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1 Calculations on embedded cluster models

Formation energies for F centers in MgO bulk, at the MgO(100) terrace, and at low coordinated sites were
calculated with different methods, some of them using FHI-aims and TURBOMOLE to insure consistency of
the two codes.

1.1 Cluster definition

Fig. S1 shows the cluster models that were employed for the DFT calculations of formation energies for
defects at different configurational sites of the MgO(100) surface and in MgO bulk. All the clusters are
embedded in a periodic array of point charges at the optimized PBE (pbc) cell parameter. For the surface
models the positions of the point charges coincide with the coordinates of a relaxed defect-free 5-layer slab.

The CCSD(T) computations for the neutral oxygen vacancy in the bulk and at the MgO(100) terrace
were performed using the embedded cluster models shown in Fig. S2. While all other embedded cluster
calculations were performed with TURBOMOLE, this bulk model was also used for FHI-aims calculations at
DFT level and for method validation employing G0W0@HSE.

1.2 Defect formation energies as a function of cluster size

To incorporate long-range polarization effects we extrapolate the DFT formation energies of the charged
surface defects according to

Gq
f (n) = Gq

f (n → ∞) + a (
1

n
)
1
3 , (1.1)

where n is the number of ions in the cluster [1]. For all cluster calculations the Fermi level is at VBM and the
chemical potential of oxygen is µO = 1/2EO2 . Since we do not relax all ions in the cluster, we use separate
extrapolations for the vertical formation energy, n = ntotal, and for the relaxation energy, n = nrelax. The
formation energy of the relaxed defect is the sum of the vertical formation energy and the relaxation energy:

Gq
f = Gq

f,vert + Eq
relax. (1.2)

With regard to the formation energies of the charged defects, we find that including long-range polarization
effects is an important requirement for an accurate description, as mentioned by Sushko et al. [2]. The un-
relaxed (vertical) formation energies and relaxation energies for F centers at MgO(100) have been obtained
from a series of clusters including Mg9O9 (3×3×2 ions), Mg25O25 (5×5×2 ions) and Mg50O50 (5×5×4
ions). In Table S1 the vertical formation energies and relaxation energies obtained with PBE are summarized.
The corresponding extrapolations are shown in Fig. S3.
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Figure S1: Cluster models for different sites: a) terrace (Mg50O50), b) step (Mg45O45), c) edge (Mg30O30),
d) corner (Mg18O18), e) reverse corner (Mg42O42) and f) bulk (Mg14O19). The arrows indicate
which atom was removed to form the defect.

Figure S2: Cluster models for terrace (Mg5O5, a) and bulk (Mg6O9, b) used for comparison of DFT and
CCSD(T) calculations.
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Figure S3: Extrapolated vertical formation energies for F+
s (a) and for F 2+

s (b), and extrapolated relaxation
energy for F 2+

s (c), calculated with PBE, PBE0 and B3LYP.

Table S1: Vertical formation energies, relaxation energies, and formation energies including relaxation as
obtained from embedded cluster and supercell calculations (PBE), all in eV.

Type of defect Model Gq
f,vert Eq

relax Gq
f

F+
s Supercell 10.71 -1.21 9.50

F+
s Emb. cluster 10.28 -0.81 9.47

F 2+
s Supercell 16.54 -3.23 13.31

F 2+
s Emb. cluster 16.21 -3.35 12.86
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1.3 Comparison between DFT and CCSD(T) embedded cluster calculations for the neutral
oxygen vacancy

Table S2 summarizes the vertical formation energies for a neutral F 0 center at the (100) terrace (Mg5O5)
and in MgO bulk (Mg6O9). For consistency, bulk defect formation energies calculated with FHI-aims using
a tight, tier 3 basis are shown, too. Also DFT formation energies using larger clusters are reported to show
that the small clusters are already converged with respect to cluster size within 0.1 eV in vertical formation
energy for the bulk defect and within 0.23 eV for the surface defect. In the main part of the paper we report
the difference between the CCSD(T) and the DFT results, which can be used as a correction term to the DFT
values.

Table S2: Vertical formation energies, Gq
f for F 0 and F 0

s as obtained from embedded cluster DFT and
CCSD(T) calculations, all in eV.

