FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin

Publications

Publications of the NOMAD Laboratory

Use our Publications Search:

2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Before1990


 

2022

Articles

  1. W. Aggoune, A. Eljarrat, D. Nabok, K. Irmscher, M. Zupancic, Z. Galazka, M. Albrecht, C. Koch and C. Draxl,
    A consistent picture of excitations in cubic BaSnO3 revealed by combining theory and experiment.
    Communications Materials 3, 12 (2022); https://doi.org/10.1088/1361-648X/ac2864
    Download: pdf
  2. K. S. Belthle, T. Beyazay, C. Ochoa-Hernández, R. Miyazaki, L. Foppa, W. F. Martin, and H. Tüysüz,
    Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H2-Dependent CO2 Reduction to Metabolic Intermediates.
    J. Am. Chem. Soc. 2022, 144, 46, 21232–21243; https://doi.org/10.1021/jacs.2c08845
    Download: pdf

  3. V. Blum, M. Rossi, S. Kokott, and M. Scheffler,
    The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale.
    Modelling and Simulation in Materials Science and Engineering 30 (2022).
    Preprint Download: arXiv
  4. L. Boeri, R.G. Hennig, P.J. Hirschfeld, G. Profeta, A. Sanna, E. Zurek, W.E. Pickett, M. Amsler, R. Dias, M. Eremets, C. Heil, R. Hemley, H. Liu, Y. Ma, C. Pierleoni, A. Kolmogorov, N. Rybin, D. Novoselov, V.I. Anisimov, A.R. Oganov, C.J. Pickard, T. Bi, R. Arita, I. Errea, C. Pellegrini, R. Requist, E.K.U. Gross, E.R. Margine, S.R. Xie, Y. Quan, A. Hire, L. Fanfarillo, G.R. Stewart, J.J. Hamlin, V. Stanev, R.S. Gonnelli, E. Piatti, D. Romanin, D. Daghero and R. Valenti,
    The 2021 Room-Temperature Superconductivity Roadmap.
    Journal of Physics: Condensed Matter 34 (18), 183002 (2022); https://doi.org/10.1088/1361-648X/ac2864
    Download: pdf
  5. M. Boley and M. Scheffler,
    Learning Rules for Materials Properties and Functions.
    Roadmap for Machine Learning in Electronic Structure Theory, ed. by Silvana Botti and Miguel Marques
    Electron. Struct. 4, 023004 (2022); DOI 10.1088/2516-1075/ac572f; https://iopscience.iop.org/article/10.1088/2516-1075/ac572f
    Download: pdf

  6. C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler,
    Numerical Quality Control for DFT-based Materials Databases.
    npj Computational Materials 8, 69 (2022); https://doi.org/10.1038/s41524-022-00744-4
    Download: pdf

  7. J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov,
    Interpretable Machine Learning for Materials Design.
    Preprint Download: arXiv
  8. T. Elsaesser, M. Groetschel, M. Scheffler, J. H. Ullrich, F. von Blanckenburg
    Open Research Data in Naturwissenschaften und Mathematik.
    Empfehlungen der Mathematisch-Naturwissenschaftlichen Klasse der BBAW, ed. by: Der Praesident der Berlin-Brandenburgischen Akademie der Wissenschaften, ISBN:978-3-949455-12-4
    https://doi.org/21.11116/0000-000A-CFFA-4
    Download: pdf
  9. L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli,
    Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites .
    Physical Review Letters 129, 55301 (2022); https://doi.org/10.1103/PhysRevLett.129.055301
    Download: pdf
  10. L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler,
    Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence.
    ACS Catalysis 12, 2223 (2022); https://doi.org/10.1021/acscatal.1c04793
    Download: ACS Publications
  11. L. M. Ghiringhelli,
    Interpretability of machine-learning models in physical sciences.
    Roadmap for Machine Learning in Electronic Structure Theory, ed. by Silvana Botti and Miguel Marques
    Preprint Download: arXiv
  12. M. F. Langer, A. Goeßmann, and M. Rupp,
    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning.
    npj Computational Materials 8, 41 (2022); https://doi.org/10.1038/s41524-022-00721-x
    Download: pdf

  13. A. Mazheika, Y. Wang, R. Valero, F. Vines, F. Illas, L. Ghiringhelli, S. Levchenko, and M. Scheffler,
    Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides.
    Nature Communications 13, 419 (2022); https://doi.org/10.1038/s41467-022-28042-z
    Download: pdf

