FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI Molecular Physics Department
of the Max Planck Society

Person

Dr. Lucas Foppa

Foppa

Member since 03/2019
Phone: +49 30 8413 4802
Room: T 1.08
Email: foppa@fhi.mpg.de

RESEARCH TOPICS

RESEARCH GROUP: Ab initio and Artificial Intelligence methods for heterogeneous catalysis

Heterogeneous catalysis

METHODS

2024

Articles

  1. G. Bellini, G. Koch, F. Girgsdies, J. Dong, S. J. Carey, O. Timpe, G. Auffermann, M. Scheffler, R. Schlögl, L. Foppa, A. Trunschke,
    CO Oxidation Catalyzed by Perovskites: The Role of Crystallographic Distortions Highlighted by Systematic Experiments and Artificial Intelligence.
    Angew. Chem. Int. Ed. 2024 DOI: 10.1002/anie.202417812 
    Download (2024): ChemRxiv 

  2. M. Boley, F. Luong, S. Teshuva, D. F. Schmidt, L. Foppa, M. Scheffler,
    From Prediction to Action: The Critical Role of Proper Performance Estimation for Machine-Learning-Driven Materials Discovery.
    In Roadmap on Data-Centric Materials Science, Section 2.1.
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d 
    Download (2024): pdf

  3. L. Foppa, M. Scheffler,
    Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance.
    In Roadmap on Data-Centric Materials Science, Section 2.3. 
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d   
    Download (2024): pdf

  4. L. Foppa, M. Scheffler,
    Coherent Collections of Rules Describing Exceptional Materials Identified with a Multi-Objective Optimization of Subgroups.
    Submitted for publication March 28, 2024, http://arxiv.org/abs/2403.18437
    Preprint Download (2024): arXiv

  5. H. I. Rivera-Arrieta, L. Foppa
    Rules Describing CO2 Activation on Single-Atom Alloys from DFT-meta-GGA Calculations and Artificial Intelligence.
    Submitted for publication November 19, 2024; https://doi.org/10.26434/chemrxiv-2024-1dr10
    Preprint Download (2024): ChemRxiv

  6. J. Behler, G. Csanyi, L. Foppa, K. Kang, M. F. Langer, J. T. Margraf, Akhil S. Nair, T. A. R. Purcell, P. Rinke, M. Scheffler, 
    Workflows for Artificial Intelligence.
    Submitted for publication in "Roadmap for Advancement of the FHI-aims Software Package", September 5, 2024;
    https://doi.org/10.26434/chemrxiv-2024-vw06p
    Preprint Download (2024): ChemRxiv

  7. R. Miyazaki, K. S. Belthle, H. Tüysüz, L. Foppa, M. Scheffler,
    Materials Genes of CO2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data.
    J. Am. Chem. Soc. 2024, 146, 8, 5433–5444; https://doi.org/10.1021/jacs.3c12984
    Download (2024): pdf

  8. R. Miyazaki, S. Faraji, S. Levchenko, L. Foppa, M. Scheffler,
    Vibrational frequencies utilized for the assessment of exchange-correlation functionals in the description of metal-adsorbate systems: C2H2 and C2H4 on transition-metal surfaces.
    Catal. Sci. Technol., 2024,14, 6924-6933; https://doi.org/10.1039/D4CY00685B 
    Download (2024): pdf

  9. S. Bauer, P. Benner, T. Bereau, V. Blum, M. Boley, C. Carbogno, C. R. A. Catlow, G. Dehm, S. Eibl, R. Ernstorfer, Á. Fekete, L. Foppa, P. Fratzl, C. Freysoldt, B. Gault, L. M. Ghiringhelli, S. K. Giri, A. Gladyshev, P. Goyal, J. Hattrick-Simpers, L. Kabalan, P. Karpov, M. S. Khorrami, C. Koch, S. Kokott, T. Kosch, I. Kowalec, K. Kremer, A. Leitherer, Y. Li, C. H. Liebscher, A. J. Logsdail, Z. Lu, F. Luong, A. Marek, F. Merz, J. R. Mianroodi, J. Neugebauer, T. A. R. Purcell, D. Raabe, M. Rampp, M. Rossi, J.-M. Rost, U. Saalmann, A. Saxena, L. Sbailo, M. Scheffler, M. Scheidgen, M. Schloz, D. F. Schmidt, S. Teshuva, A. Trunschke, Y. Wei, G. Weikum, R. P. Xian, Y. Yao, M. Zhao,
    Roadmap on Data-Centric Materials Science.
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d
    Download (2024): pdf