Defect site Cluster model PBE PBE0 B3LYP CCSD(T)
Terrace Mg5O5 6.78 6.53 6.80 6.52

Mg50O50 6.54
Bulk Mg6O9 7.18 7.02 7.37 7.09

Mg6O9 (FHI-aims) 7.11 6.99 7.35
Mg14O19 7.06

1.4 Obtaining the opt-HSE functional via ionization energies

Fig. 2 in the main paper shows ionization potentials Iq→q+1 for q = 0 and q = 1 at F 0 geometry calculated
for an Mg6O9 embedded cluster by ∆SCF with HSE xc functionals, and from the HOMO of a G0W0@HSE
calculation (Eq. 3–4 in the main paper). The position of the "Fermi level" in these cluster calculations is
defined as the ionization potential of the undefected cluster at bulk-like geometry. The results obtained
with the ∆SCF method agree with the values obtained from the highest occupied Kohn-Sham levels at
half occupation. Due to the small size of the cluster, the ionization potential I+→2+ is shifted too far
upwards with respect to I0→+. To remove the artificial overestimate, we shift to lower values the HSE
and GW data for q = 1 by a constant (independent on α) value. This value is determined by averaging
the difference between HOMO-1 (spin-minority channel) of the defected (Mg6O9−1)+ cluster, and HOMO-
1 of the defected Mg6O9−1 cluster. The position of the HOMO-1 orbital for each cluster represents the
position of the Fermi level, and the difference between them is therefore an artifact of the cluster model. The
resulting shift is -4.11 eV, and the uncertainty due to averaging is ±0.1 eV. Note that this shift is not required
to determine, and does not change, the optimal value of the parameter α, but is applied solely to give an
estimate of the difference between I0→+ and I+→2+ for the bulk based on the cluster models.
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2 Extrapolation to dilute limit for periodic calculations

The formation energy of a neutral F center is already converged for a very small supercell of 64 atoms,
while the formation energies of the F+ and the F 2+ centers show a strong dependence on L, the higher the
charge state the more pronounced is the effect. The difference in formation energy for a 1728 atom supercell
compared to a 1000 atom supercell is still 0.05 eV for the F 2+ center. The leading contributions to the bulk
defect formation energy dependence on the supercell size are the terms ∼ 1/L and ∼ 1/L3, where L is the
supercell lattice constant. This implies that finite-size scaling according to

Gbulk,q
f (L, εF , µO) = Gbulk,q

f (L → ∞, εF , µO) +
a1
L

+
a2
L3

(2.1)

leads to the correct formation energy in the dilute limit Gbulk,q
f (L → ∞).

The extrapolation procedure correctly incorporates the effects of atomic relaxation. Calculating supercells
containing up to 2000 atoms for the doubly charged vacancies, using PBE exchange-correlation treatment,
we get an accuracy of 0.05 eV for the extrapolated values of the formation energies. Vibrational contributions
are estimated to be small and therefore neglected.

The defect formation energies calculated with HSE06 for the two smallest supercells (64 and 216 atom
cells) lie exactly on the same fitting curve as the PBE formation energies, but shifted by a constant value
(Fig. S4). Therefore, in all cases HSE formation energies are calculated for the smallest supercell, and then
extrapolated to the dilute limit, where 1/L → 0, using a shifted PBE fitting function.

Figure S4: Finite-size scaling for the F 2+ center formation energy (εF=VBM, µO = 1/2Etot
O2

). Solid lines
show fits to Gbulk,2

f (L) = a0 +
a1
L + a2

L3 for PW-LDA and PBE formation energies. Formation
energies obtained with HSE06 lie on the shifted PBE curve. Accordingly, PBE coefficients a1 and
a2 are used to extrapolate to isolated defects for all members of the HSE(α,ω) functional family.

Although computationally demanding, using the uniform neutralizing background method or the virtual
crystal approximation together with extrapolation to the dilute limit is a reliable method for calculating
formation energies of charged bulk defects. For charged surface defects, computed using VCA, the extrapo-
lation is slightly different due to the broken symmetry at the surface. While for bulk supercells, the formation
energies were fit to Eq. 2.1, where a term proportional to 1

L2 is zero due to symmetry reasons, for the surface
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defects this term has to be included. The fitting function used is therefore

GVCA,q
f (L,εF , µO) = GVCA,q

f (L → ∞, εF , µO) +
aq1
L

+
aq2
L2

+
aq3
L3

. (2.2)

Two new aspects have to be taken care of when calculating the extrapolated formation energies for the
isolated F centers at the surface. The periodicity of the calculation is three-dimensional, so the slabs are
separated by vacuum to remove undesired interactions between repeating slabs. The reference unit cell is
neutral, because the compensating charge −q to the defect charge q is distributed on the Mg atoms in the slab.
Since FHI-aims uses localized basis functions, there is no computational extra-cost when the vacuum region
is chosen large. Here, the smallest distance between a defect and its image in z-direction, perpendicular to
the surface, was chosen as 200 Å. Using a slab to model an isolated defect in a semi-infinite system only
makes sense, if convergence of the desired property can be reached with respect to the number of layers
NL in the slab. The electrostatic energy in the slab depends obviously on NL and this leads to different
extrapolation curves, as shown for F 2+

s with slabs of NL = 4,5,6, and 7 in Fig. S5. Full relaxation has
been performed for all slab systems (using PBE), since also the geometric relaxation convergence and lattice
polarizability may vary with NL. While a 4 layer slab is not sufficient to obtain an accurate result for the
extrapolated formation energy, where 1/L → 0, the 5 layer and 6 layer slab models yield the same value.

