Publications
Publications of the NOMAD Laboratory
Use our Publications Search:
2023
Articles
J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov,
Interpretable Machine Learning for Materials Design.
Journal of Materials Research (2023); https://doi.org/10.1557/s43578-023-01164-w
Download: pdfL. Foppa, F. Rüther, M. Geske, G. Koch, F. Girgsdies, P. Kube, S. J. Carey, M. Hävecker, O. Timpe, A. V. Tarasov, M. Scheffler, F. Rosowski, R. Schlögl, and A. Trunschke,
Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation.
J. Am. Chem. Soc. 2023, 145, 6, 3427–3442; https://doi.org/10.1021/jacs.2c11117
Download: pdfL. M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C. Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S. Dwaraknath, Á. Fekete, J. Kermode, C. T. Koch, M. Kühbach, A. N. Ladines, P. Lambrix, M.-O. Lenz-Himmer, S. Levchenko, M. Oliveira, A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.-M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T. Sheveleva, C. Su, D. Usvyat, O. Valsson, C. Wöll, and M. Scheffler,
Shared Metadata for Data-Centric Materials Science.
Scientific Data 10, 626 (2023); https://doi.org/10.1038/s41597-023-02501-8
Download: pdfH. Lu, G. Koknat, Y. Yao, J. Hao, X. Qin, C. Xiao, R. Song, F. Merz, M. Rampp, S. Kokott, C. Carbogno, T. Li, G. Teeter, M. Scheffler, J. J. Berry, D. B. Mitzi, J. L. Blackburn, V. Blum, and M. C. Beard,
Electronic Impurity Doping of a 2D Hybrid Lead Iodide Perovskite by Bi and Sn.
PRX Energy 2, 023010 (2023); http://dx.doi.org/10.1103/PRXEnergy.2.023010
Download: pdfF. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
Anharmonicity in Thermal Insulators – An Analysis from First Principles.
Phys. Rev. Lett. 130, 236301 (2023); https://doi.org/10.1103/PhysRevLett.130.236301
Download: pdfF. Knoop, M. Scheffler, and C. Carbogno,
Ab initio Green-Kubo simulations of heat transport in solids: method and implementation.
Phys. Rev. B 107, 224304 (2023); https://doi.org/10.1103/PhysRevB.107.224304
Download: pdfM. F. Langer, F. Knoop. C. Carbogno, M. Scheffler, and M. Rupp,
Heat flux for semi-local machine-learning potentials.
Phys. Rev. B (Letter) 108, L100302 (2023); https://doi.org/10.1103/PhysRevB.108.L100302
Download: pdfM. F. Langer, J. T. Frank, F. Knoop,
Stress and heat flux via automatic differentiation.
J. Chem. Phys. 159, 174105 (2023); https://doi.org/10.1063/5.0155760
Download: pdfA. Leitherer, B. C. Yeo, C. H. Liebscher, and L. M. Ghiringhelli,
Automatic Identification of Crystal Structures and Interfaces via Artificial-Intelligence-based Electron Microscopy.
npj Computational Materials 9, 17 (2023); https://doi.org/10.1038/s41524-023-01133-1
Download: pdfM. Scheidgen, L. Himanen, A. N. Ladines, D. Sikter, M. Nakhaee, Á. Fekete, T. Chang, A. Golparvar, J. A. Márquez, S. Brockhauser, S. Brückner, L. M. Ghiringhelli, F. Dietrich, D. Lehmberg, T. Denell, A. Albino, H. Näsström, S. Shabih, F. Dobener, M. Kühbach, R. Mozumder, J. Rudzinski, N. Daelman, J. M. Pizarro, M. Kuban, P. Ondračka, H.-J. Bungartz, and C. Draxl,
NOMAD: A distributed web-based platform for managing materials science research data.
Journal of Open Source Software, 8 (90), 5388; https://doi.org/10.21105/joss.05388
Download: pdfO. T. Beynon, A. Owens, C. Carbogno, and A. J. Logsdail,
Evaluating the Role of Anharmonic Vibrations in Zeolite β Materials.
J. Phys. Chem. C 127, 16030 (2023); https://doi.org/10.1021/acs.jpcc.3c02863
Download: pdfS. Lu, L. M. Ghiringhelli, C. Carbogno, J. Wang, M. Scheffler,
On the Uncertainty Estimates of Equivariant-Neural-Network-Ensembles Interatomic Potentials.
September 1, 2023; https://doi.org/10.48550/arXiv.2309.00195
Preprint Download (2023): arXivT. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli, C. Carbogno,
Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity.
npj Computational Materials 9 (1), 112 (2023); https://doi.org/10.1038/s41524-023-01063-y
Download: pdfT. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli,
Recent advances in the SISSO method and their implementation in the SISSO++ code.
J. Chem. Phys. 159, 114110 (2023); https://doi.org/10.1063/5.0156620
Download (2023): pdf
2023
Ph.D. Thesis
M. F. Langer,
Machine Learning for Atomistic Modeling: Representations and Thermal Transport.
TU Berlin, 2023; https://doi.org/10.14279/depositonce-18647
Download: pdfS. Bi,
Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework.
HU Berlin, 2023; https://doi.org/10.18452/26094
Download: pdf
2023
Master Thesis
F. Fiebig,
Assessing Electronic Transport in Solid Materials via the Fluctuation-Dissipation Theorem.
TU Berlin, 2023;
Download: pdf