  14. E. Moerman, F. Hummel, A. Grüneis, A. Irmler, M. Scheffler,
    Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions.
    Journal of Open Source Software, 7 (74), 4040; https://doi.org/10.21105/joss.04040
    Download: pdf

  15. T. Purcell, M. Scheffler, C. Carbogno, and L.M. Ghiringhelli,
    SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparsifying Operator Approach.
    Journal of Open Source Software 7 (71), 3960 (2022); https://doi.org/10.21105/joss.03960
    Download: pdf
  16. B. Regler, M. Scheffler, and L.M. Ghiringhelli,
    TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions. Data Min Knowl Disc 36, 1815–1864 (2022); https://doi.org/10.1007/s10618-022-00847-y
    Download: pdf

  17. L. Sbailò, Á. Fekete, L. M. Ghiringhelli, and M. Scheffler
    The NOMAD Artificial-Intelligence Toolkit: turning materials-science data into knowledge and understanding.
    npj Computational Materials 8, 250 (2022); https://doi.org/10.1038/s41524-022-00935-z
    Download: https://www.nature.com/articles/s41524-022-00935-z.pdf

  18. M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C. Felser, M. Greiner, A. Groß, C. T. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl,
    FAIR data enabling new horizons for materials research.
    Nature 604, 635 (2022); https://www.doi.org/10.1038/s41586-022-04501-x
    Reprint Download: pdf
    Preprint Download: arXiv
  19. C. Tantardini, S. Kokott, X. Gonze, S.V. Levchenko and W.A. Saidi,
    “Self-trapping” in solar cell hybrid inorganic-organic perovskite absorbers.
    Applied Materials Today 26, 101380 (2022).
    Download: sciencedirect
  20. A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A.Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, X. W. Yang,
    DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science.
    Phys. Chem. Chem. Phys. 24, 28700-28781 (2022); https://doi.org/10.1039/D2CP02827A
    Download: pdf

  21. Y. Zhou, C. Zhu, M. Scheffler, and L. M. Ghiringhelli,
    Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects – the example of hydrogen at Si(100).
    Physical Review Letter 128, 246101 (2022);  https:/doi.org/10.1103/PhysRevLett.128.246101

2022

Ph.D. Thesis

  1. E. Ahmetik,
    Artificial Intelligence for Crystal Structure Prediction.
    TU Berlin, 2022; https://doi.org/10.14279/depositonce-16033
    Reprint download: pdf
  2. M. Dragoumi,
    Quasiparticle energies from second-order perturbation theory
    FU Berlin, 2022;
    Download: pdf

  3. F. Knoop,
    Heat transport in strongly anharmonic solids from first principles.
    HU Berlin, 2022; https://doi.org/10.18452/24244
    Reprint download: pdf
  4. M.O. Lenz-Himmer,
    Towards Efficient Novel Materials Discovery Acceleration of High-throughput Calculations and Semantic Management of Big Data using Ontologies.
    HU Berlin, 2022; https://doi.org/10.18452/24340
    Download: pdf
    Reprint download: pdf
  5. B. Regler,
    Systematic identification of relevant features for the statistical modeling of materials properties of crystalline solids.
    FU Berlin, 2022; http://dx.doi.org/10.17169/refubium-35222
    Reprint download: pdf
  6. Z. Yuan,
    Electrical conductivity from first principles.
    HU Berlin, 2022.
    Reprint download: pdf

2022

Master Thesis

  1. B. Zhao,
    Identifying descriptors for the In-silico, high-throughput discovery of the thermal Insulators for thermoelectric applications.
    TU Darmstadt, 2022.
    Reprint download: pdf
  2. X. Zhu,
    Ab Initio green-kubo calculations for strongly anharmonic solids: a comparative benchmark of lattice thermal conductivities.
    TU Darmstadt, 2022
    Reprint download: pdf

2022

Articles

  1. W. Aggoune, A. Eljarrat, D. Nabok, K. Irmscher, M. Zupancic, Z. Galazka, M. Albrecht, C. Koch and C. Draxl,
    A consistent picture of excitations in cubic BaSnO3 revealed by combining theory and experiment.
    Communications Materials 3, 12 (2022); https://doi.org/10.1088/1361-648X/ac2864
    Download: pdf
  2. K. S. Belthle, T. Beyazay, C. Ochoa-Hernández, R. Miyazaki, L. Foppa, W. F. Martin, and H. Tüysüz,
    Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H2-Dependent CO2 Reduction to Metabolic Intermediates.
    J. Am. Chem. Soc. 2022, 144, 46, 21232–21243; https://doi.org/10.1021/jacs.2c08845
    Download: pdf