Figure S5: Extrapolation of the F 2+
s formation energy GVCA,2

f (L) (filled symbols, vibrations and dispersion
neglected) to infinite supercell size (L → ∞) for different numbers of layers in the slab, calculated
with PBE. The Fermi level is at VBM and µO = 1/2Etot

O2
. Open symbols and linear fit (black

line) are obtained by subtracting the band bending contribution (Eq. 2.3).

The electrostatic energy that causes the formation energy of charged defects to increase with slab thickness
d is the band bending (see main text). This contribution can be calculated as follows (see chapter 5 below):

qESC =
q2e

6εrε0

d

L2
(2.3)

where e is the absolute value of electron charge. Subtracting qESC from the formation energies at every cell
size GVCA,q

f (L) removes the term ∝ 1/L2 in the finite-size scaling curve for each slab thickness. This is
shown on the example of the F 2+

s center (q = 2) at the MgO(100) terrace in Fig. S5. The term ∝ 1/L3 plays
a role only for small L, so that the remaining linear dependence coincides for slabs with a number of layers
NL = 4,5,6, and 7 for all calculated surface charge densities σ = 2e/L2. The solid black line shows a linear
fit, incorporating all calculated formation energies. This linear fit yields the same value for the formation
energy of the isolated defect as obtained before for different slab thicknesses using Eq. 2.2. The linear term
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is present due to the electrostatic attraction between the defects and the compensating charge. Thus, Eq. 2.2
yields full information on the dependence of the formation energy on defect concentration.

Eq. 2.2 can be generalized to the case when defects in different charge state (+ or 2+) coexist at the surface.
First, we rewrite Eq. 2.2 in terms of surface charge density σq for q = 1,2 using σq = qe/L2:

GVCA,q
f (σq,d) = GVCA,q

f (σq → 0) + aq1

(
σq
qe

) 1
2

+ aq2(d)

(
σq
qe

)
+ aq3(d)

(
σq
qe

) 3
2

. (2.4)

(Vibrational energy contributions to the formation energies are found to be insignificant for this study and
therefore neglected.) When defects in both charge states are present at the surface simultaneously, the surface
charge density is σ = σ1+σ2. Since the nature of the second and third terms is purely electrostatic, we apply
a mean-field approximation and simply replace σq with σ in these terms. The fourth term is more complicated
since in addition to higher-order electrostatic effects it also includes geometric relaxation effects. However,
also in this term we replace σq with σ, which corresponds to averaging the relaxation effects over different
defect charge states. This averaging may give a noticeable error only in the specific case of comparable, and
at the same time not small (> 3 %), concentrations of F+

s and F 2+
s . Thus, the dependence of the formation

energies on the overall surface charge density σ is given by:

GVCA,q
f (σ,d, εF , µO) = GVCA,q

f (σ → 0,εF , µO) + aq1

(
σ

qe

) 1
2

+ aq2(d)

(
σ

qe

)
+ aq3(d)

(
σ

qe

) 3
2

. (2.5)

Note, that GVCA,q
f (σ → 0) depends on Fermi energy εF and reservoir for oxygen atoms µO(T,pO2). The

calculated values of GVCA,q
f (σ → 0) and aqi , i = 1-3, for the 5-layer slab as obtained by extrapolation,

are summarized in Table S3. The corresponding values, when aq2 was extracted from Eq. 2.3 are shown in
Table S4.
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Table S3: GVCA,q
f (σ → 0) as obtained with HSE06 and coefficients aqi , i = 1-3 for the 5-layer slab

(εF=VBM, µO = 1/2Etot
O2

)

q GVCA,q
f (σ → 0)(eV) aq1(eVÅ) aq2(eVÅ

2
) aq3(eVÅ

3
)

0 6.34 0 0 0
1 2.76 -4.93 24.76 42.29
2 0.55 -17.49 80.86 258.11

Table S4: GVCA,q
f (σ → 0) as obtained with HSE06 and coefficients aqi , i = 1-3 for the 5-layer slab

