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2 UDO SCHERZ AND MATTHIAS SCHEFFLER
I. Introduction

The requirements of semiconductor technology for accurate control of
defect concentrations, concentration profiles, defect electronic structure,
diffusion properties, formation and reaction energies, and atomic structures
at interfaces has stimulated extensive experimental and theoretical research.
Several exciting new phenomena have been discovered throughout these
investigations, as for example the “negative U™ property of the vacancy in
silicon (Baraff et al., 1979, 1980, Watkins and Troxell, 1980), i.e., an effective
electron—electron attraction; and the EL2 (Martin and Makram-Ebeid, 1986;
Dabrowski and Scheffler, 1988a, 1989a; Chadi and Chang, 1988a) and DX
(Chadi and Chang, 1988b; Zhang and Chadi, 1990; Dabrowski et al., 1990;
Dabrowski and Scheffler, 1992) metastabilities, which demonstrate the
capability of the III/V crystal to stabilize defects in different atomic
configurations (Scheffler, 1989; Caldas et al., 1990; Dabrowski and Scheffler,
1992). These and many more examples, as well as the discussions and
controversies in the process of unveiling the underlying physics, show that the
basic understanding of many-particle effects in condensed-matter science, and
in particular for low-symmetry polyatomic aggregates, as for example defects
in semiconductors, is still rather limited.

The derivation of density-functional theory (DFT) (Hohenberg and Kohn,
1964; Kohn and Sham, 1965; Levy, 1982), together with the local-density
approximation (LDA) for the exchange-correlation functional (Dreizler and
Gross, 1990; Lundqvist and March, 1983; Ceperley and Alder, 1980; Perdew
and Zunger, 1981) has played a significant role in improving this situation,
and DFT-LDA will certainly still play an important role in the coming years.
This theory describes the electronic ground state and contains all many-
electron effects of the nonrelativistic interacting many-body systems of
constant and weakly varying densities. For very inhomogeneous densities
and for highly localized electron states (as, for example, in free atoms), the
DFT-LDA is not a reasonably defined approximation for the treatment of
exchange and correlation. This criticism, although certainly valid in principle,
has not stopped theoreticians from applying this approach to calculate
structural and elastic properties of polyatomic systems. The demonstrated
success of the theory (e.g., Moruzzi et al., 1978; Cohen, 1985) is in fact
overwhelming, and no severe breakdown of the theory has been reported so
far (see Section I11.4 for more details). We like to emphasize at this point that
an accurate evaluation of the DFT-LDA electron density and total energy is
usually very difficult and requires sophisticated methods as well as care and
experience. Often the numerical inaccuracy may be higher than the errors due
to the LDA. For many defect studies an accuracy with errors below 0.1 eV for
the relevant total-energy differences is needed even for a qualitative de-
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scription as 0.1 eV is the typical order of magnitude for energy barriers and
energy differences between atomic configurations. Therefore higher
inaccuracies could give rise to a significantly different geometry and
electronic structure.

An important deficiency of the present state of the theory concerns
excitation properties, as, for example, optical absorption or emission. DFT-
LDA is only designed for ground state properties. In order to handle
excitations it is important to calculate the electron self energy (Sham and
Kohn, 1966; Hedin and Lundqvist, 1969), which describes the modification of
the exchange and correlation energy and the finite lifetime of the excitation
(e.g., due to plasmon or electron-hole excitations). Furthermore, transition
matrix elements can play an important role. A tractable and at the same time
reliable approach for these purposes has not been developed so far.
Therefore, only (semi) empirical calculations either neglecting the self-energy
or taking a guessed ansatz (usually fitted to experiments) are used.

Localized defects in semiconductors present a particular challenge for the
theory. Powerful methods and techniques to handle the ground state have
been developed over the last 10 years, and more developments and improve-
ments are underway. To date, no general theoretical approach exists that is
suited for a reliable description of all possible defect candidates. In fact, a
thorough investigation of point defects, including the local lattice distortions,
is still a most demanding task. As a consequence, defect complexes (of more
than two partners) and highly distorted transition-metal impurities have not
been investigated in detail.

The calculation of the ground-state total energy and electron density,
which are the key quantities of DFT-LDA, can be used to understand the
electronic and atomic structure of defects. In addition, for temperature-
dependent properties such as defect concentrations in thermodynamic
equilibrium, it is possible to calculate thermodynamic potentials (the Gibbs
free energy, for example) from the partition function of a canonical ensemble.
Difficulties may arise because in many (maybe most) practical situations,
thermodynamic equilibrium is not attained. For example, at or below room
temperature, chemical reactions in the bulk may not be in equilibrium with
the surface and with the crystal environment. Then it is often assumed that a
“partial equilibrium” exists and that thermodynamics can be applied only to
certain defect reactions. Such thermodynamic treatment has been done only
recently by means of first-principle calculations (Scheffler, 1988; Biernacki
and Scheffler, 1989; King-Smith et al., 1989). For defects it was found
(Scheffler, 1988; Biernacki et al., 1989) that entropy differences of different
defect configurations can reach values of about 3ky, where kg is the
Boltzmann constant. At T = 1,000 K, this entropy corresponds to 0.26 eV,
which for many reactions may be of significant importance.



4 Upo SCHERZ AND MATTHIAS SCHEFFLER

In this chapter we describe the basic concepts as well as the results of DFT-
LDA calculations of sp-bonded defects in III/V zincblende-structure semi-
conductors. We mainly concentrate on structural and elastic properties and
discuss the formation energies, stabilities, and defect reactions. Electronic
levels and optical properties are discussed with less emphasis, because they
are less reliable in the theory than the ground state electron density, the total
energy, energy barriers, and forces (see Part III). We will assume throughout
this chapter that the concentration of defects is low, so that their statistics is
that of independent particles. Thus, when Ny, is the number of defects and
2N, = Ny, + Ny the number of perfect crystal nuclei (cations and anions), the
defect concentration is

[D]=%9<<l. (1)

(4

This definition of the defect concentration will be used throughout this
chapter. From [D] the number of defects per cubic centimeter is obtained by
multiplying [D] by 4/, where Q is the volume in cubic centimeters of the
conventional unit cell of the host crystal, which for a zincblende lattice
contains four primitive unit cells. For GaAs, for example, we have
4/Q = 2.2+ 1022 cm 3. Most examples presented in this chapter are defects in
GaAs. This is done because GaAs is the mostly studied material and because
the qualitative properties of these examples and the conclusions are valid for
other I11/V compounds as well. Therefore. we feel that it is convenient to use
GaAs practically as a synonym for a III/V compound and Ga and As as
synonyms for a group-IIl crystal atom and a group-V crystal atom,
respectively.

The remaining paper is organized as follows. In Part II we summarize the
basic thermodynamic relations that are important for calculations of defect
reactions and concentrations. In Part III we discuss some basic aspects of the
density-functional theory and the local-density approximation for the
exchange-correlation functional. We will not give a derivation of the theory
because this can be found in the clearly written original papers (Hohenberg
and Kohn, 1964; Kohn and Sham, 1965; Levy, 1982), as well as in greater
detail in the books by Dreizler and Gross (1990) and Lundqvist and March
(1983). We will present, however, a short description of the exchange-
correlation interaction, and we will give some hints as to which cases require
the LDA to be treated with special caution. Part IV then sketches the two
main routes taken at present to evaluate defect properties: the self-consistent
Green-function method and the supercell approach. Parts V-VIII describe
results of recent calculations. We concentrate on sp-bonded defects, leaving
out the first-row elements as well as transition-metal impurities. As men-
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tioned earlier, special attention will be paid to formation energies, structural
properties, and metastabilities. Part V summarizes calculations of the
electronic structure and of the concentration of simple, intrinsic point defects
in GaAs. Part VI gives a general description of antisite and antisite-like
centers in GaAs and InP, and Part VII continues this discussion with respect
to the EL2 defect and its metastability. In Part VIII we discuss the properties
of the substitutional donor Si in GaAs, which exhibits a shallow-deep
structural transition, and we relate these results to experimental data of DX
centers.

II. Thermodynamics of Defects in Semiconductors

1. Basic CONCEPTS

The quantum mechanical system of a solid consisting of N, electrons and
N nuclei is described by the many-body Hamiltonian

H=HE+T, 2

with
HE=TE+VEY({r), RN+ VEE({r)+V'TI({R,}). (3)
Here {r;} denotes all position vectors of the electrons (ry, r,,...,ry,), and {R;}

denotes the positions vectors of all nuclei (R, R;...., Ry). The kinetic energy
operators of the electrons TF and nuclei T' are given by

N, hg

T = ¥ i A 4

.-; 5 A (4)
and

T L A 5

=1§1_2M, " ©)

VE-E - e 5 {6:‘
8ney 17 Ini—ryl
i#j
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and
pr-1 = gt LN Z, 2,

e ™ m 1!
8?{80 I.J |R;_R’f[
1#1J

(7)

where e is the electron charge, the charge of the /'th nucleus is —Z, e, and ¢ is
the permittivity of free space. The attractive interaction between the electrons
and the nuclei may be written in the form

N, N
VESL=3 ur) with or)= Y Vir—Ry), (8)
i=1 =1
where V; is the potential energy of an electron due to the nucleus I:
e Z,
dnegy r—Ry|

Vilr—Ry) = 9)

In many cases it may be advantageous to use the frozen-core approximation,
in which the strongly bound electrons in closed shells are treated together
with the nuclei as rigid ions. This approach often increases the numerical
accuracy especially when applied together with the pseudopotential concept
(see Section IV.7). In this case N, is the number of valence electrons only and
V, in Egs. (8) and (9) denotes the pseudopotential of the ion I.

The eigenvalue problem of the Hamiltonian H of Eq. (2) is solved by using
the Born-Oppenheimer approximation. One then neglects the electron-
phonon coupling, which implies that the states of the Hamiltonian of the
electron system H® of Eq. (3) are calculated separately in a first step by
considering the coordinates of the nuclei as parameters. Using the density-
functional theory, described in Section I11.4, the lowest eigenvalue of HE is
calculated, which gives the ground-state total energy E{'({R,}) as a function of
the positions of the nuclei and which is called the Born-Oppenheimer total-
energy surface. In the second step the vibrational energy spectrum is
calculated at a certain point in configuration space, {R?}. Typically, {R}}
corresponds to the relevant minimum of the Born—Oppenheimer surface or is
very close to it. EgX({R7}) is then calculated as the eigenvalues of the
vibrational Hamiltonian

H*® = TY({R;}) + E({R}) — ES'({RY)). (10)
The eigenvalues of the Hamiltonian H of Eq. (2) are given by

Eo.({R?}) = ES({R7})+ ESiR({RY}). (11)



1. DexnsiTY-FUNCTIONAL THEORY OF sp-BONDED DEFECTS i

In order to apply this for the calculation of the Gibbs free energy of the solid,
we may introduce the volume V as the volume occupied by the atoms at their
positions {R}}. We use the canonical ensemble and write the partition
function in the form

; 3 E
2, . (88)) = Dibyexp{ — o} Texp {~ P2l (2

where we have neglected the summation over the excited electronic states.
This is a reasonable approximation unless the difference between the lowest
excited electronic energy and the ground-state energy is not large compared
with kg T. In Eq. (12) the volume dependence of Z, has been noted explicitly.
The degeneracy D§., of the electronic ground-state energy Eg of the
considered geometry is the spin degeneracy in case of any stable or
metastable atomic configuration, and because of the Jahn-Teller theorem
there is no orbital degeneracy, kg is the Boltzmann constant, and T the
temperature. The geometrical configurational degeneracy will be considered
in Section I1.2. To find the Helmholtz free energy and other properties of the
thermodynamic equilibrium of the solid, we restrict the just-outlined theory
to those atomic positions {R}} that are close to the equilibrium values
defining stable or metastable states.

The Helmholtz free energy of a crystal containing only one defect is then
given by

FAT V. {R}})) = —kTIn Z(T. V, {R}}) = F4e+F+F™,  (13)

with
F4%(T, {R9}) = —ksT In D}, (14)
FE(V, {R?}) = ES(V. (RY} (15)

and

: Ewb
FYT, V, {R{}) = —kgT In Zexp i L)
kgT

-g[eurn(i-ot- 1))

Here w,(V, {RY}) denote the vibrational frequencies of the solid in the quasi-

(16)
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harmonic approximation,' which have to be summed up (Born and Huang,
1954). For a finite crystal with periodic boundary conditions there are 3N
vibrational modes. From the Helmholtz free energy it is possible to derive the
entropy S, and the pressure p by

cF
SAT V, (R}}) = —(C.—‘) (17)
¢ V.ARY}
and
F
AT, V, (RO)) = -(T;)T. (18)

Solving the equation of state Eq. (18) for the volume V; = V{(T.p, {RY}), we
can calculate the Gibbs free energy

G\(T; p, {R}}) = F (T, Vi(T, p, {RY}), (R?}) + pVi(T; p, {R9}). (19)

Under the condition of given temperature T and pressure p, the equilibrium
volume and the equilibrium positions of the nuclei are determined by

&G,
—_— =0. 2
(ER?)T.,, el

2. DerecT CONCENTRATION AND GiBBS FREE ENERGY OF DEFECT
FORMATION

We will now consider the thermodynamic quantities that describe a
semiconductor crystal containing one type of Ny noninteracting defects. This
implies that we neglect defect—defect interactions, for example by Coulomb
interaction, long-range lattice relaxation, and others. Let the partition
function Z, of Eq. (12) describe a crystal containing one defect only, and let
aN_ be the number of equivalent positions of the defect with respect to
translational and point symmetry of the perfect crystal. For a tetrahedral site,
« is equal to one.? Then, for a crystal containing Ny, « 2N, defects, the

! We use the term quasi-harmonic approximation because the described approach allows us
to take into account that the dynamical matrix and thus also the frequencies w, vary with the
atomic positions.

