FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI Molecular Physics Department
of the Max Planck Society

Publications

Publications of the NOMAD Laboratory

Use our Publications Search:

2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Before1990

       

2024

Articles

  1. G. Bellini, G. Koch, F. Girgsdies, J. Dong, S. J. Carey, O. Timpe, G. Auffermann, M. Scheffler, R. Schlögl, L. Foppa, A. Trunschke,
    CO Oxidation Catalyzed by Perovskites: The Role of Crystallographic Distortions Highlighted by Systematic Experiments and Artificial Intelligence.
    Angew. Chem. Int. Ed. 2024 DOI: 10.1002/anie.202417812 
    Download (2024): ChemRxiv 

  2. S. Bi, C. Carbogno, I. Y. Zhang, M. Scheffler,
    Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework.
    J. Chem. Phys. 160, 034106 (2024), https://doi.org/10.1063/5.0178075
    Download: pdf

  3. M. Boley, F. Luong, S. Teshuva, D. F. Schmidt, L. Foppa, M. Scheffler,
    From Prediction to Action: The Critical Role of Proper Performance Estimation for Machine-Learning-Driven Materials Discovery.
    In Roadmap on Data-Centric Materials Science, Section 2.1.
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d 
    Download (2024): pdf

  4. L. Foppa, M. Scheffler,
    Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance.
    In Roadmap on Data-Centric Materials Science, Section 2.3. 
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d   
    Download (2024): pdf

  5. J. Quan, C. Carbogno, M. Scheffler,
    Carrier Mobility of Strongly Anharmonic Materials from First Principles.
    Phys. Rev. B 110, 235202 (2024), https://doi.org/10.1103/PhysRevB.110.235202
    Download (2024): pdf

  6. S. Kokott, F. Merz, Y. Yao, C. Carbogno, M. Rossi, V. Havu, M. Rampp, M. Scheffler, V. Blum,
    Efficient All-electron Hybrid Density Functionals for Atomistic Simulations Beyond 10,000 Atoms.
    J. Chem. Phys. 161, 024112 (2024), https://doi.org/10.1063/5.0208103 
    Download (2024): pdf

  7. R. Miyazaki, K. S. Belthle, H. Tüysüz, L. Foppa, M. Scheffler,
    Materials Genes of CO2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data.
    J. Am. Chem. Soc. 2024, 146, 8, 5433–5444; https://doi.org/10.1021/jacs.3c12984
    Download (2024): pdf

  8. R. Miyazaki, S. Faraji, S. Levchenko, L. Foppa, M. Scheffler,
    Vibrational frequencies utilized for the assessment of exchange-correlation functionals in the description of metal-adsorbate systems: C2H2 and C2H4 on transition-metal surfaces.
    Catal. Sci. Technol., 2024,14, 6924-6933; https://doi.org/10.1039/D4CY00685B 
    Download (2024): pdf

  9. S. Bauer, P. Benner, T. Bereau, V. Blum, M. Boley, C. Carbogno, C. R. A. Catlow, G. Dehm, S. Eibl, R. Ernstorfer, Á. Fekete, L. Foppa, P. Fratzl, C. Freysoldt, B. Gault, L. M. Ghiringhelli, S. K. Giri, A. Gladyshev, P. Goyal, J. Hattrick-Simpers, L. Kabalan, P. Karpov, M. S. Khorrami, C. Koch, S. Kokott, T. Kosch, I. Kowalec, K. Kremer, A. Leitherer, Y. Li, C. H. Liebscher, A. J. Logsdail, Z. Lu, F. Luong, A. Marek, F. Merz, J. R. Mianroodi, J. Neugebauer, T. A. R. Purcell, D. Raabe, M. Rampp, M. Rossi, J.-M. Rost, U. Saalmann, A. Saxena, L. Sbailo, M. Scheffler, M. Scheidgen, M. Schloz, D. F. Schmidt, S. Teshuva, A. Trunschke, Y. Wei, G. Weikum, R. P. Xian, Y. Yao, M. Zhao,
    Roadmap on Data-Centric Materials Science.
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d
    Download (2024): pdf

  10. M. Scheffler,
    AI guided workflows for efficiently screening the materials space.
    Coshare Science 02, 02 (2024); https://doi.org/10.61109/cs.202403.129
    Watch video now: video

  11. A. Trunschke, L. Foppa, M. Scheffler,
    Clean-Data Concept for Experimental Studies.
    In Roadmap on Data-Centric Materials Science, Section 3.2. 
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d    
    Download (2024): pdf