (+13.3) -270.3 (+65.8) -356.7 (-20.6)
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and the difference between MP2 and the two xc functionals is typically ≪8 meV/H2O.
For the (larger) 3-body terms variable performance is observed with overbinding (8-9
meV) for the cyclic isomer and underbinding (3-5 meV) for the prism. It is for the 2-
body terms the largest deviations from MP2 is observed with a consistent underbinding
for each functional and cluster. Both PBE0 and X3LYP underestimate the 2-body
contribution in the prism isomer by 9 and 20 meV/H2O, respectively. And for the
cyclic isomer PBE0 and X3LYP underestimate the 2-body contribution by 4 and 13
meV/H2O, respectively. It is interesting that these errors are noticeably larger than the
1-2 meV/H2O errors obtained with these functionals for the equilibrium water dimer
[157]. Thus from the many-body analysis it is observed that these xc functionals yield
larger errors when describing the non-equilibrium dimer configurations present in the
various water hexamers, compared to the equilibrium water dimer. Upon inspection of
the errors associated with the individual dimer configurations within the hexamers it
is found that there is a systematic underbinding for dimers at intermediate separations
(O-O distances ∼3.0 – 5.0 Å) typical of vdW bonded complexes and also for certain
orientations of water molecules held together with very non-linear HBs. There are not
enough distinct dimer configurations within the hexamers to allow us to understand the
precise dependence of the 2-body error on orientation and H-bond angle. However, the
distance dependence of the underbinding is more clear and is something that will be
addressed now with a distance dependent vdW correction. Before moving it is noted
that the BLYP errors from the many-body analysis are consistently larger compared to
PBE0 and X3LYP, consistent with the generally inferior performance of this functional.
However, the main conclusion from the many-body analysis that the 2-body terms are
underbound (and are more poorly described than the equilibrium dimer) still holds.
Recently it was pointed out that many DFT functionals grossly overestimate many-
body interactions in vdW systems [248]. However, in the present case the combination
of electrostatic and vdW contributions does not allow to clearly discern which part is
responsible for the overbinding.

4.3.5. DFT+vdW Dissociation Energy

As mentioned earlier the inaccurate description of vdW interaction with standard xc
functionals are well known. Knowing from the previous section that the 2-body interac-
tion is underestimated with xc functionals here semi-empirical vdW correction is taken
in to account as described in section 4.2.1. The dissociation energies of the four hexamers
after applying the vdW correction with the PBE, PBE0 and BLYP functionals are shown
in Table 4.4. Also the total vdW interaction within each hexamer is reported. One can
see that the vdW correction is largest for the prism and cage structures and noticeably
less for book and cyclic structures; favoring the prism or cage over the cyclic or the book
structure. The new energetic orderings of the hexamers are thus in contrast to all pure
DFT functionals, which predict the book or cyclic structures to have the lowest energy
(Table 4.1), and in better agreement with the wave function based methods. The energy
difference between the most stable and the least stable hexamers is also in reasonably
good agreement with MP2 and DMC results (around 10-15 meV). Of the three func-
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Table 4.4.: Absolute values of vdW interaction energies and vdW corrected total dissociation
energies for the four water hexamers for three different xc functionals. The DFT structures
employed are fully relaxed geometries calculated with the FHI-aims code (the CPMD code gives
very similar numbers)For comparison the MP2/CBS results are also displayed. The energies of
the most stable isomers are indicated in bold and the relative energies of the other structures with
respect to the prism are given in parenthesis. MAE’s in total dissociation energies are calculated
from the MP2/CBS values averaging over the four hexamers. All numbers are in meV/H2O.

van der Waals interaction energy

Method Prism Cage Book Cyclic

BLYP+vdW 93.8 90.5 75.8 60.7
PBE+vdW 40.9 40.5 31.6 22.9

PBE+vdW-TS 31.9 32.2 23.7 15.8
PBE0+vdW 35.2 35.4 27.4 19.4

Total dissociation energy

Method Prism Cage Book Cyclic MAE

MP2 332.3 331.9 (0.4) 330.2 (2.1) 324.1 (8.2) —
BLYP+vdW 359.9 359.7 (0.2) 356.3 (3.6) 344.8 (15.1) 25.5
PBE+vdW 377.8 380.1 (-2.3) 377.8 (0.0) 367.3 (10.5) 46.1

PBE+vdW-TS 369.6 372.6 (-3.0) 370.6 (-1.0) 360.7 (8.9) 38.8
PBE0+vdW 360.6 361.9 (-1.3) 359.2 (1.4) 351.4 (9.2) 28.6

tionals to which the correction has been applied, the BLYP+vdW method gives the best
agreement with MP2. The MAE in the total dissociation energies for all four hexamers
is reduced from 15% to 8%. And, moreover, the correct energetic ordering of the four
isomers is recovered, i.e., BLYP+vdW predicts the sequence prism < cage < book <
cyclic. The results for BLYP+vdW are encouraging, however, it is important to note
that there remains an 8% error (a significant overbinding). In addition, the “success”
of BLYP+vdW is achieved at the expense of a smaller Sr parameter which shifts the
vdW minima to quite short distances (see Fig. 4.4). Also, the three-body contribution
of BLYP, unaffected by the pairwise vdW correction, shows substantial error. Thus, fur-
ther investigation is required to rule out fortuitous error cancellation for BLYP+vdW.
Nonetheless these findings for at least three different functionals support the suggestion
that the origin of the incorrect prediction of the energetic ordering of the water hexamers
lies in the absence of vdW dispersion forces in the functionals considered.

Results with the parameters obtained from TS scheme are also shown in Table 4.4. As
with the empirical correction scheme, the prism and cage structures are favored over book
and cyclic structures and it is encouraging that the overestimation in binding energies
with PBE+vdW is reduced by 7-8 meV/H2O for all isomers. This reduction is due to

67



4. Water Hexamers: The Importance of van der Waals Interactions

3.4 3.6 3.8 4 4.2
R [Å]

0

50

100

150

200

D
is

pe
rs

io
n 

[m
eV

]

O-O
H-H
O-H

0 1 2 3 4 5 6 7
R [Å]

-20

-15

-10

-5

0

D
is

pe
rs

io
n 

/ P
ai

r 
[m

eV
]

O-O
H-H
O-H

(a)

(b)

Figure 4.4.: (a) Variation in the dispersion contribution with distance from different atom pairs
with parameters for BLYP. (b) Inter-molecular dispersion interaction for the four isomers as a
function of the average inter-atomic distances of different atom pairs (on BLYP+vdW optimized
structures). Here black, red, green, and blue refer to prism, cage, book, and cyclic isomers,
respectively.

a larger effective vdW radius of the atoms participating in the HBs. This particular
scheme is employed comprehensively in chapter 6.

Having identified a lack of vdW dispersion forces as being at the heart of the incorrect
energy ordering of the various water hexamers, a detailed inspection is made to know
why the C6R

−6 correction scheme applied here works to alter the relative energies of
the four isomers. Since the empirical BLYP+vdW scheme recovers the correct ener-
getic ordering for the four hexamers a detailed analysis is carried out for this. First
the functional form of the specific empirical dispersion corrections applied in these sys-
tems is considered. These are displayed in Fig. 4.4(a) for the three individual types of
atom-atom interaction: O–O, O–H, and H–H. Dispersion forces are generally considered
to be long range and indeed the tails of all three vdW curves extend to beyond 4 Å.
However, the minima of the vdW curves with the specific parameters employed here
are located at considerably shorter distances: ∼2.80, ∼2.20, and ∼2.55 Å for the O–O,
H–H, and O–H curves, respectively. It is the location of these vdW minima relative to
the structures of the various isomers that leads to the revised energetic ordering of the
four isomers. In simplest terms the mean inter-molecular distances of the four clusters
decreases upon going from cyclic to book to cage to prism and so the magnitude of
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the dispersion correction decreases in the order prism to cage to book to cyclic, which
ultimately leads to the correct stability sequence prism to cage to book to cyclic. Con-
sidering this in more detail in Fig. 4.4(b) the contributions to the total inter-molecular
dispersion interaction in each cluster for each type of atomic pair interaction (O–O, H–
H, and O–H) are plotted as a function of distance6. It can be seen from the histogram
that the average inter-molecular O–O, O–H, and H–H distances steadily increase along
the sequence prism-cage-book-cyclic and that likewise the dispersion contribution de-
creases. Further, noted that by simply summing up the contributions from each type of
interaction in the hexamers it is found that the majority of the vdW correction comes
from H-H interactions (∼44-48%), followed by the O-H (∼22-32%) and then the O-O
(∼25-30%) interactions. The H–H interaction dominates simply because there are more
of them. For brevity the results of similar analysis performed for the PBE and PBE0
vdW corrections are not shown. However, the general conclusion that the vdW disper-
sion contribution favors the more compact prism and cage isomers over the less compact
book and cyclic isomers because the former are closer to the minima of the vdW curves
than the latter also holds for the PBE and PBE0 vdW corrections.

4.4. Discussion and Conclusions

Having presented a lot of data obtained with various approaches, in the following the
main results are summarized and discussed in a somewhat broader context. To begin,
there is the reference data itself, which has been acquired with MP2 and from this it
is concluded that the prism is the lowest total energy isomer for six water molecules
in the absence of contributions from zero point vibrations. This conclusion agrees with
the very recent DMC [158] and CCSD(T) results [158, 226]. There remain, of course,
minor differences in the relative energetic ordering of some structures on the order of 5
meV/H2O [notably CCSD(T) predicts particularly unstable book and cyclic structures
compared to MP2, with DMC being in between]. Again stressing that the ordering
arrived at here, prism < cage < book < cyclic, is the ordering obtained in the absence
of corrections for zero point contributions. It is known that zero point energies will
alter the relative energy spacings with indications that the cage becomes the most stable
isomer [222–224].

The main part of this chapter is concerned with using the reference data from the wave
function based methods to evaluate the performance of several DFT xc functionals. A
sub-set of the xc functionals previously tested for small water clusters [157] was consid-
ered. It was found that whilst certain functionals did a reasonable job at predicting the
absolute dissociation energies of the various isomers (coming within 10-20 meV/H2O),
none of the functionals tested predict the correct energetic ordering of the four isomers,
nor does any predict the correct lowest energy isomer. All xc functionals either predict
the book or cyclic isomers to have the largest dissociation energies. There have been

6The total intra-molecular O-H and H-H dispersion contributions are 0.6 and ∼ 13− 17 meV, respec-
tively. These are small compared to intermolecular contributions and remain almost constant for all
the hexamers and for brevity are not shown in Fig. 4.4.
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indications before that certain DFT xc functionals may not predict the correct lowest
energy structure for the water hexamer. BLYP, for example, was long ago shown to
favor the cyclic isomer [178]. Likewise X3LYP, B3LYP, and PBE1W have been shown
to favor the cyclic structure [159, 161]. Here, it is shown that several other popular xc
functionals fail to predict the correct lowest energy structure too, yielding results for
relative energies that are unreliable and misleading.