2 For a group 1V semiconductor z would be equal to two for a tetrahedral site, because both
atoms per unit cell are identical.



1. DEnsITY-FuNCcTIONAL THEORY OF sp-BONDED DEFECTS 9
partition function is given by

aN

Z(T, V, Np) = (N ) [Z (T, V)]Y, (21)
D

where the configurational degeneracy of the positions of the defects has been
taken into account and Z, is given by Eq. (12). The Helmholtz free energy of
such a crystal is then

F(TV.Np)= —kgTInZ = —kBTIn(T\?r”)+NDF1. (22)
D

Equations (13)-(19) also define the Gibbs free energy of the perfect crystal
with 2N_ atoms. Note that the number of atoms of the crystal with the defect
may be different from 2N_. To find the change of the Gibbs free energy due to
the incorporation of one defect, it may be necessary to calculate the Gibbs
free energy of some free atoms that enter or leave the crystal. A defect D" is
formed by the exchange of atoms A, A,,... and electrons e~ between a
perfect crystal, which we denote by 0, and a reservoir. This is described by a
chemical reaction of the form

DP=0+Y vA —le”, (23)

where v; is the number of neutral atoms A, involved in the reaction and /is the
charge state of the defect. We now consider different charge states and treat
differently charged defects as different defects. This also takes into account
that differently charged defects typically have a different geometry. A special
example of Eq. (23) is the formation of a [-charged substitutional atom X at a
Ga site in GaAs. This is described by the reaction

X =0+X—-Ga—le". (24)

The reaction Eq. (24) is understood in such a way that a substitutional defect
X, is created inside a perfect crystal and that the atom X enters the defect
region whereas the Ga atom leaves this region. The meaning of the words
“enter” and “leave” will be specified later, when we describe the defect
concentrations and chemical potentials.

The change of Gibbs free energy of the system due to the incorporation of
Np defects is then
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G(T, p, ND)—ND[GP‘—Z V.-GfA,-Jj] (25)

aN
=—kgTIn (N ) + ND[[FI —F?)4p(V, —V?) =Y v,-G(A,-}:|‘
D i

It consists of a configurational part and contributions describing the defect-
induced changes of Helmholtz free energy F,— F®°, volume V¥, — V"¢ and
atomic contributions. Here G(A,) denotes the ground state energy of the
nucleus (or rigid ion) and the electrons of atom A,. In case of thermodynamic
equilibrium and assuming 1 « N, the change of the Gibbs free energy due to
the creation of one defect is

-

u(D) =~ [G(T. p, No)=Np (GMZ \'.-G(A.-J)]
éNp i

(26)

aN
= —kaT1
kg n(N

) +u%(D),

D

where we have used the approximation of Stirling. The so-called standard
term u°(D) can be written in the form

#°(D) = —kgT In D, + ES'(Vy, {R7})— EG"P<(VP<, {R}})
+FNTV,, (RD) = FY2(T Vo, (RED+p(V,= V™) (27)
_z viG{Ails

where {R}°} and {R}} denote the equilibrium positions of the atoms of the
perfect crystal and of the crystal containing one defect, respectively. We have
assumed that the ground state of the perfect semiconductor crystal is non
degenerate.

When the system is in thermodynamic equilibrium at a given temperature
T and pressure p, the Gibbs free energy necessary to create a defect according
to Eq. (23) must be equal to the change of energy due to the environment, and
we have

.‘-‘(Dm) =] Z vip(A;)—IE, (28)

i

where E; is the Fermi energy and u(A;) denotes the chemical potential of the
reservoir for atom A;. The term “reservoir” implies that energies and
entropies of the atoms do not depend on the defect concentration. In the same
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sense the Fermi energy acts as a reservoir for electrons or holes, if the
concentration of the defect is small compared to the background doping.
From Egs. (26) and (28) we then obtain the defect concentration

NDm

[D] = (29)

ODIMN_¥. v, !
1(D”)} exp { [D } z’t v(nu(Al) E I‘EF} .

c kHT
The numerator in the exponential is often called the Gibbs free energy of
defect formation. We see that it depends on the reservoirs of the atoms and of
the electrons.

For the preceding example of a Ga-site substitutional defect (see Eq. (24)),
we obtain

NYI{I
[ (h] S e 1{)((“) exp {_.

C

0 {“
HOXE,) — u(: +u(Ga) +lE; } (30)
B

Here p°(X") is given by Eq. (27), and the atomic chemical potentials u(X) and
u#(Ga) are determined by the chemical state in which the atoms X and Ga are
bound in the initial or final state of the chemical reaction outside or at the
surface of the crystal. Typically, u(X) and p(Ga) can be controlled by the
environmental conditions (partial pressure). To give one example: Ga may
end up in a Ga-metal crystal or it may, if the crystal is held in As, gas, form
together with $As, a new GaAs unit cell. These two extreme cases imply that
the Ga chemical potential u(Ga) can be modified over a range of 2 eV, which
can have a significant effect on the defect concentration (see Eq. (30)).

We close this section with the remark that defects can also be formed
without any atoms leaving or entering the crystal. In such cases neighboring
or distant defect pairs are created (e.g., a Frenkel pair or an antisite—antisite
pair) independent of reservoirs. The reactions are discussed in the next
section,

3. Derect PAIRS AND THE LAW OF MASS ACTION

In Sections II.1 and 11.2 we considered crystals containing one type of
noninteracting defects only. This approach, however, can be used as well to
determine the concentration of pairs of point defects and higher-order
complexes. In this section we consider the chemical reactions between defects
forming a defect—defect pair. If all possible defects are in thermodynamic
equilibrium with the conditions determined by the crystal environment and
by the crystal bulk and surface, then there is also thermodynamic equilibrium
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with respect to all reactions of the defects with each other. However, often the
full thermodynamic equilibrium may not be attained, because the temper-
ature may be too low so that certain reactions are kinetically hindered; this
implies that some of the defects are frozen in metastable configurations.
Equilibrium thermodynamics may then still be applied, but should be
restricted to only certain defect reactions. The resulting state is usually called
a “partial equilibrium.”

We now discuss defect—defect reactions, concentrating on the formation of
defect pairs. Let us consider a reaction of a defect A with charge state i and a
defect B with charge state j to produce a defect pair AB with charge state [:

ABY" =AW + BU—([—i— jle”. (34}

The corresponding law of mass action follows from Eq. (29) and reads

A oy n
[AB"] _  «(AB") { ﬂi_}‘ (32)

[A(”][BU'] = ':c(A"’):{B”"] €Xp § — ke T

where the concentration [A'”’] of a defect A" is defined by Eq. (1) and « is the
number of equivalent positions of the defect per primitive unit cell of the
crystal. The Gibbs free energy of pair binding is

Ap = p%A") +u°(BY) —(I—i— j)Eg— u*(AB"), (33)

where 4°(A"Y) and u°(BY) are the standard terms of the Gibbs free energy of
defect formation (see Eq. (27)). Again we assume that the Fermi energy is
independent of the reaction. Note that the reaction energy Ay is independent
of the chemical potentials of the reservoirs u(A;), since according to Eq. (31)
no atoms leave or enter the crystal.

The chemical reaction Eq. (31) may also be used in the special case of the
annihilation of two defects, which may occur if a Ga antisite approaches an
As antisite or if a Ga interstitial approaches a Ga vacancy. The reverse of the
last reaction is the formation of a distant (i.e., noninteracting) Frenkel pair,
which for the cation in GaAs reads

V¥ + Gal + (j + le” =0. (34)

Here i denotes a specific interstitial site. The law of mass action gives

Oy 0 1 '
[V‘éL][Ga:”]=.x(vgt)afoa:”)exp{- AL Sl S ”E*‘}A (39)
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In general, the concentration of Ga vacancies (and that of Ga interstitials) will
depend also on other reactions involving these defects. However, if reaction
(34) dominates or if there exists a partial equilibrium for this reaction, we
have [V¥,] = [Ga!"], and the concentration of vacancies is determined by

4] 0 0 1 -
(VL] = /a(VE)A(GaD) exp { _ KV ;fa‘;}’ il ”EF}. (36)
B

Note the factor 2 in the denominator of the exponential, which increases the
vacancy concentration significantly. It is simply due to the fact that reaction
(34) does not involve atomic reservoirs and that rwo defects are created
simultaneously. Analogous equations to (34) and (36) hold for the simulta-
neous creation of a distant antisite pair, and for this case the law of mass
action reads

[As2I[Gad _a{As(..]m(Gam)ew{ LO(AsE) + uO(Ga) + (i + j)EF}_

ke T
(37)
Further details for the defect reactions are discussed in Part V,

III. Ab-Initio Calculation of the Electronic Ground State and of Atomic
Vibrations

4. DexsITY-FUNCTIONAL THEORY

Modern ab-initio calculations of ground-state properties of solids are
typically based on the density-functional theory of Hohenberg, Kohn, and
Sham (Hohenberg and Kohn, 1964; Kohn and Sham, 1965; Levy, 1982;
Dreizler and Gross, 1990). The basic theorem states that the ground-state
energy E§ of the many-electron Hamiltonian H® (see Eq. (3)) is a functional
of the electron density n(r) and has its minimum at the exact ground-state
electron density. The equations that follow are given for nonmagnetic
systems, but the extension to spin polarization is straightforward. In fact,
other extensions such as to relativistic effects, excited states, and time-
dependent phenomena have also been discussed in the literature (see Dreizler
and Gross, 1990, for more details). They are, however, not important to the
problems addressed in this chapter. The variational property of the total-
energy functional with respect to the electron density, together with the
assumption that any physically meaningful electron density of the interacting
many-electron problem can be represented by a density of noninteracting
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fermions, leads to the Kohn—-Sham equation (Kohn and Sham, 1965; Levy,
1982):

ﬁz
[‘— 5}; VZ + l-'{r] + UH(I') + ch(rj] lf/;(r) = Gﬁbi(r]. [38]
The Hartree potential is given by

e? n(r')
dne, | r—1|

ry(r) = dt’, (39)

and the exchange-correlation potential is defined by

OE, [n]
én(r)

V() = (40)

where E,.[n] denotes the exchange and correlation functional. Equation (38)
is a single-particle equation and can be solved by “standard techniques™ (see
Section IV). The electron density is given by the eigensolutions of the Kohn-
Sham equation (38):

n(r) = 3 nlvi ()%, (41)

where n; is the occupancy of the ith orbital. Typically n; is one for states below
Er and zero otherwise. If defect levels coincide with the Fermi energy,
fractional occupancy numbers of the highest occupied states are also possible.
Since both potentials in Eqs. (39) and (40) are functionals of the electron
density, the Kohn-Sham equation, together with Eq. (39)-(41), has to be
solved self-consistently. The total energy is

- s (w5

. e \uN Z,Z,
8ne, f7 IR7—RY|
I#1

> J‘ [v(r) + vu(r)In(r)dt + E [n]
(42)

This expression is in principle exact. However, in practice one approximation
is necessary: Although E, [n] is a universal functional, i.e., there is only one
functional that describes all systems, its general form is not known. In fact, it
is not clear whether a simple, closed mathematical expression exists for
E,.[n]. Only for the interacting many-electron system of constant electron
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densities has the exchange-correlation energy per particle, €->*(n), been
calculated by Ceperley and Alder (1980) using the quantum Monte Carlo
method. The corresponding functional

EPA[n] = J n(r)et2A (n(r))d< (43)

is called the local-density approximation of the exchange-correlation func-
tional. It is exact for many-electron systems of constant density, but for
inhomogeneous systems (where Vn(r) # 0) it 1s of course an approximation.
E.. should describe all quantum-mechanical many-body effects: It should
correct the self-interaction of the particle with itself, which is contained in the
Hartree potential (see Egs. (39) and (42)), it should take care of the Pauli
principle, and it should describe the corrections that arise because the kinetic
energy of noninteracting particles (the first term in Eq. (42)) neglects the
Coulomb-interaction-induced correlation of the particle motion. The
exchange and correlation functional E,_[n] may be written in the form

2 "
Tl J' B 1) e, (44)