(εF=VBM, µO = 1/2Etot
O2

), where aq2 was obtained from Eq. 2.3

q GVCA,q
f (σ → 0)(eV) aq1(eVÅ) aq2(eVÅ

2
) aq3(eVÅ

3
)

0 6.34 0 0 0
1 2.77 -5.30 30.69 14.35
2 0.60 -20.13 122.78 62.93
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3 Summary of formation energies for F centers in MgO in the dilute limit

Table S5: Formation energies Gq
f (σ → 0) (all in eV) of the F 0, F+, and F 2+ center in MgO bulk and

the F 0
s , F+

s , and F 2+
s center at the MgO(100) surface terrace site, calculated at different levels

of exchange-correlation treatment within periodic boundary conditions (pbc) as well as using em-
bedded cluster models (ecm). Periodic calculations and ecm computations with HSE06 have been
performed with FHI-aims, while for all other ecm calculations TURBOMOLE was used. The Fermi
level is at the VBM, where the VBM with respect to vacuum level was calculated using periodic
slab models of the ideal surface. The chemical potential of oxygen is at the oxygen-rich limit
where ∆µO = 0. Our best numbers are highlighted in boldface.

Method F 0 F+ F 2+ F 0
s F+

s F 2+
s

PBE-pbc 7.09 4.54 2.82 6.48 4.18 2.68
HSE06-pbc 7.04 3.33 0.56 6.34 2.76 0.55
PBE0-pbc 7.07 2.95 -0.16 6.33 2.56 0.12

HSE06-ecm 7.05 - - - - -
PBE-ecm[∆CCSD(T)] 6.94 [-0.09] - - 6.49 [-0.26] 4.17 2.26

PBE0-ecm[∆CCSD(T)] 6.81 [+0.07] - - 6.26 [-0.01] 2.54 -0.30
B3LYP-ecm[∆CCSD(T)] 7.17 [-0.28] - - 6.61 [-0.28] 3.05 0.13

Table S6: Formation energies G0
f (all in eV) of the neutral F 0

s center at the MgO(100) surface corner, reverse
corner, step and edge, in the O-rich limit, calculated using embedded cluster models. For more
information on these defects, see also Ref. [3].

Method Reverse corner Step Edge Corner
HF [4] - 4.24 - 3.24

LDA [5] 6.76 6.99 - 5.45
PBE 5.94 5.68 5.76 5.13
PBE0 5.69 5.44 5.53 4.89

B3LYP [3] 5.91 5.61 5.78 5.01
B3LYP [2] - - - 4.63
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4 Valence-band maximum with respect to vacuum level

In the periodic calculations of the MgO(100) surface a vacuum region of ≈ 200Å separates repeating 5 layer
MgO slabs. The potential in the middle of this vacuum region is the vacuum level ESurf

VAC for the surface
calculation. To obtain the valence-band maximum (VBM) with respect to vacuum level for the bulk system,
EBulk

VBM−VAC, a surface slab calculation is performed with the respective exchange-correlation functional and
the difference between ESurf

VAC and the 1s core level of Mg in the deepest, bulk-like layer ESurf
core is determined.

This difference is added to the Mg 1s core level in the bulk system EBulk
core and the resulting bulk vacuum level

is subtracted from the bulk VBM EBulk
VBM

EBulk
VBM−VAC = EBulk

VBM −
(
EBulk

core + (ESurf
VAC − ESurf

core )
)
. (4.1)

5 Concentration of surface defects

P -type dopants deep in the bulk set the Fermi level to VBM. As described in the main text, the formation
energy of charged defects for a surface charge density σ is:

GVCA,q
f (σ,zSC(σ)) = GVCA,q

f (σ,d)− qESC(σ,d) + qESC(σ,zSC), (5.1)

where GVCA,q
f (σ,d) is calculated by VCA and is given by Eq. 2.5, ESC is the band bending contribution, and

zSC is the thickness of the space-charge layer. For a given concentration of dopants ND,

zSC =
σ

eND
. (5.2)

At temperature T = 0 K, the above zSC minimizes the electrostatic energy of the system under the constraints
of constant surface charge density and charge neutrality. At finite T , zSC has a profile that minimizes the free
energy of the system at that T . We estimated the effect of temperature on zSC, and found it to be small at
realistic T , σ, and ND. Therefore, we use Eq. 5.2 to calculate zSC. The formula for ESC(σ,zSC) is obtained
by integrating the Maxwell equation for a charge density ρ(r) = δ(z)σ − σ/zSC:

Ez =
σ

εrε0

(
1− z

zSC

)
ez, (5.3)

where Ez is the electric field along the surface normal ez. σESC(σ,zSC) is the energy required to take
electrons from the surface and distribute them uniformly over the thickness zSC, recalculated per defect:

σESC(σ,zSC) =
1

2

∫ zSC

0
E2

zdz = σ
σ

6εrε0
zSC. (5.4)

The potential difference ∆φ due to band bending can be calculated by integrating Eq. 5.3:

∆φ = − σ

2εrε0
zSC (5.5)

The change in Gibbs free energy per unit area upon defect formation is:

∆g(η0,η1,η2,T,pO2 ,ND) = η0G
0
f +

2∑
q=1

ηqG
VCA,q
f (σ,zSC(σ,ND))− T

2∑
q=0

sqconf(η0,η1,η2), (5.6)
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where η0, η1, and η2 are concentrations of the surface defects F 0
s , F+

s , and F 2+
s , respectively, the total

surface charge density σ = eη1 + 2eη2, and sqconf(η0,η1,η2) is the configurational entropy per unit area. The
configurational entropy accounts for all possible defect arrangements that have the same energy. Due to the
screening of the charged defects by the compensating charge, the number of defect arrangements that have
significantly different energy relative to the total number of possible arrangements at the surface for fixed
η0, η1, and η2 is expected to be small, and is vanishing for small defect concentrations. Equilibrium defect
concentrations η0, η1, and η2 can be found by minimizing ∆g with respect to these concentrations:

∂∆g

∂ηq
= Gq

f (σ,T,pO2 ,ND,εf )− T

∂
2∑

r=0
srconf(η0,η1,η2)

∂ηq
= 0. (5.7)

Here, the formation energy

Gq
f (σ,T,pO2 ,ND,εF ) =

∂

∂ηq

2∑
r=0

ηrG
VCA,r
f (σ,T,pO2 ,ND,εF ) (5.8)

includes interaction between the defects. The configurational entropy for each type of defect is:

sqconf = kB
(
ηsitesq ln ηsitesq − ηq ln ηq − (ηsitesq − ηq) ln(η

sites
q − ηq)

)
, (5.9)

where ηsitesq is the surface density of available sites for the given type of defect:

ηsitesq = ηsites −
∑
i 6=q

ηi. (5.10)

For the MgO(100) surface, the surface density of oxygen atoms is ηsites = 0.11 · 1016 cm−2.
For simplicity, we omit the derivation for equilibrium concentrations in the case when all defect charge

states are present at the surface. Due to higher formation energies of F 0
s and F+

s compared to F 2+
s , F 0

s and
F+
s concentrations are found to be relatively small, and can be omitted. The F 2+

s concentration, η2, can then
be found from the following equation:

G2
f (2eη2,T,pO2 ,ND)− kBT ln

ηsites − η2
η2

= 0. (5.11)

This equation can be easily solved numerically. The results are presented in the letter.
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6 Molecular oxygen binding energy

It is well known that local and semi-local exchange-correlation functionals strongly overestimate the binding
energy of O2 [6, 7]. While in some cases it is beneficial to use the same approximation for all calculations
related to a given problem since cancellation of errors is expected, this is often not the case for the O2

binding energy. Indeed, we find that using the energy of the oxygen atom EO as a reference, we obtain
F 0 formation energies almost independent on the parameters of the HSE functional (see Table S7) and very
close to the CCSD(T) corrected formation energies (see main paper), while at the same time the O2 binding
energy strongly depends on the HSE parameters (6.23 eV, 5.32 eV, and 5.38 eV for PBE, HSE06, and PBE0,
respectively). Therefore, we use 1

2EO2 as a reference for the oxygen chemical potential, where 1
2EO2 =

EO − 1
2E

bind
O2

, with the experimental binding energy without zero-point energies Ebind
O2

= 5.22 eV [8], and
the total energy of the oxygen atom EO calculated with the corresponding electronic structure approach.

Table S7: Formation energies for the neutral oxygen vacancy in MgO bulk (F 0, left) and the neutral oxygen
vacancy at the MgO(100) surface (F 0

s , right) as obtained from supercell calculations for differ-
ent values of the oxygen chemical potential µO, all in eV. (The basis settings used are the tight
predefined settings.)

PBE HSE06 PBE0 PBE HSE06 PBE0
µO F 0 F 0 F 0 F 0

s F 0
s F 0

s

EO 9.70 9.65 9.68 9.09 8.95 8.94
EO2 6.59 6.99 6.99 5.98 6.29 6.25

EO − 1
2E

bind,exp
O2

7.09 7.04 7.07 6.48 6.34 6.33
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