Furthermore, by attributing the failure to an improper treatment of vdW forces it
seems likely that many other semi-local and hybrid xc functionals which do not ac-
count for vdW in some way will also fail in this regard. By augmenting the BLYP
functional with an empirical pairwise C6R

−6 correction the correct energetic ordering
of the four hexamers is recovered. Equivalent empirical corrections to other functionals
(PBE, PBE0) also improves the ordering somewhat, favoring the prism and cage iso-
mers over the book and cyclic ones. Of course there are other means of incorporating
vdW dispersion forces implicitly into DFT xc functionals such as the approaches pio-
neered by Lundqvist and Langreth and Silvestrelli and others [235–238]. Subsequently,
two independent works using Lundqvist and Langreth method and wannier function by
Silvestrelli also reached to the same conclusion [249, 250]. Indeed on the general point
of benchmarking and accessing the performance of existing and new xc functionals for
the treatment of H-bonded systems, it seems that the water hexamer would be an ap-
propriate test case to add to existing H-bond test sets since it presents a stern challenge
for any xc functional. Reiterating that it is not suggested that all xc functionals which
do not account for vdW forces in one way or another are likely to fail to predict the
correct energy ordering for the water hexamer. Indeed Truhlar and co-workers have
very recently reported that a few empirical hybrid meta-GGA functionals achieve the
correct energetic ordering for the hexamers [159]. And, in agreement with Ref. [159]
calculations with the M05-2X [251] functional with an aug-cc-pVQZ basis set also find
the prism to be the lowest energy structure7. This looks like an exciting development
but what the precise reason for the success of the functionals tested is remains unclear
to us at present.

Finally, this chapter has focused on water clusters. Clusters often exhibit quite dif-
ferent properties from the corresponding bulk substance. However, it does not seem un-
reasonable to make some speculations about the relevance of the results presented here
to DFT simulations of liquid water. As indicated in the introduction, the simulation of
liquid water with DFT is by no means free from controversy [12, 17–19, 23, 179–181]. Of
the many functionals tested for liquid water, BLYP appears to provide comparatively
good agreement with experiment in terms of, e.g., the O-O RDF and diffusion coefficient
[17]. However, precise quantitative agreement with experiment for BLYP or, indeed, any
xc functional remains beyond reach. It seems likely that if an xc functional fails to pre-
dict the correct energetic ordering of the low energy isomers of the water hexamer then
similar errors will exist in describing the many more competing configurations of water

7The M05-2X [251] functional with a larger basis set (aug-cc-pVQZ) also find the prism to be the lowest
energy structure. Specifically, the dissociation energies are 353.5, 347.9, 339.9, and 333.1 meV/H2O
for prism, cage, book, and cyclic, respectively.
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clusters present transiently or otherwise in the liquid. Given that the hybrid xc function-
als PBE0 and X3LYP also fail for the hexamer, despite otherwise predicting equilibrium
H-bond strengths and structures for smaller water clusters in excellent agreement with
MP2 it seems likely that these functionals may not offer the promise anticipated for
liquid water [157]. Indeed a very recent PBE0 simulation for liquid water, which ran for
a reasonably respectable 10 ps, found that the PBE and PBE0 RDFs were essentially
indistinguishable [21]. Based on the forgoing results and discussion with unreliable re-
sults obtained for the hexamer the lack of a significant improvement in describing the
liquid is not entirely unexpected. It can be suggested instead that density-functional
methodologies which account for vdW dispersion forces are likely to offer more promise
in the quest to improve the description of liquid water. Again very recent MD simula-
tions of liquid water are consistent with this suggestion. Lin et al. have reported BLYP
simulations for liquid water corrected with a similar C6R

−6 correction scheme to the
one employed here (but with a different damping function) as well as a separate account
for vdW through the use of modified pseudopotentials [24]. These simulations indicate
that (at the experimental density and temperatures tested) accounting for vdW forces
lowers the peak maximum in the O-O RDF, and in so doing brings the experimental and
theoretical RDFs into better agreement. However, others have suggested that dispersion
interactions are not very important for liquid water under ambient conditions [252] and
so it appears that considerably more work is needed to address this issue.
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5. Water Clusters Extracted from DFT
Liquid Water: The Importance of
Monomer Deformations

5.1. Introduction

As already mentioned, DFT has been widely used to study liquid water. However, how
well DFT with popular exchange-correlation (xc) functionals such as PBE [113] and
BLYP [114, 116] performs in describing the structural and dynamic properties of liquid
water is a matter of more than a little contention. The debates, which are numerous,
have hinged on issues such as the radial distribution functions (RDFs) (in particular
the O-O and O-H RDFs), diffusion coefficient, and average number of hydrogen bonds
(HBs).
It is now clear that most standard DFT molecular dynamics (MD) simulations with

PBE and BLYP predict an overstructured RDF compared to experiment. By overstruc-
tured, it is mainly meant that the first peak in the O-O RDF (referred to as gmax

O−O) is
higher than experiment. Consequently the computed diffusion coefficient is too small
and the average number of HBs too large. Extended discussions on the magnitude and
origin of the overstructuring can be found in, e.g., Refs. [10–32]. In brief, some of the
relevant factors include: (i) The intrinsic error associated with a given xc functional
(including an improper account of van der Waals forces [24, 32, 158]); (ii) The omis-
sion of quantum nuclear effects [39, 253–256]; and (iii) The simulation protocol, with
relevant factors in this regard being: (a) number of water molecules in the simulation
cell [22]; (b) the density of the water within the cell [13–15]; (c) basis set [16, 257]; (d)
fictitious electron mass in Car-Parrinello MD simulations [258]; and so on. Since the
first DFT MD simulation of liquid water in 1993 [38], important strides have been made
to understand how each of the above factors impact upon the computed properties of
liquid water. However, simultaneously addressing all issues that could account for the
difference between the experimental and theoretical RDFs and diffusion coefficients is
not practicable, not to mention the uncertainties that are present in the experimental
data itself [8, 259, 260]. Therefore, it has become common to attempt to shed light on
the performance of DFT xc functionals for treating water by investigating well defined
gas phase water clusters for which precise comparison can be made to high level quantum
chemistry methods. This approach has been useful and allowed the intrinsic accuracy
of many xc functionals to be precisely established [119, 120, 153, 157–169], information
that may be of relevance to liquid water.
With few exceptions [153, 165–168], previous gas phase benchmark studies of water
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clusters have focussed on exploring equilibrium or other stationary point configurations
of the gas phase intermolecular potential energy surfaces. However, in the liquid the
structures of water clusters and even the water monomers themselves can be considerably
different from those of gas phase clusters. For example, the distribution of intramolecular
O-H bond lengths in the liquid ranges from ∼0.75 to ∼1.25 Å [8, 260]. Yet in gas phase
water clusters such as dimers to hexamers O-H bond lengths deviate by <0.05 Å from
the equilibrium water monomer O-H bond length of 0.96 Å [157, 158]. Whether or
not the performance of DFT xc functionals obtained from gas phase studies on water
clusters holds for the ‘deformed’ structures present in the liquid (referred to throughout
this chapter as ‘deformed’) remains an important open question. Indeed there is already
evidence that the benchmark reference data obtained from gas phase clusters does not
easily translate to the liquid. For example, BLYP predicts a dissociation energy for the
equilibrium gas phase water dimer that is 35 meV too small, yet at a water density of
1 g/cm3 it predicts a gmax

O−O that is about 5%-15% too high. Similarly, PBE predicts
the dimer dissociation energy to within 10 meV precision, yet yields an even greater
gmax
O−O than BLYP. Related to this, MD simulations of liquid water have shown that the
computed gmax

O−O can be considerably reduced if the O-H bonds in the water monomers
in the liquid are held rigid at some predefined bond length. Specifically, Allesch et
al. found that the PBE gmax

O−O decreased by ∼10% upon going from fully relaxed water

monomers to a liquid with monomer O-H bonds fixed at ∼1 Å [261]. Likewise, Leung
et al. have shown through a careful and systematic series of simulations that the length
of the O-H bonds for rigid water MD simulations directly correlates with gmax

O−O [262]: as
the intramolecular O-H bonds are allowed to lengthen, gmax

O−O increases.

The studies with rigid water and the realization that water monomer and cluster
structures in the liquid are likely to differ considerably from gas phase water clusters
has prompted to assess the performance of DFT xc functionals on water structures more
representative of those present in the liquid. This chapter reports herein on the ac-
curacy of three DFT xc functionals for various deformed monomers and dimers taken
from a PBE simulation of liquid water. Two of the most popular generalized gradient
approximation (GGA) xc functionals for liquid water simulations (PBE and BLYP) and
one of the most accurate hybrid functionals for small water clusters (PBE0 [129]) are
assessed here. As a reference, coupled cluster with single and double excitations plus a
perturbative correction for connected triples [CCSD(T)] is used with energies extrapo-
lated to the complete basis set limit (CBS). The CCSD(T) reference calculations reveal
that 75% of the dimers extracted from within the first coordination shell of the liquid
are unbound relative to two equilibrium (gas phase) water monomers. This is mainly
due to the large deformation of the monomers inside the liquid compared to the gas
phase equilibrium monomer structure. PBE and BLYP consistently underestimate the
cost of the monomer deformation, specifically, O-H bond stretching. As a consequence,
both PBE and BLYP systematically overbind the deformed dimers extracted from the
liquid, by as much as 80 and 43 meV, respectively. These errors are much larger than
the usual errors associated with these xc functionals for the gas phase equilibrium dimer
(chapter 3). In general, the performance of PBE0 is superior to the two GGAs but
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Figure 5.1.: (a) From a PBEMD simulation of liquid water, water dimers are extracted (e.g., the
highlighted dimer in yellow). Single point energy calculations are then performed with CCSD(T),
PBE, BLYP, and PBE0 on the deformed dimers (Edimer) and the constituent deformed monomers
(Ei, Ei′). These energies are then used to evaluate the electronic dissociation energy of the dimers
(Eq. 5.4) and the associated 1–body (Eq. 5.2) and 2–body (Eq. 5.3) energies. The deformation
of the monomers compared to a gas phase equilibrium monomer is also quantified with (Eq. 5.1).
(b) A schematic comparison of the structures of gas phase equilibrium monomers and dimers and
cartoons of their deformed counterparts from liquid.

noticeable errors are identified for all functionals including PBE0 for the particularly
long O-H bonds encountered at the shortest O-O separations. Although this study is
restricted to monomers and dimers (and in a sense resembles a highly limited cluster
expansion study of the liquid), the results reported here provide a possible explanation
for the overstructured RDFs routinely observed in BLYP and PBE simulations of liquid
water. The significance of these results to water in other phases and to other associated
molecular liquids is also briefly discussed.

5.2. Methods, procedures, and definition of parameters

Several methods have been employed to study the water clusters examined here. De-
scribed below are some of the relevant computational details, how the water monomers
and dimers are selected from the liquid, the definitions of the energetic, and structural
parameters used in the subsequent analysis.

5.2.1. Liquid water

To generate water monomer and dimer structures representative of those present in
liquid water a Born-Oppenheimer molecular dynamics simulation of 32 D2O molecules
in a periodic cubic box of length 9.8528 Å was performed with the CPMD code [242].
The PBE xc functional was used along with hard pseudopotentials of Goedecker et al.
[150] and an associated plane wave energy cut-off of 125 Ry. This simulation was run
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Figure 5.2.: (a) Distribution of the number of water dimers selected from the PBE MD simu-
lation of liquid water (plotted as bars) as a function of the O-O separations (RO−O) within the
dimer. (b) Distribution of the number of O-H bonds for the water monomers selected from the
liquid (plotted as bars). The dashed lines represent the corresponding O-O and O-H RDFs from
the same PBE liquid water simulation. Only dimers within the first coordination shell of liquid
water are considered here.

for 30 ps with an integration time step of 0.5 fs. A Nosé-Hoover chain thermostat1 was
used to maintain a target temperature of 330 K.

Water monomers and dimers were then extracted from the MD simulation. To get
an uncorrelated sample of structures, 6-7 dimers were selected each 2 ps over the last
20 ps of the MD trajectory. In total 66 bonded dimers were selected (comprising 92
individual monomers). The criteria followed for selecting dimers were that: (i) they were
from within the first coordination shell of the O-O RDF, i.e., all chosen O-O distances
(RO−O) are ≤3.4 Å; and (ii) the distribution of all 66 RO−O of the dimers resembles the
O-O RDF for the first coordination shell. Fig. 5.2(a) illustrates that the distribution of
dimers selected, which indeed resembles the computed O-O RDF from the MD simulation
reasonably well. As an independent check it is found that the distribution in the values
of the intra–molecular O-H bond lengths associated with all the selected water molecules
is also in reasonably good agreement with the first peak of the computed O-H RDF of
liquid water [Fig. 5.2(b)].

5.2.2. Clusters

The PBE water monomers and dimers extracted from the liquid water simulation were
then examined with a few DFT xc functionals and CCSD(T). Throughout this study

1A thermostat is required to maintain a target temperature in a canonical (NVT) sampling. It is known
that the standard Nosé-Hoover thermostat suffers from non-ergodicity problems for many cases and
a chain of thermostats, namely Nosé-Hoover “chain” thermostat [263], assures ergodic sampling of
the phase space. This is achieved by coupling (thermostatting) the original thermostat by another
thermostat, which is coupled with another and so on. Also a chain of thermostats is more efficient
in imposing the desired temperature. Here four such chains of thermostats are employed.
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structures collected from the liquid water simulations are used for single point energy
calculations with the various methods and no geometries are optimized, unless explicitly
stated otherwise. The DFT calculations on the gas phase water monomers and dimers
were performed with the GAUSSIAN03 code [200], using large Dunning correlation con-
sistent aug-cc-pV5Z basis sets [264]. It is shown before (section 3.3) that for DFT xc
functionals such as the ones considered here, this basis set is large enough to get disso-
ciation energies within about 1 meV/H2O of the CBS limit [157]. Results from three xc
functionals will be reported, specifically two GGAs that are widely employed in DFT
simulations of liquid water (PBE and BLYP), and the hybrid PBE0 functional, which is
one of the most accurate functionals in predicting the absolute dissociation energies of
small gas phase water clusters (dimer to hexamer) [157, 158].

The CCSD(T) calculations were performed with the NWChem code [201] with local-
ized Gaussian basis sets. Specifically, aug-cc-pVXZ basis sets (X = T, Q, and 5) were
used and the resultant energies extrapolated to the complete basis set limit (CBS) with
the same standard heuristic schemes as employed by us before [157, 158]. CCSD(T)/CBS
is the theoretical ‘gold standard’ for systems of the size considered here and, in the fol-
lowing, differences between a given xc functional and CCSD(T) are referred to as errors
with that xc functional. In total >600 CCSD(T) calculations have been performed for
the reference data presented in this chapter.

5.2.3. Definition of Parameters

In order to quantitatively compare the structure of the molecules extracted from the
liquid to a gas phase equilibrium monomer a quantity Sd, the deformation, is defined as,

Sd =

√∑
N

(RN − rN )2 , (5.1)

where N is the number of atoms, R and r denote the coordinate vectors of deformed
and gas phase equilibrium monomer structures, respectively.

Several energy terms will appear repeatedly and it is also useful to define them here.
The one-body energy (E1b) of a water monomer is calculated as,

E1b = Ei − Eequilibrium , (5.2)

where Eequilibrium is the energy of the gas phase water monomer at equilibrium and Ei

is the energy of a deformed monomer. The two-body energy (E2b) of a dimer is defined
as:

E2b = Edimer − Ei − Ei′ , (5.3)

where Edimer is the total energy of the dimer. The electronic dissociation energy (De)
of the dimers is given by,

De = Edimer − 2× Eequilibrium . (5.4)
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Figure 5.3.: (a) CCSD(T) one-body energy (E1b) versus deformation (Sd) for water monomers
taken from PBE liquid water. The horizontal and vertical dashed lines indicate the mean value
of E1b and the mean value of the deformation, respectively. (b) Comparison of E1b of PBE,
BLYP, and PBE0 with CCSD(T).

Fig. 5.1 schematically illustrates each of the above energetic quantities and the overall
procedure used in this study. Since the structures considered here have been taken from
a PBE liquid water simulation, Eequilibrium is calculated with a PBE structure2 The error
conceded by the DFT xc functionals (∆E) in comparison to CCSD(T)/CBS is given as,

∆E = ECCSD(T) − EDFT , (5.5)

where ECCSD(T) and EDFT are energies obtained from CCSD(T)/CBS and DFT, respec-
tively.

5.3. Results

Firstly, the water monomers extracted from the liquid are examined, focusing on the
cost to go from the gas phase equilibrium monomer structure to the deformed structures
present in the liquid. Following this the water dimers are considered. In each case the
results of the various DFT xc functionals are compared to the CCSD(T)/CBS references.

2The choice of a PBE optimized monomer as the equilibrium monomer reference does not influence
the general conclusions arrived at here. For example, if a CCSD(T) optimized monomer reference is
used, the DFT E1b errors on average differ by no more than 5 meV from those reported.
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Figure 5.4.: (a) Variation in the one-body energy (E1b) with the O-H bond lengths of a water
monomer calculated with CCSD(T), PBE, BLYP, and PBE0. The inset shows the differences
in E1b of the three xc functionals compared to CCSD(T). (b) Errors in E1b (∆E1b) for the
deformed monomers selected from liquid water as a function of the longest O-H bond of each
monomer. The vertical dashed line indicates the gas phase equilibrium O-H bond length (0.97

Å) of a monomer (optimized with PBE) and the horizontal solid, dashed, and dash-dotted lines
represent the average errors of PBE, BLYP, and PBE0, respectively. Here, a positive error of
E1b indicates that it is too easy to stretch O-H bonds of the monomers with a given xc functional
compared to CCSD(T).

5.3.1. Monomers

To begin, CCSD(T) was used to establish the relative energies of the monomers taken
from the liquid compared to the gas phase equilibrium monomer, i.e., CCSD(T) E1b

energies were computed for all 92 monomers. As can be seen from Fig. 5.3(a) these
are distributed in a very large range from ∼0 to +900 meV with a mean value of +147
meV. Thus on average the monomers extracted from the liquid are 147 meV less stable
than the gas phase equilibrium monomer, a surprisingly large energy. In quantifying the
amount of deformation [Eq. (5.1)] for each monomer, as expected, a general increment
in E1b is found with the extent of deformation [Fig. 5.3(a)]. The average deformation of
the monomers is ∼0.1 Å, which is a measure of how deformed water monomers are in a
PBE liquid water structure.

Considering now how the deformation energies computed with PBE, BLYP, and PBE0
compare to CCSD(T). This is shown in Fig. 5.3(b), a parity plot of E1b for the three
xc functionals compared to CCSD(T). Immediately it can be seen that the performance
of the GGAs is markedly different from the hybrid PBE0 functional. Specifically, for
PBE and BLYP, E1b is systematically too small compared to CCSD(T). On average
the PBE and BLYP deformation energies are 32 and 38 meV, respectively, smaller than
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Table 5.1.: Computed harmonic vibrational frequencies for a water monomer. ν1 and ν2 are
the asymmetric and symmetric O-H stretching modes and ν3 is the H-O-H bending mode. All
values are in cm−1 and calculated with an aug-cc-pVTZ basis set.

ν1 ν2 ν3

CCSD(T) 3921 3812 1648
PBE 3800 3696 1593
BLYP 3756 3655 1596
PBE0 3962 3856 1633

that obtained from CCSD(T). The size of the error simply increases with the total
CCSD(T) E1b [Fig. 5.3(b)] and for the largest deformations is on the order of 100 meV.
Remembering that the monomer deformation is, of course, an endothermic process,
smaller values of E1b therefore indicate that it is too easy to deform monomers to their
liquid structures with PBE or BLYP compared to CCSD(T). In contrast to the GGAs,
PBE0 produces E1b in excellent agreement with CCSD(T) with a mean error of only –3
meV. This small negative error reveals that it is marginally too expensive to deform the
monomers to their liquid water structure with PBE0 compared to CCSD(T). Since the
only difference between PBE and PBE0 is the 25% Hartree-Fock (HF) exchange in the
latter, it can be conclude that the inclusion of exact exchange remedies the large error
in E1b almost completely. Why this is so will be discussed in the section (5.4).

The monomers extracted from the liquid have both modified bond lengths and H-O-H
internal angles. In order to understand in detail where the errors in E1b for the GGAs
come from a simple series of tests are carried out, where bond lengths and the internal
angle were varied independently. The tests show that the main error in the GGAs comes
from the bond stretching. For example Fig. 5.4(a) shows that the symmetric stretching
of the O-H bonds of a water monomer costs much less energy with PBE and BLYP
compared to CCSD(T). The errors increase almost linearly with the stretching [inset
Fig. 5.4(a)] and are as large as ∼200 meV when the O-H bonds are 0.16 Å longer than
the gas phase equilibrium bond length of 0.97 Å. A bond stretch of 0.16 Å may sound like
a lot but monomers with O-H bonds even as long as 1.18 Å are present in the PBE MD
simulation and in experiment and in ab initio path integral simulations even longer O-H
bonds are observed [39, 260]. As shown for the structures taken from the liquid, PBE0
is in very good agreement with CCSD(T) and even for the longest O-H bond of 1.18
Å comes within 34 meV of CCSD(T). In addition alterations of the H-O-H angle were
considered but this makes much less of a contribution to the error in the xc functionals
than what is found for bond stretching. For example, increasing (decreasing) the bond
angle by 15◦ causes a maximum error of 15 meV (–8 meV) with BLYP and even smaller
errors for the two other functionals.

The above tests establish that an inaccurate description of bond stretching is the main
origin of the error in E1b for the GGAs. Returning to the structures taken from the
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Figure 5.5.: (a) CCSD(T) total dissociation energies (De) of the water dimers taken from the
PBE liquid water simulation and the dissociation energy curve for a fully optimized gas phase
dimer (Eqm.) as a function of the O-O distance (RO−O); (b) CCSD(T) two-body energies (E2b)
as a function of RO−O for the same dimers. The dashed lines represent the mean values of De

and E2b in panels (a) and (b), respectively.

liquid, therefore, in Fig. 5.4(b) the E1b error is plotted against the length of the longest
O-H bond for each monomer. As with the systematic deformations of the equilibrium
monomer, the errors in E1b increase almost linearly with the O-H bond length for the
GGAs and for PBE0 they remain very close to zero except at the longest distances. Thus
it can be inferred that monomers inside liquid water are energetically too easy to stretch
for both PBE and BLYP. Also note that a careful series of tests taking water clusters
from a BLYP MD simulation along with subsequent tests with CCSD(T) established
that none of the conclusions arrived at here are altered if BLYP structures are used3.

Another important observation made here is that the discrepancies established here
between the three xc functionals and CCSD(T) correlate well with the errors in the
computed harmonic vibrational frequencies of an isolated water monomer (Table 5.1).
Specifically for the two stretching frequencies PBE and BLYP are ∼115 to ∼160 cm−1

(∼3-4%) softer than CCSD(T) (Table 5.1), whereas, PBE0 is only ∼45 cm−1 (∼1%)
harder. This one to one correspondence between error in harmonic vibrational frequen-
cies and E1b may also hold for other xc functionals and may therefore provide a cheap
diagnostic to estimate in advance how reliably an xc functional will be at the determi-
nation of E1b.

3To check if the computed errors in E1b from the xc functionals are sensitive to the functional used in
the original MD simulation a separate 30 ps BLYP MD simulation was performed. From the BLYP
simulation 12 monomers were extracted and average errors in E1b of 23 (PBE), 27 (BLYP), and -0.3
meV (PBE0) obtained, compared to average errors in E1b of 32 (PBE), 38 (BLYP), and -3 meV
(PBE0) as obtained from the PBE MD simulation reported.
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Table 5.2.: Mean values of the one-body, two-body, and dissociation energies of the deformed
dimers (selected from the liquid) and the corresponding values for the gas phase equilibrium
dimer with CCSD(T), PBE, BLYP, and PBE0. The differences between each DFT xc functional
and CCSD(T)/CBS are given in parenthesis. Energies are in meV.

De (∆De) E1b (∆E1b) E2b (∆E2b)

Deformed

CCSD(T) 201.9 339.2 –137.2
PBE 121.9 (80.0) 268.0 (71.2) –146.1 (8.8)
BLYP 159.3 (42.6) 254.4 (84.8) –95.1 (–42.1)
PBE0 200.7 (1.2) 346.1 (-6.9) –145.3 (8.1)

Gas phase equilibrium

CCSD(T) –211.6 9.7 –221.4
PBE –219.9 (8.3) 3.7 (6.0) –223.6 (2.2)
BLYP –178.7 (–32.9) 2.4 (7.3) –181.1 (–40.3)
PBE0 –213.5 (1.9) 9.7 (0.0) –223.2 (1.8)

5.3.2. Dimers

Now moving to the dimers extracted from the liquid, discussing first what CCSD(T) re-
veals about the stability of the dimers and then considering how well the three functionals
perform. In Fig. 5.5(a) the CCSD(T) dissociation energies are plotted as a function of
the O-O distance within each dimer. Also reported is the equilibrium (i.e., fully opti-
mized) CCSD(T) dissociation energy curve for a gas phase water dimer. As expected
the equilibrium dimer binding energy curve provides a lower bound for the dissociation
energies of the deformed dimers, which at each particular value of RO−O exhibit a range
of values reflecting the range of dimer structures in the liquid. More importantly, Fig.
5.5(a) provides an overview of the range of dissociation energies for water dimers found
inside the first coordination shell of PBE liquid water. The range is large: from –95
to +993 meV, with the mean value being +201 meV. Indeed 75% of the dissociation
energies are positive, i.e., 75% of the dimers are unbound compared to two gas phase
equilibrium water monomers. Upon decomposing the dissociation energies into the one-
and two-body contributions it is found that the average E1b is 339 meV and the av-
erage E2b is –137 meV (Table 5.2). Note that the average value of E1b for the dimers
is, of course, about twice E1b for the monomers discussed above. Also note that this
is a considerably larger E1b than for the gas phase equilibrium water dimer, which is
only 10 meV (Table 5.2). The two-body energy gives the binding between the water
molecules and 97% of the dimers have an attractive E2b [Fig. 5.5(b)]. The average value
of E2b at –137 meV is somewhat smaller than the corresponding value for the gas phase
equilibrium dimer of –221 meV. Since the total dissociation energy for the dimers is just
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Figure 5.6.: (a) Errors in dimer dissociation energy (∆De) as a function of the sum of the
deformation of the two monomers within each dimer for PBE, BLYP, and PBE0. (b) Errors in
the two-body energy (∆E2b) from PBE, BLYP, and PBE0 as a function of the O-O distance
(RO−O) within the dimers. Horizontal solid, dashed, and dash-dotted lines represent the average
errors of PBE, BLYP, and PBE0, respectively.

the sum of E1b and E2b, it is quite obvious therefore that E1b plays the major role in
destabilizing the dimers.

Coming back to the performance of the xc functionals, Fig. 5.6(a) reports the error in
the dissociation energies for each dimer. It can be seen that overall PBE0 performs very
well, yielding an average error of 1 meV. BLYP and PBE, on the other hand, yield quite
large average errors of 43 and 80 meV, respectively. This behavior differs significantly
from how these two functionals perform for the gas phase equilibrium water dimer, where
errors of only –33 and 8 meV are obtained (Table 5.2). Thus a key result is obtained that
the performance of the two GGA functionals for the deformed dimer structures is inferior
to what it is for the gas phase equilibrium dimer, with both functionals substantially
overbinding the dimers taken from the liquid. Table 5.2 reports the key quantities that
allow us to understand these results and why they contrast to the equilibrium gas phase
dimers. As one might anticipate from section 5.3.1, the key is the one-body deformation
energy. In the gas phase equilibrium dimer the absolute value of E1b is small (10 meV)
and the resultant errors even smaller (Table 5.2). Thus the performance of a functional
for the gas phase equilibrium dimer is dominated by E2b, which is accurately described
with PBE and PBE0 (8 and 2 meV errors, respectively) and underestimated by some 33
meV with BLYP. However, as it is shown for the structures taken from the liquid, E1b is
large [339 meV from CCSD(T)] and the associated errors from the GGA xc functionals
become significant. Specifically, since both BLYP and PBE predict that the one-body
deformation energy is much too small and predict either too weak or about right two-
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5. Water Clusters Extracted from DFT LiquidWater: The Importance of Monomer Deformations

Figure 5.7.: (a) Compared to the gas phase equilibrium dimer, the change in the two-body
energy (E2b) obtained from the systematic variation of the covalent O-H bond of the donor ‘H’
atom [δ(RO−Hd

)] keeping all other atoms fixed. The inset shows the difference ((CCSD(T)–DFT)
between the DFT xc functionals and CCSD(T). (b) Error in the two-body (E2b) energy from
DFT compared to CCSD(T) as a function of the RO−Hd

, obtained from the dimers from liquid
water. Here positive values refer to a stronger two-body interaction. The dashed, dotted, and
dash-dotted lines are quadratic fits to the PBE0, PBE, and BLYP data, respectively.

body energies [Fig. 5.6(b)] then the total dissociation energies come out too large. BLYP
proves to be more accurate than PBE simply because of more favorable cancelations of
errors in E1b and E2b (Table 5.2). Since BLYP is generally considered to produce too
weak HBs between water molecules [119, 157, 161, 163] the overbinding observed here
is remarkable. The obvious relevance of this finding to liquid water will be discussed
below.

A characteristic feature of HBs between water molecules is that the covalent O-H
bonds of the donor molecules (RO−Hd

) are elongated [2]. The elongation is a result of
charge transfer from the acceptor water molecule to the O-H σ∗ antibonding orbital of
the donor molecule [265, 266]. Since it is found that it is too easy to stretch an O-H bond
with the GGAs, one can anticipate that this will further influence the strength of the
HBs formed and in particular E2b. To investigate this, the gas phase equilibrium water
dimer is revisited as a test case and systematically stretch the O-Hd bond whilst keeping
all other atoms fixed. Fig. 5.7(a) plots the change in E2b as a function of the O-Hd

bond length with CCSD(T) and the three xc functionals. Clearly all methods predict
that as the O-Hd bond increases so too does E2b. However, all three xc functionals pre-
dict too rapid an increase compared to CCSD(T). This is best seen by the inset in Fig.
5.7(a) which displays the error in the change of E2b as a function of RO−Hd

compared
to CCSD(T). Likewise, E2b increases slightly too rapidly with the three xc functionals
for the dimers extracted from the liquid [Fig. 5.7(b)]; this is particularly apparent for
PBE and PBE0. Thus in addition to it being too easy to stretch an O-H bond with
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BLYP and PBE, for all three xc functionals the magnitude of the change in E2b upon
stretching is too great, further contributing to the overbinding of dimers with long O-Hd

bonds.

5.4. Discussion

It is clear from the last section that, despite the E2b errors for the longest O-Hd bonds, the
overall performance of PBE0 is superior to that of the GGAs. To understand the origin
of the difference between PBE and PBE0 the variation in the exchange and correlation
energies was examined upon going from the gas phase equilibrium to the deformed
water monomer structures (Table 5.3). The variations in DFT exchange and correlation
energies are then compared with the full HF exact exchange and CCSD(T) correlation.
It must be noted that the physical interpretation of exchange and correlation differs
from DFT (PBE) to CCSD(T) and so use the data reported in Table 5.3 and Fig. 5.8
merely in the hope of obtaining some general qualitative insight. The basic finding from
CCSD(T) is that upon going from the gas phase equilibrium to the deformed monomers
there is a gain in the (negative) correlation energy and a loss in exchange energy [Fig.
5.8(a),(b)]. Naturally, the absolute change in the exchange energy is far greater than that
in the correlation energy. The two DFT xc functionals predict a loss in the exchange
energy but in contrast to CCSD(T) also a loss in the correlation energy, i.e., there
is less correlation with PBE in the deformed monomers compared to the equilibrium
monomer in the gas phase. Thus, in terms of the correlation energy, PBE/PBE0 predicts
qualitatively different behavior from CCSD(T) upon bond stretching. However, the
missing correlation in the deformed monomers is compensated for by differences from
CCSD(T) in the exchange energy. In PBE0, which predicts exchange energies in better
agreement with HF (CCSD(T)) [Fig. 5.8(b)], the missing correlation is compensated by
missing exchange so that overall the total energy changes are very similar for PBE0 and
CCSD(T). In PBE, however, the lack of correlation is not sufficient to compensate for the
larger underprediction of the exchange energy [Fig. 5.8(b)]. Thus it is fond that PBE0
is superior to PBE simply because of a more favorable cancelation of the differences of
exchange and correlation from CCSD(T) [Fig. 5.8(c)].

More generally the poor description of covalent O-H bond stretching observed here
with PBE and BLYP is likely to apply to many other GGAs. For example, tests with
RPBE, mPWLYP, and BP86 (on the 92 monomers taken from the current MD simula-
tion) all produce one-body energies that are 30-40 meV smaller than CCSD(T). Similarly,
as with PBE0, the hybrid functionals B3LYP and X3LYP predict rather accurate one-
body energies, coming within 10 meV of CCSD(T). Of course the conclusion reached
here that HF exact exchange is necessary for the proper description of covalent bond
stretching is consistent with what has long been known in the context of covalent bond
breaking (and transition state energies) in the gas phase (see, e.g., Refs. [267–271]).

Several previous studies have examined how DFT xc functionals perform in treat-
ing HBs between water molecules in water clusters [119, 120, 153, 157, 158, 161–168].
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Table 5.3.: Average differences in the exchange and correlation contributions between the de-
formed monomers extracted from liquid water and the gas phase equilibrium monomer structure,
obtained with CCSD(T), PBE, and PBE0. Note that the exchange contribution of CCSD(T)
refers to HF exact exchange. Values in parenthesis are the differences between the two xc func-
tionals and CCSD(T). Here positive and negative values indicate energy loss and gain, respec-
tively. All values are in meV.