[r—r]
where n_(r, r') is the density of the exchange-correlation hole

Ny (r, ') = n(r')g(r. r)—1), (45)
with

J. n(r, r)de’ = —1 (46)

and where g(r,r)=g(r',r) denotes the density—density pair correlation
function. It can be shown that only the part of n,. depending on [r—r’| and r
contributes to E, [n]. From these properties it follows that when g(r, r’) is
replaced by g“PA, part of the errors introduced by this approximation cancel
when evaluating E,. (Gunnarsson and Lundquist, 1976; Fahy et al., 1990).
Almost all density-functional theory calculations performed so far have
used the local-density approximation (Eq. (43)) or an approximation closely
related to it. Experience has shown that this approach gives reliable total-
energy surfaces, and thus structural, elastic, and vibrational properties are
generally described remarkably well. For very inhomogeneous systems, as for
example free atoms, the error due to the LDA can be quite significant (i.e.,
several electron volts). Consequently, calculated cohesive energies (i.e., the
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difference of the total energy per atom of the crystal and of the free atom) can
be wrong by about 1eV (see, for example, Farid and Needs, 1992). It is
generally believed that the error for energy differences of different geometries
in solid-state systems (perfect crystals, surfaces and defects) is much lower.
Experience supports this optimistic hope. The most severe problems of DFT-
LDA calculations for solids reported so far concern magnetic systems. To be
precise, this refers to the LSDA (local spin-density approximation). The
calculations give a nonmagnetic fcc ground state of iron instead of the
ferromagnetic bee crystal (see Leung er al, 1991, and references therein).
Furthermore, the calculated T — 0 ground states of metal oxides (e.g., the
high-T, superconductors) are nonmagnetic, whereas experiments show that
they are ferromagnetic. We believe that these problems sound worse than
they really are. It is important to note that the variational property of DFT
holds for all ground states of different symmetry-group representations
(including spin). However, the LDA may introduce different errors for each of
them. Therefore it is to be expected that in systems with nearly degenerate
ground states the ordering of these ground states can be wrong. To give an
example, the calculated energy difference between the nonmagnetic fcc-Fe
and the ferromagnetic bce-Fe phase is <0.1eV per atom. Comparing this
theoretical result with experimental data, we have to conclude that the LSDA
inaccuracy is of the order of 0.1 eV. The iron example thus shows that a small
quantitarive error can produce an important qualitative change of the
physical properties. This should be taken as a warning to be cautious in
interpreting DFT-LDA results for cases where nearly degenerate ground
states occur.

With respect to defects in III/V compounds, the most severe difficulty of
the DFT-LDA approach concerns electronic properties, in particular the
calculated band gaps of semiconductors. These band gaps of the DFT-LDA
single-particle spectrum are usually much smaller than the experimental
(optical) band gaps. In fact, the band topology (i.e., the gaps at I, L, and X) is
also often wrong. The reason is that for the correct functional 6E,.[n]/dn will
have a discontinuity when the number of electrons is changed (Perdew and
Levy, 1983; Sham and Schliiter, 1983), and this discontinuity is not described
properly by the LDA functional. To calculate the band gap, the ground-state
total energies for the N, the N.—1 and the N_+1 electron systems are
needed. Although for perfect crystals the electron densities for the N, N, — I,
and N,+ | systems are practically identical, the true exchange-correlation
functional has to be sensitive to the differences. In particular, the quantum-
mechanical many-body effects of the added electron (the N, + 1 state, which
contains a conduction-band electron) differ significantly from the corre-
sponding interactions in the N, and N_—1 states. Obviously, the correct
description of these differences by a density functional requires a quite
complicated functional form. DFT-LDA apparently is a good method for
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systems with a given number of electrons, but it is too rough to describe the
differences that occur when the number of electrons is changed and
significantly different orbitals get populated.

State-of-the-art calculations of the band gap and related quantities
therefore do not use the density-functional approach but calculate the self-
energy Z(r,r’, ) to first order in the screened Coulomb interaction (Hedin,
1965). In the actual calculations the Green function and the inverse dielectric
function are evaluated from single-particle energies and wave-functions of
DFT-LDA calculations (see Godby et al., 1988, and Hybertsen and Louie,
1986). Thus, it is assumed that the quasiparticle and DFT-LDA wave
function are very similar.

It is interesting to note that although the band gaps of DFT-LDA
calculations are typically much too small, the hydrostatic deformation
potentials (i.e., the derivative of the I, L, and X band gaps with pressure) are
in close agreement with measured values; see, for example, Fiorentini (1992).
Because defect levels are largely affected by band edges, in particular if these
have a high density of states, a wrong band gap and gap topology can induce
significant problems for defect calculations. In Section VIII we will come
back to this point.

Deep defects in semiconductors may exist in different charge states. A
precondition for this is that at least one defect level is in the band gap. Let us
therefore define what we call a defect level. By this we mean the energy to
thermally remove an electron from (or to add one to) a localized orbital. The
donor level is

€(+f'0]' = FO{DIOI) o HO{D["' 1}}‘ {47}

which is the difference in the Gibbs free energy of a crystal containing one
neutral defect D'’ and a crystal containing one positive charged defect D™,
As can be seen from Eq. (27), &(+/0) follows from the differences of the
ground-state total energy E§'({R?}), of the vibrational part of the Helmholtz
free energy, and of the volume work. A corresponding definition holds for the
acceptor level. If we neglect the vibrational and volume terms, we may use the
Slater-Janak transition-state theorem (Slater, 1974; Janak, 1978). This gives

&(+/0) = €(N. —3) — Egc(+), (48)

where E.(+) is the (positive) Franck—Condon shift, which is due to lattice
relaxation as a consequence of the change of the charge of the defect. Here
€(N.—1%) is the highest occupied single-particle eigenvalue of a self-consistent
DFT calculation for a system with N,—1 electrons, calculated at the
equilibrium geometry of the N -electron system. Because of electron—electron
interactions this eigenvalue differs (for localized orbitals) from that obtained
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from calculations with N electrons. The difference,
€(N)—€(N.—3) = 3U, (49)

is positive, and for deep defects U is usually of the order of 0.3 eV. U is called
the on-site Hubbard correlation energy. If the same defect orbital can also
accept an electron, we get

5[—,";0) = —€(N=+%)+ EFC[_}' (50]

The transition-state eigenvalue &N, +4%) is calculated at the equilibrium
geometry of the N -electron system. Often the values of the Franck-Condon
shifts Egc(+) (Eq. (48)) and of Exc(—) (Eq. (50)) for different charge states are
about the same, but this is not valid in general. For deep defects the Franck—
Condon shift, which is a positive number, can be significant. As a con-
sequence the level difference

e(0/=)—e(+/0)=U —(Exd —)— Epc(+) = Uy (51)

can even become negative for deep defects. This is what is called a negative U
system. As a result of U < 0, the acceptor level is below the donor level,
which means that the N -¢lectron system is not stable. Then, with increasing
Fermi energy the system will go from the N —1 state directly to the N + 1
state, thus capturing two electrons simultaneously. While the single-particle
eigenvalues as well as the transition-state eigenvalues are subject to similar
DFT-LDA problems as the band gap, we note that the calculated Franck-
Condon shift, because this is an elastic energy, agrees with experimental
results.

Equations (48) and (50) give the levels with respect to the energy zero of the
calculation. However, usually donor levels are referred to the bottom of the
conduction band and acceptor levels are referred to the top of the valence
band. This requires us to redefine the levels by %" =¢g.;—&(+/0) and
geeeror — o0/ — ) — eyg. For deep-level defects, the distinction between donors
and acceptors is only of limited value. We will therefore not follow this
description, but we will refer all levels to the top of the valence band which we
take as our energy zero.

5. VIBRATIONS

Within the adiabatic approximation for the electrons, the dynamics of the
nuclei is described by the Hamiltonian of Eq. (10), where E§' is the total
energy of the ground state of the electronic Hamiltonian of Eq. (3).
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In order to study the vibrational properties of the Hamiltonian of Eq. (10),
it is usually sufficient to apply the quasi-harmonic approximation.' The
vibrational frequencies w; are then determined by

det(D — Mw?) = 0, (52)

where M is the matrix of atomic masses and D is the dynamical matrix

FES
- (f’R;ER;){n?:' .

Here {R}} are atomic positions at or close to the stable (or metastable)
geometry. From E§'({R?}) and D({R}}) we obtain the Gibbs free energy
(Eq.(19)), and the stable or metastable geometry at given pressure and
temperature then follows from Eg. (20).

The dynamical-matrix elements may be obtained from many self-
consistent total energy calculations performed in the neighborhood of the
equilibrium geometry. Similarly, an ab-initio molecular dynamics calculation,
using the approach of Car and Parrinello (1985), could be performed (Bléchl
et al., 1990). These two “direct approaches”™ require an enormous amount of
computer power. Instead, Scheffler and Scherz (1986) and Biernacki et al.
(1989) (see also Scheffler and Dabrowski, 1988; Biernacki and Scheffler, 1989)
adopted a different approach using a semi-empirical valence-force model, the
parameters of which (i.e.. approximate equilibrium geometry and force
constants) are calculated from first principles. Thus, the main purpose of the
valence-force model was to obtain numerically accurate second derivatives of
the total energy, which are needed for the dynamical matrix (Eq. (53)). An
even more efficient and more accurate approach, which allows us to evaluate
the dynamical matrix directly without the intermediate step of a valence-force
model, would be the so-called perturbed density-functional theory of Baroni
et al. (1987) and Gonze and Vigneron (1989) (see also Fleszar and Gonze,
1990).

In each of the previously mentioned examples it is necessary to calculate
total energies as well as total-energy derivatives. If an appropriate basis set is
used, the in principle exact Hellmann—Feynman theorem can be applied also
in practice (Scheffler et al., 1982, 1985) in order to calculate forces on the
atoms. Either the forces then determine the motion of the particles (in a
molecular dynamics study) (Car and Parrinello, 1985; Blochl et al., 1990), or
the derivatives of the forces give the components of the dynamical matrix
(Bachelet er al., 1986; Scheffler and Scherz, 1986; Scheffler and Dabrowski,
1988; Biernacki et al., 1989).

These different methods have been applied to calculate the vibrational
entropy of the vacancy in silicon (see Eqgs. (16) and (17)). All studies give a




20 UpO SCHERZ AND MATTHIAS SCHEFFLER

result of about 3-dky. For other defects no calculations exist, but it is
generally believed that comparable values (between 1 and 5kg) would be
obtained.

1V. Methods and Techniques

6. INTRODUCTION

The evaluation of Eqs. (38)-(42) requires complicated methods and
techniques. This is in particular so for low-symmetry systems, as for example
defects in crystals, where Bloch’s theorem is not valid. Such methods and
techniques have been developed only during the last years (see Bernholc et al..
1978, 1980; Baraff and Schliiter, 1978, 1979, 1984; Scheffler, 1982; Scheffler et
al., 1982; Gunnarsson et al, 1983; Car et al., 1984, 1985; Bar-Yam and
Joannopoulos, 1984; Beeler et al., 1985a, 1985b, 1990; Bachelet er al., 1986;
Scheffler and Dabrowski, 1988; Scheffler, 1989; Overhof et al., 1991). To date
the applicability of these methods and techniques is still limited to special
systems, and new ideas and improvements of the theory are still important.

Several controllable approximations are necessary in an actual first-
principles calculation. If carefully applied, they will not significantly affect the
results for n(r) and E§({R}}), but they cause certain numerical inaccuracies.
The most accurate method developed so far is the self-consistent pseudo-
potential Green-function method (Bernholc et al., 1978; Baraff and Schliiter,
1978, 1979, 1984; Scheffler, 1982; Scheffler et al., 1982 and 1985) which, if used
together with first-principles, norm-conserving pseudopotentials (Hamann et
al., 1979; Kerker, 1980; Bachelet et al., 1982; Gonze et al., 1990, 1991), gives a
reliable description of ground-state properties of sp-bonded systems. In the
LMTO (linear muffin-tin orbital) Green-function method (Gunnarsson et al.,
1983; Beeler et al., 1985a, 1985b, 1990; Overhof et al., 1991), the approxi-
mation of spherical potentials is introduced. Because of the variational
principle in DFT, this is usually not a severe approximation, but it does not
allow the evaluation of defect-induced lattice distortions. Cluster methods
suffer from more severe (sometimes uncontrollable) problems: They impose
artificial boundary conditions to the wave-functions, and they localize the
wave-functions and charge densities to the size of the cluster, which can cause
a wrong description of covalent binding. The super-cell approach also suffers
from these problems of cluster approximations, but the imposed artificial
periodicity usually represents a far less severe approximation. Furthermore,
with modern techniques it is now possible to take a cell size of more than 50
atoms. This enables us a systematic test of cell-size-induced inaccuracies.
Because of the high complexity of first-principles methods, there is always a
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risk that some aspects may be overlooked in the calculations. It is therefore
good to know if two independent groups, hopefully using different tech-
niques, arrived at the same theoretical results.

In Section I'V.7, we give a short sketch of the pseudopotential concept. The
alternative, i.e., the LMTO theory, is not discussed, because it has not been
developed yet to the same level of applicability to treat total-energy surfaces
and lattice distortions. We like to mention, however, that for defects in silicon
the LMTO method has been applied to interesting problems of defect science
(Beeler et al., 1985a,b, 1990). and recently even hyperfine fields have been
calculated by Overhof et al. (1991). For the future we expect further exciting
developments.

