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In the following, we discuss our measurements and cal-
culations in more detail. In particular:

• Details on sample quality

• NIXSW details

• Influence of the DFT functional

• Bulk stacking order

• Influence of the polytype

• The electron density maps

DETAILS ON SAMPLE QUALITY

In order to check the quality of the QFMLG samples,
we applied two different techniques. We first measured a
low energy electron diffraction (LEED) pattern, a fast
method to check the presence of long range order at
the surface. A characteristic pattern is shown in Fig. 1.
In addition, we performed angle resolved photoelectron
spectroscopy, revealing the band structure of the surface.
As shown in Fig. 2, the typical linear band dispersion ex-
pected for graphene is measured around the K-point of
its surface Brillouin zone.

FIG. 1: LEED image taken with an incidence energy of 126 eV
on QFMLG.
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FIG. 2: ARPES spectrum of QFMLG performed in the ΓK
direction and taken around K point (here at k‖ = 0) with the
HeIα.

NIXSW DETAILS

The normal incidence x-ray standing wave technique
gives access to adsorption heights of surface elements
with respect to the lattice plane of a crystalline substrate.
More details can be found in [1–3]. By tuning the inci-
dent photon energy (E) around the Bragg energy of the
H = (hkl) reflection, the spacial position of the x-ray
standing wave field created in the vicinity of the surface
shifts with respect to the lattice planes of the substrate.
As a consequence, the photoelectron yield (Y ) of a given
adsorbed species varies. The resulting quantity, Y (E),
can be calculated with the following equation:

Y (E) =1 + SRR

+ 2FH
√
R|SI | cos(φ− 2πPH + Ψ).

(1)

By fitting the experimental data with eq. 1, two im-
portant independent parameters are extracted, for each
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PH FH d (Å)
SiBulk 0.019 1.23 0.048
CBulk 0.759 1.043 −0.607
CGraphene 0.697 0.746 4.272

TABLE I: Averaged NIXSW measured values PH and FH

for each component. The last column corresponds to the con-
verted absolute positions with respect to the Bragg plane clos-
est to the topmost Si atoms.

chemically differentiated species: the coherent position
PH and the coherent fraction FH . PH represents the av-
erage atomic positions and FH can be understood as an
order indicator of a given PH . R and φ are the theoreti-
cal reflectivity and phase of the sample, respectively. The
so-called non dipolar parameters, SR, SI and Ψ, were not
used (that is to say set to 1, 1 and 0, respectively). The
reason for this is that no reliable values are so far avail-
able for this geometry in the literature. All PH and FH

values, averaged over all data sets, are shown in Tab. I.
The value of both parameters should lie between 0 and
1. However non-dipolar effects [4] can influence the FH

values. This is clearly visible in the coherent fraction of
silicon (1.23) for which a value very close to 1 is expected
as it is a bulk species.

It is known that the graphene layer covers the steps of
SiC(0001) [5], which as a consequence reduces the mea-
sured averaged coherent fraction (0.75), when compared
to the perfectly flat CSiC

surf (1.04). It is worth noting that
for samples having a graphene coverage close but above
one (not shown), the coherent fraction is dramatically re-
duced (0.48) in comparison to samples of coverage close
but lower than one monolayer, measured on the same
set-up (0.75).

Error bars estimation

Fitting the components of each core-level is rather sim-
ple as it requires a very simple fitting model and the
peaks are well defined, Fig. 1(a,b) of the main article.
The error bar of each component’s area is determined
by a Monte Carlo analysis and is much smaller than the
symbols used in Fig. 1(c) of the main article. When
fitting the electron yield, the PH and FH parameters
of a given data set have a negligible error bar. However,
when comparing data obtained from several spots on two
different QFMLG samples, we observe small variations.
We attribute this to possible sample inhomogeneities, or
small beamline, manipulator and analyzer instabilities.