CCSD(T) PBE PBE0

Correlation –65.5 +35.2 (–99.7) +34.5 (–99.0)
Exchange +825.6 +681.9 (+143.7) +722.7 (+102.9)

Total 761.1 717.1 (+44.0) 757.2 (+3.9)
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Figure 5.8.: Variation in (a) correlation energy (∆Ecorrelation) and (b) exchange energy
(∆Eexchange) with O-H bond length for a gas phase water molecule. (c) Variation in the dif-
ference of DFT correlation and exchange energies in comparison to the CCSD(T) correlation
and HF exact exchange energies, respectively, as a function of the monomer O-H bond length.
Positive and negative values refer to energy loss and gain, respectively.

The study made here is somewhat unconventional that examined structures extracted
directly from a liquid water simulation instead of exploring equilibrium gas phase struc-
tures. This has revealed significant differences in how PBE and BLYP perform for the
structures extracted from the liquid compared to the known performance of these func-
tionals for equilibrium gas phase water clusters. Thus it is shown that the behavior of
these functionals for, e.g., the gas phase equilibrium water dimer is not a good indicator
for how these functionals perform for dimers extracted from the liquid. One must always
exercise caution in making connections between interaction energies of gas phase clusters
and RDFs for the corresponding liquid phase, particularly in the present circumstances
where only one– and two–body terms are considered. Nonetheless, it is plausible that
the overbinding observed here for PBE and BLYP, which originates in E1b errors, is con-
nected with the overstructuring of these functionals for liquid water. Indeed, because of
the greater error cancelations between the one– and two–body energies calculated with
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BLYP, the overbinding of the dimers from the liquid is less for BLYP than for PBE. This
may again provide an explanation for why gmax

O−O is less in BLYP compared to PBE. This
thinking may also explain the low value of gmax

O−O reported in MD simulations with the
RPBE functional [25, 27]. A computed ∼50 meV underestimation of the E2b for a gas
phase equilibrium water dimer suggests that the likely errors in E1b for this non-hybrid
GGA will be more than compensated for. In addition, present results are consistent with
and help to explain the results from the rigid water MD simulations [261, 262]. First, by
fixing O-H bonds at or close to the gas phase monomer equilibrium O-H bond length,
the E1b error is eliminated or greatly reduced. Second, the large E2b error associated
with the longest O-Hd bonds is also obviated.

Water molecules in other environments such as those in bulk ice or larger gas phase
clusters will also possess deformed monomers with elongated bonds. These deformations
are smaller than in liquid water but the effect is not negligible. For example, the aver-
age deformation of the monomers in a water hexamer is 0.05 Å with PBE optimized
geometries and in bulk ice Ih PBE predicts an average deformation of ∼0.06 Å. Based
on the approximate relation between E1b error and deformation established in Fig. 5.3,
such deformations as encountered in small clusters and ice are likely to lead to errors in
E1b of ∼30-40 meV.

Finally, the suggestion that too facile bond stretching may result in an overstructured
liquid is likely to be of relevance to other associated liquids apart from water. The
relevant experimental and theoretical RDFs of other associated liquids are not as well
established as liquid water. However, there are indications of BLYP simulations yielding
overstructured RDFs for, e.g., liquid ammonia [272, 273] and methanol [274, 275] despite
BLYP underestimating the strength of the corresponding gas phase dimers by ∼45%
compared to CCSD(T) [119].

5.5. Summary

In summary, from a PBE simulation of liquid water, monomers and bonded dimers
(from the first coordination shell of the O-O RDF) were extracted. With CCSD(T) 75%
of the dimers were shown to be unbound compared to two gas phase equilibrium water
monomers. This is mainly because the structures of the water monomers inside the liquid
differ significantly from an equilibrium gas phase monomer. Indeed, with CCSD(T) it
is fond that the average monomer extracted from the PBE liquid is about 150 meV less
stable than an equilibrium gas phase water monomer. Among the three xc functionals
tested, the two GGAs (BLYP and PBE) underestimate the energy cost for monomer
deformation (i.e., E1b) and as a consequence BLYP and PBE predict dissociation energies
that are too large by 80 and 43 meV, respectively, compared to CCSD(T). This is inferior
to the performance of these functionals for the equilibrium water dimer and other water
clusters in the gas phase. Overall PBE0 yields much more accurate dimer dissociation
energies, mainly because it is not susceptible to such large bond stretching errors as the
GGAs are. However, PBE0 is not free from deficiencies in treating the dimers examined
here. Specifically, like the two other functionals, it predicts an increasing error in E2b
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for the longest O-Hd bonds. Finally, the possible relevance of these results to DFT
simulations of liquid water, to water in other environments, and to other associated
liquids is discussed. In particular, it is suggested here that the overbinding identified
here may provide an explanation for the overstructured RDFs observed in BLYP and
PBE simulations of liquid water. However, more work is required to further test this
suggestion, with, e.g., larger clusters that give access to higher order terms in the many-
body decomposition and/or clusters embedded in an external electrostatic field that
mimics the remaining water present in the liquid.
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6. The Importance of van der Waals Forces
in Crystalline Ice

6.1. Introduction

Following the observations made in chapter 4 that vdW (dispersion) forces are impor-
tant to stabilize water hexamers, here the influence of vdW interactions in condensed
phase water is investigated. In fact for decades it has been known that the condensed
phases of water are held together through a combination of hydrogen bonds (HBs) and
vdW forces. Whilst HBs have received widespread attention, relatively little is known
about the importance of vdW forces. Partly this is down to the now most popular elec-
tronic structure theory (DFT) providing an inadequate description of vdW forces when
standard exchange-correlation functionals are used (as discussed in chapter 4). How-
ever, improved semi-empirical vdW corrections to DFT [234] and the non-local vdW
functional [235] mean that it is now possible to tackle this issue.
Here, simulations on a range of ambient and high pressure phases of ice are reported

aiming at understanding the delicate interplay of HBs and vdW forces. It is found that
the proportion of the lattice energy coming from vdW forces monotonously increases as
the density of the ice phases increases, and as a consequence vdW forces play a crucial
role in determining the relative stabilities of the high density phases of ice. In addition,
calculations predict that the effective volume of the water molecules is reduced when
vdW forces are accounted for. However, the absolute lattice energies are overestimated
when dispersion corrections are added.

6.2. Methodology

6.2.1. Ice Structures

Several phases of ice are studied here, natural ice Ih, the proton ordered version of Ih, i.e.,
ice XI, and all the high pressure proton ordered phases of ice (Fig. 6.1), i.e., ice II, VIII,
IX, XIII, XIV, and XV [276–280]. The unit cells of the ice phases are shown in Fig. 6.2.
For proton disordered ice Ih the 12 water unit cell proposed by Hamman [281] is used. In
addition independent checks have been done using a 96 water molecule unit cell (taken
from Ref. [44]) with PBE and PBE+vdW xc functionals The lattice energies obtained
from 12 and 96 water molecule unit cells are within 1 meV/H2O) and equilibrium volumes
are <0.01 Å3/H2O for both PBE and PBE+vdW xc functionals. So in the following,
the reported results of ice Ih are obtained using the 12 water molecule unit cell. In
order to obtain the equilibrium lattice parameters with DFT xc functionals the primary
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Figure 6.1.: Phase diagram of crystalline ice taken from Ref. [276]. Proton disordered phases
are shown in red and proton ordered phases in blue. Arrows indicate proton disordered-ordered
pairs.

structures are taken from experimental diffraction data and then the lattice parameters
are modified isotropically1 to obtain lattice energies as a function of the effective volume
associated with each water molecule. The molecules in each cell were fully optimized
and no symmetry constraints were applied. Then the Murnaghan equation of state was
employed to obtain the equilibrium volume, lattice energy, and bulk modulus.

Monkhorst-Pack k point meshes are used [145] and depending on the unit cell the
following k point meshes have been chosen: (i) unit cell with 8 water molecules: ice XI
(4×2×2) and VIII (3×3×2); (ii) unit cell with 10 water molecules: ice XV (3×3×3);
(iii) unit cell with 12 water molecules: ice Ih (2× 2× 2), IX (2× 2× 2), II (2× 2× 2),
XIV (2 × 2 × 4); (iv) unit cell with 28 water molecules: ice XIII (2 × 2 × 2); and (v)
unit cell with 96 water molecules: ice Ih (1× 1× 1). For all of the unit cells the spacing
in the k point grid in each direction of reciprocal space is within 0.05 Å−1 to 0.08 Å−1.
Such fine spacing is sufficient to ensure fully converged results for each of the ice phases
considered.

6.2.2. Basis Set

All calculations are performed using the all electron full potential FHI-aims code [138],
which uses numeric atom-centered orbitals (NAO) as a basis set. The convergence be-
havior of NAO basis sets with increasing number of basis functions have been carefully
tested (see Appendix B) for the binding energy of the gas phase water dimer and the
lattice energy of ice Ih. The dissociation energy obtained with a combination of tier3
basis for H and tier4 basis for O (denoted as HT3OT4) is within 1 meV of Gaussian/aug-

1Isotropic change refers that the ratios among the lattice parameters are kept fixed and it has been
shown before that those ratios are affected negligibly with various xc functionals [57]. Also a thorough
test has been done here on ice VIII and details are given in Appendix D.
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Figure 6.2.: Unit cells of all the ice phases studied. Ice Ih with 96 water molecules; ice XIII
with 28 water molecules; ice IX, II, and XIV each contain 12 water molecules; and ice XI and
VIII each contains 8 water molecules.

cc-pV5Z2. For the lattice energies of ice little smaller basis sets like tier2 for H and tier3
for O (denoted as HT2OT3) are reasonably accurate: within 2 meV/H2O of the energy
obtained with HT3OT4. Also comparing with a recent study by Feibelman [57] on ice Ih
with hard projector augmented wave (PAW) potentials and a 1400 eV plane wave cut
off, lattice energy of ice Ih obtained with HT2OT3 NAO basis set is within 4 meV/H2O.
Thus in this chapter HT2OT3 NAO basis has been employed for all the ice calculations.

6.2.3. van der Waals Correction

To obtain vdW forces the scheme proposed by Tkatchenko and Scheffler (described in
chapter 4) is employed here [234]. For all ice calculations Sr = 0.94 for PBE+vdW but
a slightly modified value of 0.75 for BLYP+vdW (see Appendix E) are used.

6.3. Results

In this section equilibrium lattice energies and effective volume per water molecule are
compared for different ice phases with and without corrections for vdW interactions to
experimental values.

2In chapter 3 it was shown that for all electron DFT calculation with a Gaussian basis set of aug-cc-
pV5Z quality the dissociation energy of the water dimer is essentially within 1 meV of the complete
basis set limit.
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Figure 6.3.: Lattice energies of all the ice phases studied here are plotted as a function of
volume per water. The Murnaghan equation of state was applied to obtain equilibrium volume
and equilibrium lattice energies.

6.3.1. Equilibrium volume

To begin with, the choice of all these ice phases provides us with a wide range of densely
packed structures from ice Ih to ice VIII. Accurate description of the relative energies
and volumes of these phases is a stern test for any electronic structure approach. Fig. 6.3
provides the range of equilibrium volumes per water and the lattice energies for all the
ice phases. Table 6.1 summarizes in descending order the experimental values of effective
equilibrium volume per water of the ice phases and comparison to the calculated volumes
with the DFT xc functionals.

Note here that our DFT equilibrium volumes are obtained at zero pressure and the
comparisons will be appropriate only when the experimental volumes at zero or ambient
pressure are considered. All of the experimental volumes given in Table 6.1 are found
near ambient or zero pressure. In particular, this is important for the high pressure
phases. For example, the experimental volume per water of ice VIII found at 2.4 GPa is
∼18.36 Å3 [278], whereas it is ∼10% larger (20.09 Å3) at zero pressure, as reported in
Whalley’s work [282]. In their corresponding original papers of ice XIII, XIV, and XV
lattice parameters are reported at ambient pressure and 80 K [276, 280]. For ice II the
volume found at ambient pressure and 4.2 K is taken [283]. For ice IX and VIII volumes
reported in the paper by Whalley [282] at ∼100 K and zero pressure are chosen here.
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Table 6.1.: Comparison of calculated equilibrium volumes (Å3/H2O) of various phases of ice
with experiments. Percentage errors with respect to experimental volumes are given in parenthe-
sis. MAE and ME are mean absolute error and mean error over all the ice phases with respect
to experimental volume. Here positive and negative signs indicate larger and smaller volumes,
respectively, compared to experiment.

Ice Expt. PBE PBE+vdW BLYP BLYP+vdW

Ih 32.05 30.78 (-3.9) 29.67 (-7.4) 32.89 (+2.6) 30.88 (-3.7)
XI 31.98 30.75 (-3.8) 29.64 (-7.3) 32.85 (+2.7) 30.81 (-3.7)
IX 25.67 26.11 (+1.7) 23.86 (-7.1) 28.17 (+9.7) 24.02 (-6.4)
II 24.97 24.99 (+0.1) 23.62 (-5.4) 26.78 (+7.2) 23.28 (-6.8)

XIII 23.91 24.08 (+0.7) 22.44 (-6.1) 25.86 (+8.2) 22.12 (-7.4)
XIV 23.12 23.27 (+0.6) 21.71 (-6.1) 24.97 (+8.0) 21.43 (-7.3)
XV 22.53 22.82 (+1.3) 21.47 (-4.7) 24.52 (+8.8) 20.79 (-7.7)
VIII 20.09 20.74 (+3.2) 20.13 (+0.2) 22.38 (+11.4) 17.98 (-10.5)

MAE 1.94 5.57 7.30 6.60
ME -0.04 -5.52 -7.30 -6.60

It is encouraging that both xc functionals with and without the vdW correction find
the correct trend in the equilibrium volumes for ambient to high pressure phases as ob-
served in the experiments. However, there are significant discrepancies with experiment
concerning the absolute values of the volumes. PBE underestimates the equilibrium vol-
ume of ice Ih and XI by ∼4% which is known from previous studies (e.g., Ref. [57]) but
for most of the high density phases it produces volumes in slightly better agreement with
experiment. It is also noticeable that contrary to ice Ih, PBE predicts larger volumes
for the high pressure phases, indicating qualitatively different behavior and (unusual for
PBE) weaker binding between water molecules. Especially, for ice VIII the PBE volume
is 3.2% larger than experiments. On the other hand, BLYP, which is known to predict
much weaker HBs, not surprisingly overestimates the volumes largely for all the phases
and the performance is particularly bad for the high density phases with the errors in
the equilibrium volume being ∼10%.

When vdW interactions are included explicitly with PBE and BLYP, significant re-
ductions in the equilibrium volumes are found for all the ice phases. Going from PBE to
PBE+vdW the equilibrium volumes get reduced by 3.6% for ice Ih and XI and ∼3-9%
for the high pressure phases. A similar trend is also observed with BLYP+vdW, where
the vdW effect is much stronger making a reduction from ∼6% (ice Ih, XI) to as large as
∼20% (ice VIII). This so far clearly indicates that at high pressure the role of vdW inter-
actions is much larger. In comparison to the experimental volumes, the vdW corrected
volumes are still much smaller. With PBE+vdW it is 0.2-7.4% and with BLYP+vdW
it is 3.7-10.5%. It is also found that upon inclusion of vdW the mean absolute errors

93



6. The Importance of van der Waals Forces in Crystalline Ice

Table 6.2.: lattice energies of ice Ih and all proton ordered phases of ice. Relative lattice energies
with respect to ice Ih are given in parenthesis. All values are in meV/H2O.

Ice Expt. PBE PBE+vdW BLYP BLYP+vdW

Ih 600±10 636 (0) 714 (0) 526 (0) 666
XI 639 (+3) 717 (+3) 529 (+3) 669 (+3)
IX (-3.5) 587 (-49) 705 (-9) 473 (-53) 651 (-15)
II (-0.6) 567 (-69) 698 (-16) 449 (-77) 660 (-6)

XIII 556 (-80) 695 (-19) 438 (-88) 649 (-17)
XIV 543 (-93) 690 (-24) 422 (-104) 643 (-23)
XV 526 (-110) 678 (-37) 404 (-122) 643 (-23)
VIII (-32.8) 459 (-179) 619 (-95) 331 (-195) 660 (-6)

(MAE) in the equilibrium volumes do not really improve, in fact for PBE+vdW the vol-
umes get worse than PBE. However, a major improvement is observed with DFT+vdW
for the relative stabilities of the high pressure phases, which is reported in the following
section.

6.3.2. Lattice energy

Table 6.2 summarizes the lattice energies of the ice phases obtained from each of the xc
functionals and available experimental results for some of the phases. The experimental
lattice energy of ice Ih (600 meV/H2O) is taken from Ref. [284], which was corrected
for inter- and intra-molecular vibrational energies, so it can be directly compared with
calculated DFT lattice energies, where zero point energy (ZPE) is not included. Also
Whalley et al. [282] provides the experimental lattice energies of ice IX, II, VIII relative
to ice Ih and more importantly energies were extrapolated to absolute zero temperature
and pressure. In this case the employed experimental lattice energy value of ice Ih is 491
meV/H2O, which does not have the experimental ZPE removed. But it is still useful
to compare the relative energies of those phases (ice IX, II, VIII) since ZPE corrected
relative energies will differ by no more than 10 meV/H2O.

Coming to the performance of DFT, PBE yields a 36 meV/H2O larger lattice energy
of ice Ih than the experimental value of 600 meV/H2O and BLYP yields a lattice energy
that is 74 meV/H2O too small. However, with both PBE and BLYP the high density
phases are much more unstable relative to ice Ih than what is observed experimentally.
For example, the lattice energy of ice VIII is 179 and 195 meV/H2O smaller than ice
Ih and the experimental value for the same is only ∼33 meV/H2O. A similar trend of
much less stability is also observed for ice IX and ice II. Even though absolute lattice
energies obtained with PBE and BLYP differ by more than 100 meV/H2O, the relative
lattice energies of all high pressure phases (with respect to ice Ih) are similar (within 20
meV/H2O from two functionals). This indicates that a probable source of the inferior
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Figure 6.4.: Variation in the vdW energy contribution as a function of equilibrium density of
various ice phases with (a) PBE+vdW and (b) BLYP+vdW. (c) Upper half is showing the O-O
radial distribution functions obtained from PBE and PBE+vdW optimized geometries of ice XI
and the lower half provides the corresponding vdW energy contribution from each coordination
shell of the PBE+vdW optimized geometry. The same is shown for ice IX in panel (d) and for
ice VII in panel (e).

performance in the high density phases is the lack vdW interactions, which is known
to be absent from both PBE and BLYP. This would also explain the larger equilibrium
volumes observed in the previous section with PBE.

Now with vdW interactions included substantial improvements are observed in the
relative lattice energies of the high density phases. In particular, ice VIII is now 95 and
6 meV/H2O less stable than ice Ih with PBE+vdW and BLYP+vdW, respectively. This
is in much better agreement with experiment (33 meV/H2O). Also the relative lattice
energies are much improved for ice II and ice XI with both vdW corrected functionals.
This indicates that vdW interactions are important in stabilizing the higher density
phases. Indeed it is found here that energy contribution from vdW dispersion increase
monotonously with increasing density of the ice phases (Fig. 6.4(a) and 6.4(b)). Despite
the encouraging results, the absolute values of the lattice energies obtained from both
vdW corrected functionals are largely overestimated (Table 6.2).
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Figure 6.5.: (a) vdW energy contributions obtained from H-H, O-H, and O-O atom pairs for
ice XI as obtained with the Tkatchenko and Scheffler (TS) scheme and Grimme’s parameters
(Gm) [232]. (b) Differences in the vdW energy contributions found in high density phases (ice
IX, ice XIV, and ice VIII) with respect to low density phase ice XI as a function of the minima
in the O-O vdW potential (bottom X axis) and Sr parameter (top X axis)

Further analysis of the ice structures and the trend in the vdW energy contribution
from pairwise interaction explains the enhanced stability of the high density phases. In
the high density phases (e.g., ice IX and VIII) the water molecules in the second and
third coordination shells are much closer than in the low density phases like ice XI. This
is illustrated in Fig. 6.4 with the O-O radial distribution function (RDF). The reduction
in the effective volume per water with vdW correction is reflected by the shift in the peak
positions in the O-O RDF towards shorter O-O separation. In ice each water molecule is
connected via HBs with surrounding water molecules sitting inside the first coordination
shell (within 3 Å)3, whereas, the water molecules situated in the second coordination
shell and beyond are clearly not H-bonded and the interactions are more vdW like. It
can be said that within the first few coordination shells the number of water molecules
which interact via vdW is greater in the higher density phases compared to the lower
density phases. The vdW dispersion energy contributions from each of the coordination
shells are plotted in Fig. 6.4 and it can be seen that the vdW interactions are larger
when 2.75 Å < RO−O < 4.5 Å. This is mainly because more water molecules are present
in that range in the high density phases than in the low density phases. Also the sum
of the vdW dispersion energies within RO−O < 6 Å contributes more than 85% of the
total vdW energy contributions obtained from the periodic calculations, thus the major
difference in the vdW contribution in low and high density phases come from within 6
Å.

So far it has been shown that accounting for vdW dispersion forces increase the sta-

3Ice VIII is an exception, where two non bonded water molecules are present within the first coordination
shell. This corresponds to the first smaller peak in the RDF.
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Table 6.3.: Comparison of calculated C6 coefficients (in Hartree-bohr6) and effective vdW radii

(in Å) of H and O atoms in three ice phases. The values are averaged over all the H and O atoms
in each of the unit cells. C6OH is calculated using the sum rule suggested in Ref. [234]. Grimme’s
parameters are taken from Ref. [232], which were empirically fitted to a ceratin database and
are used as fixed parameters.