In Section IV.8, we outline the supercell method, which represents a
conceptually simple theoretical approach to calculate defect properties but
which has its clear limitations. These are that the low defect concentration of
the true crystal (typically <1:10°)is modeled by a concentration of >1:10%,
This induces quite strong defect—defect interactions, which may complicate
the physics that the investigation aims to understand.

The best, but more sophisticated, approach is the Green-function method.
It describes the concentration limit where only one defect is present in the
macroscopic crystal. Thus, no artificial defect—defect interactions are created.
Without going into details, the basic ideas of the Green-function method are
described in Section IV.9.

7. PSEUDOPOTENTIALS

Because of the localized nature of the atomic core electrons, these states do
not contribute significantly to the chemical binding. It is therefore possible
and convenient to introduce the frozen-core approximation in which the core
electrons are treated together with the nucleus as a rigid spherically
symmetric charge distribution. This implies the replacement of the potentials
of the nuclei (Eq. (9)), which enter Egs. (8) and (38), by potentials of the frozen-
core ions, and of E,.[n] and v, [n] by E, [n.+n*2™] and v [ny, +n2em].
Here n°™ is the core electron density of an atomic calculation, and density-
functional theory is then applied tothe valence electrons, n,,,, only.

The pseudopotential theory takes an additional step (see, for example,
Cohen, 1985, and references therein) in that it also removes the oscillations of
the valence-electron wave functions in the core region, which are caused by
the orthogonality to the core states. This is achieved by modifying

, et Z . e [ nanir
e ) s (,)
dngy r - 4mey ) r—r|

dt’ (54)



22 Upo SCHERZ AND MATTHIAS SCHEFFLER

in the region close to the nucleus in an appropriate way that does not affect
the valence-electron wave functions in the chemically important regions but
that makes them smooth in the core region. This approach therefore allows
an accurate representation of the pseudopotentials in terms of quite simple
and numerically advantageous basis sets, such as plane waves or Gaussians.

An important step in the development of pseudopotential theory was to
realize the condition of norm-conservation (Hamann et al., 1979; Kerker,
1980). It implies that ionic pseudopotentials, which are derived from free-
atom calculations, give a correct description of the scattering properties not
only at the energy of the atomic eigenstates, but also in a rather wide energy
range around it. This is an important condition for using free-atom derived
pseudopotentials (often called ab-initio pseudopotentials) in different chem-
ical environments. One disadvantage implied by the norm-conservation is
that these pseudopotentials become nonlocal operators: They act differently
on states with different angular momentum quantum numbers. As a result.
such calculations consume much more computer time than those with local
pseudopotentials. This is, however, not a severe problem, in particular as
nowadays separable ab-initio pseudopotentials are constructed (Kleinman
and Bylander, 1982; Gonze et al., 1990, 1991) that remove this disadvantage.

The ab-initio pseudopotential concept has been very successful in com-
putational condensed-matter physics, and many new developments still
appear (Blochl, 1990; Vanderbilt, 1990) in order to achieve even smoother
potentials, which make calculations more efficient.

8. SUPERCELL METHODS

Probably the most simple and still quite accurate ab-initio method to
calculate defect properties in a parameter-free way is given by the supercell
approach. This approach uses “standard” bandstructure methods of a perfect
crystal, where Bloch’s theorem holds. These may, for example, be the
pseudopotential plane wave, or the LMTO method. The supercell is a large
unit cell (typically between 16 and 128 atoms) that may represent the perfect
crystal or contains one defect. Obviously, one thus describes a lattice of
defects. maybe better termed an alloy than a dilute defect system. If the cell is
small (say, 16 atoms) the defect—defect interaction can be quite significant.
For example, a defect level in the crystal band gap can then become a defect
band with a dispersion of more than 1 eV. This defect-defect interaction is an
artifact of the method. Often it may not be important for defect geometries
and local lattice distortions, but sometimes it may. Therefore, a careful
analysis of results is most important, and different cell sizes ought to be
investigated.
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9. GREEN-FUNCTION METHODS

The best way to handle the difference with respect to the translational
symmetry between the perfect crystal and a crystal containing a defect is the
Green-function technique. In density-functional theory the Kohn-Sham
operator (see Eq. (38)) can be written as a sum of the Kohn—-Sham operator of
the perfect crystal, h° and a potential AV induced by the defect h=h°+AV.
The Green operators G° = (¢e—h°) "' and G = (¢ —h) ' are then related by the
Dyson equation

G =(1-G°AV)"'G°. (35)

Surveys of the defect Green-function method are given by Pantelides (1978),
Scheffler (1982), and Schliiter (1987). There are two main reasons why this
method has been used so extensively. First, the Green function of the perfect
crystal, G%e), can be calculated taking advantage of Bloch’s theorem and
using standard band structure methods. Second, the Dyson equation
(Eq. (55)), which gives the properties of the defect, can be calculated from
small matrices if atomic-like orbitals are used as basis functions, which are
localized at the defect and at a number of neighbors of the defect site.

Y. Electronic Structures and Concentrations of Native Defects

Native or intrinsic defects are imperfections of the perfect crystal that do
not involve impurity atoms and that are in fact unavoidable in principle.
However, their concentration can be controlled by the temperature, pressure
and by the environment (partial pressure) of the crystal. The growth of
crystals under conditions of controlled non-stoichiometry leads to different
native defect concentrations.

In this section we describe the electronic properties, as well as the
formation energies, of vacancies, antisites, and self-interstitials. We restrict
this discussion to tetrahedral geometries. Consequently, wave functions and
energy levels are labeled according to the T, point group. In the case of
vacancies, the relaxation of the nearest neighbors with respect to their perfect
Crystal positions may change the symmetry of the defect. A possible change of
this relaxation due to the change of the charge of the defect has been
discussed in Section IIL.4. In the case of Ga and As interstitials in GaAs, we
place the defects at the tetrahedral interstitial sites. These results are meant as
a guideline. We like to emphasize, however, that we do not expect that these
geometries correspond to the true stable positions of self-interstitials. In fact,
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similarly to self-interstitials in silicon, we expect that a split-bonded geometry
is likely to have a more favorable energy; the energy difference to the here-
discussed Tj site may be as large as 1.5 to 2eV.

10. ELECTRONIC STRUCTURE OF INTRINSIC DEFECTS

We start with a discussion of the cation and anion vacancy. These are
important defects per se, but an understanding of their electronic structure is
also important for substitutional impurities and antisites. A substitutional
defect is formed by filling a vacancy with a defect atom. Qualitatively, the
electronic structure of substitutional centers then results from the interaction
of the atomic orbitals of the defect atom with the localized states of the
vacancy.

If an atom is removed from its lattice site, there are four dangling orbitals
(¢, P2 @5 and ¢p,) of the nearest neighbors pointing towards the vacant
site. These four orbitals will form a fully symmetric (¢, +d,+ @1+ ¢s)
linear combination, which belongs to the a, representation of the T; point
group, and threefold degenerate linear combinations (¢, —¢,— @1+ ¢.),
(1 +@r—P3—s), and (— ¢, + ¢, —d;3+¢,) having t, symmetry. This 1,
level has higher energy than the a, level because the signs in the correspond-
ing wave functions alternating give it a higher kinetic energy. Figures 1 and 2
show the single-particle energies and squared wave functions of the Ga and
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FiG. 1. Energy level diagram and contour plots of the two important states of the neutral Ga
vacancy in GaAs. Displayed are the electron densities of the ¢, bound state (top) and the g,
resonance (bottom) along the (110) crystal plane. Units are 10™* bohr 2.
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FiG. 2. Same as Fig. | but for the As vacancy in GaAs.

As vacancies in GaAs. In the case of the neutral cation vacancy there are three
electrons missing, so that the ¢, level is occupied by three electrons (see Fig. 1).
The corresponding energy level is close to the top of the valence band, and the
calculations show that the Ga vacancy should be observable in the charge
states V2, V&), V27, and V&™), depending on the position of the Fermi
level (Bachelet et al., 1981; Baraff and Schliiter, 1985b; Laasonen et al., 1992)
and therefore acts as a triple acceptor.

The important orbitals of the As vacancy are shown in Fig. 2. For the
neutral center five valence electrons have been removed together with the As
core. As a consequence there is only one electron occupying the t, level,
which is close to the bottom of the conduction band. The calculation shows
that the tetrahedral As vacancy acts as a donor and is in the single positive
charge state for all positions of the Fermi level. Recently Laasonen et al.
(1992) found large lattice relaxations for the negatively charged defects V.’
and V{27, Their calculations gave a 179 inward symmetry-conserving
(breathing) relaxation, and a similar symmetry-breaking distortion for both
charge states, This is in contrast to the rather small lattice relaxations
calculated for the Ga vacancy and for V{7’ and V{? (Scheffler and Scherz,
1986: Laasonen et al., 1992). The reason for the large Jahn-Teller distortion
of V{' and V{? ' is that when electrons are added to the neutral As vacancy,
they form Ga-Ga bonds, thus reducing the symmetry so that the spatial-
degenerate t, level is split, which leads to a lowering of the total energy.

Starting from the energy levels and wave functions of the Ga vacancy (see
Fig. 1) and of an As atom, one can qualitatively understand the energy-level
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FiG. 3. Single-particle energies and interaction of a neutral cation vacancy in a [V
compound (left) and a free anion atom (right) that result in an anion-antisite defect (middle).

structure of the As antisite Asg,. Figure 3 shows how the splitting of the
energy levels due to the interacting states leads to an q, state in the band gap.
This state is occupied with two electrons for the neutral defect, and the As
antisite thus is a double donor. The corresponding energy-level structures of
the As vacancy and the neutral Ga antisite are shown in Fig. 4. Comparing
this with Fig. 3 we see that the Ga,, levels are shifted to higher energies. This
is because the energy levels of both the As vacancy and the free Ga atom are
higher than the corresponding levels of the Ga vacancy and the free As atom.
As a consequence, the Ga antisite has the antibonding a, level in the
conduction band, whereas the bonding ¢, level is in the band gap. According
to the calculations of Baraff and Schliiter (1985b), the Ga antisite acts as a
double acceptor.

With respect to the physics depicted in Fig. 3, the single-particle eigenvalue
¢(a,) of different antisite-like defects (e.g., Pg,, Asg,, and Sbg,) in GaAs

As=VACANCY Ga,,—ANTISITE Ga—ATOM

FiG. 4. Single-particle energies and interaction of a neutral anion vacancy in a I1I'V
compound (left) and a free cation atom (right) that result in a cation-antisite defect (middle).
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should, if lattice relaxation is neglected, follow the trend of the atomic
s-orbital energy (Hjalmarson et al., 1980). Since the donor transition involves
a population change in this a, eigenvalue, we expect electronic levels to move
with the atomic number of the group V defect atom towards higher energies
(i.e., closer to the conduction band). This is indeed the trend found in
calculations for unrelaxed tetrahedral antisites, i.e., when all host atoms
remain at their perfect-crystal positions (see the &(+/0) results in parentheses
in Table I).

When a substitutional defect is created, the neighboring atoms relax from
their perfect crystal sites. Caldas et al. (1990) calculated the breathing
relaxation of the neutral anion antisites, and their results are shown in Table
L. It can be seen that the relaxation increases the anion-anion bond length
(except for InP:P{2, which shows a small relaxation inwards; see AQ in Table
I). The relaxation corresponds to a decrease of energies of the occupied a,
donor levels and an increase of the optical excitation energy E,, which
corresponds to the excitation ajt — alt}; see Table I. Both effects are the

TABLE I

CALCULATED FRANCK-CONDON SHIFTS Ege, DONOR LEVELS &( + /0) wiTH

RESPECT TO THE TOP OF THE VALENCE BAND, A CHARACTERISTIC OPTICAL

ExCITATION ENERGY E,, AND RELAXATION ENERGIES E, ., FOR DIFFERENT

ANION—-ANTISITE DEFECTS IN THE TETRAHEDRAL ATOMIC CONFIGURATION
N GaAs aND InP?

Egc &+ 0) E, E.q AQ
(eV) (eV) {eVv) (eV) (A)
P 0.05 0.71 1.16 0.20 0.10
(0.88) (1.06)
GaAs As 0.03 0.81 0.97 0.42 0.12
(1.05) (0.91)
Sb 0.04 095 1.03 1.71 0.27
(1.55) (0.31)
P 0.10 0.95 1.50 0.01 —0.03
(0.78) (1.36)
InP As 0.09 1.3 1.32 0.00 0.01
(1.2) (1.20)
Sb 0.08 1.3 0.77 0.48 0.14
(1.6) 0.72)

“Electronic levels &( + /0) defined by Eq. (47) are calculated from total-energy
differences using two special k points. E,,, denotes the energy gained by the
breathing relaxation of the first four atomic neighbors for the neutral defect.
and AQ gives the distance each atom moves. Results in parentheses are
obtained by keeping the atoms at perfect crystal positions.
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largest for Sb{), which also shows an increase of localization due to the
relaxation (see the two lower contour plots in Fig. 5).

