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As discussed in the main text, the ground-state total-
energy expression for an interacting electron system can
be obtained using the adiabatic-connection (AC) tech-
nique

E = Ts+

∫

drn(r)(vext(r)+
1

2
vH(r))+

∫ 1

0

dλ

2λ
Tr [ΣλGλ] ,

(1)
where

Tr [AB] =
1

2π

∫

∞

−∞

dωeiωη

∫

drdr′A(r, r′, iω)B(r′, r, iω) ,

(2)
Ts is the kinetic energy of the Kohn-Sham (KS)
independent-particle system, vext(r) the external poten-
tial, vH(r) =

∫

dr′n(r′)v(r− r
′) the classical Hartree po-

tential, and n(r) is the electron density which is fixed
at its physical value along the AC path. Here Gλ and
Σλ are respectively the interacting single-particle Green
function and the self-energy for the “intermediate” sys-
tem where the electrons interact with scaled Coulomb
interaction vλ(r − r

′) = λv(r − r
′) = λ/|r − r

′|. Please
note that, in contrast with the main paper, the “Tr” op-
erator in Eq. (1) and below also includes the frequency
integration for notational simplicity.
The key question now is how to integrate the coupling

constant λ out. To this end, it is customary to introduce
the so-called Φ functional, defined as:

Φλ[Gλ] =

∞
∑

n=1

1

2n
Tr

[

Σ
(n)
λ [Gλ]Gλ

]

, (3)

where Σ
(n)
λ is the sum of the n-th order terms of the self-

energy expanded in terms of the (scaled) Coulomb inter-

action. In terms of Feynman diagrams, Σ
(n)
λ only includes

graphs that contain n explicit Coulomb lines. It should

be kept in mind that Σ
(n)
λ depends on λ in two ways:

explicitly via the scaled Coulomb lines (there are n of
them!) and implicitly via Gλ (there are 2n+1 of them!).

The multiplication of Gλ with Σ
(n)
λ in Tr

[

Σ
(n)
λ Gλ

]

closes

the self-energy diagrams, yielding the n-th order Φ-
digrams which contain 2n Green-function lines. A key

property of Φλ is therefore

δΦλ/δGλ =
∞
∑

n=1

Σ
(n)
λ = Σλ . (4)

The derivative of Φλ with respect to λ is given by

dΦλ

dλ
=

∞
∑

n=1

1

2n
Tr

[n

λ
Σ

(n)
λ Gλ

]

+Tr

[

δΦλ

δGλ

dGλ

dλ

]

=
1

2λ
Tr [ΣλGλ] + Tr

[

Σλ

dGλ

dλ

]

. (5)

Making use of Eq. (5), Eq. (1) becomes

E =Ts +

∫

drn(r)vext(r) + EH[G]+

∫ 1

0

dλ

{

dΦλ

dλ
− Tr

[

Σλ

dGλ

dλ

]}

=Ts +

∫

drn(r)vext(r) + EH +Φλ=1[Gλ=1]

− Tr [Σλ=1Gλ=1] +

∫ 1

0

dλTr

[

Gλ

dΣλ

dλ

]

, (6)

where Σλ=0 = 0 and Φλ=0 = 0 have been used, and
EH[G] = 1/2

∫

drvH(r)n(r) is the Hartree energy.
To proceed, the Dyson equation linking Gλ and Σλ has

to be invoked, which in the current context reads

G−1
λ = G−1

s − Σλ[Gλ]− vλext − λvH + vs (7)

where vλext is the external potential of the λ-dependent
system (with vλ=1

ext = vext) to keep the density unchanged,
and vs = vext + vH + vxc is the effective single-particle
potential of the KS reference system. From Eq. (7), one
gets

−
d

dλ
lnG−1

λ = −
d

dλ
ln

[

G−1
s − Σλ − vλext − λvH + vs

]

= Gλ

[

d

dλ
Σλ +

d

dλ
vλext + VH

]

. (8)
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Using Eq. (8), and denoting Gλ=1 = G, Σλ=1 = Σ, and
Φλ=1 = Φ, one obtains

E =Ts +

∫

drn(r)vext(r) + EH[G] + Φ[G]− Tr [ΣG]

−

∫ 1

0

dλTr

[

d

dλ
lnG−1

λ +Gλ

d

dλ
vλext +GλVH

]

=Ts +

∫

drn(r)vext(r)− EH[G] + Φ[G]− Tr [ΣG]

− Tr[lnG−1] + Tr[lnG−1
s ]−

∫

drn(r)
d

dλ
vλext(r)

=Ts +

∫

drn(r)vs(r)− EH[G] + Φ[G]− Tr [ΣG]

− Tr[lnG−1] + Tr[lnG−1
s ]

=− EH[G] + Φ[G]− Tr [ΣG]− Tr[lnG−1] , (9)

where Gs = Gλ=0 is the reference KS Green function,
and

Tr[lnG−1
s ] = −

occ
∑

i

ǫi = −Ts −

∫

drn(r)vs(r), (10)

with ǫi being the KS eigenvalues. To derive Eq. (9), we
have also used

∫ 1

0

dλTr [GλvH]

=

∫ 1

0

dλ

∫

∞

−∞

dω

2π

∫

drdr′Gλ(r, r
′, iω)VH(r)δ(r− r

′)

=

∫

drn(r)vH(r) = 2EH (11)

and similarly

∫ 1

0

dλTr

[

Gλ

dvλext
dλ

]

=

∫ 1

0

dλ

∫

drn(r)
dvλext(r)

dλ

=

∫

dr (vext(r)− vs(r))n(r)dr ,

(12)

noticing that vext(r) = vλ=1
ext and vs(r) = vλ=0

ext .

Eq. (9) clearly indicates the resultant interacting
ground-state energy does not depend on the reference
state. Making use of the Dyson equation (7) at λ = 1,

Equivalent expressions to Eq. (9) can be obtained

E = −EH[G] + Φ[G]− Tr [ΣG]− Tr[ln
(

G−1
s + vxc − Σ

)

]
(13)

= −EH[G] + Φ[G]− Tr
[

(G−1
s + vxc)G− 1

]

− Tr[lnG−1] .
(14)

Eqs. (9), (13), and (14) are all equivalent when G is a self-
consistent solution of the Dyson equation (7). Regarding
the energy E as a functional of G, Eq. (13) is known
as the Luttinger-Ward functional [1] and Eq. (14) the
Klein functional [2]. Eq. (7) in the main paper – the
total energy in the form of the Klein functional – is thus
derived.
As discussed in the main paper, and in Refs. [3, 4],

evaluating the Klein functional under the GW approx-
imation with the noninteracting Green function Gs one
obtains the RPA total energy

ERPA = −EH[Gs] + ΦGW [Gs]− Tr [vxcGs]− Tr[lnG−1
s ]

= Ts +

∫

drn(r)vext(r) + EH[Gs] + Ex[Gs] + ERPA
c [Gs] ,

(15)

where we have been used

−Tr [vxcGs]− Tr[lnG−1
s ] = Ts +

∫

drn(r)vext(r) + 2EH

(16)
and

ΦGW [Gs] =

∞
∑

n=1

1

2n
Tr

[

Σ(n)[Gs]Gs

]

=
1

2
Tr [ΣxGs]−

∞
∑

n=2

1

2n
Tr [(vχs)

n]

= Ex + ERPA
c (17)

with the Σx being the exact-exchange self-energy.
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