TS Grimme

Ice XI IX VIII

C6H 3.3 3.6 4.1 2.8
C6O 11.4 11.6 12.1 12.1
C6OH 5.9 6.2 6.8 4.5
R0

H 1.46 1.49 1.52 1.11
R0

O 1.60 1.61 1.62 1.49

bility of the high density phases compared to the low density phases. In addition this is
attributed to the presence of more water molecules in the second and third coordination
shells at relatively shorter distances of the high density phases. However, the question
naturally arises as whether or not the vdW corrections are overestimated and the large
difference observed in low and high density phases is an artifact of the nature of the
atomic vdW pair potential chosen here. The vdW potential among two atoms largely
depends on the functional form of the damping function (Eq. 4.2) and the vdW radii
(R0

ij) which are scaled (with Sr) depending on the choice of xc functionals. Fig. 6.5(a)
shows the vdW contribution obtained from each of the atom pairs (H-H, O-O, and O-H)
in ice XI. The C6 coefficients and vdW radii of H and O calculated from the PBE+vdW
equilibrium structures using Hirshfeld analysis (following Ref. [234]) are given in Table
6.34. Due to the much larger scaling of the vdW radii for BLYP (Sr = 0.75), the minima
in the vdW potentials are shifted towards short range compared to PBE (Sr = 0.94).
Fig. 6.5(b) shows the difference in the vdW energy contribution in the high density phases
to the low density phase ice XI as a function of Sr and the position of the minima in
the O-O vdW potential. This tells that for ice IX and ice XIV the relative vdW energies
are nearly independent of the shape of the vdW potential, whereas, the stability of ice
VIII increases as the vdW correction comes from the shorter range. Thus the stability
of ice VIII is to some extent likely to be overestimated with BLYP+vdW. However, in
the range 0.6 < Sr < 1.0 the qualitative trend of more vdW energy at high density is
retained.

4The C6 coefficients increase while going from the low density phase ice XI to the higher density phases.
In particular, the C6 coefficient of H is about 24% larger for ice VIII than that of ice XI. Since the
vdW radii also enhances, effectively the vdW potential curves do not change much in ice IX and ice
VIII compared to ice XI, thus are not shown for brevity.
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6.4. Summary

To summarize, several ambient and high pressure phases of crystalline ice have been
studied with regular and vdW corrected DFT xc functionals. It is observed that the
performance of PBE and BLYP functionals deteriorates for the high pressure phases
as compared to the ambient pressure phases (ice Ih and ice XI). Both PBE and BLYP
produce too unstable high pressure phases (in particular ice VIII) which are too unstable
compared to experiment. The relative stabilities of the high density phases are enhanced
when vdW interactions are included, producing results that are in better agreement with
experiment. The vdW energy contributions are found to increase monotonously with
the density of the ice phases. However, the absolute values of the lattice energies and
densities of the ice phases are largely overestimated when vdW interactions are included.
This study highlights the need for additional work in order to quantitatively understand
the importance of vdW dispersion forces in high density ice phases.
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This thesis has been dedicated to understanding how well present day DFT xc functionals
can describe HBs among water molecules, what the problems are and possible ways of
improvement. This has partly been accomplished by performing series of careful and
systematic tests on small gas phase water clusters and crystalline ice.
Effort has been exerted throughout to obtain accurate reference data for the water

clusters with explicitly correlated methods, such as, CCSD(T) and MP2. Computational
issues such as the basis set incompleteness and basis set superposition errors have been
minimized to generate both the reference and the DFT data by employing very large
basis sets (e.g., aug-cc-pV5Z) and extrapolations to the complete basis set limit whenever
needed. In this way, the “true” performance of the xc functionals has been obtained for
the HBs between water molecules. The insight arrived at here will also certainly be
of relevence to HBs in other systems, e.g., NH3, HF, alcohols, and biomolecules. In
addition, all the reference data obtained here can be used to assess the performance of
other DFT xc functionals not tested here and other electronic structure techniques yet
to be developed.
The first series of results was concerned with the global minimum conformers of the

water dimer, trimer, tetramer, and pentamer. Among the tested functionals the hybrid
PBE0 and X3LYP functionals performed best for the energetics of the HBs; always
being within 10 meV/H-bond of MP2 and also they are very accurate for the structural
parameters. Of the pure GGAs considered mPWLYP and PBE1W perform the best.
All xc functionals showed variable performance with increasing cluster size, which means
that conclusions drawn from small clusters do not necessarily hold for larger clusters.
Having employed functionals from various rungs of “Jacob’s ladder” it is clear that the
description of HBs is not necessarily improved by riding higher up the ladder.
In the second specific study, similar tests were performed for the water hexamers,

where the structure of the lowest energy isomer is controversial. Together with current
MP2 data and recent DMC and CCSD(T) calculations, the lowest energy conformer is
confirmed to be the prism (in the Born-Oppenheimer potential energy surface). Here it
is shown that whilst certain xc functionals do a reasonable job at predicting the absolute
dissociation energies (coming within 10-20 meV/H2O) of the various isomers of the wa-
ter hexamers, none of the functionals tested predict the correct energetic ordering of the
four isomers, nor does any predict the correct lowest energy isomer. All xc functionals
either predict the “book” or “cyclic” isomers to have the largest dissociation energies,
which is unreliable and misleading. Furthermore, by attributing the failure to an im-
proper treatment of vdW forces it seems likely that many other semi-local and hybrid
xc functionals which do not account for vdW in some way will also fail in this regard.
By augmenting the BLYP functional with semi-empirical pairwise C6R

−6 corrections
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the correct energetic ordering of the four hexamers is recovered. Equivalent empirical
corrections to other functionals (PBE, PBE0) also improves the ordering somewhat, fa-
voring the “prism” and “cage” isomers over the “book” and “cyclic” ones. This clearly
implies the importance of vdW forces in holding water molecules together.

Although PBE produces moderately too strong HBs and BLYP gives too weak HBs for
the gas phase equilibrium water clusters both yield much too structured liquid water.
This has remained without a satisfactory explanation for some time now. To better
understand this anomaly, water monomers and bonded dimers were extracted from a
PBE simulation of liquid water. It was found that both BLYP and PBE underestimate
the energy cost for monomer deformation and as a consequence BLYP and PBE predict
dissociation energies that are too large by 80 and 43 meV, respectively, compared to
CCSD(T). This is much inferior and contrasting to the performance of these functionals
for the equilibrium water dimer and other water clusters in the gas phase. Overall
PBE0 yields much more accurate dimer dissociation energies, mainly because it is not
susceptible to such large bond stretching errors as the GGAs are. However, PBE0 is
not free from deficiencies in treating the dimers examined here. Specifically, like the
two other functionals, it predicts an increasing error in dimer interaction energy for the
longest O-Hd bonds. The overbinding identified here may provide an explanation for the
overstructured RDFs observed in BLYP and PBE simulations of liquid water. Also the
suggestion that too facile bond stretching with GGAs may result in an overstructured
liquid is likely to be of relevance to other associated liquids apart from water.

Finally, several ambient and high pressure phases of crystalline ice were studied by
adding vdW forces to standard xc functionals. The results from this study were not
entirely satisfactory. On the one hand, it is found that the vdW contribution to the
lattice energies increases monotonously with the density of the ice phase and as a result
high density phases get more stabilized. This is qualitatively in agreement with the ex-
perimental relative lattice energies. On the other hand, the absolute values of the lattice
energies are overestimated and also the equilibrium density gets worse in comparison
to experiments when vdW interactions are added. Overall there is a lack of reference
experimental lattice energies to compare with and other ab initio methods. In particular
data from something like quantum Monte Carlo would be useful to obtain more accurate
lattice energies for benchmark purposes.

On the general point of benchmarking and assessing the performance of existing and
new xc functionals for the treatment of H-bonded systems, it seems that the water
hexamer and clusters extracted from condensed phase would be important test cases to
add to existing H-bond test sets. Likewise, various high pressure ice phases should also
be included, once, of course, accurate lattice constants and lattice energies have been
obtained.

Undoubtedly, from the study on the hexamers presented in this thesis and subsequent
studies with Langreth and Lundqvist method [249] the importance of vdW interactions
is evident. The problem here though is to simultaneously achieve an accurate ammount
of dispersion and accurate absolute lattice energies. So far, neither the vdW correction
scheme chosen here nor the methods from Langreth and Lundqvist [249] or Silvestrelli
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[250] can get the correct absolute dissociation energies of the hexamers. Again more
investigations in this direction is needed although encouraging results have already been
obtained by Klimeš et al. [285].
Finally, no xc functional tested provides the correct description of HBs in all three

phases of water. The quest to find an improved functional such that the reasons for its
success or failure can be understood from physical perspectives remains. Nonetheless,
as has just been discussed, considerable progress has been made in this thesis. Overall
this work suggests that functionals with exact exchange (e.g., PBE0) and schemes that
account for dispersion forces (e.g., the Tkatchenko-Scheffler non-empirical correction)
offer considerable performance improvements over regular GGAs in simulating hydrogen
bonded collections of water molecules. Hopefully, the knowledge earned here will assist
in the developments of improved description of HBs with DFT, which will ultimately
lead to an accurate ab initio phase diagram of water.
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A. Extrapolation Schemes

There are several extrapolation schemes available in the literature and some of them
are tested here. Mostly they are developed to be applied with Dunning’s correlation
consistent basis sets. Some of the methods are briefly describe here:

(i) Feller [202]:

E(X) = ECBS +Ae−BX , (A.1)

where, X is the cardinal number in a basis set, i.e., 2 for aug-cc-pVDZ, 3 for aug-cc-
pVTZ, 4 for aug-cc-pVQZ, and 5 for aug-cc-pV5Z.

(ii) Halkier and coworkers [144]:

E(X) = ECBS +AX−3 . (A.2)

(iii) Schwartz [203]: This particular general form was derived from convergence studies
of MP2 energies of helium atom:

E(X) = ECBS +
A

(X + d)m
+

B

(X + d)m+1
+

C

(X + d)m+2
,

where, d is angular momentum offset. There are various ways to decide values of m
and d. Two particular choices are found to provide satisfactory results from the work
of Wilson and Dunning [205]: (a) d = 1, m = 4, C = 0 and (b) d = 0, m = 3, B = 0.
Using those parameter two equations become:

E(X) = ECBS +
A

(X + 1)4
+

B

(X + 1)5
, (A.3)

E(X) = ECBS +
A

X3
+

C

X5
. (A.4)

(iv) Truhlar proposed a two point extrapolation scheme [206], which can be employed
with X=2 and X=3:

EHF(X) = EHF
CBS +AHFX−α ,

Ecorr(X) = Ecorr
CBS +AcorrX−β .

Combination of above two equations leads to,

EMP2
CBS =

3α

3α − 2α
EHF

3 − 2α

3α − 2α
EHF

2 +
3β

3β − 2β
Ecorr

3 − 2β

3β − 2β
Ecorr

2 . (A.5)

Suggested values for the parameters are α = 3.4 and β = 2.22.
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Table A.1.: Difference in the calculated and extrapolated HF (∆EHF) and correlation (∆Ecorr)
energies with aug-cc-pV6Z basis sets for water monomer and dimer. Energies are given in
meV/H2O.

Extp Eq. Monomer Dimer

∆Ecorr ∆EHF ∆Ecorr ∆EHF

X=2,3,4 A.1 38.3 -11.5 39.4 -12.4
A.2 156 -21.4 154 -21.3
A.3 -16 -35.6 -15.7 -36.4
A.4 -6.4 -39.0 -6.3 -39.6

X=2,3,4,5 A.1 20.1 -7.8 20.5 -8.0
A.2 101 -19.4 99.6 -19.3
A.3 -9.4 -19.9 -9.4 -20.1
A.4 -5.8 -23.2 -5.9 -23.4

X=3,4,5 A.1 7.3 -4.9 7.1 -4.7
A.2 12 -23.1 12.5 -23.2
A.3 -3.9 -6.6 -4.1 -6.3
A.4 -5.3 -8.5 -5.5 -8.2

X=2,3 A.1 248 55.0 -24.4 6.9
A.2 264 9.9 260 -9.3

X=3,4 A.1 86.9 3.3 22.1 -7.7
A.2 27.9 -35.3 27.5 -35.7

X=4,5 A.1 21.8 -3.2 9.3 -5.0
A.2 -1.0 -11.9 -1.3 -11.8

Results

To find out the most accurate scheme here a comparison was made between the calculated
energy with an aug-cc-pV6Z basis set and the extrapolated value at X=6. Table A.1
provides the differences for the HF and correlation energies for monomer and dimer.
Energy differences can be defined as,

∆EHF = EHF
fit − EHF

computed (A.6)

∆Ecorr = Ecorr
fit − Ecorr

computed (A.7)

From Table A.1 it is found that for extrapolations of HF and correlation energies, re-
spectively, Eq. (A.1) and Eq. (A.4) are reasonably accurate. Table A.2 shows the
extrapolated dissociation energies of the water dimer to tetramer using all the extrapo-
lation equations and the best scheme by combining extrapolation of HF part with Eq.
(A.1) and Eq. (A.4) for correlation part. It is observed that if the extrapolation is done
using the energies obtained from TZ, QZ, and 5Z quality basis sets then the results
are much less sensitive to the extrapolation schemes. In those cases the dissociation
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Table A.2.: MP2/CBS dissociation energies for water dimer to tetramer obtained from various
extrapolation methods for regular and BSSE corrected (BSSEC) values. The dissociation energies
taken as the best are highlighted with bold. Energies are given in meV/H2O.

Dimer Trimer Tetramer

Extp Eq. Regular BSSEC Regular BSSEC Regular

X=2,3,4 A.1 215.37 215.09 228.35 227.41 299.22
A.2 221.07 211.87 233.37 225.08 306.58
A.3 216.37 217.24 229.65 229.80 299.99
A.4 217.02 216.70 230.21 229.44 300.97

A.1 & A.4 217.72 216.62 231.04 229.46 302.05

X=2,3,4,5 A.1 215.63 214.37 228.37 227.75 299.59
A.2 219.61 212.82 232.09 226.24 304.65
A.3 215.67 215.99 228.74 229.52 299.48
A.4 216.14 215.85 229.18 229.40 300.14

A.1 & A.4 216.61 215.67 229.71 229.30 300.97

X=3,4,5 A.1 216.43 213.76 228.87 228.33 300.38
A.2 217.06 215.11 229.97 228.59 301.38
A.3 214.62 214.11 227.36 229.11 298.72
A.4 214.69 214.47 227.49 229.34 298.78

A.1 & A.4 215.87 214.76 228.58 229.54 299.96

X=2,3 A.1 931.06 1021.4 1576.2
A.2 223.15 209.39 235.01 222.83 309.32
A.5 223.03 212.96 235.69 227.32 309.89

X=3,4 A.2 218.12 215.38 231.07 228.25 302.47

energies obtained from all the equations (except Eq. (A.5)) are within 3 meV/H2O of
the best estimated values, which arrive from the combination of Eq. (A.1) and Eq.
(A.4) (highlighted in Table A.2). Also to be noted that with the two point (DZ and
TZ) extrapolation scheme of Truhlar (Eq. (A.5)) binding energies are ∼10 meV/H2O
overestimated than the best estimation but it could be a promising scheme for much
larger systems. Moreover, after extrapolation the regular and BSSE corrected dissocia-
tion energies are always within 2 meV/H2O when basis sets of quality TZ or better are
employed.
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B. NAO Basis Sets

The numerically optimized radial basis functions (each with (2l+1) angular momentum
functions) employed in chapter 6 are summarized in Table B.1. The convergence behavior
of the binding energy of the water dimer and lattice energy of ice Ih is displayed in Fig.
B.1.

Table B.1.: Radial functions selected during the basis optimization for H and O, which are
employed as NAO basis sets in FHI-aims code. The first line (minimal) summarizes the free-
atom radial functions used (noble gas configuration of the core and quantum numbers of the
additional valence radial functions). “H(nl, z )” denotes a hydrogen-like basis function for the
bare Coulomb potential z/r, including its radial and angular momentum quantum numbers, n
and l. X2+(nl) denotes a n, l radial function of a doubly positive free ion of species X.

H O

minimal 1s [He] + 2s 2p
tier1 H(2s, 2.1) H(2p, 1.8)

H(2p, 3.5) H(3d, 7.6)
H(3s, 6.4)

tier2 H(1s, 0.85) H(4f, 11.6)
H(2p, 3.7) H(3p, 6.2)
H(2s, 1.2) H(3d, 5.6)
H(3d, 7.0) H(5g, 17.6)

H(1s, 0.75)

tier3 H(4 f , 11.2) O2+(2p)
H(3p, 4.8) H(4f, 10.8)
H(4d, 9.0) H(4d, 4.7)
H(3s, 3.2) H(2s, 6.8)

· · · · · ·
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B. NAO Basis Sets
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Figure B.1.: Convergence behavior of the NAO basis sets with the PBE xc functional (a) for
the binding energy of water dimer and (b) for the lattice energy of ice Ih. The result from
G03/aug-cc-PV5Z is also shown in panel (a). T1, T2, and T3 refer to tier1, tier2, and tier3 basis
sets, respectively. HT1OT1 refers to NAO basis set for H and O are used up to tier1 and likewise
others.

110



C. Comparison of Gaussian, plane-waves,
and NAO Basis Sets

To show that the choice of different basis sets does not effect the conclusions obtained
in the previous chapters, comparisons of Gaussian, NAO, and plane wave basis sets are
presented in Table C.1 for the dissociation energies of several water clusters. Except
the values obtained with 70 Ry energy cut off the three other methods produce binding
energies within 1 meV/H2O of each other for all of the clusters. This indicates the basis
sets employed in the thesis are close to completeness. In fact with a lower 70 Ry energy
cut off the energetic ordering of the water hexamers are found to be different than the
other three methods. Given that the 70 Ry is not a small cut off (already larger than the
plane wave cut off used in many ab initio simulations of liquid water) the sensitivity of
the results to basis set completeness observed here may be one source of the differences
often observed from one DFT liquid water simulation to the next.

Table C.1.: Comparison of the dissociation energies of the four low energy isomers of the water
hexamers and the water dimer to pentamer in their global minimum structures calculated with
three types of basis sets and BLYP xc functional. For Gaussian aug-cc-pV5Z and for NAO tier3
basis sets are employed. For plane waves GTH pseudopotentials are used [150]. For the hexamers
the most stable isomer from each method is indicated in bold and with respect to that the relative
energies of the other isomers are given in parenthesis. All values are in meV/H2O.

Gaussian NAO Plane wave (200 Ry) Plane wave (70 Ry)

Prism 273.6 (16.2) 272.1 (17.6) 272.1 (17.6) 270.3 (11.3)
Cage 277.4 (12.4) 277.3 (12.5) 276.0 (13.7) 272.5 (9.1)
Book 287.5 (2.3) 287.4 (2.4) 286.7 (3.0) 281.6 (4.5)
Cyclic 289.8 289.8 289.7 279.7 (-1.9)

Dimer 180.7 180.6 179.3
Trimer 191.7 191.9 190.8
Tetramer 264.9 265.1 263.9
Pentamer 281.2 281.3 280.7
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D. Isotropic Change in Lattice Parameter

For all ice phases to obtain the DFT equilibrium volumes the lattice parameters are
varied isotropically from the experimental values. This means that the ratios between
a, b, and c lattice parameters are kept fixed to the ratios obtained in experiments. This
constraint is found to be reasonable and will not change any of the conclusions arrived in
chapter 6. A recent study of Feibelman [57] has shown that for the hexagonal lattice of
ice Ih the c/a ratio differs only by ∼0.4%-0.5% from experiment with BLYP and PBE.
Also to verify that for other high pressure phases, here specifically ice VIII has been
studied with PBE and PBE+vdW. The lattice parameters a and c are changed by ±2%
and ±4% starting from PBE and PBE+vdW equilibrium volumes and surrounded the
minimum energy point with 24 points. Then calculated data are interpolated using a
polynomial fit and the lattice parameters c and a having the lowest energy are located
(Fig. D.1). The obtained new c/a ratio is only 0.6%-0.8% smaller than experimental
value (see Table D.1). Also the difference in the equilibrium volumes while keeping c/a
ratio fixed at the experimental value or varying that is only ∼0.04%-0.1% with PBE and
PBE+vdW, respectively.
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D. Isotropic Change in Lattice Parameter

Table D.1.: Comparison of calculated equilibrium volumes of ice VIII by keeping c/a ratio fixed
at the experimental value and while varying that. Percentage errors with respect to experimental
c/a ratio are given in parenthesis. All volumes are in Å3/H2O and energies in meV/H2O.

Varying c/a

c a c/a Volume/H2O Lattice Energy

PBE 7.025 4.859 1.446 (0.6) 20.735 459.48
PBE+vdW 6.949 4.815 1.443 (0.8) 20.15 619.38

Expt. 1.455

Fixed c/a

PBE 7.056 4.849 1.455 20.744 459.44
PBE+vdW 6.986 4.801 1.455 20.13 619.23

Expt. 1.455

Figure D.1.: Contour plot of the polynomial fit to the data calculated in a-c plane for ice VIII.
The minimum energy points are indicated with circles. The yellow lines depict the experimental
c/a ratio.
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E. Refit of parameter Sr for BLYP+vdW

BLYP produces much weaker bonding for vdW and H-bonded systems than PBE, thus
the Sr parameter fitting to the S22 database (from Ref. [243]) turns out to be 0.62 for
BLYP and 0.94 for PBE. This tells that with BLYP+vdW we will eventually correct
at much shorter inter atomic distances than desired in order to get all the missing
interactions. Now applying Sr = 0.62 for BLYP+vdW, the dissociation energy of gas
phase equilibrium water dimer turns out to be 258 meV, which is about 40 meV larger
than MP2 value of 216 meV. This large overestimation also leads to an unphysical
situation for ice where we find ice VIII becomes more stable than ice Ih with BLYP+vdW.
Looking more closely to the S22 database it is found that BLYP is much inferior for
purely vdW bonded system than for H-bonded systems and if the fitting is restricted
only to H-bonded systems, the optimized Sr turns out to be 0.72. Since the interaction
between water molecules are not purely vdW bonded, Sr parameter is fitted on a larger
database including 48 different water dimers (H-bonded and non-bonded) extracted from
four low energy isomers of water hexamers along with S22 database. A optimized value
of Sr = 0.75 is obtained as a result, which produces binding energy of the equilibrium
water dimer of 220 meV, very close to MP2. Fig. E.1 shows that Sr = 0.75 modifies the
damping function simply not to include any vdW interaction within ∼2 Å. Henceforth
we report all the BLYP+vdW results for ice (chapter 6) using Sr = 0.75. For comparison
the damping function with Sr = 0.94 is also shown, which is used for all calculations
with PBE+vdW.
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E. Refit of parameter Sr for BLYP+vdW
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[77] J. Č́ıžek, J. Chem. Phys. 45, 4256 (1966).
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