If one of the two a, electrons is removed, the bonds between the defect
atom and its neighbors are strengthened because of the antibonding
character of the deep-level wave function (see Fig.5) and because the
electrostatic interaction between the negatively charged neighbors (anions)
and the positively charged antisite will attract the neighbors closer to the
defect atom. The dependence of the relaxation of the four nearest neighbors
on the charge state of the defect gives rise to moderate Franck-Condon shifts
(Egc in Table I). As expected from this discussion, the shifts are bigger for
defects in more ionic InP than for defects in less ionic GaAs. It should be
noted that the effect of long-range relaxation has not been considered in these
calculations.

In contrast to the vacancies and antisites, very little is known about self-
interstitials from the experimental point of view. Though interstitial point
defects are certainly created by electron irradiation in similar amounts as
vacancies, no isolated interstitials have been identified for far by EPR, DLTS,
or other methods. A number of calculations for self-interstitials have been
performed at the two positions of tetrahedral point symmetry: T,, where the

FiG. 5. Neutral anion-antisite-like defects in GaAs: Squared single-particle wave function of
the filled a, state for the unrelaxed defects Py, [upper left panel labeled P(u)], Asg, [upper right
panel, As(u)], and Sbg, [lower left panel, Sb{u)], and for the relaxed Sbg, [lower right panel,
Sb(r)]. We show the (110) plane. Contour lines are in units of 10~ * bohr ~?; the distance between
the contour lines is 0.6 for Pg, and 0.3 for Asg, and Sby,. (After Caldas et al., 1990.)
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defect atom has four anions as nearest neighbors, and T, where the defect
atom has four cations as nearest neighbors. For both these tetrahedral
positions we do not expect a strong covalent bond because the neighbor
atoms are already bonded most favorably with the rest of the crystal. The
valence orbitals of the interstitial atom indeed hybridize only weakly with the
crystal states. They give rise to eigenfunctions of symmetry @, and t,, the
occupation of which depends on the position of the corresponding energy
eigenvalues with respect to the Fermi energy. Results of self-consistent
supercell calculations are shown in Fig. 6 for the As interstitial and in Fig. 7
for the Ga interstitial in the tetrahedral coordination. It is very probable that
the As interstitials are unstable with respect to Jahn-Teller distortions and
that the donor levels are then driven out of the gap when the As interstitial
moves from the high-symmetry tetrahedral to a lower-symmetry equilibrium
position. Similar distortions may also occur for the Ga interstitials, which
may be the reason these defects have not been observed by EPR.

Asi As—ATOM

LU
t2 m.‘

Q, 77T,

e s

FiG. 6. Single-particle energies of the tetrahedral As-interstitials in GaAs. Top: at the T, site
(Le., nearest neighbors are As) in the single positive charge state. Bottom: at the T, site (ie..
nearest neighbors are Ga) in the neutral charge state.



30 UpO SCHERZ AND MATTHIAS SCHEFFLER
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F1G. 7. Single-particle energies of the tetrahedral Ga-interstitials in GaAs. Top: at the T, site
(i.e., nearest neighbors are As) in the single positive charge state. Bottom: at the T, site (ie.
nearest neighbors are Ga) in the single positive charge state.

11. NaTive-DEFECT REACTIONS

In this section we consider all tetrahedral point defects of a GaAs crystal,
which we denote by Vg,, Vi, Ga,,, Asg,, Gar,, Gar, Asy,, and As;_. In
thermodynamic equilibrium the number of these defects is determined by Eq.
(29). The formation energies of the defects (see the numerator of the
exponential in Eq. (29)), which depend on the chemical potentials, and which
directly determine the concentration of the defects, are shown in Fig. 8 for the
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FiG. 8. Formation energies of the two vacancies (a, b) and the two antisites (¢, d) in GaAs as a
function of the Fermi energy Eg; see the numerator of Eq. (29). Shown are the two limiting
cases for a crystal in an As-rich environment and in a Ga-rich environment (see text).
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four substitutional native defects and in Fig. 9 for the interstitials. All these
calculations (Heinemann and Scheffler, 1991) were performed using the
supercell method with a 54-atom cell, a plane wave basis with
E.,. =8 Rydberg, and two special k points for the k-integrations. Lattice
relaxations have been neglected. They would lower the energies by 0.1-
0.5eV, if we restrict relaxations to the tetrahedral symmetry. The figures
show how strongly the formation energy changes with the atomic and
electron chemical potentials.

In order to describe the two extreme cases for the chemical environment,
let us consider a GaAs crystal in thermodynamic equilibrium with an As, gas,
which is the extreme As-rich condition (see Scheffler and Dabrowski, 1988). If
the chemical potential of an isolated As atom is taken to be zero, the chemical
potential of the As atom in an As, gas then is half the As, molecular binding
energy. We therefore have u(As)= —2.0eV. The chemical potential of Ga
then is u(Ga) = —4.8 eV; this follows from the energy needed to remove one
unit cell of GaAs (the cohesive energy), which equals 6.8 eV and a gain of
2.0eV per As atom from the formation of As,. These energies are approx-
imate values of the corresponding Gibbs free energies which also include the
entropy of the molecular gas and GaAs unit cells.

If, on the other hand, a GaAs crystal has droplets of Ga metal at the
surface, the Ga chemical potential is given by the Ga-metal cohesive energy,
which gives u(Ga)= —2.8eV. The As chemical potential is then obtained
from the energy needed to remove one GaAs unit cell, 6.8 eV, reduced by the
Ga-metal cohesive energy to give u(As) = —4.0 eV. The cohesive energies are
experimental values after Weast (1986).

From this discussion it follows that, depending on the partial pressure and
chemical composition of the environment, the chemical potentials of the Ga
and As atoms may be set within the ranges

—48 eV < u(Ga) < —2.8 eV,
g (56)

—20¢eV = u(As) = —4.0 eV,

where the numbers on the left refer to the As-rich and the numbers on the
right to the Ga-rich extreme conditions, as discussed. These two extreme
cases for the chemical potentials, together with the calculated standard term
1° (see Eq. (27), give us two limiting cases for the defect formation energy
according to the numerator of the exponential function of Eq. (29). The
results for the eight intrinsic point defects in GaAs in tetrahedral coor-
dination are shown in Figs. 8 and 9. Under the assumption that the defect
concentration is not too large so that the defects can be treated as
independent, these formation energies directly give the defect concentration
(see Eq. (29)). It can be seen that the formation energies of the antisites are
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FIG.I 9. Same as Fig. 8, but for the two As interstitials (a, b) and the two Ga interstitials (¢) in
GaAs in both tetrahedral sites T, and T, in GaAs.
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more influenced by the environment (4 eV) than in the case of the vacancies or
self-interstitials (2 eV).

The charge states of the defects were determined from the position of the
corresponding transition states. For example, the transition state for the Ga
vacancy was calculated to be &0/—)=0.29¢eV above the valence band.
Therefore, the Ga vacancy is neutral when the Fermi energy is below that
value and negatively charged when the Fermi energy is raised above that
value.

Considering only the substitutional point defects of Fig. 8, we expect from
these results that under As-rich conditions in p-type material, the As antisite
is the dominating defect, whereas in n-type GaAs the formation energy of the
Ga vacancy is lower than for the As antisite. The concentrations of the As
vacancy and Ga antisite are much smaller in As-rich environment and at
thermal equilibrium. Under Ga-rich conditions the results of Fig. 8 imply
that the Ga antisites dominate over the As vacancies for all positions of the
Fermi level, and the formation energies differ most for n-type material. It is
interesting that for n-type material grown under Ga-rich conditions, there are
more Ga vacancies than As vacancies. The reason for this is that in n-type
material the Ga vacancy exists in the triple negative charge state. whereas the
As vacancy is in the single positive charge state. Under Ga-rich conditions
the As antisites are largely suppressed.

Concerning the interstitials (see Fig.9), we find that their formation
energies in GaAs for the two different tetrahedral interstitial sites are very
similar because in both cases there are no covalent bonds formed and because
the ionicity of GaAs is not large. The concentration of the As interstitials
should be very small under all conditions. Although Fig. 9 shows only results
for tetrahedral centers. we tend to conclude that isolated As interstitials will
be also unfavorable in other geometries. We do not, however, rule out an
important role for them in defect complexes. Ga interstitials may be present
in GaAs in some relevant concentration, at least in p-type material. In fact, we
find comparable concentrations of Ga interstitials and As vacancies under
Ga-rich conditions for all positions of the Fermi level.

The point defects may also form bound defect pairs (see Baraff and
Schliiter, 1986) and complexes of defects. Their concentrations can be
calculated in the same way as for the point defects using Eq. (29). Obviously,
the relative concentration of the bound pair and of the isolated defects is
independent of the environment. It is given by the law of mass action, Eq. (32).

Native defects are related to a deviation from stoichiometry, and it is
important to understand which of them dominates for given chemical
potentials of the cations and anions outside the crystal. We describe the
deviation from stoichiometry of a crystal Ga, _ As, by

. NGn_N.As
Al L (O
‘NG.’A+NA.\' ¥ LS?)
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It then follows

= L, (58)
N(.i-a + NAs

where Ng. and N, are the numbers of cations and anions, respectively. For
x =1, we have the perfect crystal stoichiometry. In the case of only small
concentrations of the defects, and assuming that the crystal contains no
impurities on lattice sites (that means that we disregard the doping here), the
deviation from stoichiometry is approximately given by the sum over all
possible types of native independent defects in their different charges states
D" (see Eq. (29)):

0 Dll)}_ {D(H]
- 7 =5 M.x(DD _ B Lo el
d ; Mp[D"] Dz pAD") exp { T } (39)

where we have used Egs. (28) and (29), and we have My = —1 for Vg,, Asr_.
and Asy,, Mp =1 for Vj,, Gar, and Gar,, M = —1 for Asg,, and Mp =1
for Ga,,. According to Eq. (29), the deviation from stoichiometry depends on
the chemical potentials of the reservoirs of the atoms and electrons.

In practical cases a deviation from stoichiometry can be due to impurities
and all different types of native defects, i.e., point defects, defect pairs, defect
complexes, and other types of disorder such as precipitates that also depend
on the history of the growing and annealing process. In order to find the
dominating native point defects in thermodynamic equilibrium, which give
the main contribution to Eq. (59), one has to consider the nine basic reactions
between the native point defects (Kroger, 1964):

V& + V2 +GaAs+(i + jle” =0 (Schottky)
As@ +Gall+(i+ jle” =0 (antisite-antisite)
Gaf{'+AsY —GaAs+(i + jle” =0 (interstitial-interstitial)

(60)
V) +Ga +(i+ jle~ =0 (Frenkel)

Gal +2Vy) +GaAs+(i+2j)e” =0 (antisite-vacancy)
Ga{ +2AsY —GaAs+(i + 2j)e” =0 (antisite-interstitial).

They have to be completed by interchanging Ga and As, and T can be one of
the two interstitial sites T, or T,. The energies of all these reactions do not
depend on the environment. They can be obtained from Figs. 8 and 9, taking
for example the results for the As-rich case. We will only show a figure for one
case, namely for the simultaneous creation of the two antisites, which is the
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reverse of the second equation of Eq. (60). The reaction energy is given by
Ap = p°(As?) + p0(Gad) + (i + j)Er, (61)

and it is shown in Fig. 10. We see that the simultaneous creation of an As
antisite and a Ga antisite is more likely in n-type GaAs than in crystals
having the Fermi energy in the middle of the energy gap. Furthermore, we
can use Fig. 10 in the following way: If, for example, the concentration of the
As antisite and the reaction energy of Eq. (61) are known, then the law of mass
action, Eq. (37), corresponding to the second reaction of Eq. (60) can be used
to determine the concentration of the Ga antisite.

All other reactions can be obtained from linear combinations of the
reactions of Eq. (60), and the reaction energies are determined similarly to Eq.
(61) with the help of Figs. 8 and 9.

We close this section by emphasizing that a direct comparison of these
theoretical results with experimental observations may often be difficult. This
is largely because real crystals also contain defect complexes, precipitates,
and dislocations. Furthermore, and in particular, we remind the reader that
our discussion of defect concentrations relied on the assumption that the
defects considered are present in low concentrations. Thus, defect—defect
interactions should be negligible, and the Fermi level should be treatable as
given by a reservoir determined by background doping and independent of
the charge state and concentration of the considered defects. This is an
idealization of growing and annealing processes in which the incorporation
of donors and acceptors as well as the defect mobilities must also be taken

Distant Antisite pair in GaAs

7.0
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Reaction Energy (eV)
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FiG. 10. Reaction energy of the simultaneous creation of an As antisite and a Ga antisite.
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into account; see Wenzl et al. (1992). A number of models related to growth
conditions, where the preceding assumptions are likely not to be valid, have
been proposed to estimate the order of native defect concentrations from
experimental data (see, for example, Sajovec et al., 1990, and Wenzl et al.,
1990a, 1990b, 1991).

VL. An Intrinsic Metastability of Antisite and Antisite-like Defects

In the previous section we simply assumed that a defect is stable in one and
only one local geometry. This assumption is appropriate for many situations.
However, we had also seen that the nature of defects can be changed without
changing the crystal stoichiometry (e.g., a Ga vacancy plus an As interstitial
can be transformed into an As antisite). The controlling factor of the
reactions noted in Eq. (60) and of their combinations was the “electron
reservoir,” i.e., the Fermi energy.

In this section we discuss an additional mechanism that changes the nature
of a defect, where the changes are, however. due to a local atomic
rearrangement. This is what is usually called a defect metastability.

Optically and thermally inducible structural transitions of defects have
been known for several years (see, for example. van Kooten er al., 1984,
Chantre and Bois, 1985; Watkins, 1989; Caldas et al., 1990). Because all up-
to-date unambiguously identified metastable defects are complexes, where
the metastability is understood in terms of a rearrangement of one of the
constituents, it was interesting when in 1988 theoretical studies predicted
(Chadi and Chang, 1988a; Dabrowski and Scheffler, 1988a, 1989a) a meta-
stable behavior also for simple substitutional defects. Because no direct
experimental proof of this predicted effect exists so far, it is understandable
that this new type of metastability is not generally accepted. We believe,
however, that the explanation of the general mechanism is well developed
and that it is in fact quite plausible. We also note that significant indirect
experimental evidence for this new effect exists.

In this part we describe the theoretically predicted properties of this new
type of defect metastability. We show that it should play some role for antisite
and antisite-like centers in practically all III/V compounds, and we explain
the effect as a consequence of the capability of group V atoms to form sp*
hybrids (tetrahedral geometry) as well as more or less pure p bonds like
those in AsH,. In Part VII we then concentrate on the As antisite in GaAs
and relate the theoretical predictions to experimental data.

An anion antisite (or antisite-like defect) in a III/V compound is created
When a group-V atom substitutes a group-1II atom of the host. The



38 UDO SCHERZ AND MATTHIAS SCHEFFLER

properties of these tetrahedrally symmetric defects were discussed in Section
V, and it was explained that these centers give a deep bound state of the A4,
representation, and above it a state of the T, representation (see Figs. 3 and 5)
that is usually within the conduction band.

Caldas et al. (1990) studied several anion antisite-like defects (P, As, and
Sb) in GaAs and in InP. It was found that all these defects possess in the
neutral charge state a metastable minimum in the total-energy surface, with
the defect atom displaced along the [111] axis, roughly halfway between the
substitutional site and the closest tetrahedral interstitial site (T}). Figure 11
shows how the geometry and the valence electron density change upon
moving the defect atom from the substitutional tetrahedral position to the
displaced positions, which may be described as a vacancy-interstitial pair

<111> Direction
A

(110) Plane

STABLE BARRIER METASTABLE

FiG. 11. Metastability of the As—antisite defect. Top: atomic structure. Bottom: the electron
density in the (110) plane. Large circles represent As nuclei. Small circles represent Ga nuclei. The
left-hand side shows the fundamental state, where the arsenic defect atom is bound to four
nearest neighbors [only two are in the displayed (110) plane]. The middle panel shows the barrier
region. The picture on the right-hand side corresponds to the metastable situation (the Vg, As;
defect pair). Here the arsenic defect is bound to three arsenic neighbors [only one of them is in the
(110) plane]. The solid “dangling bond™ in the top right-hand picture indicates the vacancy state.
which is responsible for the barrier between the metastable and the fundamental configuration.
{After Dabrowski and Scheffler, 1988b.)
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(labeled V-I pair hereafter). We like to emphasize that the interstitial
component of the pair should not be identified with the tetrahedral
interstitial that was discussed in Section V: The tetrahedral interstitial
position corresponds to nearly twice the displacement as that found in the
calculations, and it would have a significantly higher total energy as well as a
different electronic structure. In fact, the qualitative origin of the metastability
is the capability of the defect atom to form a quadruple as well as a triple
bond. The latter is not the case for a tetrahedral interstitial.

In Fig. 12 we show the corresponding electronic structure and the total-
energy curves. The displacement of the antisite atom lowers the local
symmetry to Cj,, and the single-particle ¢, state splits: ¢,(Ty)—2a,
(Cs,) + e(C,,). The single-particle a,(C;,) states of the displaced antisite
with energies above the valence band are labeled l1a, and 2a,. With respect to
the many-electron wave functions, we note that the lowest-energy mean-field
configurations of the A, representation are then (1a?2a)), (laj2al), and
(1a92a?), which may interact to yield three non-paramagnetic states (S = 0)
that we label as '4,, 'A%, and ' A¥*. In Fig. 12a we depict the dependence of
the total energies on the displacement Q of the defect atom for these three
states. We also show in a schematic form the typical behavior of the single-
particle eigenvalues (Fig. 12¢). For small displacements Q, the energy of the
ground state exhibits a parabolic behavior around the minimum at the
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Fig. 12, Single-particle energies (bottom) and total energies for the ground and excited
electronic configurations (top) as a function of the displacement of the defect atom along the
I: 11] axis. Left: schematic description. Right: results of calculations for InP: PZ, (After Caldas et
al, 1990,)
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substitutional site and is dominated by the configuration (laj2a}). With
larger displacement, the eigenvalue difference €(2a,)—e(la,) decreases, and
the interaction between these two states as well as with other vacancy-like
states increases. This results in a localization of the occupied a, state into a
dangling bond at the crystal atom left behind, pointing into the direction of
the evolving vacancy. In contrast, the wavefunction of the unoccupied a,
state is localized at the displaced defect atom. Because the occupied vacancy-
like a, state is antibonding with respect to the interstitial atom, the total
energy of the system decreases with further increasing displacement of the
interstitial until a metastable position is reached at Qy. The usual way to
picture this configuration interaction is shown in Fig. 12a, where to the right
of Qg the dominant configuration of the ground state is ascribed to the
configuration (1a92a3). Figures 12b and 12d show the results for the system
InP: P,

In the calculations shown in Fig. 12b and 12d, the crystal atoms were kept
at their perfect crystal positions. When the four neighbors of the defect are
allowed to relax, only the details of the described picture change, but the
qualitative behavior remains the same. The internal optical excitation energy
E, of the tetrahedral antisite (Fig. 12) is not much affected (see Table I in Part
V), while the donor levels shift slightly to lower energy. The barrier height
Egy = Ey, — E, decreases (see Fig. 12 and Table II). An interesting result is that
in the metastable configuration Q,, the donor levels of the six studied defects
shift into the valence band.

The GaAs:Sbg, center is particularly interesting because here the lattice
relaxation results in qualitative changes of the defect properties. The unre-
laxed Sbg, follows the chemical trends described in Section V, but it is an
extreme case: At the substitutional site its a, single-particle eigenvalue is very
high, the wave function of this state is quite delocalized (Fig. 5), and the
optical excitation energy E, is very small (Table I). The difference in size
between the impurity (Sb) and the removed atom (Ga) makes the V-I
geometry energetically more favorable than the substitutional geometry, i.e.,
E,, <0 (Table II). However, after the lattice relaxes, the situation is changed.
The most prominent changes occur in the substitutional configuration, where
the Sb atom was squeezed between its four neighbors: These neighbors relax
outwards by about 0.3 A, which gives a gain of 1.7eV. The a, wave function
becomes more localized. and the ¢(+ /0) electronic level shifts down in energy
to 0.95eV above the valence-band top. The calculated internal optical
excitation energy E, increases with the lattice relaxation to about 1 eV, which
is a typical value for anion antisites in GaAs (Table I). Smaller changes are
observed in the V-I configuration, where the system gains about 0.8eV
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TABLE II

CALCULATED BARRIER HEIGHTS Ey, AND METASTABLE ENERGIES Ey FOR
DIFFERENT ANION-ANTISITE DEFECTS IN THE VACANCY—-INTERSTITIAL
PaIrR V-1 AToMic CONFIGURATION IN GaAs aND InP?

Ey Ey Om
(eV) (eV) (A)
P 09 0.3 1.4
0.9) (0.3) (1.4)
GaAs As 0.7 04 12
(0.8) (0.2) (1.2)
Sb 1.2 0.5 14
(0.6) (—0.4) (1.6)
P
(1.4) (0.6) (1.3)
InP As
(1.2) (0.5) (1.4)
Sb
(1.0) (0.4) (1.3)

°E is the barrier from the stable substitutional to the V- configuration,
E,, is the energy difference between the substitutional and V-1 geometries,
while @y, gives the distance from the substitutional site to the V-1 site (see
Fig. 12a). Values in parentheses correspond to unrelaxed atomic positions.
All results refer to neutral defects.

relaxation energy. Because of this difference in the relaxation energy in the
substitutional and in the ¥~I geometries, the former becomes stable, while the
latter is now metastable—as is the result found for the other anion antisites.

The discussed electronic structure (see Fig. 12) indicates the possibility of
an optically inducible structural transition. If the system, initially at the T
geometry (Q =0 in Fig. 12), is excited from the ground state to the excited
state ' 4%, it will lower-its energy by a displacement of the defect atom in the
[111] direction. For an observable structural transition the excited state ' A}
at Q =0 has to be above the local maximum of ' 4, (at @ = Qg, ie, E, > Ey).
If this condition is fulfilled the defect will, with a certain probability, end up at
the V- configuration, where, if the temperature is low, it will be frozen in. For
GaAs, Caldas et al. (1990) concluded from their calculations that the
mentioned condition holds for the As and P antisites, while it does not for the

Sb antisite. Hence, for Sb the transition is very unlikely (Bdumler et al., 1989a,
1989b).
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VII. The EL2 Defect
12. INTRODUCTION

As a special example of the metastability discussed in Part VI we will now
discuss the calculated properties of the As-antisite in GaAs. In particular we
will relate these calculated properties of Asg, to experimentally known
properties of the famous EL2 center in GaAs.

The EL2 defect is the dominant deep donor in undoped GaAs crystals
grown under As-rich conditions. Of particular interest is the physicochemical
identification of EL2 and the understanding of its unusual metastability: At
low temperatures, illumination with white light (precisely Aw > 1.18eV)
makes the deep EL2 level disappear, and then the defect can be no longer
detected (Martin, 1981; Martin and Makram-Ebeid, 1986), except under
application of hydrostatic pressure Baj et al. (1991). Heating the sample to
T > 140K brings the defect and its deep level back in full concentration.
Further details of this metastability are discussed in Chapter 2 of this book,
and the most characteristic ones are summarized by Dabrowski and Scheffler
1989a. Most of the microscopic models for EL2 that are discussed in the
literature are complexes where the metastability is understood in terms of a
rearrangement of one of the constituents. Because EL2 is accepted as not
being impurity-related (Martin and Makram-Ebeid, 1986; Weber and
Omling, 1985), these models are built from native defects. The most often
discussed models for EL2 are aggregates of several Asg, defects (Frank, 1986;
Figielski and Wosinski, 1987), complexes of As, with vacancies (Wagner and
Van Vechten, 1987; Baraff and Schliiter, 1985a), and the distant Asg,—As; pair
(von Bardeleben et al., 1985, 1986; Bourgoin et al., 1988; Meyer et al., 1986,
1987; Meyer, 1988; Delerue et al., 1987; Baraff and Schliiter, 1987; Baraff and
Lannoo, 1988). In the last few years the distant Asg,—As; pair has attracted a
particular attention. Von Bardeleben et al. (1985, 1986) proposed the pair on
the basis of systematic thermal deep-level transient spectroscopy (DLTS)
studies, which strongly indicated the existence of an As; in the EL2 formation
process. This Asg,—As; pair model was strengthened by electron-nuclear
double-resonance (ENDOR) studies by Meyer et al. (1986, 1987) and Meyer
(1988), who concluded that the ENDOR data are due to a distant Asg,—As;
pair, that the defect symmetry is C,,, and that the As; sits in the [111]
direction directly coupling to the Asg, at a separation of 4.88 A. Theoretical
work by Baraff and Schliiter (1987), Baraff and Lannoo (1988), and Caldas
and Fazzio (1989) gave support for this Asg,—As;-pair model, and Delerue et
al. (1987) explained the pair’s metastable geometry in terms of a displaced As;.
All these theoretical studies were based on semiempirical, parametrized
calculations.

Based on self-consistent total-energy calculations, Dabrowski and Scheffler
(1988a. 1988b, 1989a and 1989b) questioned some details of the ENDOR
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analysis. In particular, it was found that a distant pair of the type proposed by
the ENDOR analysis is practically unbound. This makes it an unlikely
candidate for the dominant defect in GaAs. Last but not least, it was pointed
out that such a pair should have a shallow level close to the conduction band,
which seems to be in conflict with what is presently known about the EL2
center. It was pointed out, however, that the Asg, may well pair with other
centers and that an As; may also be part of a complex. The position of the As;
would then be quite different to that assumed in the ENDOR analysis of
Meyer et al. (1986, 1987). Whatever the nature of the complex including the
Asg, (and even leaving it open whether such a complex really exists), we
believe that there is no indication that it affects the nature of the EL2
metastability.

The symmetry of the EL2 defect in the charge state, showing the
characteristic EL2 absorption and the interesting metastability, was directly
investigated by absorption studies under uniaxial pressure. These experi-
ments, by Kaminska et al. (1985), Kaminska (1987), Kuszko et al. (1986),
Bergmann et al. (1988), Trautmann et al. (unpublished), and Nissen et al.
(1900, 1991), give no indication of a complex defect, but show tetrahedral
symmetry. Up to now, the suggestion of Kaminska et al. that EL2 has
tetrahedral symmetry and that it is identical to the isolated Asg, antisite was
not generally accepted (see, for example, Mochizuki and Ikoma, 1987;
Levinson and Kefalas, 1987; Baraff et al., 1988) because a simple Huang-
Rhys picture together with the assumption that the defect couples only to a
single-phonon mode was inconsistent with the experimental line shape
(Martin and Makram-Ebeid, 1986), and because it was questioned that
“optical absorption at the isolated antisite can produce the observed
metastability” (see, for example, Baraff and Schliiter, 1987; von Bardeleben et
al., 1985, 1986; Krambrock et al., 1992).

This short discussion shows the difficulty and active controversy about the
EL2 center, of which even the most basic property, namely its symmetry, is
not generally agreed on.

13, THE TRANSITION TO THE METASTABLE CONFIGURATION

Chadi and Chang (1988a) and Dabrowski and Scheffler (1988a, 1989a)
Suggested independently that the EL2 metastability is due to the
Asg, = V6. — As; structural transition, which we already discussed in Section
VL For the neutral tetrahedral Asg, we have an excited state aitl, which can
be reached from the ground state by optical absorption. This state is orbitally
degenerate, and as a consequence the system is unstable with respect to a
Symmetry lowering Jahn—Teller distortion. Dabrowski and Scheffler (1988a,
1989a) found the Jahn-Teller force for the [111] displacement to be about
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twice as large as those for the [100] and [110] displacements. Thus, the Jahn-
Teller effect will move the central atom in the [111] direction towards the
nearest tetrahedral interstitial site. This lowers the symmetry of the defect to
C,, and results in a splitting of the t,(T;) state (bottom of Fig. 12) into a lower
a,(C,,) state and higher ¢(C,,) state. Of these two, only the a, state is
occupied (with one electron), which is the reason for the Jahn-Teller energy
gain. In the C;, point group, the electronic configuration of the excited state
is now labeled as 1aj2a;} (see Part VI for the details of this notation).
Figure 13 displays the single-particle energies of the la,, 2a,, and e states
(top), as well as the three total-energy curves obtained for the three electronic
configurations 1af2a} (labeled F, which stands for fundamental), la}2a}
(labeled E, which stands for excited), and 1a%2a? (labeled M, which stands for
metastable). This figure should be taken in a semiquantitative way. It shows
results of parameter-free calculations, but only one atom is moved, and all
others are kept at their perfect-crystal positions. When this constraint is
removed, the total energy decreases, but the general picture will not change.
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FiG. 13. Single-particle energies with respect to the valence band edge (top), and total
energies of the § = 0 ground states (curves F and M) as functions of the position of the arsenic
defect atom (bottom). Zero displacement refers to the tetrahedral As—antisite configuration. The
total-energy curve labeled E is an electronic excited state with electronic configuration la}2al. In
these calculations all neighbors of the displaced arsenic atom were kept at their perfect-crystal
positions (see text). (After Dabrowski and Scheffler, 1988a.)
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The Jahn-Teller theorem predicts that the E total-energy decreases when the
symmetry is reduced, i.e., when the Asg, atom is displaced from its central
position. This effect can be seen in the E total energy curve of Fig. 13, bottom.
The geometry at the minimum of the E total energy curve may play aroleina
non-Franck—Condon excitation, and Dabrowski and Scheffler (1988a,
1989a) therefore predicted a zero-phonon line at about 0.1-0.2eV below the
main peak (Fig. 13, bottom).

It is most likely that the excited system “falls back™ from the E curve down
to the F curve, the ground-state total energy. Then the system ends again as a
tetrahedral Asg, antisite. However, Fig. 13 shows that the 2a, single-electron
level decreases in energy very rapidly and therefore starts to mix with the la,
state. This allows for another electronic configuration, namely 1a%2aj. Thus,
once excited to the E curve, the system has a certain probability of changing
to the M curve. Then the arsenic defect atom will end a considerable distance
(about 1.4 A) from its initial central gallium site. We refer to this metastable
atomic configuration as the gallium-vacancy-arsenic-interstitial pair, de-
noted by V~I. The As interstitial is about 1 A away from the tetrahedral
interstitial site. It is therefore chemically bound to only three arsenic atoms
(Scheffler, 1989; Dabrowski and Scheffler, 1992). The transition to the
metastable state competes with two other possible processes, namely the
ionization of the excited state (where the excited electron of the Asg, goes to
the conduction band) and the deexcitation (la}2a} — 1a?2a?) at smaller
distortions. These two processes will bring the arsenic defect atom back to the
fundamental configuration, i.e., to the tetrahedral Asg, antisite. Because of
these competitors it is obvious that the probability of the metastable
transition is small and that it should be sensitive to local stress and other
perturbations. It also depends sensitively on the conduction-band structure.

As the arsenic defect atom leaves the gallium site, its bond with one arsenic
neighbor that is left behind is stretched, and it almost breaks when the defect
enters the barrier region. This is shown in Fig. 11. The barrier of the
structural transition is reached when the arsenic atom passes through the
(111) plane of three As neighbors. In the metastable configuration, the arsenic
defect atom (now an interstitial) binds to these three atoms (see Fig. 11),
similarly to the bonding in crystalline grey arsenic. In the vacancy region
there is one broken bond, which is filled with two electrons.

The electronic structure of the vacancy—interstitial pair found in the self-
Consistent calculations (top of Fig. 13 at 1.4A displacement) can be
Summarized qualitatively in terms of a simple tight-binding picture. The left-
and right-hand parts of Fig. 14 show schematically the electronic structure of
the isolated gallium vacancy and of an C, -site isolated arsenic interstitial.
The vacancy with tetrahedral symmetry has a ¢, state close to the valence-
band edge; in the neutral charge state this level (which can hold up to six
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Ga—-VACANCY Vg, As, PAR  As—INTERSTITIAL
(Ts) (Cs.) (C3)

FiG. 14.  Schematic summary of the electronic structure of the metastable configuration, i.e.,
of the V¢, 'As! ™! defect pair (middle), which can be understood in terms of a Ga vacancy (left)
interacting with a C,,-site As—interstitial (right). (After Dabrowski and Scheffler. 1988b.)

electrons) is filled with three electrons. Furthermore, the vacancy has an a,-
resonant state in the valence band. The arsenic interstitial at a C,, symmetry
site has an a, level in the lower and an e level in the upper half of the band
gap. For the neutral interstitial, the a, state is filled with two electrons and the
e state is filled with one electron. When the two systems interact (the middle
part of Fig. 14), the ¢(C;,) component of the vacancy t,(T;) level and the
interstitial e(V;,) state form a bonding and an antibonding level that both
disappear from the gap. The interaction of the ¢, and a, states of the vacancy
with the interstitial a, states is slightly more complicated, but also follows
qualitatively the tight-binding picture (see Fig. 14). The five electrons of the
neutral gallium vacancy and the three electrons of the neutral arsenic
interstitial will fill the three energetically lowest levels of the pair. From the
wave-function character of the occupied states, we may label the pair
V& 'Ast®). The self-consistent calculations of Dabrowski and Scheffler
(1988a, 1989a) give the result that the empty a, and e states of the pair are
close to the conduction-band edge, ie., the corresponding acceptor levels
should be degenerate with the conduction band. The highest filled state
(labeled 2a, in Fig. 13) is close to the valence-band edge, i.e., the correspond-
ing electronic &0/ +) level should be degenerate or almost degenerate with
the valence band; it has vacancy dangling-bond character and the wave-
function is very localized. Also, the Green-function calculations by Ziegler et
al. (1993) confirm this energy level structure showing that the acceptor levels
are indeed close to the conduction band and that the 2a, state is in the
valence band. The constrained calculations of Dabrowski and Scheffler
(1988a, 1989a), shown in Fig. 13, give a barrier for the neutral ground state of
0.92eV between the minimum of the metastable configuration (the Vg, As;
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pair) and the fundamental configuration (the Asg, antisite). This value
decreases to about 0.4eV when the atoms of the cell are allowed to relax.

Figure 13 shows that the fourfold-coordinated Asg, antisite and the
metastable configuration with the threefold-coordinated As; have very
similar total energy. On the basis of the arguments presented, this result is
indeed plausible for a group-V element. The origin of the barrier between the
two configurations is, however, not immediately obvious. It may be under-
stood by the fact that the covalent radius of an As atom is 1.2 A. Therefore,
the As; is too “thick” to pass easily through the (111) plane of the three As
atoms. This argument is, however, not complete and cannot explain why for
other charge states the barrier will in fact disappear (see the next subsection).
The main reason for the barrier is the filled vacancy-like dangling bond
shown schematically in Fig. 11. This state is antibonding with respect to the
arsenic interstitial, and its energy (the 2a, level in Fig. 13) increases when the
As interstitial 1s moved from the metastable configuration toward the
vacancy. The occupied vacancy dangling orbital therefore contributes to the
repulsion between the constituents of the metastable pair (Dabrowski and
Scheffler, 1992). It is now clear that the barrier will change if one electron is
removed from this level.

The ground-state total energy for the positively charged center with one
electron at the Fermi level is given by

E* = E° + ¢(+/0) — Eg. (62)

E is the neutral-charge-state total energy, i.e., the F and M curves of Fig. 13;
£(+/0) is the transition state of the highest occupied single-particle level;
and Eg is the Fermi level, to which the electron is transferred. Dabrowski and
Scheffler (1988a, 1989a) obtained that the barrier is significantly reduced for
the E* total energy, compared to E° namely by 0.4eV. Thus, the barrier
practically vanishes when one electron is removed from the vacancy-like
dangling orbital of the V,As; pair, which implies that a positive-charged
Asg, should not exhibit metastable behavior. This result suggests that a
transition from the metastable V~I to the stable Asg, configuration may be
induced by a (temporary) hole capture at the V-1 pair.

A second possibility of the ¥;,As; — Asg, regeneration is that an electron is
(temporarily) captured in the la, level of the metastable system. This
corresponds to a temporary, negative charge state of the Vg As; pair. The
total energy is given by

E™ =E°—¢0/—) + E¢. (63)

The transition-state energy £(0/—) is related to the occupation change in the
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la, state of the metastable configuration in Fig. 13. The calculations of
Dabrowski and Scheffler (1988a, 1989a) predict that the E~ total-energy
curve is very flat. Thus, the barrier is close to zero, but there are no strong
forces pulling the As; to the vacancy. Still, because the density of states at the
bottom of the GaAs conduction band is very small, the negative charge state
may live sufficiently long, and this electron-induced regeneration may be a
likely regeneration channel.

14. COMPARISON OF THE THEORETICAL RESULTS TO THE EXPERIMENTAL
EL2 PROPERTIES

A careful discussion of the EL2 center requires us to take a variety of
different properties into account. Dabrowski and Scheffler (1988a, 1989a)
therefore compiled a detailed list of the most important “experimentally
established properites of EL2" and compared these experimental properties
with their theoretical results of the Asg, = Vg, As; defect. We will not repeat
this detailed discussion here but refer the interested reader to the original
publication. We just summarize that the comparison of the theoretical results
for the isolated arsenic antisite and the Asg, = Vg, As; metastability (see
Section VII.13) to the list of measured properties of the EL2 defect reveals
clear similarities. Both defects have basically the same electronic structure:
They are double donors and give rise to two deep levels in the forbidden gap.
Both defects are not paramagnetic when in the neutral charge state, show the
midgap level, exhibit the metastability, and do not have a level in the upper
part of the gap. In addition, both centers have the same pressure dependence
of the transition state in the stable state (Ziegler and Scherz, 1992). The
internal excitation of both centers is practically identical; the theoretical
value of the Franck—Condon transitions at an Asg, of 0.97eV agrees well
(within the expected accuracy of a parameter-free DFT-LDA calculation)
with the EL2 absorption main peak at 1.18eV. The zero-phonon line in the
experiments (0.14eV below the main peak) may be compared to the
theoretical result of 0.13eV. However, we note that it is not yet clear if the
experimental zero-phonon line is indeed a transition to the [111]-displaced
arsenic defect atom.

As discussed in Section VII.13, optical excitation of the Asg, can induce a
structural transition via the intermediate total-energy curve labeled E in Fig.
13. The mechanism implies that the probability of this bleaching effect should
be sensitive to the quality of the crystal. This is indeed known experimentally.
For the positive charge state of the Asg, antisite, in particular, theory and
experiment tell that this is not quenchable directly, but only after the Asg;’ is
transformed to an Asy,. The theoretical barrier height for thermal recovery
(ie., for the V;,As,— Asg, transition), calculated as 0.4 eV, is close to the
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experimental value of 0.34 eV. Also, the regeneration conditions are the same
in the calculations and in experiments with EL2: There is a purely thermal
process and an electron-induced (“Auger-like") regeneration process. The
electron-induced deexcitation of EL2 can be understood in the just-discussed
theory in the following way: It starts with a thermally activated capture of a
conduction-band electron in the la, resonant state of the Vg, As, pair. This
capture is then followed by relaxation in the As; to the fundamental
configuration, where the captured electron is released. The third channel of
regeneration of the fundamental atomic configuration, namely the hole-
induced deexcitation, is expected to have a very small cross-section (Dab-
rowski and Scheffler, 1988a, 1989a). Indeed, such a process has not yet been
observed for EL2.

Combined EPR-DLTS studies of von Bardeleben et al. (1986) indicated
that EL2 is destroyed if the sample is heated to 850°C and rapidly cooled
afterwards, but it can be regenerated by 130°C annealing. This result can be
qualitatively explained as follows: At high temperatures the Asg, = V5, As;
system dissociates into a gallium vacancy and an arsenic interstitial. Rapid
cooling hinders the reverse process, and additional annealing at intermediate
temperatures would be necessary to allow for the diffusion of the As; and the
association reaction Vg, + As; — Asg,. Again, as in many EL2-related experi-
ments, the results of von Bardeleben er al. (1986) have not been fully
reproduced by other researchers. Lagowski er al. (1986) and Lagowski
(private communication) report different temperatures, namely 1,050°C
{instead of 850°C) and 850°C (instead of 130°C). This demonstrates the high
complexity of EL2 investigations: Experimental results seem to depend
strongly on the sample and on the crystal environment. For a more general
discussion of how the crystal Fermi level (i.e., the electron chemical potential)
and the gas in the crystal environment (the atomic chemical potential) can
influence defect reactions and formation energies, we refer to Section I1.3 and
Part v,

The just-described calculations show that the neutral arsenic antisite
exhibits, under optical excitation, an intrinsic metastability. The metastable
transition is started by a Jahn-Teller effect, as speculated earlier by Scheffler
et al. (1984) and Bachelet and Scheffler (1985). The good agreement between
the calculated barrier (0.4 eV) and the experimental barrier suggests that the
Asg, antisite and EL2 are identical defects. However, the uncertainty in the
calculations was estimated as +0.2 eV. Therefore, we cannot positively rule
out the possibility that another nearby (but weakly interacting) defect is in
fact necessary to adjust the energy barrier to the 0.34 eV observed for EL2.
Nevertheless, based on a detailed comparison with many experimental
Properties, we identify the basic mechanism of the EL2 metastability as that
of the Asg;, antisite.
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VIII. The DX Centers

15. INTRODUCTION

In this part we discuss again a defect metastability of the type described in
Part VL. In particular we consider the Si donor in GaAs. Although the basic
mechanism (i.e., the sp> =sp? bonding and the nature of the barrier) is the
same as before, some interesting additional aspects are identified. From a
comparison with experimental results we relate these theoretical findings to
experimental results of DX centers.

Substitutional group-IV Ga-site and group-VI As-site impurities in
Ga, _ Al ,As with low Al concentration (x < 0.22) are shallow donors.
However, when x exceeds 0.22, or when the sample is put under high
hydrostatic pressure, or when the sample is heavily doped, these defects are
modified and become deep centers. Then they are called DX centers. For
basic research the most exciting properties of DX centers are related to this
pressure (or composition, or Fermi-level) inducible transition.

Similarly to the discussion on the identification and explanation of EL2
presented in the previous part, for DX there is also no general consensus
about its microscopic structure and its metastability mechanism. However,
correspondingly with the previous part, we will argue that the metastability is
due to a structural change between the tetrahedral donor geometry and a
vacancy-interstitial pair geometry (compare Part VI).

16. THEORETICAL RESULTS FOR THE Si DONOR IN GaAs UNDER PRESSURE

In this section we summarize results of density-functional-theory cal-
culations of Dabrowski and Scheffler (1992). The main approximations in
these studies were to replace the k-summation of the 54-atom super-cell by
the [ point and to neglect lattice relaxations. Unfortunately the theoretical
results are now more sensitive to these approximations than was found for
the defects discussed in Parts VI and VIL This is largely because DX centers
exhibit a shallow — deep transition and because the results are more sensitive
to the details of the conduction band. Tests had been performed also for other
k-point sets and for some relaxed geometries, so that it was possible to
roughly estimate how an improved calculation would modify the results. In
order to investigate the pressure dependence, calculations were performed for
different lattice constants. To ease the comparison with experimental results,
Dabrowski and Scheffler (1992) decided to adjust the theoretical pressure
scale by adding to their direct theoretical result a constant value of 31 kbar so
that the '~ X crossing occurs at the experimentally observed pressure. In Fig.
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Fic. 15. Calculated (Dabrowski and Scheffler, 1992) (left) and measured (Lang et al., 1979;
Landoldt-Bornstein, 1982) (right) pressure dependencies of the GaAs conduction band minima.
of the DX level, labeled as &(+/—) [full dots and solid line], and of the deep level of the
tetrahedral Sig,, labeled as &s;, (+/0) [open dots and dashed line]. The zero of the theoretical
pressure scale is adjusted such that the I'-X crossing point is at 40 kbar. For the calculated defect
levels lattice relaxation is neglected. We also note that the defect levels suffer from the I™-point
approximation of the k summation. Improving on this it was estimated that the & +/—) line
would shift up by about 0.3eV and the ¢g; (+/0) line would shift up by about 0.4 eV,

15 we show their results for the conduction band edges and for two Si defect
levels, which we will discuss in more detail later. The pressure dependencies of
the conduction band are reproduced very well by the theory, but the absolute
gaps are too small, which is a typical result for converged DFT-LDA
calculations (compare Section [I1.4).

In Fig. 16 we show the calculated total-energy curves for GaAs:Si, with the
Si impurity atom displaced in the same way as the other impurities in Figs.
11, 12, and 13. The results of Fig. 16 were obtained with the host atoms frozen
at their perfect crystal positions. Lattice relaxations lower the energies, but
this does not affect any of the following conclusions. At first we discuss the
curve corresponding to the negatively charged defect labeled [D' ™' —e " (Eg)],
where the electron is at the Fermi level. We see in Fig. 16 that the minimum of
this curve is at a displaced configuration, where the defect symmetry is Cj,.
Here the defect should be called a vacancy—interstitial (V=) pair. As in Parts
VI and VII above, we emphasize that the Si-interstitial is not at the
tetrahedral interstitial site of the lattice but closer to three As atoms. The
bonding with these As atoms can be described as largely sp*-like. We note
that only for the negatively charged Si defect the V—I pair geometry has a
lower energy than the substitutional, tetrahedral geometry. The mechanism
that keeps the impurity at the interstitial site is essentially due to the highest
occupied state of the defect. For the VI pair, this state is a single As dangling
orbital, indicated in the geometry-plot of Fig. 11 (top right) by the thick black
line. It interacts only weakly with the Si interstitial. When the Si atom is
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FiG. 16. Calculated total energy for GaAs:Si as a function of the Si position (Dabrowski and
Scheffler, 1992). Zero displacement corresponds to the tetrahedral Sig, defect. 100°, displace-
ment would correspond to the nearest tetrahedral interstitial position, which would be the corner
of the cube shown in Fig. 11. Three different charge states are shown. The Fermi level is taken at
the minimum of the conduction band. which is at I'. The lattice constant underlying these
calculations is a = 5.68 A, which corresponds to a pressure of —S5kbar in Fig. 15. The main
approximations that may affect some quantitative results are the neglect of lattice relaxations
and the replacement of the k summation by the I'-point.

pushed towards the vacant site, this orbital, as well as the Si-centered orbitals,
is compressed, which increases the electron kinetic energy. Thus, when these
orbitals are filled with electrons, and this is the case for D' ™/, we get a barrier.
Along the same argument we also understand that when the highest occupied
state of D'™ is emptied, as is the case for the neutral or positively charged
defect, the barrier should decrease or even vanish. In Fig. 16 we see indeed
that for the neutral system the total-energy curve differs significantly from
that of the negatively charged center. For D'” the stable geometry would be
at the tetrahedral position (zero displacement). However, at the V-I pair
configuration we can still identify a local minimum. The barrier from this
local minimum to the global minimum of D'’ is, however, much smaller than
that of the [D'™’—e " (Eg)] curve. We find that the calculated barrier heights
depend sensitively on the k summation. Improving on the I'-point approxi-
mation, Dabrowski and Scheffler (1992) estimated that the theoretical
barriers for D@ and [D'™ —e (Eg)] for a V—I —Sig, path would be about
0.1 and 0.5eV, respectively.

The main effects of a change in the lattice constant are changes in the
conduction band structure. Assuming that we have n-type conditions, this
translates into a change of the Fermi level. As a consequence we obtain a (to
first order) rigid shift of the [D'* + ¢ "(E)] and the [D'™) —e "(Eg)] curves
relatively to the D curve. The calculations also imply that the structural
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transition from the C,, to the T, geometry can be also induced without
pressure but by changing the Fermi level. If the Fermi level is high, the
absolute minimum of the three curves shown in Fig. 16 will be that of the
[D™) —e~(Eg)] curve. Thus, the negatively charged defect with its V-I
geometry will be stabilized. If the Fermi level is low, the [D'*) 4+ e (Ef)]
curve shifts to lower energy and the [D'™’ — e (Eg)] curve shifts to higher
energy. Then the minimum of all three possible charge states is that of the
positively charged Si substitutional. In Fig. 17 this discussion is summarized
in a plot that shows the Fermi-level dependence of the different charge states.
This figure also shows the theoretical level positions: The tetrahedral,
substitutional Si has transition-state levels &g  (+/0)=Ecg+0.1eV and
&si,,(0/—) = Ecg +0.3eV. Thus, at the lattice constant taken for the cal-
culations in Figs. 16 and 17, both “levels” are resonances in the conduction
band. For the V-1 pair configuration, the results ey ;(0/ —) = Ecg — 0.5¢V are
obtained. As we are dealing here with transitions between a mainly valence-
band derived state (the highest occupied state of the V-I geometry is
essentially an As dangling orbital (Dabrowski and Scheffler, 1988a, 1989a,
1989b; Scheffler, 1989) and the conduction band, these transition-state
energies, when compared to experimental ionization energies, may be subject
to errors similar to those of the perfect crystal band gap. Figure 17 shows that
the ground state for low Fermi energy is that of D'*'(Sis,), and that the
ground state for high Fermi energy is that of D'™)(V~1I). The transition from
D" )(Sig,) to D'"(V-I) is direct, i.e., without passing through the neutral
configuration. This is what is called a negative U behavior: In thermal
equilibrium, there is either no electron in the defect-induced level, or there are
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FIG. 17. Calculated total energies of the single positive, neutral, and single negative charged
substitutional GaAs:Sig,, and of the single negative charged V-1 pair as a function of the Fermi
level, after Dabrowski and Scheffler (1992). Ex =0 is the bottom of the conduction band. The
lattice constant underlying these calculations is a = 5.68 A, which corresponds to a pressure of
~Skbar in Fig. 15. The main approximations that may affect some quantitative results are the
neglect of lattice relaxations and the replacement of the k summation by the I'-point.
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two electrons. The coulombic electron—electron repulsion, which typically
implies that energy levels shift to higher energy when the occupation is
increased, is more than compensated by the large lattice relaxation, i.e., by the
displacement of the Si atom from the substitutional to the V-I pair
configuration. The pressure dependence of the energy of the crossing point of
the D'")(Sig,) and D'7(V-1I) lines of Fig. 17 is shown in Fig. 15 as the full
line, labeled &(+/—). Figure 15 also shows the pressure dependence of the
“normal” Sig, donor level, &s;_ (+/0), as the dashed line.

Dabrowski and Scheffler (1992) compiled a list of the experimentally
established properties of the Si DX center, and compared these properties to
the properties implied by the theoretical results for the tetrahedral Si donor
and the V-I pair. We will not repeat this discussion here, but we summarize
that most of the experimental results are indeed consistent with the Sig, =
V-I model. However, the situation appears to be less clear than for the EL2
center. This is largely because most experiments were done for AlGaAs alloys
for which the experimental analysis appears to be more complicated. On the
other hand, the calculations were performed mainly for pure GaAs (Chadi
and Chang, 1988a, 1988b; Dabrowski et al., 1990; Dabrowski and Scheffler,
1992); only recently they were extended to alloys (Zhang, 1991).

Although the detailed calculations reported in Figs. 15-17 were concerned
with cation-site donors, where the metastability is due to a displacement of
the defect atom, we note that the same type of process can also occur for
anion-site donors (Chadi and Chang, 1988a, 1988b). Here, however, the
nearest neighbor cation moves.

Several experimental results are directly explained by the calculations.
However, some questions remain that call for more accurate experiments as
well as for more accurate calculations. The most severe disagreement between
experiments and the properties of the ¥-I model comes from susceptibility
measurements, which seem to indicate that DX centers are paramagnetic
(Katchaturyan et al., 1989). However, this result is not confirmed by EPR and
in fact it has been questioned by other studies (Katsumuto et al., 1990).
Paramagnetism of the ground state of DX centers would be in conflict with
the V—I model. A more detailed experimental and theoretical study of these
points should help to finally confirm, to reject, or to refine the model.
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