  10. A. Trunschke, L. Foppa, M. Scheffler,
    Clean-Data Concept for Experimental Studies.
    In Roadmap on Data-Centric Materials Science, Section 3.2. 
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d    
    Download (2024): pdf

2023

Articles

  1. L. Foppa, F. Rüther, M. Geske, G. Koch, F. Girgsdies, P. Kube, S. J. Carey, M. Hävecker, O. Timpe, A. V. Tarasov, M. Scheffler, F. Rosowski, R. Schlögl, and A. Trunschke,
    Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation.
    J. Am. Chem. Soc. 2023, 145, 6, 3427–3442; https://doi.org/10.1021/jacs.2c11117
    Download: pdf

2022

Articles

  1. K. S. Belthle, T. Beyazay, C. Ochoa-Hernández, R. Miyazaki, L. Foppa, W. F. Martin, and H. Tüysüz,
    Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H2-Dependent CO2 Reduction to Metabolic Intermediates.
    J. Am. Chem. Soc. 2022, 144, 46, 21232–21243; https://doi.org/10.1021/jacs.2c08845
    Download: pdf

  2. L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli,
    Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites .
    Physical Review Letters 129, 55301 (2022); https://doi.org/10.1103/PhysRevLett.129.055301
    Download: pdf
  3. L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler,
    Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence.
    ACS Catalysis 12, 2223 (2022); https://doi.org/10.1021/acscatal.1c04793
    Download: ACS Publications

2021

Articles

  1. L. Foppa, L.M. Ghiringhelli, F. Girgsdies, M. Hashagen, P. Kube, M. Hävecker, S. Carey, A. Tarasov, P. Kraus, F. Rosowski, R. Schlögl, A. Trunschke, and M. Scheffler,
    Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence.
    MRS Bulletin 46 (2021); https://doi.org/10.1557/s43577-021-00165-6
    Download: pdf
  2. L. Foppa and L. M. Ghiringhelli,
    Identifying outstanding transition-metal-alloy heterogeneous catalysts for the oxygen reduction and evolution reactions via subgroup discovery.
    Topics in Catalysis, published online 02. September 2021; https://doi.org/10.1007/s11244-021-01502-4
    Download: pdf

2020

Articles

  1. A. Trunschke, G. Bellini, M. Boniface, S. J. Carey, J. Dong, E. Erdem, L. Foppa, W. Frandsen, M. Geske, L. M. Ghiringhelli, F. Girgsdies, R. Hanna, M. Hashagen, M. Hävecker, G. Huff, A. Knop-Gericke, G. Koch, P. Kraus, J. Kröhnert, P. Kube, S. Lohr, T. Lunkenbein, L. Masliuk, R. Naumann d’Alnoncourt, T. Omojola, Ch. Pratsch, S. Richter, C. Rohner, F. Rosowski, F. Rüther, M. Scheffler, R. Schlögl, A. Tarasov, D. Teschner, O. Timpe, P. Trunschke, Y. Wang, and S. Wrabetz,
    Towards Experimental Handbooks in Catalysis. Topics in Catalysis 63, 1683 (2020); https://doi.org/10.1007/s11244-020-01380-2
    Reprint download: pdf

2019

Articles

  1. F. Belviso, V.E.P. Claerbout, A. Comas-Vives, N.S. Dalal, F.-R. Fan, A. Filippetti, V. Fiorentini, L. Foppa, C. Franchini, B. Geisler, L.M. Ghiringhelli, A. Groß, S. Hu, J. Íñiguez, S.K. Kauwe, J.L. Musfeldt, P. Nicolini, R. Pentcheva, T. Polcar, W. Ren, F. Ricci, F. Ricci, H.S. Sen, J.M. Skelton, T.D. Sparks, A. Stroppa, A. Urru, M. Vandichel, P. Vavassori, H. Wu, K. Yang, H.J. Zhao, D. Puggioni, R. Cortese and A. Cammarata,
    Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications. Inorganic Chemistry 58 (22), 14939 (2019); https://doi.org/10.1021/acs.inorgchem.9b01785
    Reprint download: pdf

Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:

Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar

return