FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI Molecular Physics Department
of the Max Planck Society

Publications

Publications of the NOMAD Laboratory

Use our Publications Search:

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Before1990

           

2023

Articles

  1. J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov,
    Interpretable Machine Learning for Materials Design.
    Journal of Materials Research (2023); https://doi.org/10.1557/s43578-023-01164-w 
    Download: pdf

  2. L. Foppa, F. Rüther, M. Geske, G. Koch, F. Girgsdies, P. Kube, S. J. Carey, M. Hävecker, O. Timpe, A. V. Tarasov, M. Scheffler, F. Rosowski, R. Schlögl, and A. Trunschke,
    Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation.
    J. Am. Chem. Soc. 2023, 145, 6, 3427–3442; https://doi.org/10.1021/jacs.2c11117
    Download: pdf

  3. L. M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C. Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S. Dwaraknath, Á. Fekete, J. Kermode, C. T. Koch, M. Kühbach, A. N. Ladines, P. Lambrix, M.-O. Lenz-Himmer, S. Levchenko, M. Oliveira, A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.-M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T. Sheveleva, C. Su, D. Usvyat, O. Valsson, C. Wöll, and M. Scheffler,
    Shared Metadata for Data-Centric Materials Science.
    Scientific Data 10, 626 (2023); https://doi.org/10.1038/s41597-023-02501-8
    Download: pdf

  4. H. Lu, G. Koknat, Y. Yao, J. Hao, X. Qin, C. Xiao, R. Song, F. Merz, M. Rampp, S. Kokott, C. Carbogno, T. Li, G. Teeter, M. Scheffler, J. J. Berry, D. B. Mitzi, J. L. Blackburn, V. Blum, and M. C. Beard,
    Electronic Impurity Doping of a 2D Hybrid Lead Iodide Perovskite by Bi and Sn.
    PRX Energy 2, 023010 (2023); http://dx.doi.org/10.1103/PRXEnergy.2.023010  
    Download: pdf

  5. F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
    Anharmonicity in Thermal Insulators – An Analysis from First Principles.
    Phys. Rev. Lett. 130, 236301 (2023); https://doi.org/10.1103/PhysRevLett.130.236301
    Download: pdf

  6. F. Knoop, M. Scheffler, and C. Carbogno,
    Ab initio Green-Kubo simulations of heat transport in solids: method and implementation.
    Phys. Rev. B 107, 224304 (2023); https://doi.org/10.1103/PhysRevB.107.224304
    Download: pdf

  7. M. F. Langer, F. Knoop. C. Carbogno, M. Scheffler, and M. Rupp, 
    Heat flux for semi-local machine-learning potentials.
    Phys. Rev. B (Letter) 108, L100302 (2023); https://doi.org/10.1103/PhysRevB.108.L100302
    Download: pdf

  8. M. F. Langer, J. T. Frank, F. Knoop,
    Stress and heat flux via automatic differentiation.
    J. Chem. Phys. 159, 174105 (2023); https://doi.org/10.1063/5.0155760 
    Download: pdf

  9. A. Leitherer, B. C. Yeo, C. H. Liebscher, and L. M. Ghiringhelli,
    Automatic Identification of Crystal Structures and Interfaces via Artificial-Intelligence-based Electron Microscopy.
    npj Computational Materials 9, 17 (2023); https://doi.org/10.1038/s41524-023-01133-1
    Download: pdf

  10. M. Scheidgen, L. Himanen, A. N. Ladines, D. Sikter, M. Nakhaee, Á. Fekete, T. Chang, A. Golparvar, J. A. Márquez, S. Brockhauser, S. Brückner, L. M. Ghiringhelli, F. Dietrich, D. Lehmberg, T. Denell, A. Albino, H. Näsström, S. Shabih, F. Dobener, M. Kühbach, R. Mozumder, J. Rudzinski, N. Daelman, J. M. Pizarro, M. Kuban, P. Ondračka, H.-J. Bungartz, and C. Draxl,
    NOMAD: A distributed web-based platform for managing materials science research data.
    Journal of Open Source Software, 8 (90), 5388; https://doi.org/10.21105/joss.05388
    Download: pdf

  11. O. T. Beynon, A. Owens, C. Carbogno, and A. J. Logsdail,
    Evaluating the Role of Anharmonic Vibrations in Zeolite β Materials.
    J. Phys. Chem. C 127, 16030 (2023); https://doi.org/10.1021/acs.jpcc.3c02863
    Download: pdf 

  12. S. Lu, L. M. Ghiringhelli, C. Carbogno, J. Wang, M. Scheffler,
    On the Uncertainty Estimates of Equivariant-Neural-Network-Ensembles Interatomic Potentials.
    September 1, 2023; https://doi.org/10.48550/arXiv.2309.00195
    Preprint Download (2023): arXiv

  13. T. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli, C. Carbogno,
    Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity.
    npj Computational Materials 9 (1), 112 (2023); https://doi.org/10.1038/s41524-023-01063-y
    Download: pdf

  14. T. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli,
    Recent advances in the SISSO method and their implementation in the SISSO++ code.
    J. Chem. Phys. 159, 114110 (2023); https://doi.org/10.1063/5.0156620
    Download (2023): pdf

2023

Ph.D. Thesis

  1. M. F. Langer, 
    Machine Learning for Atomistic Modeling: Representations and Thermal Transport.
    TU Berlin, 2023; https://doi.org/10.14279/depositonce-18647
    Download: pdf

  2. S. Bi, 
    Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework.
    HU Berlin, 2023; https://doi.org/10.18452/26094
    Download: pdf

2023

Master Thesis

  1. F. Fiebig,
    Assessing Electronic Transport in Solid Materials via the Fluctuation-Dissipation Theorem.
    TU Berlin, 2023;
    Download: pdf