  3. V. Blum, M. Rossi, S. Kokott, and M. Scheffler,
    The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale.
    Modelling and Simulation in Materials Science and Engineering 30 (2022).
    Preprint Download: arXiv
  4. L. Boeri, R.G. Hennig, P.J. Hirschfeld, G. Profeta, A. Sanna, E. Zurek, W.E. Pickett, M. Amsler, R. Dias, M. Eremets, C. Heil, R. Hemley, H. Liu, Y. Ma, C. Pierleoni, A. Kolmogorov, N. Rybin, D. Novoselov, V.I. Anisimov, A.R. Oganov, C.J. Pickard, T. Bi, R. Arita, I. Errea, C. Pellegrini, R. Requist, E.K.U. Gross, E.R. Margine, S.R. Xie, Y. Quan, A. Hire, L. Fanfarillo, G.R. Stewart, J.J. Hamlin, V. Stanev, R.S. Gonnelli, E. Piatti, D. Romanin, D. Daghero and R. Valenti,
    The 2021 Room-Temperature Superconductivity Roadmap.
    Journal of Physics: Condensed Matter 34 (18), 183002 (2022); https://doi.org/10.1088/1361-648X/ac2864
    Download: pdf
  5. M. Boley and M. Scheffler,
    Learning Rules for Materials Properties and Functions.
    Roadmap for Machine Learning in Electronic Structure Theory, ed. by Silvana Botti and Miguel Marques
    Electron. Struct. 4, 023004 (2022); DOI 10.1088/2516-1075/ac572f; https://iopscience.iop.org/article/10.1088/2516-1075/ac572f
    Download: pdf

  6. C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler,
    Numerical Quality Control for DFT-based Materials Databases.
    npj Computational Materials 8, 69 (2022); https://doi.org/10.1038/s41524-022-00744-4
    Download: pdf

  7. J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov,
    Interpretable Machine Learning for Materials Design.
    Preprint Download: arXiv
  8. T. Elsaesser, M. Groetschel, M. Scheffler, J. H. Ullrich, F. von Blanckenburg
    Open Research Data in Naturwissenschaften und Mathematik.
    Empfehlungen der Mathematisch-Naturwissenschaftlichen Klasse der BBAW, ed. by: Der Praesident der Berlin-Brandenburgischen Akademie der Wissenschaften, ISBN:978-3-949455-12-4
    https://doi.org/21.11116/0000-000A-CFFA-4
    Download: pdf
  9. L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli,
    Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites .
    Physical Review Letters 129, 55301 (2022); https://doi.org/10.1103/PhysRevLett.129.055301
    Download: pdf
  10. L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler,
    Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence.
    ACS Catalysis 12, 2223 (2022); https://doi.org/10.1021/acscatal.1c04793
    Download: ACS Publications
  11. L. M. Ghiringhelli,
    Interpretability of machine-learning models in physical sciences.
    Roadmap for Machine Learning in Electronic Structure Theory, ed. by Silvana Botti and Miguel Marques
    Preprint Download: arXiv
  12. M. F. Langer, A. Goeßmann, and M. Rupp,
    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning.
    npj Computational Materials 8, 41 (2022); https://doi.org/10.1038/s41524-022-00721-x
    Download: pdf

  13. A. Mazheika, Y. Wang, R. Valero, F. Vines, F. Illas, L. Ghiringhelli, S. Levchenko, and M. Scheffler,
    Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides.
    Nature Communications 13, 419 (2022); https://doi.org/10.1038/s41467-022-28042-z
    Download: pdf

  14. E. Moerman, F. Hummel, A. Grüneis, A. Irmler, M. Scheffler,
    Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions.
    Journal of Open Source Software, 7 (74), 4040; https://doi.org/10.21105/joss.04040
    Download: pdf

  15. T. Purcell, M. Scheffler, C. Carbogno, and L.M. Ghiringhelli,
    SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparsifying Operator Approach.
    Journal of Open Source Software 7 (71), 3960 (2022); https://doi.org/10.21105/joss.03960
    Download: pdf
  16. B. Regler, M. Scheffler, and L.M. Ghiringhelli,
    TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions. Data Min Knowl Disc 36, 1815–1864 (2022); https://doi.org/10.1007/s10618-022-00847-y
    Download: pdf

  17. L. Sbailò, Á. Fekete, L. M. Ghiringhelli, and M. Scheffler
    The NOMAD Artificial-Intelligence Toolkit: turning materials-science data into knowledge and understanding.
    npj Computational Materials 8, 250 (2022); https://doi.org/10.1038/s41524-022-00935-z
    Download: https://www.nature.com/articles/s41524-022-00935-z.pdf

  18. M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C. Felser, M. Greiner, A. Groß, C. T. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl,
    FAIR data enabling new horizons for materials research.
    Nature 604, 635 (2022); https://www.doi.org/10.1038/s41586-022-04501-x
    Reprint Download: pdf
    Preprint Download: arXiv
  19. C. Tantardini, S. Kokott, X. Gonze, S.V. Levchenko and W.A. Saidi,
    “Self-trapping” in solar cell hybrid inorganic-organic perovskite absorbers.
    Applied Materials Today 26, 101380 (2022).
    Download: sciencedirect
  20. A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A.Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, X. W. Yang,
    DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science.
    Phys. Chem. Chem. Phys. 24, 28700-28781 (2022); https://doi.org/10.1039/D2CP02827A
    Download: pdf

  21. Y. Zhou, C. Zhu, M. Scheffler, and L. M. Ghiringhelli,
    Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects – the example of hydrogen at Si(100).
    Physical Review Letter 128, 246101 (2022);  https:/doi.org/10.1103/PhysRevLett.128.246101

2022

Ph.D. Thesis

  1. E. Ahmetik,
    Artificial Intelligence for Crystal Structure Prediction.
    TU Berlin, 2022; https://doi.org/10.14279/depositonce-16033
    Reprint download: pdf
  2. M. Dragoumi,
    Quasiparticle energies from second-order perturbation theory
    FU Berlin, 2022;
    Download: pdf

  3. F. Knoop,
    Heat transport in strongly anharmonic solids from first principles.
    HU Berlin, 2022; https://doi.org/10.18452/24244
    Reprint download: pdf
  4. M.O. Lenz-Himmer,
    Towards Efficient Novel Materials Discovery Acceleration of High-throughput Calculations and Semantic Management of Big Data using Ontologies.
    HU Berlin, 2022; https://doi.org/10.18452/24340
    Download: pdf
    Reprint download: pdf
  5. B. Regler,
    Systematic identification of relevant features for the statistical modeling of materials properties of crystalline solids.
    FU Berlin, 2022; http://dx.doi.org/10.17169/refubium-35222
    Reprint download: pdf
  6. Z. Yuan,
    Electrical conductivity from first principles.
    HU Berlin, 2022.
    Reprint download: pdf

2022

Articles

  1. W. Aggoune, A. Eljarrat, D. Nabok, K. Irmscher, M. Zupancic, Z. Galazka, M. Albrecht, C. Koch and C. Draxl,
    A consistent picture of excitations in cubic BaSnO3 revealed by combining theory and experiment.
    Communications Materials 3, 12 (2022); https://doi.org/10.1088/1361-648X/ac2864
    Download: pdf
  2. K. S. Belthle, T. Beyazay, C. Ochoa-Hernández, R. Miyazaki, L. Foppa, W. F. Martin, and H. Tüysüz,
    Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H2-Dependent CO2 Reduction to Metabolic Intermediates.
    J. Am. Chem. Soc. 2022, 144, 46, 21232–21243; https://doi.org/10.1021/jacs.2c08845
    Download: pdf

  3. V. Blum, M. Rossi, S. Kokott, and M. Scheffler,
    The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale.
    Modelling and Simulation in Materials Science and Engineering 30 (2022).
    Preprint Download: arXiv
  4. L. Boeri, R.G. Hennig, P.J. Hirschfeld, G. Profeta, A. Sanna, E. Zurek, W.E. Pickett, M. Amsler, R. Dias, M. Eremets, C. Heil, R. Hemley, H. Liu, Y. Ma, C. Pierleoni, A. Kolmogorov, N. Rybin, D. Novoselov, V.I. Anisimov, A.R. Oganov, C.J. Pickard, T. Bi, R. Arita, I. Errea, C. Pellegrini, R. Requist, E.K.U. Gross, E.R. Margine, S.R. Xie, Y. Quan, A. Hire, L. Fanfarillo, G.R. Stewart, J.J. Hamlin, V. Stanev, R.S. Gonnelli, E. Piatti, D. Romanin, D. Daghero and R. Valenti,
    The 2021 Room-Temperature Superconductivity Roadmap.
    Journal of Physics: Condensed Matter 34 (18), 183002 (2022); https://doi.org/10.1088/1361-648X/ac2864
    Download: pdf
  5. M. Boley and M. Scheffler,
    Learning Rules for Materials Properties and Functions.
    Roadmap for Machine Learning in Electronic Structure Theory, ed. by Silvana Botti and Miguel Marques
    Electron. Struct. 4, 023004 (2022); DOI 10.1088/2516-1075/ac572f; https://iopscience.iop.org/article/10.1088/2516-1075/ac572f
    Download: pdf

