FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin

Navigation goes here

Artificial intelligence-assisted discovery of thermoelectric materials

Thomas Purcell and Kisung Kang

Publications

Publication: Thomas Purcell

  • Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites 
    L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, L. M. Ghiringhelli. submitted to Phys. Rev. Lett.
  • Interpretable Machine Learning for Materials Design 
    J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, R. Goodall, and T. Bazhirov. submitted to Mach. Learn.: Sci. Technol.
  • SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparsifying Operator Approach 
    T.A.R. Purcell, M. Scheffler, C. Carbogno, and L. M. Ghiringhelli, J. Open Source Softw. 7, 3960 (2022)
  • OPTIMADE, an API for exchanging materials data 
    C. W. Andersen, et al. Sci. Data. 8, 271 (2021)
  • Anharmonicity Measure for Materials 
    F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno, Phys. Rev. Mater. 4, 083809 (2020)
  • FHI-vibes: Ab Initio Vibrational Simulations
    F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno, J. Open Source Softw. 5, 2671 (2020)
  • Parametrically Constrained Geometry Relaxations for High-Throughput Materials Science 
    M.-O. Lenz, T. A. R. Purcell, D. Hicks, S. Curtarolo, M. Scheffler, and C. Carbogno, npj Comput. Mater. 5, 123 (2019)