The values given in Tab. I are averaged over 7 C 1s and
2 Si2s data sets, as shown in Tab. II. For all species, the
PH varies by 0.022 at maximum. This corresponds to
an error bar smaller than ±0.04 Å for absolute positions.
For distances, the error is then ±0.06 Å.

Sample Position Species PH FH

A 1 SiBulk 0.020 1.229
A 2 SiBulk 0.018 1.230
A 3 CBulk 0.760 1.035

CGraphene 0.702 0.699
A 3 CBulk 0.760 1.041

CGraphene 0.698 0.788
A 1 CBulk 0.760 1.043

CGraphene 0.696 0.798
A 4 CBulk 0.760 1.041

CGraphene 0.707 0.580
A 5 CBulk 0.760 1.051

CGraphene 0.704 0.623
B 6 CBulk 0.758 1.048

CGraphene 0.688 0.864
B 7 CBulk 0.755 1.039

CGraphene 0.685 0.872

TABLE II: Coherent positions and fractions for each data set
obtained on QFMLG.

INFLUENCE OF THE DFT FUNCTIONAL

The supplemental material of a previous work by some
of the authors [6] included details on the numerical con-
vergence of calculations for similar structures with re-
spect to the number of basis functions and the grid den-
sity in real and reciprocal space. For the (6

√
3 × 6

√
3)

interfaces we chose the Γ-point for accurate integrations
in reciprocal space. The FHI-aims code employs nu-
meric atom-centered basis sets. Basic descriptions of
their mathematical form and properties are published in
[7]. The basis set and numerical real space grids are of
high quality as defined by the tight settings including a
tier1+dg basis set for Si and a tier2 basis set for C [7].

To test the influence of the exchange correlation func-
tional on the geometry we used three different exchange
correlation functionals, the local density approximation
(LDA) [8], the Perdew-Burke-Enzerhof generalized gra-
dient approximation (PBE) [9] and the Heyd-Scuseria-
Ernzerhof hybrid functional (HSE06)[10]. In HSE06 the
amount of exact exchange is set to α = 0.25 and a range-
separation parameter ω = 0.2Å−1 is used.

For an accurate description of the different surface
phases, in particular hydrogen-graphene bonding in the
QFMLG phase, we include long range electron corre-
lations, so-called van der Waals (vdW) effects. Here,
we compare the results of two different schemes. The
first scheme used in this work is the well established
Tkatchenko-Scheffler (TS) [11] method. It is a pair-
wise approach, where the effective C6 dispersion co-
efficients are derived from the self-consistent electron
density. The second approach is a more recent refine-
ment to the TS scheme incorporating many-body ef-
fects [12–14]. In this scheme, the atoms are modelled
as spherical quantum harmonic oscillators, which are
coupled through dipole-dipole interactions. The cor-
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6H-SiC ZLG
PBE+vdW PBE+MBD LDA HSE06+vdW HSE06+MBD

n Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C Dn,n+1 dn δn
Z 2.37 — —/ 0.30 2.35 — —/ 0.29 2.30 — —/ 0.37 2.38 — —/ 0.30 2.37 — —/ 0.30
1 1.92 0.48 0.42/< 10−2 1.92 0.51 0.40/< 10−2 1.91 0.53 0.31/< 10−2 1.92 0.48 0.48/< 10−2 1.92 0.48 0.47/< 10−2

2 1.88 0.61 < 10−2/< 10−2 1.89 0.61 < 10−2/< 10−2 1.88 0.60 < 10−2/< 10−2 1.88 0.61 < 10−2/< 10−2 1.88 0.61 < 10−2/< 10−2

3 1.89 0.62 < 10−2/< 10−2 1.90 0.63 < 10−2/< 10−2 1.88 0.62 < 10−2/< 10−2 1.88 0.62 < 10−2/< 10−2 1.89 0.62 < 10−2/< 10−2

6H-SiC QFMLG
PBE+vdW PBE+MBD LDA HSE06+vdW HSE06+MBD

n Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C Dn,n+1 dn δn
G 2.75 — — /< 10−2 2.76 — — /< 10−2 2.71 — — /< 10−2 2.71 — — /< 10−2 2.77 — — /< 10−2

H 1.50 — — / — 1.50 — — / — 1.51 — — / — 1.49 — — / — 1.49 — — / —
1 1.89 0.62 < 10−2/< 10−2 1.89 0.62 < 10−2/ < 10−2 1.88 0.61 < 10−2/< 10−2 1.88 0.62 < 10−2/< 10−2 1.88 0.61 < 10−2/< 10−2

2 1.89 0.63 < 10−2/< 10−2 1.89 0.63 < 10−2/ < 10−2 1.88 0.63 < 10−2/< 10−2 1.88 0.63 < 10−2/< 10−2 1.88 0.63 < 10−2/< 10−2

3 1.89 0.63 < 10−2/< 10−2 1.89 0.63 < 10−2/ < 10−2 1.88 0.62 < 10−2/< 10−2 1.88 0.62 < 10−2/< 10−2 1.88 0.63 < 10−2/< 10−2

TABLE III: Influence of the functional on the interface structure of 6H-SiC (
√

3-SiC model cell). Dn,n+1 is the distance between
layer n and n+ 1, dn gives the distance within SiC bilayer n, and δn the corrugation of layer n. All distances are given in Å.

responding many-body Hamiltonian is diagonalized to
calculate the many-body vdW energies. As a result,
this approach accounts for long-range many-body dis-
persion (MBD) effects employing a range-separated (rs)
self-consistent screening (SCS) of polarizabilities and is
therefore called MBD@rsSCS (for details see Ref. [14]).
To include the long-range tail of dispersion interaction
we couple each functional with either the pairwise TS
scheme, here refered to as PBE+vdW (HSE06+vdW),
or the MBD@rsSCS scheme in this work abbreviated as
PBE+MBD (HSE06+MBD).

In Table III we list the layer distance (Dn,n+1), the
Si-C distance within a SiC bilayer (dn) and the layer
corrugation (δn), the difference between the highest and
lowest atom in the layer, for QFMLG and EMLG on
6H-SiC(0001) calculated with different exchange cor-
relation functionals and vdW corrections. We con-
clude that PBE+vdW, PBE+MBD, HSE06+vdW and
HSE06+MBD yield the same results for both phases.

BULK STACKING ORDER

For 3C-SiC(111), the stacking order close to the surface
is independent of where the surface is cut. However, for
the 6H-SiC(0001) this is different as the SiC bilayers are
rotated every third layer by 30 degree in the unit cell.
The position of the rotation is indicated in Fig. 3 by a
kink in the grey line. We tested the influence of the
stacking order for 6H-SiC using an approximated

√
3 ×√

3-R30◦ unit cell. The surface energies calculated using
PBE+vdW of the 6H-SiC ZLG and the atomic structure
are shown in Fig. 3. We find the lowest surface energy
for ABCACB and ACBABC stacked SiC. We therefore use
a ABCACB stacked 6H-SiC substrate.

FIG. 3: The zero-layer graphene (ZLG) of the hexagonal SiC
polytype (6H-SiC) using an approximated

√
3×
√

3-R30◦ unit
cell and their surface energies are shown for different SiC-
bilayer stacking order calculated using PBE+vdW.

INFLUENCE OF THE POLYTYPE

To evaluate the influence of the SiC polytype on the
geometry, we list the key geometry parameters in Tab. IV
for the QFMLG and EMLG phase for two different poly-
types, the 3C-SiC and 6H-SiC. For the QFMLG phase
the interface geometries are practically identical. Like-
wise the interface of the EMLG phase shows polytype
induced changes that are smaller than 0.04 Å. Therefore,
3C and 6H polytypes can be exchanged without qualita-
tively changing the result of the calculation. It should
be noted that the advantage of 3C is that the number of
bilayers one uses in the slab can be smaller than six.

THE ELECTRON DENSITY MAPS

We calculate the change of the electron density at the
interface for the QFMLG and the EMLG phase for the
3C-SiC polytype. As shown in Tab. IV, the interface
geometry hardly changes with polytype, and the same
qualitative difference between the QFMLG and EMLG
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a) 3C-SiC(111) QFMLG
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b) 3C-SiC(111) EMLG
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FIG. 4: The difference in the electron density (∆ρ(r) = ρfull(r)− (ρG(r) + ρsub(r)) ) is shown for (a) the 3C-SiC QFMLG and
(b) the 3C-SiC EMLG phase. We integrated ∆ρ in the x-y-plane and plotted it along z. The position of the Si, C, H, and
graphene-layer are indicated by dashed lines. We show ∆ρ(zi) in the x-y-plane at equidistant zi heights between the graphene
layer and the substrate. In the main paper we include the electron density map at the inflection point of ∆ρ(z): z6 for QFMLG
and z8 for EMLG.

QFMLG
6H-SiC 3C-SiC

n Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C
G 2.66 — 0.02 2.68 — 0.01
H 1.50 — 0.00/0.00 1.50 — 0.00/0.00
1 1.89 0.62 0.00/0.00 1.89 0.62 0.00/0.00
2 1.89 0.63 0.00/0.00 1.89 0.63 0.00/0.00
3 1.89 0.63 0.00/0.00 1.89 0.63 0.00/0.00

EMLG
6H-SiC 3C-SiC[6]

n Dn,n+1 dn δn Si/C Dn,n+1 dn δn Si/C
G 3.40 — 0.45 3.40 — 0.41
Z 2.36 — 0.86 2.36 — 0.82
1 1.92 0.55 0.78/0.30 1.93 0.55 0.74/0.31
2 1.90 0.61 0.21/0.14 1.90 0.61 0.21/0.13
3 1.89 0.62 0.08/0.05 1.89 0.62 0.08/0.05

TABLE IV: Geometry comparison of the layer distance
(Dn,n+1), the Si-C distance within a SiC bilayer (dn) and the
layer corrugation, the difference between the highest and low-
est atom in the layer, (δn) for two different SiC polytypes,
6H-SiC(0001) and 3C-SiC(111), including both phases the
QFMLG and EMLG calculated with PBE+vdW. The data
for the 3C-SiC EMLG phase was taken from [6].

phases can be observed for the 6H-SiC polytype. The
electron density (ρ(r)) of a 4-bilayer 3C-SiC slab is rep-
resented on an evenly distributed grid (260× 260× 350)
for the full system ρfull(r), the graphene layer alone

ρG(r) and the substrate alone ρsub(r) including the H
layer for the QFMLG phase and the ZLG for the EMLG
phase. The electron density difference ∆ρ(r) is given by
∆ρ(r) = ρfull(r) − (ρG(r) + ρsub(r)). The change in the
electron density along the z-axis ∆ρ(z) =

∫
dx dy∆ρ(r)

is shown in Fig. 4 (a) for the QFMLG and Fig. 4 (b)
for the EMLG. Figure 4 shows ∆ρ(r) in the x-y-plane
at equidistant heights of 0.3 Å at the interface region.
In the main paper we include the electron density map
∆ρ(z(6,8), x, y) at the inflection point z = z(6,8) of ∆ρ(z).
In the QFMLG all Si atoms are saturated by hydrogen re-
sulting in small variation of the charge density within the
x-y-plane (Fig. 4 (a)) independent of the chosen height.
In the EMLG phase the in-plane electron density is influ-
enced by the interplay of saturated and unsaturated Si
bonds in the ZLG layer. The modulations in the charge
distribution Fig. 4 (b) are visible at any chosen position
zi in the interface region.
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