  6. C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler,
    Numerical Quality Control for DFT-based Materials Databases.
    npj Computational Materials 8, 69 (2022); https://doi.org/10.1038/s41524-022-00744-4
    Download: pdf

  7. J. Dean, M. Scheffler, T. A. R. Purcell, S. V. Barabash, R. Bhowmik, T. Bazhirov,
    Interpretable Machine Learning for Materials Design.
    Preprint Download: arXiv
  8. T. Elsaesser, M. Groetschel, M. Scheffler, J. H. Ullrich, F. von Blanckenburg
    Open Research Data in Naturwissenschaften und Mathematik.
    Empfehlungen der Mathematisch-Naturwissenschaftlichen Klasse der BBAW, ed. by: Der Praesident der Berlin-Brandenburgischen Akademie der Wissenschaften, ISBN:978-3-949455-12-4
    https://doi.org/21.11116/0000-000A-CFFA-4
    Download: pdf
  9. L. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli,
    Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites .
    Physical Review Letters 129, 55301 (2022); https://doi.org/10.1103/PhysRevLett.129.055301
    Download: pdf
  10. L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler,
    Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence.
    ACS Catalysis 12, 2223 (2022); https://doi.org/10.1021/acscatal.1c04793
    Download: ACS Publications
  11. L. M. Ghiringhelli,
    Interpretability of machine-learning models in physical sciences.
    Roadmap for Machine Learning in Electronic Structure Theory, ed. by Silvana Botti and Miguel Marques
    Preprint Download: arXiv
  12. M. F. Langer, A. Goeßmann, and M. Rupp,
    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning.
    npj Computational Materials 8, 41 (2022); https://doi.org/10.1038/s41524-022-00721-x
    Download: pdf

  13. A. Mazheika, Y. Wang, R. Valero, F. Vines, F. Illas, L. Ghiringhelli, S. Levchenko, and M. Scheffler,
    Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides.
    Nature Communications 13, 419 (2022); https://doi.org/10.1038/s41467-022-28042-z
    Download: pdf

  14. E. Moerman, F. Hummel, A. Grüneis, A. Irmler, M. Scheffler,
    Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions.
    Journal of Open Source Software, 7 (74), 4040; https://doi.org/10.21105/joss.04040
    Download: pdf

  15. T. Purcell, M. Scheffler, C. Carbogno, and L.M. Ghiringhelli,
    SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparsifying Operator Approach.
    Journal of Open Source Software 7 (71), 3960 (2022); https://doi.org/10.21105/joss.03960
    Download: pdf
  16. B. Regler, M. Scheffler, and L.M. Ghiringhelli,
    TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions. Data Min Knowl Disc 36, 1815–1864 (2022); https://doi.org/10.1007/s10618-022-00847-y
    Download: pdf

  17. L. Sbailò, Á. Fekete, L. M. Ghiringhelli, and M. Scheffler
    The NOMAD Artificial-Intelligence Toolkit: turning materials-science data into knowledge and understanding.
    npj Computational Materials 8, 250 (2022); https://doi.org/10.1038/s41524-022-00935-z
    Download: https://www.nature.com/articles/s41524-022-00935-z.pdf

  18. M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C. Felser, M. Greiner, A. Groß, C. T. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl,
    FAIR data enabling new horizons for materials research.
    Nature 604, 635 (2022); https://www.doi.org/10.1038/s41586-022-04501-x
    Reprint Download: pdf
    Preprint Download: arXiv
  19. C. Tantardini, S. Kokott, X. Gonze, S.V. Levchenko and W.A. Saidi,
    “Self-trapping” in solar cell hybrid inorganic-organic perovskite absorbers.
    Applied Materials Today 26, 101380 (2022).
    Download: sciencedirect
  20. A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A.Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, X. W. Yang,
    DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science.
    Phys. Chem. Chem. Phys. 24, 28700-28781 (2022); https://doi.org/10.1039/D2CP02827A
    Download: pdf

  21. Y. Zhou, C. Zhu, M. Scheffler, and L. M. Ghiringhelli,
    Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects – the example of hydrogen at Si(100).
    Physical Review Letter 128, 246101 (2022);  https:/doi.org/10.1103/PhysRevLett.128.246101


 


Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:

Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar