The NOMAD Laboratory

Novel Materials Discovery at the FHI of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universit├Ąt zu Berlin


Publications of the NOMAD Laboratory

Use our Publications Search:

2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Before1990




  1. C. Draxl and M. Scheffler,
    NOMAD: The FAIR Concept for Big-Data-Driven Materials Science. Invited Review for MRS Bulletin 43, 676-682 (2018);  https://doi.org/10.1557/mrs.2018.208

  2. B.R. Goldsmith, J. Esterhuizen, and J.-X. Liu, C.J. Bartel, and C. Sutton,
    Machine Learning for Heterogeneous Catalyst Design and Discovery. AIChE-Journal 64, 7 (2018); https:/doi.org/10.1002/aic.16198

  3. Z.-K. Han, Y.-Z. Yang, B. Zhu, M.V. Ganduglia-Pirovano, and Y. Gao,
    Unraveling the oxygen vacancy structures at the reduced CeO2(111) surface. Phys. Rev. Mat. 2, 035802 (2018);  https://doi.org/10.1103/PhysRevMaterials.2.035802

  4. A. Kleshchonok and A. Tkatchenko,
    Tailoring van der Waals dispersion interactions with external electric charges. Nat. Commun. 9 , 3017 (2018); https://doi.org/10.1038/s41467-018-05407-x

  5. S. Kokott, S.V. Levchenko, P. Rinke, and M. Scheffler,
    First-principles supercell calculations of small polarons with proper account for long-range polarization effects. New J. Phys. 20, 033023 (2018); https://doi.org/10.1088/1367-2630/aaaf44

  6. S. Kokott,
    First-Principles Investigation of Small Polarons in Metal Oxides. HU Berlin, 2018.
    Reprint download: pdf
  7. T. Kumagai, J.N. Ladenthin, Y. Litman, M. Rossi, L. Grill, S. Gawinkowski, J. Waluk, and M. Persson,
    Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au. J. Chem. Phys. 148, 102330 (2018); https://doi.org/10.1063/1.5004602

  8. Y. Litman, D. Donadio, M. Ceriotti, and M. Rossi,
    Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature. J. Chem. Phys. 148, 102320 (2018); https://doi.org/10.1063/1.5002537

  9. Paul Manuel Müller,
    Thermal Conductivities of Group IV and Group III-V Compound Semiconductors from First Principles. TU Berlin, 2018.
    Reprint download: pdf

  10. C. Oses, E. Gossett, D. Hicks, F. Rose, M.J. Mehl, E. Perim, I. Takeuchi, S. Sanvito, M. Scheffler, Y. Lederer, O. Levy, C. Toher, and S. Curtarolo,
    AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. J. Chem. Inf. Model 58, 2477-2490 (2018); https://doi.org/10.1021/acs.jcim.8b00393

  11. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L.M. Ghiringhelli,
    SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates . Phys. Rev. Mat. 2, 083802 (2018); https://doi.org/10.1103/PhysRevMaterials.2.083802
    Reprint download: pdf, Supplementary material: pdf

  12. K. Rasim, R. Ramlau, A. Leithe-Jasper, T. Mori, U. Burkhardt, H. Borrmann, W. Schnelle, C. Carbogno, M. Scheffler, and Y. Grin,
    Local Atomic Arrangements and Band Structure of Boron Carbide. Angew. Chem. 57, 6130 –6135 (2018);  https://doi.org/10.1002/anie.201800804

  13. M. Rossi, V. Kapil, and M. Ceriotti,
    Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation. J. Chem. Phys. 148, 102301 (2018);  https:/doi.org/10.1063/1.4990536

  14. M. Rupp, O.A. von Lilienfeld, and K.Burke,
    Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry. J. Chem. Phys. 148, 241401 (2018);   https://doi.org/10.1063/1.5043213

  15. P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, and S. Curtarolo,
    High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018);   https://doi.org/10.1038/s41467-018-07160-7

  16. M. Scheffler and C. Draxl,
    Ein FAIRes Datenkonzept der von Big Data gesteuerten Materialwissenschaften. Jahrbuch / Max-Planck-Gesellschaft (2018).
    Publisher version: https://www.mpg.de/12066184/fhi-berlin_jb_2018?c=12090594
  17. H. Shang, N. Raimbault, P. Rinke, M. Scheffler, M. Rossi, and C. Carbogno,
    All-Electron, Real-Space Perturbation Theory for Homogeneous Electric Fields: Theory, Implementation, and Application within DFT. New J. Phys. 20, 073040 (2018);  https://doi.org/10.1088/1367-2630/aace6d

  18. G.-X. Zhang, A. Reilly, A. Tkatchenko, and M. Scheffler,
    Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New J. Phys. 20, 063020 (2018); https://doi.org/10.1088/1367-2630/aac7f0

  19. A. Ziletti, D. Kumar, M. Scheffler, and L.M. Ghiringhelli,
    Insightful classification of crystal structures using deep learning. Nat. Commun. 9 , 2775 (2018); https:/doi.org/10.1038/s41467-018-05169-6


Bachelor Thesis

  1. Paul Manuel Müller,
    Thermal Conductivities of Group IV and Group III-V Compound Semiconductors from First Principles. TU Berlin, 2018.
    Reprint download: pdf


Ph.D. Thesis

  1. S. Kokott,
    First-Principles Investigation of Small Polarons in Metal Oxides. HU Berlin, 2018; https://doi.org/10.18452/19535