Person
Dr. Thomas Purcell
Member since 08/2018
Phone: +49 30 8413 4853
Room: T 1.10
Email: purcell@fhi.mpg.de
RESEARCH TOPICS
RESEARCH GROUP: Artificial Intelligence-Assisted Discovery of Thermoelectric Materials
Thermoelectric materials prediction
METHODS
- Density Functional Theory
- Ab initio molecular dynamics
- Compressed sensingmachine learning
2025
Articles
J. Behler, G. Csanyi, L. Foppa, K. Kang, M. F. Langer, J. T. Margraf, Akhil S. Nair, T. A. R. Purcell, P. Rinke, M. Scheffler,
Workflows for Artificial Intelligence.
Submitted for publication in "Roadmap for Advancement of the FHI-aims Software Package", September 5, 2024;
https://doi.org/10.26434/chemrxiv-2024-vw06p
Preprint Download (2024): ChemRxivK. Kang, T. A. R. Purcell, C. Carbogno, M. Scheffler,
Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning.
Submitted for publication September 18, 2024, https://arxiv.org/abs/2409.11808
Preprint Download (2024): arXiv
2024
Articles
S. Bauer, P. Benner, T. Bereau, V. Blum, M. Boley, C. Carbogno, C. R. A. Catlow, G. Dehm, S. Eibl, R. Ernstorfer, Á. Fekete, L. Foppa, P. Fratzl, C. Freysoldt, B. Gault, L. M. Ghiringhelli, S. K. Giri, A. Gladyshev, P. Goyal, J. Hattrick-Simpers, L. Kabalan, P. Karpov, M. S. Khorrami, C. Koch, S. Kokott, T. Kosch, I. Kowalec, K. Kremer, A. Leitherer, Y. Li, C. H. Liebscher, A. J. Logsdail, Z. Lu, F. Luong, A. Marek, F. Merz, J. R. Mianroodi, J. Neugebauer, T. A. R. Purcell, D. Raabe, M. Rampp, M. Rossi, J.-M. Rost, U. Saalmann, A. Saxena, L. Sbailo, M. Scheffler, M. Scheidgen, M. Schloz, D. F. Schmidt, S. Teshuva, A. Trunschke, Y. Wei, G. Weikum, R. P. Xian, Y. Yao, M. Zhao,
Roadmap on Data-Centric Materials Science.
Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d
Download (2024): pdf
2023
Articles
J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov,
Interpretable Machine Learning for Materials Design.
Journal of Materials Research (2023); https://doi.org/10.1557/s43578-023-01164-w
Download: pdfF. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
Anharmonicity in Thermal Insulators – An Analysis from First Principles.
Phys. Rev. Lett. 130, 236301 (2023); https://doi.org/10.1103/PhysRevLett.130.236301
Download: pdfT. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli, C. Carbogno,
Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity.
npj Computational Materials 9 (1), 112 (2023); https://doi.org/10.1038/s41524-023-01063-y
Download: pdfT. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli,
Recent advances in the SISSO method and their implementation in the SISSO++ code.
J. Chem. Phys. 159, 114110 (2023); https://doi.org/10.1063/5.0156620
Download (2023): pdf
2022
Articles
- L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli,
Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites .
Physical Review Letters 129, 55301 (2022); https://doi.org/10.1103/PhysRevLett.129.055301
Download: pdf T. A. R. Purcell, M. Scheffler, C. Carbogno, and L.M. Ghiringhelli,
SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparsifying Operator Approach.
Journal of Open Source Software 7 (71), 3960 (2022); https://doi.org/10.21105/joss.03960
Download: pdf
2021
Articles
C. W. Andersen, R. Armiento, E. Blokhin, G. J. Conduit, S. Dwaraknath, M. L. Evans, Á. Fekete, A. Gopakumar, S. Gražulis, A. Merkys, F. Mohamed, C. Oses, G. Pizzi, G.-M. Rignanese, M. Scheidgen, L. Talirz, C. Toher, D. Winston, R. Aversa, K. Choudhary, P. Colinet, S. Curtarolo, D. Di Stefano, C. Draxl, S. Er, M. Esters, M. Fornari, M. Giantomassi, M. Govoni, G. Hautier, V. Hegde, M. K. Horton, P. Huck, G. Huhs, J. Hummelshøj, A. Kariryaa, B. Kozinsky, S. Kumbhar, M. Liu, N. Marzari, A. J. Morris, A. Mostofi, K. A. Persson, G. Petretto, T. A. R. Purcell, F. Ricci, F. Rose, M. Scheffler, D. Speckhard, M. Uhrin, A. Vaitkus, P. Villars, D. Waroquiers, C. Wolverton, M. Wu, and X. Yang,
OPTIMADE: an API for exchanging materials data.
Scientific Data 8, 217 (2021); https://doi.org/10.1038/s41597-021-00974-z
Download: pdf
2020
Articles
F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
Anharmonicity Measure for Materials. Phys. Rev. Materials 4, 083809 (2020); https://doi.org/10.1103/PhysRevMaterials.4.083809
Reprint download: pdf, ArxivF. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
FHI-vibes: Ab Initio Vibrational Simulations. J. Open Source Softw. 52, 2601 (2020); https://doi.org/10.21105/joss.02671
Reprint download: pdf
2019
Articles
M.-O. Lenz, T. A. R. Purcell, D. Hicks, S. Curtarolo, M. Scheffler, C. Carbogno,
Parametrically constrained geometry relaxations for high-throughput materials science. npj Computational Materials 5, 123 (2019); https://doi.org/10.1038/s41524-019-0254-4
Reprint download: pdf
Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:
Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar